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1. Introduction

With the formulation of the Marshallian Macroeconomic Model (MMM) by Veloce
and Zellner (1985) for a single sector, and later extension to a multi-sector model by
Zellner and Israilevich (2005), Zellner and his co-authors attempted to incorporate
sectoral dynamics and its effects on aggregates and vice-versa. One of the novel
features of this model was explicitly to formulate the dynamics of firm entry and
exit within industries. With this in mind the basic MMM is described by sectoral
demand, supply, and entry/exit equations. In the later version of the model in Zellner
and Israilevich (2005), factor markets, the government, and a monetary sector were
added to complete the model.

The entry/exit behavior modeled in the MMM can be described by the equation
Ṅ
N

= γ
′
(Π− F e), i.e. the growth rate of firms in the industry is proportional to the

difference in current industry profitability, Π, and the long-run future profitability
in the industry, F e. The speed of adjustment is determined by the parameter, γ′.
Zellner and Israilevich (2005) describe the emergence of rich dynamics in key vari-
ables, such as price and output at the sectoral, as well as at the aggregate, level once
an entry/exit equation for each industry is introduced into the model . In the sim-
ulation exercises conducted by Zellner and Israilevich (2005), γ′ and F e were fixed
parameters. Varying these parameters would change the equilibria and could possi-
bly cause changes in the nature of the equilibria, such as the number of solutions
and the stability properties of the equilibria. In this paper, we undertake this task
of examining the model’s characteristics with respect to the entry/exit parameter
F e by searching for a bifurcation within the theoretically feasible parameter space.

Examining the existence of bifurcations in dynamic economic models has important
consequences from a theoretical as well as an empirical perspective. Grandmont
(1985) showed that it was possible for even the most classical dynamic, general
equilibrium, macroeconomic models to demonstrate stable solutions or more complex
solutions in the form of cycles or chaos. The reason behind such disparate behavior
was not a difference in the structure of the model, but the fact that the parameter
space of such models was stratified into subsets or bifurcation regions, each of which
supported a very different kind of dynamics. As Barnett (2000) pointed out, it is
possible for economists having different policy views to agree on structurally similar
or identical models, but with the parameters being in different bifurcation subsets
of the parameter space. This conclusion is in contrast with the earlier view that
different policy views must imply different structural models.

Bifurcation analysis of parameter space stratification is a fundamental and frequently
overlooked approach to exploring model dynamic properties. Basic properties of any
dynamic system are stability and the nature of its disequilibrium dynamics. Just as
it is important to know for what parameter values a system is stable or unstable, it
is equally important to know the nature of stability ( e.g. monotonic convergence,
damped single periodic convergence, or damped multi-periodic convergence) or in-
stability (periodic, multi-periodic, or chaotic). Informally we say that a system has
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undergone a bifurcation if a small, smooth change in a parameter value(s) produces
a sudden topological change in the nature of singular points and trajectories of the
system.

When the values of a system’s parameters are not known with certainty, bifurcation
analysis can provide meaningful insights into solution dynamics of the system. If a
confidence region around a parameter estimate includes a bifurcation point, then
various kinds of dynamics can be consistent with the parameter being within the
confidence interval. In such cases the robustness of inferences about dynamics is
damaged.

Bifurcations can be local or global. Local bifurcations are examined through lin-
earization of a non-linear system around its equilibrium, since in general non-linear
systems tend to behave in the same manner as the linear system in a close neigh-
borhood of the equilibrium. At a bifurcation point, the number of equilibrium may
change. There may also be changes in the stability properties of equilibrium points
and/or changes in the nature of orbits near the equilibrium. Examples of local bifur-
cations include saddle-node bifurcation, transcritical bifurcation, pitch-fork bifurca-
tion, period-doubling(flip) bifurcation, and Hopf bifurcation.

Examining the existence of bifurcation has important consequences for theoretical
and empirical model building in economics. Boldrin and Woodford (1990) have given
an extensive survey of developments in dynamic, general equilibrium theory and con-
ditions under which endogenous fluctuations are possible. Benhabib and Nishimura
(1979) show that the optimal growth path becomes a closed orbit in a multi-sector
model for some discount rate values within the theoretically feasible region. Ben-
habib and Day (1982) and Grandmont (1985) have also shown the possibility of
chaotic behavior in general equilibrium models.

More recent work on detecting bifurcations in macroeconomic models have been un-
dertaken by Barnett and his co-authors. Barnett and He (2002) show the existence of
a transcritical and Hopf bifurcation for different policy parameters in the dynamic,
continuous time macroeconometric model of Bergstrom et al. (1992). Furthermore,
Barnett and He (2004, 2006, 2010) find the existence of a singularity induced bifur-
cation within the empirical parameter space of the Leeper and Sims (1994) Euler
equations model for the US economy. Barnett and Duzhak (2008, 2010) recently
found the presence of period-doubling and Hopf bifurcation in New Keynesian mod-
els.

Section 2, describes the MMM and the derivations of the dynamic equations gov-
erning the path of output in each sector. In Section 3 we discuss the possibility
of cyclical behavior in MMM and present our result of a Hopf bifurcation. Finally,
Section 4 concludes the paper and indicates some future extensions.
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2. The Model

We consider a two sector, continuous time version of the Marshallian Macroeco-
nomic Model (MMM), as outlined in Zellner and Israilevich (2005). Each sector is
characterized by an aggregate demand function for its output, an aggregate supply
function, and aggregate input demand functions for labor and capital. We also in-
clude the government that collects taxes on output, purchases output from the two
sectors, and inputs from the factor markets. Although Zellner and Israilevich (2005)
include money markets in their original model with monetary services being used as
a factor of production, we exclude the presence of money markets from the model
at this stage to make our analysis simpler.

2.1. Output Demand

Since both the government and households demand goods from the two sectors, the
total demand for goods in the ith sector, i = 1, 2, is sum of the demands from the
government and the aggregate demand from households. As in Zellner and Israile-
vich (2005), these demands are given exogenously, but some of the other factors 1

determining household demand are omitted for simplicity. Aggregate demand is thus
given by

Si = Gi + P 1−ηii
i P

ηij
j (S(1− T s))ηis , (2.1)

where Gi is the nominal government expenditure in sector i, S = S1 +S2 is the total
income (nominal ouput), T s is the tax rate, ηii is the own price elasticity, ηij is the
cross price elasticity, and ηis is the income elasticity. Expressed in terms of growth
rates, the aggregate demand for goods in each sector is the weighted sum of growth
rates 2 of demand from the government and households

Ŝi = giĜi + (1− gi)[(1− ηii)P̂i + ηijP̂j + ηis(Ŝ + T̂ s
′

)], (2.2)

where gi is the ratio of government spending in sector i to total sales in sector i and

T s
′

= 1− T s.

2.2. Output Supply

There are Ni identical firms in the ith sector, each using a Cobb-Douglas type
production function, qi = A∗iL

α
i K

β
i , with 0 < αi, βi < 1 and 0 < θi = 1−αi−βi < 1,

where A∗i is the product of a neutral technological change, and labor and capital
augmentation factors, and is assumed in this paper to be a constant.

1 The other demand shift variables that Zellner and Israilevich (2005) indicate include
the number of households, money balances, and demand trends.
2 Given any variable X ∈ R, we denote Ẋ = dX

dt and X̂ = Ẋ
X .
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The aggregate nominal profit-maximizing output supply of each sector, i, is the
number of firms in the sector, Ni, times the nominal profit-maximizing supply of

each firm within that sector. This is given by Si = NiP
1
θi
i w

−αi
θi r

−βi
θi , where Pi, w, and

r are the price, wage rate, and rental rate respectively. Expressing this in growth
rates, we have

Ŝi = N̂i +
1

θi
P̂i −

αi
θi
ŵ − βi

θi
r̂. (2.3)

2.3. Entry/Exit

We consider the simplest form of the entry/exit equation proposed by Zellner and
Israilevich (2005),

N̂i = γi[Πi − Fi], (2.4)

where Πi = θiSi is the current nominal aggregate industry profit for sector i, while
Fi represents the aggregate long-run equilibrium profits in sector i, taking account
of discounted entry costs. The parameters Fi and γi are both positive and could be
functions of time. In our analysis, as in the work of Zellner and Israilevich (2005), we
will consider them to be time invariant. The coefficient, γi, is the speed of adjustment
for sector i. Given that γi is assumed to be positive, we can interpret the entry/exit
equations as follows. A positive departure from equilibrium profits, F e

i , will attract
new firms into the industry, while a negative departure will induce firms to leave the
industry. The larger the value of γi, the faster will be this adjustment.

2.4. Government

Total nominal, government expenditure, G, is the sum of expenditures in each of
the two sectors, Gi, and its expenditures on labor, GL, and capital, GK . Zellner and
Israilevich (2005) assume that each component of government expenditure, Gi, for
all i = 1, 2, L,K, grows at the same rate as the total government expenditure. We
accommodate this assumption by proposing that Gi = ζiG, where ζi is the fraction
of total government expenditure in the ith market. Thus in terms of growth rates,
we have Ĝi = Ĝ.

The government collects a single uniform tax at the rate T s on output (in this
paper we omit corporate taxes for simplicity). The tax revenue, R, is thus given by
R = T s · S, which expressed in terms of growth rates yields R̂ = T̂ s + Ŝ.

Zellner and Israilevich (2005) further assume that there is an exogenously deter-
mined deficit/surplus, D, defined as the government expenditures as a percentage of
revenues, so that D = G

R
. Thus the flow budget identity of the government in terms

of growth rates is

Ĝ = D̂ + R̂ = D̂ + T̂ s + Ŝ. (2.5)
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2.5. Factor Markets

Given the Cobb-Douglas technologies, the aggregate, profit-maximizing factor de-
mands from sector i are Li = αiSi

w
and Ki = βiSi

r
. The government demand for labor

and capital are Lg = GL
w

and Kg = GK
r

, respectively. The total demand for each
factor in terms of growth rates is then the weighted sum of growth rates of sectoral
demands and the government demand for that factor, as stated below in 2.6 and 2.7.

L1

L
L̂1 +

L2

L
L̂2 +

Lg
L
L̂g = l1L̂1 + l2L̂2 + lgL̂g, (2.6)

K1

K
K̂1 +

K2

K
K̂2 +

Kg

K
K̂ = k1K̂1 + k2K̂2 + kgK̂g. (2.7)

The explicit dependence of the weights, li and ki, on S1 and S2 is given in Appendix
A.

The supply of factors of production is again assumed to be exogenous, as in Zellner

and Israilevich (2005), L =
(
w
P

)δ (
S
P

)δs
and K =

(
r
P

)φ (
S
P

)φs
, where δ (resp. φ) and

δs (resp. φs) are price and income elasticities of labor (resp. capital). Here again we
leave out the ‘other factors’ for simplicity. In terms of growth rates, the labor and
capital supplies equal

L̂ = δ(ŵ − P̂ ) + δs(Ŝ − P̂ ), (2.8)

K̂ = φ(r̂ − P̂ ) + φs(Ŝ − P̂ ). (2.9)

2.6. Quantity and Price Aggregates

The growth rate of aggregate nominal sales and the price aggregate are given by

Ŝ = s1Ŝ1 + s2Ŝ2, (2.10)

P̂ = s1P̂1 + s2P̂2, (2.11)

where si = Si
S

.

2.7. Solving the model

The above model is solved using market clearing conditions in all markets, that is
output and factor markets, and incorporating the government’s flow budget identity.
The complete solution procedure is outlined in Appendix A. We are able to reduce
all these equations to yield the following two dynamic equations, which govern the
behavior of S1 and S2: Ṡ1

Ṡ2

 =

F1(S1, S2; Ω)

F2(S1, S2; Ω)

 = F(S1, S2; Ω). (2.12)
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The explicit form of the non-linear functions F1 and F2 can be found in Appendix
A. The vector Ω consists of all structural parameters. The assumed values for these
parameters are given in Appendix B. We consider F1, the entry parameter for sector
1, as our bifurcation parameter, when we look for a co-dimension 1 bifurcation in
the following section.

An equilibrium for this model would constitute a value of (S1, S2), at which Ṡ1 = 0
and Ṡ2 = 0, i.e. in the System 2.12, F(S1, S2; Ω) = 0. As given in Appendix A:

F(S1, S2; Ω) = (H(S1, S2; Ω))(−1) D(S1, S2; Ω), (2.13)

where H is a matrix of dimension 2× 2 and D is a vector of dimension 2× 1. The
elements of H and D are an indication of the high degree of nonlinearity involved in
determining the dynamics of the above mentioned equilibrium. As expected, there
will be several equilibria, which can arise due to this non-linearity in F .

However, it is easy to see from Equation 2.13 that the values of S1 and S2, at which
D = 0, will always be an equilibrium. Under the assumption that there is no growth
in government deficit (D)and taxes (T s), this solution directly corresponds to the
solution of the entry/exit equation given in Equation 2.4, so that

S1 =
1

θ1

F1 and S2 =
1

θ2

F2. (2.14)

These solutions are economically relevant, since they are positive and ensure that
there is no further entry/exit in both sectors, implying a long run equilibrium. In
the next section, we examine stability and perform a bifurcation analysis of this
equilibrium.

3. Stability and Bifurcation Analysis of Equilibrium

The dynamics in this two sector MMM, in terms of convergence to the equilibrium
given 2.14, can be described by generalizing the analysis of the one sector MMM
by Veloce and Zellner (1985). Using the entry/exit equation assumed in Zellner and
Israilevich (2005) and solving the one sector model as in Veloce and Zellner (1985)
would yield the following differential equation, which is equivalent to 2.12 for the
one sector model:

Ṡ = aS(S − F ),

where a depends on the structural parameters. Here the stationary solution, S = F ,
is stable, if and only if a < 0, which is true, if and only if demand is inelastic. This
result can be understood by the following argument, adapted from Veloce and Zell-
ner (1985). Suppose S > F , so that current profitability is greater than equilibrium
profitability. Then firms will enter, causing the market supply to increase, resulting
in a lower price. This drop in price will result in a lower aggregate sales, S, (because
of the inelasticity of demand), decreasing the difference between the current prof-
itability, S, and equilibrium profitability, F . With the one sector dynamics governed
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by the logistic function given above, this process will result in a monotonic path to
equilibrium in a continuous time model. On the other hand, if demand is elastic,
then the solution is unstable and any deviation from the equilibrium will result in
divergence.

However, in a multisector model, we need to consider the effects of cross price and
income elasticities along with own price elasticity. Two interesting features arise with
respect to the equilibrium dynamics in the multisector model. First, unlike the one
sector model, even when the two sectors have elastic demand (own price elasticity
greater than 1), the solution may be stable. This is true for the calibrated parameter
values generating Figure 1. Second, the path to the long run equilibrium may not be
monotonic, so it may depict oscillatory behavior. This is also true for the calibrated
parameters generating Figures 1 and 2.

To understand why these results may obtain, suppose the two sectors produce normal
goods that are substitutes and have elastic demand. Also suppose Sector 1 is out of
equilibrium (say, S1 >

1
θ1
F1)

3 , while Sector 2 is at equilibrium (i.e. S2 = 1
θ2
F2)

4 .
Since current profitability is higher than equilibrium profitability, entry takes place
in Sector 1, which increases industry supply and, in turn, causes a drop in Sector
1 price, P1. This decline in P1 will affect industry sales through two channels. One,
since demand is elastic the decline in price will cause industry sales, S1, to increase.
Two, the decline in P1 will cause a decrease in Sector 2 demand (the goods being
substitutes), causing a decline in Sector 2 price, P2, and quantity, Q2, and hence a
decline in Sector 2 sales, S2. If this decline in S2 is greater in magnitude than the
initial increase in S1, then aggregate sales (or nominal income), S = S1 + S2, will
decline. Since the goods are normal goods, this decline in S will result in a fall in
S1. So even though the former effect, which increases S1, tends to be destabilizing,
the cross price and aggregate income effect may offset, in turn, this potentially
destabilizing influence.

It is thus clear that there are two opposing effects on S1, when Sector 1 profitability
is greater than equilibrium profitability. If the second, negative effect dominates the
first, positive effect, then S1 will decrease, bringing it closer to its equilibrium level,
1
θ1
F1. This would imply that, even though there are more firms in Sector 1, they are

each producing less, given the cross price and income effects stemming from changes
in Sector 2. Also notice that the decline in P1 has caused a decrease in Sector 2
demand and hence a decline in S2, pushing Sector 2 sales below the equilibrium
level, 1

θ2
F2. We can adapt the previous analysis and and apply it to the case of

Sector 2 sales being below the equilibrium level, which could ultimately result in
S2 increasing. This increase in S2 will again, through the income effect, result in
a rise in S1. With these opposing effects, the interaction between the magnitudes
of the shifts and elasticities could cause a cyclical convergence. See Figure 1 for an
example.

3 This argument can be easily adapted to the case of Sector 2.
4 Note that this analysis will be valid, even if S2 is not initially at the equilibrium level.
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The above explanation indicates an oscillatory convergence to equilibrium. It is
worth mentioning that this delicate mechanism depends crucially on the own price,
cross price, and income elasticities, and the magnitude of shifts in demand and
supply in each sector. It is definitely possible that these shifts are not sufficient and
may result in the solution being unstable.

Figure 1. Oscillatory convergence for F1 = 6.2 > FH .

Figure 2. Stable cycles for F1 = 6 < FH .

We emphasize that, for an oscillatory convergence, the elasticity parameters need
to be consistent with values of the other parameters in production, input markets,
entry/exit equations, and government policy. If some of these parameters were to
change, then it is very likely that the economy may go from cyclical convergence
to persistent cycles or even explosive behavior. Figures 1 and 2 depict a change
in the dynamics from oscillatory convergence to stable cycles, when the entry/exit
parameter is changed in one sector. In order to investigate this possibility in the
MMM, we look for a bifurcation within the theoretically feasible parameter space.

We now examine the existence of a Hopf bifurcation of codimension-1. The codi-
mension, as defined by Kuznetsov (2004), is the number of independent conditions
determining the bifurcation boundary. In the following analysis, we vary only param-
eter F1, while all other parameters will be maintained at their theoretically feasible
values given in Appendix B. This procedure of varying a single parameter helps us to
identify a codimension-1 bifurcation. In particular, we will investigate the presence
of a Hopf (or Andronov-Hopf) bifurcation, which occurs when the the Jacobian of
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F has a pair of purely imaginary eigenvalues at some critical value of the parameter
F1.

In order to analyze a codim-1 Hopf bifurcation for the System 2.12, we first look
for the value of (S1, S2) and the bifurcation parameter (F1) at which the following
conditions hold simultaneously:

F1(S1, S2, F1) = 0, (3.1)

F2(S1, S2, F1) = 0, (3.2)

tr(JF(S1, S2, F1)) = 0, (3.3)

det(JF(S1, S2, F1)) > 0, (3.4)

where JF is the Jacobian of F . Equations 3.1 and 3.2 yield the equilibrium for the
system of differential equations in 2.12. In particular, we pay attention to the solution
given in 2.14. Conditions 3.3 and 3.4 are sufficient to ensure that the eigenvalues of
JF are purely imaginary. Figure 3 gives the plots of the trace and determinant of JF
as functions of F1. It is clear that at the computed critical value, FH = 6.070386762,
Conditions 3.3 and 3.4 are satisfied and the slope of the trace is not zero 5 , implying
a Hopf bifurcation. Thus as the parameter F1 crosses FH from the right, the solution
given in 2.14 goes from a stable equilibrium to an unstable one. In fact, the system is
locally spiralling inward for F1 > FH , and for F1 close enough 6 to FH and F1 < FH ,
the system exhibits stable cycles 7 in the phase space. See Figures 1 and 2.

Figure 3. Trace and Determinant of JF

5 The computed slope of the trace was d (tr(JF (F1)))
dF1

∣∣∣∣∣
F1=FH

= 0.16265 6= 0, thus satisfying

the transversality condition in Kuznetsov (2004).
6 Periodic orbits arise for 5.89743 < F1 < FH .
7 For the limit cycles to be stable, the first Lyapunov coefficient `1 needs to be negative.
In this case `1 = −5171543705, thus satisfying the non-degeneracy condition in Kuznetsov
(2004).
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4. Conclusions and Extensions

In this paper we study a special, nested case of the two sector MMM and investigated
the possibility of cyclical behavior, which could arise due to certain combinations
of own price, cross price, and income elasticities. We also showed that a Hopf bifur-
cation exists within the theoretically feasible parameter space, giving rise to stable
cycles. Our choice of F1 as the candidate for bifurcation parameter re-emphasizes
the importance of a dynamic entry/exit equation in models of this class. There are
several avenues that need to be explored in future work. One such possibility would
be the introduction of expectations in firms’ future profitability. As a future research
agenda, we plan to introduce the money market and examine the possibility of other
kinds of bifurcations with respect to government and monetary policy parameters.
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Appendix A. Deriving the Dynamic Equations.

Firstly, we recall that the government’s flow budget identity in growth rates is

Ĝ = R̂ + D̂ = D̂ + T̂ s + s1Ŝ1 + s2Ŝ2. (A.1)

Using the assumption that each component of the government expenditure grows
at the same rate as total government expenditure, the output demand functions in
terms of growth rates can be expressed as:

Ŝi = giĜ+ (1− gi)[(1− ηii)P̂i + ηijP̂j + ηis(Ŝ + T̂ s
′

)]. (A.2)

In this expression, we also relabeled taxes by T s
′
= (1−T s) and thus T̂ s

′
= −T s

(1−T s) T̂
s.

The weight, gi, can be shown to explicitly depend on the level variables S1 and S2

in order to yield

gi =
Gi

Si
=
ζiDT

s(S1 + S2)

S1

.

We can now express the system of demand equations given by Equation A.2 in
matrices and solve for growth rate of prices as follows.

N

 P̂1

P̂2

 = A

 Ŝ1

Ŝ2

+

C1

C2

 , (A.3)

where,

N =

 (1− η11) η12

η21 (1− η22)

 ,

A =

 1
1−g1 + [(1− η1s)− 1

1−g1 ]s1 (1− η1s − 1
1−g1 )s2

(1− η2s − 1
1−g2 )s1

1
1−g2 + [(1− η2s)− 1

1−g2 ]s2

 ,
and C1

C2

 =

 (1 + η1s
T s

1−T s −
1

1−g1 )T̂ s − g1
1−g1 D̂

(1 + η2s
T s

1−T s −
1

1−g2 )T̂ s − g1
1−g1 D̂

 .
Assumption 1. We assume that the cross price elasticities are such that N is
invertible.

We denote P = N−1 and B = PA to obtain the following: P̂1

P̂2

 = PA

 Ŝ1

Ŝ2

+ P

C1

C2

 = B

 Ŝ1

Ŝ2

+ P

C1

C2

 . (A.4)
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Moving to the factor markets, the growth rate of aggregate profit maximizing labor
demand from each sector, i, is L̂i = Ŝi− ŵ, and the labor demand from the govern-
ment is L̂g = Ĝ− ŵ. Since the total demand for labor is the sum of sectoral demand
and the government demand for labor, the growth rate of the total demand for labor
is given by the following weighted sum

L1

L
L̂1 +

L2

L
L̂2 +

Lg
L
L̂g = l1L̂1 + l2L̂2 + lgL̂g,

where the weights are determined by the level variables as follows:

li =
Li
L

=
αiSi

α1S1 + α2S2 + ζlDT s(S1 + S2)
,

lg =
Lg
L

=
ζlDT

s(S1 + S2)

α1S1 + α2S2 + ζlDT s(S1 + S2)
.

Equating the growth rates of labor demand and labor supply, we can solve for growth
rate of equilibrium wage rate

ŵ=
1

1 + δ

{
(l1 + (lg − δs)s1)Ŝ1 + (l2 + (lg − δs)s2)Ŝ2

+(δ + δs)(s1P̂1 + s2P̂2) + lg(D̂ + T̂ s))
}
.

Manipulating the capital market equilibrium conditions similar to the labor market
equilibrium conditions, we calculate the growth rate of aggregate capital demand as

K̂ =
K1

K
K̂1 +

K2

K
K̂2 +

Kg

K
K̂ = k1K̂1 + k2K̂2 + kgK̂g,

where the weights are determined by the level variables as follows:

ki =
Ki

K
=

βiSi
β1S1 + β2S2 + ζkDT s(S1 + S2)

,

kg =
Kg

K
=

ζkDT
s(S1 + S2)

β1S1 + β2S2 + ζkDT s(S1 + S2)
.

Equating the growth rates of capital demand and capital supply, we can solve for
growth rate of equilibrium rental rate

r̂=
1

1 + φ

{
(k1 + (kg − φs)s1)Ŝ1 + (k2 + (kg − φs)s2)Ŝ2

+(φ+ φs)(s1P̂1 + s2P̂2) + kg(D̂ + T̂ s)
}
.

Now we can substitute N̂i, ŵ, r̂, and P̂i into the output supply (growth rate) equa-
tions to find Ṡ1 and Ṡ2. Let us define
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H =


 θ1 0

0 θ2



−


(S1+S2)−

(
α1(δ+δs)

(1+δ)
+
β1(φ+φs)

(1+φ)

)
S1

(S1+S2)

−
(
α1(δ+δs)

(1+δ)
+
β1(φ+φs)

(1+φ)

)
S2

(S1+S2)

−
(
α2(δ+δs)

(1+δ)
+
β2(φ+φs)

(1+φ)

)
S1

(S1+S2)

(S1+S2)−
(
α2(δ+δs)

(1+δ)
+
β2(φ+φs)

(1+φ)

)
S2

(S1+S2)


B11 B12

B21 B22



+


α1

(
l1(S1+S2)+(lg−δs)S1

)
(1+δ)(S1+S2)

α1

(
l2(S1+S2)+(lg−δs)S2

)
(1+δ)(S1+S2)

α2

(
l1(S1+S2)+(lg−δs)S1

)
(1+δ)(S1+S2)

α2

(
l2(S1+S2)+(lg−δs)S2

)
(1+δ)(S1+S2)



+


β1

(
k1(S1+S2)+(kg−φs)S1

)
(1+φ)(S1+S2)

β1

(
k2(S1+S2)+(kg−φs)S2

)
(1+φ)(S1+S2)

β2

(
k1(S1+S2)+(kg−φs)S1

)
(1+φ)(S1+S2)

β2

(
k2(S1+S2)+(kg−φs)S2

)
(1+φ)(S1+S2)


×

 1
S1

0

0 1
S2

 ,

D =

 θ1γ1

(
θ1S1 − F1

)
θ2γ2

(
θ2S2 − F2

)


−

 α1lg(D̂+T̂ s)
1+δ

+ β1kg(D̂+T̂ s)
1+φ

α2lg(D̂+T̂ s)
1+δ

+ β2kg(D̂+T̂ s)
1+φ



+


(S1+S2)−

(
α1(δ+δs)

(1+δ)
+
β1(φ+φs)

(1+φ)

)
S1

(S1+S2)

−
(
α1(δ+δs)

(1+δ)
+
β1(φ+φs)

(1+φ)

)
S2

(S1+S2)

−
(
α2(δ+δs)

(1+δ)
+
β2(φ+φs)

(1+φ)

)
S1

(S1+S2)

(S1+S2)−
(
α2(δ+δs)

(1+δ)
+
β2(φ+φs)

(1+φ)

)
S2

(S1+S2)



×

P11 P12

P21 P22


C1

C2

 .

In the representation above, the expansions for the matrices, B,P , and the elements
C1, C2, are described in Equation A.4. Our final dynamic equations, Ṡ1 and Ṡ2, can
now be written as the following system of dynamic equations

H(S1, S2; Ω),

 Ṡ1

Ṡ2

 = D(S1, S2; Ω), (A.5)

where Ω is the vector of all structural parameters of the model.

If H(S1, S2; Ω) is invertible, then we can further reduce this to the following system
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of ordinary differential equations (ODEs):

 Ṡ1

Ṡ2

 = (H(S1, S2; Ω))(−1) D(S1, S2; Ω), (A.6)

 Ṡ1

Ṡ2

 = F(S1, S2; Ω) =

F1(S1, S2; Ω)

F2(S1, S2; Ω)

 . (A.7)

Appendix B. Parameters.

Table B.1
Parameterizations (Ω)

Production Function Entry/Exit

α1 0.6 γ1 0.2

β1 0.2 γ2 0.1

θ1 0.2 F1 BIF

α2 0.2 F2 2

β2 0.6

θ2 0.2

Government Elasticities

D 0.8 η11 2

D̂ 0 η12 1

T s 0.25 η21 2

T̂ s 0 η22 2

ζ1 0.2 η1s 1

ζ2 0.2 η2s 1

ζl 0.4 δ 1

ζk 0.2 δs -1

φ 1

φs -1
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