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Abstract 

Experimental sealed-bid first-price auctions with private values in which feedback on 
the losing bids is provided yield lower revenues than auctions where this feedback is 
not given. The concept of weighted impulse balance equilibrium, which is based on a 
principle of ex post rationality and incorporates a concern for social comparison, 
captures the data.  
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I. Introduction 

Feedback in a repeated auction environment can substantially affect outcomes, even when the 

feedback has no strategic information value. As a consequence, the feedback made available to 

the bidders is an important design variable. This paper experimentally investigates sealed-bid 

first-price auctions with private values under different feedback conditions. A novel, behaviorally 

founded equilibrium concept captures the observed bids’ sensitivity to feedback.  

Isaac and Walker (1985) compare sealed-bid private-value first-price auctions with four 

bidders, in which feedback is given only on the price, to other auctions in which bidders are 

additionally informed about the losing bids after the auction. They find that prices generated with 

limited feedback are higher than those generated under the full feedback condition. Dufwenberg 

and Gneezy (2002), independently of our study, investigate sealed-bid first-price auctions with 

and without feedback on losing bids in a common value environment (the value was identical to 

all bidders, which was commonly known), and also find the revenue-reducing effect of feedback 

on losing bids. In this paper, we provide further support of the feedback effect in private value 

auctions with two competing bidders. Taken together, these studies suggest that the examined 

feedback conditions elicit a robust behavioral effect.1 Yet, the effect cannot easily be explained 

by standard notions of rational bidding, because in all experiments, the strategic links between 

successive auctions were minimized. In particular, bidders were rematched into new bidder 

groups from auction to auction, and bidders’ values were either identical and commonly known, 

or for each bidder and in each auction independently drawn.  

While Isaac and Walker (1985) do not attempt to theoretically explain their observation, 

Dufwenberg and Gneezy (2002) argue intuitively that, while the feedback effect is inconsistent 

with standard theory, it may be in line with a certain form of signaling behavior.2 In this paper, as 

an alternative, we propose an equilibrium explanation. However, our approach is very different 

from standard economic equilibrium models. It is based on the concept of weighted impulse 

balance that is in turn based on a simple principle of ex-post rationality similar to Selten and 

Stoecker’s (1986) learning direction theory (see Selten, 1998, and the references cited therein for 

evidence). Weighted impulse balance involves one parameter that might, in our auction context, 

                                                 
1 Cox et al. (1984) and Battalio et al. (1990), however, find no effect of relatively minor variations in their 
information conditions on bidding behavior (Kagel, 1995, chapter IE; see also Dufwenberg and Gneezy, 2000). 
2 Plott (1982) discusses related signaling hypotheses that have been put forward in very early experimental Industrial 
Organization work; for more recent related work see also Huck et al. (2000). 
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be interpreted as a measure of concern for relative standing.3 It organizes the feedback effect – 

along with the fact that bids in first-price auctions tend to be higher than at risk neutral Nash 

equilibrium4 – quite well, both qualitatively and quantitatively.  

 

II. Experimental game and design 

The model underlying the experiment is a symmetric sealed-bid first-price auction with 

private values. The values v1 and v2 of the two bidders 1 and 2 are uniformly and independently 

distributed over the interval [0, 100]. (Actually, values were decimal numbers with at most two 

digits after the decimal point.) Both bidders simultaneously and independently make bids b1 and 

b2. The higher bid bj wins the auction, and the profit of the winner j is vj – bj. The loser receives 

nothing. In case of a tie, b1 = b2, the auction winner is selected randomly. In order to avoid losses 

bids above the value are not permitted (of course, such bids would be dominated in the game 

theoretic sense), but otherwise no restrictions are imposed on bids. After each auction, each 

bidder is informed about whether he won the auction, the price, and his payment for that auction. 

Under treatment NF no additional feedback is given, but under treatment F feedback on the 

opponent’s bid is supplied to the winner of the auction. Altogether eight sessions with 12 subjects 

each were run for 140 rounds with one auction in each round. The subjects of one session 

belonged to two independent subject groups of six participants each. 

For reasons that will become clear later, the 140 rounds were divided into 28 weeks with five 

rounds each. At the beginning of each week a value was drawn randomly for each subject. Then 

each subject played against each of the five other participants of the same subject pool in a 

random order, with the restriction that a subject could not be matched with the same opponent 

twice in a row. The subjects did not know about the division into two independent subject pools. 

The impression was conveyed that in each week they would play against opponents randomly 

selected among the other eleven participants (see Appendix for the instructions given to the 

                                                 
3 As will become clear later, the model’s parameter can also be interpreted in terms of a ‘utility of winning’, a kind 
of ‘loss aversion’, or a mix of these and related concerns.  Our data do not allow distinguishing between these 
concerns.  However, recent evidence by Bolton and Ockenfels (2000), Fehr and Schmidt (1999), and Morgan et al. 
(2003) suggests that the social comparison explanation of our parameter is likely to be part of the right interpretation.   
4 Bidding above risk neutral Nash equilibrium (RNNE), a phenomenon called ‘overbidding’, is well-studied. Cox, 
Roberson and Smith (1982) proposed the constant relative risk averse model (CRRAM) to account for overbidding. 
The model assumes that subjects maximize the expected value of a utility of the form u(x) =xr, where u is the utility 
index, x is the amount of money gained, and r is the risk aversion parameter. Bidders are assumed to play Nash 
equilibrium strategies on this basis. The model is consistent with overbidding (see Cox, Smith and Walker, 1988), 
but a number of studies challenged CRRAM’s explanation (see, e.g., Harrison, 1989, Kagel and Levin, 1993, Kagel 
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subjects). The interaction was anonymous and formal via computer terminals, utilizing 

Fischbacher’s (1998) z-Tree software tool. The computers were placed in three-sided cubicles, 

and neither the other subjects nor the experiment’s monitor could watch anyone make their 

choices. In total, 96 subjects participated in four sessions under treatment NF and four sessions 

under treatment F, yielding eight independent observations per treatment.   

Each money unit in the experiment was worth 2 German Pfennige (approximately 1 

American or 1 European cent). The total payoff of each subject was the sum of his winnings over 

all 140 auctions plus 10 German Marks show up fee. No session lasted longer than 1.5 hours and 

average payoffs were 49 German Marks ($23) with a standard deviation of 11 German Marks 

($5).  

 

III. Experimental results 

III.1 Overbidding and feedback effect 
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Figure 1. Average relative bids over weeks 

 

Figure 1 shows the actual average relative bids in weeks 1 to 28 separately for the two 

treatments F (with feedback on losing bid) and NF (without feedback on losing bid), as well as 

                                                                                                                                                              
and Roth, 1992; Kagel, 1995, surveys the discussions). However, neither risk aversion nor social utility models based 
on full rationality provide different predictions for each of our treatments. 
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the average relative bids predicted by the risk neutral Nash equilibrium (RNNE). The relative bid 

of a subject in a round is his bid as a percentage of his value. The average relative bid in a week 

is the average of all relative bids of all subjects under the same treatment F or NF in this week. 

Therefore, each data point in the graphic corresponds to 240 bids (and 48 values) of eight groups 

of six subjects for five rounds. In the risk neutral Nash equilibrium, the relative bid in a two-

person auction is 50 percent regardless of the feedback condition.5

Figure 1 shows that with the exception of the first week the curve for feedback treatment F is 

entirely below the curve for treatment NF, and that the line for the risk neutral Nash equilibrium 

is entirely below the line for treatment F. The overall average relative bids are 63.1 percent for 

treatment NF and 57.2 percent for treatment F. The one-sided Mann-Whitney U test applied to 

average relative bids of subject groups rejects the null hypothesis of equal average relative bids 

across treatments F and NF at the three percent level. A similar comparison of average revenues 

or, in other words, of average high bids yields significance at the one percent level. A comparison 

of actual relative bids and the predictions of the risk neutral Nash equilibrium yields significance 

levels of .01 for treatment NF and .04 for treatment F. Recall that these results are in line with 

earlier findings. Bidding above RNNE (‘overbidding’) is the most common outcome in first-price 

private value auctions (Kagel, 1995), and a comparison of the feedback conditions in the four-

bidder case by Isaac and Walker (1985) yielded an analogous feedback effect.6  

 

III.2 Ex-post rationality 

Impulse balance theory, analogous to learning direction theory (Selten and Stoecker, 1986),  

postulates that the adjustment tends to follow a principle of ex-post rationality. It applies to 

repeated decision tasks in which feedback information after each period permits causal inferences 

about what might have been better last time. In our context, if a higher (lower) bid in the last 

round might have been better, the bid tends to be increased (decreased) in the current round.7 In 

                                                 
5 We have chosen a figure showing average relative bids rather than other data since RNNE, CRRAM and impulse 
balance theory all lead to constant predictions for average relative bids. 
6 Isaac and Walker (1985, p. 141) conclude from their experimental findings that “Central to the results of this study 
is the consistent evidence of the previous two studies [Walker, Smith and Cox 1983, and DeJong, Forsythe and 
Uecker 1984] which suggest that, in sealed bid (offer) auctions, the more limited the between market publicized 
information the lower the profits for those making bids to buy. […] If such evidence is found to be robust, this 
relationship has important implications for the evolution of market institutions in private economies, as well as 
policy implications for government implemented auctions.” 
7 Learning direction theory does not predict that every single change of the decision parameter will obey ex-post 
rationality, but only that observed changes will be more than randomly expected in the indicated direction; see Selten 
(1998) for a more general version of the theory. 

 4



particular, in rounds 2 to 5 of a week in our experiment a bidder can look back on his experience 

from the previous round with the same value, facing one of three possible experience conditions: 

 Lost opportunity: The own bid was smaller than the price, but the value was higher than 

the price.  

 Overpayment: The own bid won.  

 Outpriced value: The price was higher than the own value.  

 
Fixing values within weeks allows us to derive predictions about bid changes.  In particular, 

ex-post rationality suggests that, for a given value, the bid will tend to increase in the lost 

opportunity condition, while it will tend to decrease in the overpayment condition (because in this 

case a smaller bid might have been sufficient in order to win the auction). In the outpriced value 

condition, ex-post rationality  suggests an unchanged bid as the most frequent response. 

 

 percent change of bid (percent) 

experience condition (number) increase decrease unchanged 

lost opportunity  22.6 
(2415) 

57.5 12.1 30.4 

overpayment  50.0 
(5359) 

17.5 47.0 35.5 

outpriced value  
 

27.4 
(2930) 

26.6 22.6 50.8 

 

Table 1. Experience conditions and bid changes  

 

Table 1 shows the percentages of different responses to the three experience conditions in 

rounds 2 to 5 of each week. Since there is no indication that these bid change patterns differ 

across treatments, we present aggregate results only. The few cases in which both bidders bid the 

same amount are not included.8 The prediction of ex-post rationality for these .02 percent of all 

observations are different for treatments NF and F. Under treatment NF such cases belong to the 

overpayment condition since as far as the bidder knows he could have won at a lower price. 

                                                 
8 Strictly speaking, because values were decimal numbers with two digits after the decimal point, not only the tied 
bid case warrant special treatment but also the case where bidder 1 bids b and bidder 2 bids b + 0.01 or b − 0.01.  
However, this never happened in our data set. 
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Under treatment F, on the other hand, the case of equal bid must be regarded as a separate 

experience condition, which, however, is not explored explicitly in view of its very rare 

occurrence. 

The most frequent responses to the different experience conditions are on the main diagonal. 

The numbers in Table 1 cannot be taken at face value, however. Suppose that the bid of a subject 

is determined by a constant bid function plus random error. If the value is constant, a low bid is 

more likely to yield a lost opportunity than a high bid. At the same time, a low bid is more likely 

to be followed by a higher bid than a high bid. A similar argument applies to the overpayment 

condition and a subsequent decrease of the bid. We refer to this as the “regression effect” because 

it reminds us of the regression to the mean. The regression effect alone will already produce 

diagonal elements in the first two data rows of Table 1 that are higher than randomly expected. In 

order to control for the regression effect, we tested the hypothesis that bids change as a result of 

experience as opposed to the hypothesis that the bids are a constant function of the value plus a 

random term. Our test rejects the error model and indicates a strong and systematic influence of 

experience (as predicted by the principle of ex-post rationality).9  

The numbers on the main diagonal of Table 1 suggest that subjects do not respond equally 

strongly to the experience conditions. In particular, the probability that a lost opportunity is 

followed by a bid increase is greater, by about 10 percentage points, than the probability that an 

overpayment is followed by a bid decrease. In fact, we find that for 12 out of 16 independent 

subject groups the average surplus for the lost opportunity condition is greater than that for the 

overpayment condition. By the binomial test this is significant at the 2.7 percent level. Evidently, 

the lost opportunity condition motivates subjects more strongly to change their bid in the 

expected direction than the overpayment condition does. Many interpretations suggest 

themselves, including a ‘utility of winning’ and social comparison processes. In particular, in the 

case of lost opportunity the forgone profit is connected to an unfavorable relative standing 

because the competitor won the auction (see, e.g., Bolton and Ockenfels, 2000, Fehr and 

Schmidt, 1999, and Morgan et al., 2003). For a bidder who wins and therefore experiences the 

                                                 
9 For every subject and every week we considered all possible permutations with respect to the order of the bids the 
subject made during that week, keeping the order of bids of the opponent constant. For each permutation of the bids 
we counted how often we hit the main diagonal of Table 1. The surplus of a subject in a week is the difference of the 
number of cases on the diagonal for the actual order of bids minus the average number in all permutations. Learning 
direction theory predicts that this surplus tends to be positive, whereas the null hypothesis states that the mean 
surplus is zero. For each of the 16 independent subject groups the average surplus over all six subjects and all 28 
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overpayment condition, the forgone profit comes with an advantageous relative standing. Thus, 

from the perspective of these social comparison models, responses are conceivably stronger for 

the lost opportunity condition.10  

 

IV. Weighted impulse balance theory 

IV.1 Basic idea 

Impulse balance theory is an attempt to make quantitative predictions about the central 

tendency of the stationary distribution of bids on the basis of the principle of ex-post rationality 

without making use of a full-fledged learning model.11 Thus, as described earlier, impulse balance 

theory is applicable to situations in which a subject repeatedly has to make a decision on the same 

parameter, and in which the feedback permits conclusions about what would have been a better 

choice of the parameter in the last period. It is postulated that the decision has a tendency to shift 

into the direction suggested by this counterfactual comparison.  

We speak of an upward impulse if a higher profit could have been made by a higher value of 

the parameter but not by a lower one. Analogously, a downward impulse is experienced if a 

higher profit could have been made by a lower value of the parameter but not by a higher one. 

The strength of the impulse is the amount of forgone profit. The basic idea of impulse balance 

theory is that the size of the shift of the parameter tends to be proportional to the strength of the 

impulse.  Formally, in our context, an impulse balance equilibrium (henceforth IBE) is a bid 

function for each player, computed on the basis of balancing the expected upward and downward 

impulses. Thus, the equilibrium bid functions should be thought of in terms of reactions to the 

(balanced) impulses; they do not involve strategic reactions to the opponents’ strategies. 

In the following section we propose a modification of impulse balance theory that permits 

different weights for downward and upward impulses. We shall define a weighted IBE that 

depends on the parameter λ called the downward impulse weight. This parameter is the number 

of upward impulse units equivalent to one downward impulse unit. The greater λ, the more the 

                                                                                                                                                              
weeks is positive. By the binomial test this result is significant on the one-percent level for both treatments 
separately.  
10 Cason and Friedman (1997) also identified stronger responses to upward impulses in two-sided sealed bid call 
auctions. 
11 Impulse balance theory has been first applied by Selten, Abbink and Cox (2002).  Cason and Friedman (1997 and 
1999) also extend the basic ideas of ex-post rationality and learning direction theory by relating how much offers 
change to how much can be gained by changing offers in a two-sided sealed bid call auction, but do not further 
formalize these ideas.  Learning direction theory is related to adaptive learning models such as Crawford (1995) and 
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average bid is drawn downward. Weighted impulse balance requires that the expected upward 

impulse be equal to λ times the expected downward impulse. Thus, if responses are stronger for 

upward impulses (that is, in our context, for the lost opportunity condition), λ will be smaller than 

one. 

When applying weighted impulse balance theory to our data, we must distinguish between 

treatments F and NF. Under treatment F the subjects see the amounts of upward and downward 

impulses. A comparison of expected amounts is behaviorally reasonable. Under treatment NF, 

however, the amount of the downward impulse is not visible to the winner since feedback on the 

losing bid is not available. Therefore, under this treatment the principle of weighted impulse 

cannot be applied to expected amounts of impulses. Instead of this, we shall apply it to expected 

numbers of impulses. Under treatment NF subjects can still observe whether there is an upward 

or downward impulse even though amounts are not visible in the case of downward impulses.  

As an alternative to our impulse measure in treatment F one might also assume that subjects 

(re)act as if they believe that the expected size of a downward impulse is equal to the expected 

size of an (observable) upward impulse in the NF condition. This would not alter our results.  

Assuming rational expectations with respect to the expected impulse sizes, however, is 

inconsistent with both the nature of our model of boundedly rational decision making and our 

experimental results, as we will demonstrate below. In this respect, it is important to note that the 

application of IBE involves degrees of freedom. Yet, this also holds for models of perfectly 

rational decision making. RNNE, for example, assumes risk neutrality, and CRRAM constant 

relative risk aversion. These assumptions appear not more plausible (or less critical to the model) 

than our hypotheses about information processing. 

 

IV.2 The model 

We look at a symmetric sealed-bid private-value first-price auction with n bidders. (While in 

our experiments n = 2, the generalization in the model allows us to apply the model to Isaac and 

Walker’s experimental setting with n = 4.) The values v are uniformly and independently 

distributed over [0, 1]. Let x be the value of bidder 1 and y be the maximum of the values of 

bidders 2 to n. Then, the density of y is . Moreover, let p be the price or, 

equivalently, the highest bid of all bidders. Our analysis is based on the assumption that each 

2)1()( −−= nynyf

                                                                                                                                                              

(2003) for a survey of descriptive learning theories.  
learning models that take into account forgone payoffs such as Camerer and Ho (1999); see chapter 6 in Camerer 
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bidder has the same homogeneously linear bidding function avvb =)(  with 0  a  1 where b(v) 

is the bid at the value v. The decision parameter responding to the impulses is the bid function 

parameter a.  That is, bidders pick an entire linear bid function in response to impulses rather than 

simply choose bids.  

≤ ≤

A different approach would be to define an IBE in terms of strategies for each value. 

However, it is highly desirable from the perspective of learning theories that an observation in 

one very specific situation has some impact on behavior in other situations (virtually all learning 

theories have this property, including standard rational learning approaches). In addition, from an 

empirical point of view, there is evidence that bid functions are adjusted holistically in Selten and 

Buchta (1999).  

A non-linear specification would be, while more difficult to solve, preferable. Note, however, 

that alternative bidding models, RNNE and CRRAM, also lead to bidding functions of this kind; 

for RNNE we have a = (n − 1)/n, and CRRAM yields a = (n − 1)/(n − 1 + r). Moreover, our own 

data and earlier empirical results suggest that linearity is a good approximation of actual bidding 

functions (e.g., Cox et al., 1988), even if some deviations like non-monotonicities can be 

observed (Selten and Buchta, 1999). Finally, as we will show in Section V.III, our linear model 

fits the data very well. Thus, a richer model could not substantially increase the predictive 

success, but it would come at considerably higher computational costs.  

The diagram in Figure 2 shows the value x of bidder 1 with 10 ≤≤ x  on the abscissa and the 

maximum value y of the other bidders with 10 ≤≤ y  on the ordinate. We distinguish three 

regions in this diagram. In region ∆1, x is greater than y so that bidder 1 wins. In this region 

bidder 1 observes a downward impulse. In region ∆2, the maximum value of the others is greater 

than bidder 1’s value, but the highest bid ay of the others is still smaller than x. Here, an upward 

impulse is observed. The remaining region corresponds to the outpriced value condition in which 

there is no impulse. The table below the diagram in Figure 2 describes the three regions. The 

difference between the treatments F and NF is that the amount of a downward impulse is not 

known. 
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IV. 3 Weighted impulse balance equilibrium under treatment F  

The expected downward impulse E− is computed as follows: 
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For the expected upward impulse E+ we obtain 
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Weighted IBE requires 

 
−+ = EE λ . 

 
This impulse balance equation is a quadratic equation for the slope a of the bid function. We 

obtain 

1)
)1(

1(
)1(

1 2 −
−

+−
−

+=
nnnn

a λλ . 

 
The solution for a is in the interval (0,1) for all positive values of the downward impulse weight 

λ. The other root of the quadratic equation is greater than 1 and therefore outside the interval of 

admissible values for a.  

 

IV. 4 Weighted impulse balance equilibrium under treatment NF 

Under treatment NF the expected number of downward impulses P− is 

 

n
P 1

=− . 

 
This is due to the fact that all bidders use the same bid function and therefore have the same 

chance 1/n of winning the auction. The expected number of upward impulses P+ is the area of the 

region ∆2: 
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Weighted IBE requires 
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−+ = PP λ . 

 
This is a linear equation for a. We obtain 

 

1
1

−
−=

n
a λ . 

 
a is in the interval (0,1) if 0 < λ < n − 1. In our experiments we have n = 2 which means that we 

must have λ < 1 if a is positive.  

 

V. Explaining the experimental regularities 

V.1 Explaining overbidding 

In the risk neutral Nash equilibrium, the bidding function is b(v) = (n − 1)v/n. Overbidding 

therefore requires . Depending on the value of the downward impulse weight λ the 

IBE predicts overbidding. Let us turn first to treatment F and assume . Then we have 

nna /)1( −>

nna /)1( −>
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This yields  

2
1

<=
−

+

E
Eλ . 

 
Thus, under treatment F overbidding results in weighted IBE if and only if λ is smaller than 

1/2. Under treatment NF, on the other hand, a > (n − 1)/n is equivalent to 1 − λ/(n − 1) > (n − 1)/n 

and therefore to λ < (n − 1)/n. This condition is necessary and sufficient for overbidding in IBE 

under treatment NF.  

In sum, overbidding requires λ < 1 regardless of whether we look at treatment F or NF, and 

regardless of the number of bidders n > 1. This means that upward impulses must be given more 

weight than downward ones. The root of this asymmetry − and therefore of overbidding − may be 

the social comparison process described in Section III.2 that explains why forgoing profits by 

paying ‘too much’ and winning the auction yields a weaker response than forgoing profits by 

bidding ‘too little’ and losing the auction. 
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V.2 Explaining the feedback effect 

We now turn to the observation that under treatment F bids tend to be lower than under 

treatment NF. We show that this effect follows from impulse balance theory if the downward 

impulse weight is in the region connected to overbidding. Let S− be the conditional expectation of 

the amount of the downward impulse under the condition that such an impulse occurs. Similarly, 

let S+ be the conditional expectation of the amount of an upward impulse if it occurs. We have  
 

1
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+
== −−− n

aPES , and  

 

)1(2
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== +++ n
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Thus, 
21
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a
aSS >
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⇔> +− , which holds if 
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>
n

na . Since 
n

n
n

n 1
2

−
≤

+
 for all n > 1, 

overbidding implies that the conditional average amount of a downward impulse is larger than 

the conditional average amount of an upward impulse. This explains the treatment effect. 

Because conditional downward impulses ( ) are always larger than conditional upward 

impulses ( ), taking into account both amount and numbers of impulses yields on average a 

stronger downward impulse than taking into account only the numbers. In other words, subjects 

whose behaviors follow the principles of impulse balance and who cannot observe the relative 

size of downward and upward impulses behave as if they systematically underestimate downward 

impulses. As a consequence, bids under treatment NF are higher than bids under treatment F. 

−S

+S

 

V.3 Quantitative estimation and prediction 

On the basis of our data we close our discussion of the weighted IBE with a rough estimate of 

the value of the parameter λ. We use the relationship between the slope a and the weight λ and 

insert the average slope a  in our data. This is done for each treatment separately. We obtain λ = 

(1 − a )/(2 a ) = .32 for treatment F, and λ = 1 − a  = 0.37 for treatment NF. Both treatments 

yield slightly different estimates of λ which seem to be near enough to each other, however, in 
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order to justify the assumption that the two values of λ are the same for both treatments. 

Accordingly, we estimate λ as the average λ = .34 of both estimates.12
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Figure 3. Average relative bids and theoretical predictions 

 

Based on this estimate of λ, Figure 3 shows empirical and theoretical values of average 

relative bids for both treatments in our experiments and those of Isaac and Walker (1985), who 

used a comparable experimental design except for the number of bidders (2 in our and 4 in Isaac 

and Walker’s experiment) and that values changed from round to round (whereas in our 

experiment they changed from week to week). Overbidding and lower slopes for treatment F are 

correctly reproduced for both experiments. Furthermore, we obtain a good quantitative fit of our 

data. Actual average bids are 57 and 63 percent for treatments F and NF, respectively, while 

predicted average bids are 58 and 62 percent, respectively. Using the estimate of the downward 

impulse weight λ from our data, we also correctly predict the average relative bid under Isaac and 

Walker’s NF treatment, and only somewhat underestimate the average relative bid under their F 

treatment. Actual values are 84 and 89 percent for treatments F and NF, respectively, while 

predicted values are 79 and 89 percent, respectively. 

                                                 
12 Whether the parameter should be, theoretically, constant across treatments or not must eventually depend on its 
exact interpretation.  Our interpretation of λ as reflecting a concern for social comparison suggests a constant value.  
However, there is no reason to assume that λ cannot change with experiment design parameters such as, say, the 
framing of the setting. 
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VI. Conclusions 

A key lesson drawn from the economic design of auctions is that the details of market rules 

can substantially affect outcomes (e.g., Klemperer, 2002, Milgrom 2003, Roth and Ockenfels, 

2002). One of the details, relevant in repeated game contexts, is what kind of feedback about the 

market participants’ historic behavior should be given.13  

This paper introduces the concept of weighted impulse balance equilibrium that incorporates 

a concern for social comparison and avoids the specification of a full-fledged learning model. 

Weighted impulse balance equilibrium correctly predicts lower average relative bids and thus 

lower revenues when feedback on losing bids is available on the assumption that the downward 

impulse weight is in the range where overbidding occurs. The role of feedback cannot be 

explained by optimization approaches because the additional feedback on the losing bid supplied 

under treatment F is irrelevant for the maximization of profits on the basis of the rules of the 

game. Note that this feedback is also inconsequential for pure reinforcement theories in which 

probabilities of bids only depend on experienced past profits (Roth and Erev, 1995). An adequate 

explanation of bidding behavior seems to require a picture of human learning that is neither 

completely mechanistic nor hyper-rationalistic. Simple processes of cause and reasoning, as the 

ex-post rationality principle used in learning direction theory, seems to be an adequate approach.  

The theory of weighted impulse balance equilibrium shows that quantitative behavioral 

equilibrium concepts can be devised which may serve as benchmarks in the evaluation of 

experiments.  A particularly simple application would be private-value second-price auctions.  

There, the Nash equilibrium in weakly dominant strategies (bidding one’s value) is also an 

impulse balance equilibrium because in equilibrium there are no lost opportunities and the 

winner’s payoffs can never be increased by bidding less than one’s value.14 However, the impulse 

equilibrium concept is in principle applicable to all games in which players repeatedly decide on 

                                                 
13 For instance, what kind of feedback should be given by internet auction houses? eBay.com recently changed its 
feedback policy and now provides the complete bidding history of completed auctions, whereas Amazon.com’s 
auction house still only documents the last bid of each bidder (see Ockenfels and Roth, forthcoming), while 
Germany’s largest online auction house, Ricardo.de, does not offer feedback on completed auctions at all. Similar 
questions arise in competition policies. The Commission of the European Union, for instance, considers the 
publication of historic market data such as transaction prices as anti-competitive, whereas the Danish Competition 
Council advocated this kind of data to promote market transparency and thus competitiveness (see Huck et al., 2000, 
and the references therein). 
14 While Kagel (1995) reports overbidding in experimental second-price auctions, recent work seems to suggest that 
this tendency disappears for experienced bidders in dynamic second-price auctions (Garrat et al., 2002, Ariely et al., 
2004). 
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one parameter and in which the feedback environment allows conclusions about what would have 

been the better choice in the last period.   
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Appendix: Instructions to the subjects (translation from the German) 
 

Instructions 
 

General information 

The purpose of this session is to study how people make decisions. If at any time you have questions, raise your hand 
and a monitor will assist you. From now until the end of the session, unauthorized communication of any nature with 
other participants is prohibited. 

During the session you will participate in auctions that will give you an opportunity to make money. You will be 
paid your earnings plus a DM 10 show up fee at the end of the session. Decisions and payments are confidential: No 
other participant will be told about your actions during the game or the amount of money you make. 
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Description of the game 

Each participant will have the opportunity to submit one bid in each of 140 subsequent auctions. In each auction, 
there will be exactly two bidders. The higher bid wins. The winner receives a payoff, the loser receives nothing in 
that auction.  

What is the value of the item auctioned off to me? 

The precise value of the (fictitious) item differs across bidders and between auctions. However, in each auction, 
before you submit your bid, you will be told exactly what the commodity is worth to you, i.e., what DM amount we 
will pay you if you win the auction. Specifically, your value is randomly drawn such that each value between 0.00 
and 100.00 money units has the same probability of being drawn. The values of all bidders are independently 
determined, so that generally each bidder has a different value. (But you won’t know the values of the other bidders.) 
The value does not change for five auctions. After every five auctions, new values are randomly drawn for all 
bidders. 

What will my earnings be? 

If you submit the higher bid in an auction, you win. Your payment from this game is then your value minus your bid. 
(Therefore, bids higher than your value may lead to losses and are therefore not allowed.) In case your bid is smaller 
than the bid of your opponent, you lose and won’t receive any payment for this auction. In case of a tie, a chance 
move randomly determines the winner. Your earnings, which are paid at the end of the session, are the sum of 
payments over all 140 auctions. Each money unit earned in the auction is worth 2 Pfennige. 

Who is the other bidder? 

All pairings are anonymous. Your identity will not be revealed to the persons you are playing with either before, 
during or after the game. In each auction, your opponent will be selected randomly. However, you won’t be paired 
with the same person twice in a row. Note that by this matching scheme, the values of your (changing) opponents 
generally also change from round to round.  

 

[TREATMENT F] What feedback is there after each auction? 

After each round you will be informed as to whether you won the auction, the price (i.e., the winning bid), the 
opponent’s bid, and your payment from that auction.  

 

[TREATMENT NF] What feedback is there after each auction? 

After each round you will be informed as to whether you won the auction, the price (i.e., the winning bid), and your 
payment from that auction.  

 

Good luck! 
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