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Abstract 

This paper analyses empirically the purchasing power parity, the uncovered interest parity and the 
real interest parity (Fisher parity) between Poland and Germany. The international parity relations 
are investigated jointly within the cointegrated VAR framework. Our analysis fails to find 
evidence that the parities, or any linear combinations of them, hold for our data set. We identify 
two long-run equilibrium relations: one imposing a long-run homogeneity restriction on the 
domestic (i.e. Polish) and foreign (i.e. German) inflation and the domestic interest rate and one 
that brings together the domestic real interest rate and the foreign inflation. Another interesting 
result is the weak exogeneity of the deviation of the real exchange rate from the PPP and the 
strong exogeneity of the German interest rate. 
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1 Introduction 

With its accession to the European Union (EU) on 1 May 2004, Poland took on a commitment to 

join the Economic and Monetary Union (EMU) upon fulfilling the convergence criteria set in the 

Maastricht treaty. The timing of the EMU accession depends to a large extent on the country’s 

economic policy decisions, which affect the level and stability of prices, long-term interest rates, 

the fiscal position and the nominal exchange rate. However, the adoption of the euro is inevitable, 

as none of the ten countries that became EU members in 2004 has the formal right, as that 

exercised by Denmark and the United Kingdom, to opt out from EMU arrangements. 

 For a candidate country with a flexible nominal exchange rate regime, as it is the case with 

Poland currently, joining the euro implies giving up monetary policy independence. The question 

arises, then, whether the economy is “ripe” for the common monetary policy. This problem has 

usually been analysed from the point of view of the optimum currency area theory (see Mundell 

1961; McKinnon 1963; Kenen 1969), which weighs the benefits of the accession to a monetary 

union (increased microeconomic efficiency) against its costs (potentially more painful adjustment 

to asymmetric shocks). A number of empirical studies in this area concentrate on the symmetry of 

shocks and shock transmission mechanisms in a given country and its potential partners in the 

monetary union (see De Grauwe 2003 for a survey). 

 This paper asks a similar question – to what extent Poland has already achieved a 

sufficient degree of convergence with the current euro area members – but applies a different 

perspective, namely that of international parity relations: the purchasing power parity, the 

uncovered interest parity and the real interest parity. The basic logic behind this approach is that 

the three parities between two economies hold if goods and asset markets of these economies are 

perfectly integrated, i.e. when goods and capital are perfectly mobile. If this is the case, the 

economies in question can form a common currency area without fearing serious turbulence in 

case of asymmetric shocks; indeed, the probability of such shocks is very low under such 

conditions. 

 There is vast empirical literature on the parity conditions that we are analysing but usually 

each of them is treated separately, whereas in our paper they are modelled jointly within the 

cointegrated vector autoregressive (VAR) framework. This joint modelling approach is originally 

due to Juselius and MacDonald (2004a), who scrutinised the parity relations between Germany 

and the US. Essentially, the analysis in this paper is an application of their approach to the Polish 

data – to the best of our knowledge, the first such one. 

 Thus, we analyse empirically to what extent Poland’s macroeconomic aggregates of 

interest are interrelated with those of the current EMU countries. The most important empirical 

questions are the following: do the international parity relations postulated by economic theory 
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hold for Poland relative to the euro area? What are the common stochastic trends driving inflation, 

interest rates and the real exchange rate against the EMU? Do the developments in Poland 

significantly affect those in the common currency area, or can the latter be treated as exogenously 

given when analysing the Polish economy? The EMU is represented by Germany, the largest of 

its members and a neighbour of Poland, which makes it the most natural reference economy for 

studying Poland’s international trade and payments relations with the euro area.1 

 The remainder of this paper is structured as follows. The next section presents the three 

international parity relations, briefly reviews the relevant literature, and derives hypotheses that 

can be tested within the cointegrated VAR framework. Section 3 visually inspects the data used in 

the VAR model, which is presented in Section 4. Section 5 reports the outcome of the 

cointegration analysis. Section 6 summarises the main findings and concludes. 

 

2 International parity conditions2 

The purchasing power parity (PPP) is one of the most extensively studied relationships in the 

international economics. In its strong form it can be written as follows: 

tttt sppppp −+= *                      (1) 

where tppp  is the deviation from PPP (alternatively, the real exchange rate multiplied by -1), tp  

and *
tp  are, respectively, domestic and the foreign price levels, and ts  is the spot exchange rate 

(in price notation, i.e. the price of foreign currency in units of domestic currency). All lowercase 

variables in this paper, except for the bond yields or interest rates, are in logs so that their first 

differences can be interpreted as the rates of change in the underlying variable. Empirically, the 

PPP condition is verified if tppp  is a stationary process. 

 The second important relationship is the uncovered interest parity (UIP): 

( ) *m
t

m
tmtt iisE −=∆ +                      (2) 

where tE  denotes the expected value given the information set available at time t, ∆  is the 

difference operator and mti  and *m
ti  are, respectively, the domestic and the foreign bond yields 

with maturity m.3 Thus, the UIP postulates that the expected rate of denomination of the domestic 

currency should be equal to the home vs. foreign interest spread (the terms “interest rates”, “bond 

                                                 
1 Admittedly, interest rates and exchange rates have been heavily influenced by financial flows, where the German 
mark was not always the dominant currency. Nevertheless, of all EMU countries Germany seems to be the best single 
reference country due to its economic size and geographic proximity to Poland. For similar reasons, Germany was 
treated as a natural anchor country in virtually every article written in the 1990s on the optimality (or simply viability) 
of the future monetary union in EC/EU countries (see, e.g. Bayoumi, Eichengreen 1992a; 1992b and the vast 
literature that was pioneered by these papers).  
2 The beginning of this section draws heavily on Juselius, MacDonald (2004a), Section 2. 
3 Note that UIP may apply to short or to long bond yields; see Juselius, MacDonald (2004a) for a discussion. 
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yields”, and “Treasury bill rates” are used interchangeably in this paper). Assuming rational 

expectations, we have: 

( ) mtmttmt sEs +++ +∆=∆ ε                     (3) 

where tε  is a white noise error term. Combining (2) and (3) leads to: 

( ) mt
m
t

m
tmt iis ++ =−−∆ ε*                     (4) 

Under the assumption of rational expectations, testing the UIP amounts to testing whether tε  in 

(4) is stationary. The third parity relation that we are interested in is the real interest parity (RIP): 

*m
t

m
t rr =                       (5) 

or rather its testable version: 

t
m

t
m

t rr ν=− *                       (6) 

where m
tr  and *m

tr  are the domestic and the foreign real bond yields with maturity m, respectively. 

If the RIP holds, then tν  in (6), which is the empirically observed real interest differential 

between home and foreign country, should be a stationary process. Now, a useful relation is the 

Fisher decomposition stating that the nominal bond yield is the sum of the real yield and the 

expected inflation rate over a given period (t  to  t + m): 

( )mtt
m

t
m
t pEri +∆+=                      (7) 

Using the Fisher decomposition, equation (6) can be rewritten in the following way: 

( ) tmtmtt
m
t

m
t ppEii ν+∆−∆=− ++

**                    (8) 

Again assuming rational expectations, we have: 

( ) ( ) tmtmt
m
t

m
t ppii ν=∆−∆−− ++

**                    (9) 

i.e. the RIP holds empirically if the difference between the interest spread and the inflation 

differential is stationary. 

 The economic rationale behind the three parities is given by arbitrage on goods and asset 

markets. Specifically, if goods are perfectly mobile across countries, then arbitrage ensures that 

their prices – after accounting for expected changes in the value of the various currencies – are 

ultimately equalised, which is reflected in the PPP condition. Further, if capital is perfectly mobile 

across countries, then arbitrage ensures that yields on assets of these countries – again after 

accounting for expected changes in the value of their respective currencies – are also equalised, 

which is reflected in the UIP. It can be shown that the PPP and the UIP, taken together, imply the 

RIP (see Lambelet, Mihailov 2005); in other words, arbitrage on goods and asset markets 

ultimately leads to an equalisation of real returns on assets. An implication that the three parities 

hold is, thus, that the goods and asset markets of two economies are to a large extent integrated. 

This, in turn, means that these economies can share a currency and a common monetary policy 



 4 

without fearing serious turbulence when large asymmetric shocks occur. Indeed, the probability of 

such shocks is very low, because economies whose markets are integrated also share a common 

business cycle and usually have similar output structures (see Mongelli 2005). 

 The three parities have been analysed very extensively using various methods; theoretical 

and empirical studies in this field are discussed at length in the meta-studies of MacDonald (1998) 

and Sarno, Taylor (2002).4 The general upshot of this literature is that the parities, taken alone, 

seldom hold empirically in typical data samples. Only for very long time series, spanning a 

century or so, or for panel data of large dimensions can the parities be empirically verified. 

 As mentioned in Section 1, the empirical methodology in this paper follows the approach 

put forward by Juselius and MacDonald (2004a), who scrutinise the international parity relations 

(the three discussed above and the term structure of interest rates) between Germany and the 

USA. The analysis strongly rejects the stationarity of single parities, but by allowing the latter to 

be interrelated it recovers their stationarity. The authors also argue that the apparent non-

stationarity of the simple parities is due to very slow adjustment to sustainable exchange rates. 

The approach of Juselius and MacDonald is based on earlier work by Juselius (1990; 1992; 1995), 

Johansen and Juselius (1992), and MacDonald and Marsh (1997), and it was also applied to Japan 

vs. the USA by Juselius and MacDonald (2004b). Another important exception to the rule that 

empirical research in this area concentrates on only one of the parities is a recent paper by 

Lambelet and Mihailov (2005), who also model the three parities jointly using various single 

equation and system equation estimation methods. The authors refer to the parities as the triple-

parity law, stressing that they are closely interrelated. Robust evidence is found that the parities 

hold “in the long run, on average, and ex post”. 

 The joint modelling of the various parities within the cointegrated VAR framework can 

help understand the forces driving the entire system of variables of interest. We believe that the 

VAR methodology itself is superior to structural simultaneous equation models, because all 

relevant variables entering the parities are jointly determined so that none of them can from the 

outset be treated as exogenously given, and because the direction of causality is uncertain. The 

cointegration approach, moreover, allows one to determine not only the short-run dynamics of the 

system, as in the case of (structural) VAR models, but also the long-run equilibrium relations 

between the variables. Specifically, our aim is to find cointegration relations that reflect the three 

parity relations. If the simple parities do not hold, i.e. if the linear combinations of variables that 

define the parities are non-stationary, we can still test whether stationary linear combinations of 

these non-stationary relations exist. 

                                                 
4 For recent empirical analyses of the parities for the case of emerging economies and in particular of the Central and 
East European countries see e.g. Bekı, Boršič (2007); Sideris (2006); Giannellis, Papadopoulos (2006); Singh, 
Banerjee (2006). 
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 Before we proceed to the empirical analysis, an important caveat is in order. The above 

equations define the three parities in their strong form, which does not allow for persistent 

departures of the real exchange rate, the nominal interest spread and the real interest rate from the 

levels implied by the respective parity condition. The weaker form of these equations, in contrast, 

allows for permanent (or at least persistent) departures from these levels. Such departures can 

result from institutional or structural characteristics of economies in question. Empirical tests of 

the parities in their weaker form consist in testing whether the equations (4) and (6) each include a 

non-zero constant term or a deterministic time trend, with the term tε  in equation (4) and tν  in 

equation (6) being white noise (zero mean) error terms. Similar remarks apply to equation (1), 

where the term tppp  need not be stationary but can also be trend-stationary. This is the strategy 

that we follow in our empirical analysis. After all, it only seems natural that the RIP between 

Poland, a former centrally planned transition economy, and Germany, a stable market economy, 

cannot hold in its strong form throughout any reasonable sample period, which must cover years 

of catching up and thus of falling real interest differential. The same applies to the remaining two 

conditions. 

 

3 A visual inspection of the parities 

Before analysing the international parities presented in Section 2 within the cointegrated VAR 

framework, we first inspect them graphically. An ocular analysis of various linear combinations 

of the relevant time series can suggest a first tentative answer to the question whether the parities 

hold empirically. The underlying time series in Figures 1 to 4 are defined in Section 5 and their 

levels and differences are depicted in Figure A.1 in the Appendix. 

 From the cross plot of the nominal exchange rate and the price differential between Poland 

and Germany (see the upper panel of Figure 1) it is difficult to tell whether and to what extent the 

former has mirrored the latter. The reason for this is that the prices seem to be integrated of order 

2, I(2); this was confirmed by formal tests which will be discussed in Section 5. The middle panel 

of Figure 1 depicts the deviation from PPP (the real exchange rate multiplied by -1)5 and the 

inflation differential. If the PPP held, then the real exchange rate and the price differential would 

move together and the deviation from PPP would be stationary. As can be seen from the figure, 

there is hardly any evidence of PPP holding. 

 However, the picture might be blurred by the fact that the sample period has been the time 

of intensive transition from a centrally planned to a market economy and high productivity growth 

in Poland relative to Germany. As a consequence, both the real exchange rate and the price 

                                                 
5 The deviation from PPP in Figure 1 and the rate of depreciation in Figure 2 were scaled by the factor 10 to ease 
interpretation of the cross plots. 
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differential have exhibited pronounced trends: the former a positive6, the latter a negative one, 

which might make it difficult to tell whether the exchange rate is at least trend-stationary or not. 

The bottom panel of Figure 1, which depicts the detrended series, shows that the deviation from 

PPP is not even trend-stationary. 

 
     Figure 1:  The behaviour of prices and exchange rates 
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 Source: IMF International Financial Statistics, National Bank of Poland, own calculations 

 

 Further we look at the depreciation rate and the home vs. foreign interest differential 

(Figure 2). If the UIP held, the two series would move together and the difference between the 

two would be stationary (see equation (4)). The upper panel of the figure is again difficult to 

interpret because the interest rate spread is trending (which is again a by-product of the economic 

transition), whereas the depreciation rate is not. The bottom panel shows the detrended series7, 

which reveal a similar picture: there is hardly any evidence supporting the UIP. 

                                                 
6 Note that pppt is the real exchange rate multiplied by -1 so that a positive trend in pppt means a real appreciation 
trend, although a rise in st means nominal depreciation of the home currency. 
7 The series were detrended by means of an OLS regression on a constant and a linear time trend. Each detrended 
series was computed as the difference between the original series and the trend term times its estimated coefficient. 
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      Figure 2: Depreciation rate and home vs. foreign 
      interest rate spread 
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 Source: IMF International Financial Statistics, National Bank of Poland, own calculations 

 

The third condition to look at is the RIP, postulating that the deviation between the real interest 

rates in the two countries should be stationary. Figure 3, especially the bottom panel depicting the 

series smoothed by taking 12-month moving averages, shows that this is probably not the case, as 

the deviations between the two series are rather persistent. Recall that using the Fisher 

decomposition, the RIP condition could also be written in the form (9), i.e. as a relation between 

the nominal interest rates and the inflation differential, which are graphed in Figure 4. Here, the 

impression is that the difference between the two series is I(0). 

 To summarise, the impression from the graphical analysis is that the three parities 

presented in Section 2 do not hold. Obviously, a visual inspection is only an informal way of 

investigating whether the given relations are stationary. The results of formal tests will be 

discussed in Section 5; before that, the next section will present the cointegrated VAR model. 
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      Figure 3:  Real interest rates 
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 Source: IMF International Financial Statistics, National Bank of Poland, own calculations 

 

      Figure 4: Home vs. foreign interest rate spread and 
      inflation differential 
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4 The cointegrated VAR model8 

The j-dimensional cointegrated VAR(k) model in the vector equilibrium correction (VEC) form is 

given by the following equation: 

ttktkttt Dxxxx ε+Φ+∆Γ++∆Γ+Π=∆ +−−−− 11111 ...                (10) 

where tx  is a 1×j  vector of endogenous variables, tD  is a 1×b  vector of deterministic 

components (such as a constant, a linear time trend, seasonal or intervention dummies, or strictly 

exogenous variables), tε  is a 1×j  vector of i.i.d. Gaussian error terms, and Π , iΓ  ( )1,...,1 −= ki , 

and Φ  are coefficient matrices of appropriate dimension. Based on the assumption that all 

variables in (10) are at most I(1), the cointegration hypothesis can be formulated as a reduced rank 

restriction on the matrix Π : 

βα ′=Π                     (11) 

where α  and β  are rj ×  coefficient matrices with full column rank and jr ≤ , which implies 

that the rank of Π  is also r. As the variables in tx  are I(1), their first differences on the left hand 

side of (10) are stationary; therefore, all terms on the right hand side of the equation must also be 

stationary. Thus, the matrix Π  translates the non-stationary vector 1−tx , into a stationary one, 

1−Π tx . More precisely, it is the expression 1−′ txβ  that defines the stationary linear combinations 

(cointegration relations) of the I(1) vector 1−tx , whereas the matrix α  describes how the variables 

in the system adjust to the equilibrium error from the previous period, 1−′ txβ . The rank r of the 

matrix Π  gives the number of cointegration relations (steady states, long-run equilibrium 

relations) between the j variables of the VAR system, whereas rj −  gives the number of common 

stochastic trends that drive their behaviour. The former can be interpreted as the pulling forces 

and the latter as the pushing forces of the system; each time a variable is pushed away from the 

steady state, it is pulled back to it. The analysis in the next section aims at finding cointegration 

relations between the variables of interest that can be given a meaningful economic interpretation, 

and at identifying the common stochastic trends. 

 The vector of variables that are relevant for our analysis is defined as follows: 

[ ]′= tttttt siippx         **                    (12) 

where tp  = the Polish (“home country”) consumer price index, 

 *
tp  = the German (“foreign country”) consumer price index, 

 ti  = the Polish Treasury bill rate, 

 *
ti  = the German Treasury bill rate, 

                                                 
8 The cointegrated VAR analysis is discussed in depth in Juselius (2006). 
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 ts  = the spot exchange rate (defined as PLN/DM). 

 The data are monthly, not seasonally adjusted, and cover the period 1994:1 to 2006:1. All 

series except for the exchange rate are taken from the IMF International Financial Statistics 

whereas the exchange rate is the end-of-month rate as announced by the National Bank of 

Poland9. From January 1999 onwards, the PLN/DM exchange rate is represented by the 

PLN/EUR rate, divided by the irrevocable DM/EUR conversion rate. The Treasury bill rates are 

not the usual annualised rates but monthly rates so they are directly comparable to the monthly 

changes in the remaining variables. Our choice of the proxy for long-term interest rates was not 

straightforward. Ideally, we should have used long (e.g. ten-year) government bond yields. 

However, first emissions of longer-term government bonds in Poland took place in 1999 so the 

time series are rather short.10 As the Treasury bill rate is the only interest rate that has been 

available throughout the whole sample period, we could only use this rate as a proxy for long 

bond yields. The data in levels and in differences are depicted in Figure A.1 in the Appendix. 

 Both the graphical analysis of the time series in the previous section and the formal tests to 

be discussed in the next section suggest that the price variables are I(2), whereas our model is 

based on the I(1) assumption. Therefore, we transformed the data so that the resulting series are at 

most I(1), while at the same time preserving information about the long-run trends driving the 

prices.11 The transformed vector of variables whose joint behaviour is to be explained within the 

cointegrated VAR framework now becomes: 

[ ] ( )1~        ** Ipppiippx tttttt

′
∆∆=                  (13) 

where tppp  was defined in Section 2. Note that the VEC model is defined for differenced data, 

which means that the price variables in the vector tx∆  are differenced twice: 

[ ] ( )0~        **22 Ipppiippx tttttt

′
∆∆∆∆∆=∆                 (14) 

 The point of departure for our analysis is the following stylised scenario. In a neoclassical 

world we would expect prices of goods, capital and foreign exchange to be driven by no more 

than two different stochastic trends. These could be defined e.g. as cumulated supply and demand 

shocks, or as cumulated domestic and foreign shocks. Alternatively, one trend could be associated 

with shocks to the current account and the other with capital account shocks. Therefore, we would 

expect the rank of the matrix Π  to be equal to 3. However, in a world with nominal rigidities, 

barriers to trade with goods and to capital and labour movements across countries, asymmetric 

information, risk aversion etc., there might be more than two common stochastic trends driving 

                                                 
9 When average monthly exchange rates are used instead of end-of-month rates, the qualitative results of the analysis 
are identical and the quantitative results are very similar. 
10 This problem is typical of Central and East European former centrally planned economies. 
11 See the discussion in Juselius & MacDonald (2004a). 
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our variables. In a similar data set for Germany and the US, Juselius and MacDonald (2004a) 

identify a third common trend associated with the special role of the US dollar in the international 

monetary system, which manifests itself in agents’ willingness to hold dollars irrespective of the 

developments in the US economy. The presence of a similar trend, which the authors term a “safe 

haven” or portfolio balance effect, in the Polish-German data seems plausible because of the 

traditionally important role of the German mark as a medium of exchange and, especially, as a 

store of value in the formerly centrally planned economies of Central and Eastern Europe. In that 

case the rank of Π  would be equal to 2. 

 To summarise, we expect to find two or three cointegration relations, and, 

correspondingly, three or two common stochastic trends driving the system. More specifically, if 

the simple parities discussed in Section 2 describe the variation in our data correctly, then they 

can be modelled individually because the relations defining them are stationary by themselves. 

From the graphs in Section 3, we reckon that the parities do not hold for our data set. Therefore, 

we aim at finding out whether there exist stationary linear combinations of the simple parities. In 

other words, we seek to find parameter values for a, b and c such that: 

( ) ( ) ttttt pppcppbiia  ** −∆−∆−−                  (15) 

or, alternatively: 

( ) ( ) ttttt pppcpibpia  ** −∆−−∆−                  (16) 

define stationary equilibrium relations which pull the system variables whenever they are pushed 

away from equilibrium. Note that the simple parity relations are special cases of the above 

equations as they result from setting two of the parameters a, b, c to zero and normalising the 

remaining parameter. We expect the steady-state relations found in our data to be special cases of 

equations (15) and (16), or perhaps the equations themselves. 

 

5 The empirical analysis12 

A. Specification and estimation of the unrestricted VAR model 

As a first step of our analysis, we specified and estimated the unrestricted VAR model presented 

in Section 4. By setting the maximum lag length to two, we were able to obtain a parsimonious 

model with well-behaved residuals. We based our choice of the lag length primarily on residual 

analysis, although we also checked the information criteria and performed lag reduction tests.13 

 In terms of deterministic components, the model was specified so as to include an 

unrestricted constant, which means that the data in levels show trending behaviour but the 

                                                 
12 All results presented in this paper were obtained using CATS in RATS, version 2 (see Dennis et al. 2005). 
13 The Schwarz Criterion pointed to k = 1 and the Hannan-Quinn Criterion to k = 2; the lag reduction tests, however, 
suggested a longer maximum lag length. The results are not reported here to save space but, like any other results, are 
available from the author upon request. 
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differenced data have no trend. This is exactly what the graphs of levels and differences of our 

time series show (see Figure A.1). Originally we included a trend term restricted to appear in the 

cointegration space in order to account for the possibility that the trends in data do not cancel out 

in the cointegration relations. Long-run variable exclusion tests showed, however, that the trend 

term could be excluded from the cointegration space without loss of information. 

 Apart from the constant, centred seasonal dummies and other dummies were included. 

Specifically, we used innovational dummies to account for large interventions as well as a shift 

dummy restricted to lie in the cointegration space, 05 : 1995C . The latter picks up a level shift in the 

equilibrium relation involving the Polish bond rate, which we believe to have taken place in May 

1995. The shift, whose occurrence is suggested by our data, can be put down to important 

structural changes in the monetary regime in Poland. Specifically, on 16th May 1995 there was a 

changeover to a crawling bands exchange rate regime with a ±7% fluctuation band. Moreover, 

starting from 1st June 1995 the Polish zloty became convertible in accordance with Article VIII of 

the Articles of Agreement of the International Monetary Fund (IMF 1945). The unrestricted 

estimate of the long-run matrix Π , with significant coefficients typed in bold face, is given in 

Table A.1.a in the Appendix.14 

 

B. Determination of the cointegration rank 

The second step of the analysis consisted in the determination of the cointegration rank, r, i.e. the 

number of steady-state relations between the variables of the system. As the choice of the 

cointegration rank is crucial for all subsequent analysis, we used all information that was available 

from the data before deciding upon the “correct” rank.15 The only formal test that we applied was 

the trace test, or the Johansen test16, whose results for the model described above are reported in 

Table A.2.a in the Appendix.17 The largest two eigenvalues are significantly different from zero at 

every standard significance level; the significance of the third-largest eigenvalue is borderline. 

The trace test thus points to 2=r , but at this point we cannot exclude the possibility that the third 

cointegration relation is also stationary. The reason is the fact that the trace test has low power to 

reject the unit root hypothesis when the true root is lower that but near one, i.e. when it is in the 

“near unit root region”. The low power problem is aggravated by our relatively small sample size. 

 Therefore, we need to use other sources of information concerning r. As a first sensitivity 

check, we recalculated the trace test for a different model specification, namely one that includes 

                                                 
14 Prior to estimation, additive outliers (measurement errors) were removed from the time series of the German price 
level; the figures in the previous section and in the Appendix depict the corrected data. 
15 All the tests and procedures used here are discussed at length in Juselius (2006, ch. 6). 
16 See Johansen (1996). 
17 We simulated the asymptotic distribution of the trace test statistics using the automatic CATS procedure with 1,000 
random walks and 10,000 replications. 
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no dummy variables except for seasonal dummies. The results of this test are reported in 

Table A.2.b in the Appendix. The test this time very clearly points to 2=r : with a p-value of 

over 0.8, the significance of the smallest three eigenvalues cannot be rejected. 

 Secondly, we looked at graphs depicting the individual cointegration relations of the 

unrestricted model (see Figure A.2.a in the Appendix) to assess whether they look stationary. The 

first two cointegration relations behave like stationary processes, the opposite holds for the last 

two. The third relation is of special interest because if it looked stationary, then we would 

consider 3=r  in spite of the above-reported results of the trace tests. As can be seen from the 

figure, this is hardly the case. The two cointegration relations of the model where the 

cointegration rank was restricted to 2 (see Figure A.2.b in the Appendix) seem again to be very 

stationary, which again points to 2=r . 

 Thirdly, we computed the roots of the companion matrix for different values of r (see 

Table A.3 in the Appendix). Note that choosing a given r automatically leads to rj −  unit roots, 

which does not necessarily mean that there are rj −  stochastic common trends in the data. 

Looking at the largest eigenvalues for different choices of r reveals that for 3≥r , the third-largest 

eigenvalue is near unity, whereas the fourth and the fifth are distinctly far from the unit circle. 

This leads us to the tentative conclusion18 that the trace test has picked up the “correct” 

cointegration rank. 

 A further source of information on the cointegration rank is the unrestricted estimate of the 

matrix α  and more specifically, the significance of its parameters. As can be seen from Table A.4 

in the Appendix, which gives the unrestricted estimates of α  given different values of r, the 

coefficients in the first two columns have generally high t-ratios, but the third column contains 

only one coefficient that is borderline significant.19 This can again be interpreted as evidence that 

the third cointegrating relation might be stationary, although rather borderline so. 

 Furthermore, we used the recursively calculated trace test statistics (see Figure A.3 in the 

Appendix) to draw conclusions on the cointegration rank. The upper two lines, depicting the trace 

test statistics for the two “most stationary” cointegration relations, exhibit pronounced linear 

growth, whereas the other three remain roughly constant as more and more observations are added 

to the base period. This result again suggests that 2=r . 

 Finally, one can draw on economic theory to hypothesise about the number of 

cointegrating relationships in our model. As argued in Section 4, we expected the variables in our 

system to be driven by two or three stochastic common trends, and therefore the cointegration 

                                                 
18 The conclusion is only tentative because we do not know the distribution of the eigenvalues, which makes it 
impossible to test which values are significantly different from unity. 
19 Note that the exact distribution of these coefficients is unknown. If the corresponding equilibrium relations are 
stationary, the t-statistics are distributed as Student’s t and in the non-stationary case as Dickey-Fuller’s τ . 
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rank to be equal to three or two, which is consistent with the results discussed above. Thus, based 

on all sources of information we conclude that the rank of the matrix Π  and thus the number of 

steady-state relationships between our variables of interest is equal to two. The estimate of Π  

based on this reduced rank is given in Table A.1.b. 

 

C. Specification tests 

Prior to the actual cointegration analysis we performed various specification tests of the estimated 

VAR model to check the assumption of the error terms being independently normally distributed. 

The results of these tests, both for the full rank and the restricted rank VAR model, are reported in 

Table A.5 in the Appendix. An important point to note is that valid statistical inference is sensitive 

to violation of certain assumptions, such as autocorrelated or skewed residuals and parameter 

inconstancy, and quite robust to violation of others, such as residual heteroskedasticity or excess 

kurtosis. 

 The most important assumptions regarding the residuals are therefore those of no 

autocorrelation and zero skewness. As can be seen from the table, none of the tests rejects the 

former hypothesis for the whole system. As for the latter, normality is strongly rejected for the 

whole system and for equations explaining the Polish inflation rate and both bond rates. This 

result is, however, primarily due to the fact that the kurtosis of the respective empirical 

distributions is too large to be associated with normal distribution, whereas the skewness seems to 

be less of a problem. Table A.5 shows that the residuals from the equation explaining the Polish 

interest rate exhibit ARCH effects, whereas no such effects are detected in any the other equation 

or the system as a whole. All in all, we conclude that the assumption of independent multivariate 

normal distribution of the residuals is by and large confirmed by the data. 

 Furthermore, Table A.5 reports goodness-of-fit measures for the whole model (trace 

correlation) and for individual equations (determination coefficient, R2). The trace correlation is 

fairly large and the same holds for R2 for the equations explaining the inflation rates and the 

Polish bond rate. The low values of R2 for the remaining two equations can be explained by the 

weak exogeneity of the German bond rate and the deviation from PPP (see Section 5.D). 

 The third assumption that is crucial for valid statistical inference based on a VAR model is 

that the sample period defines a reasonably constant parameter regime. To check this, we 

performed various recursive tests of parameter constancy for the reduced rank model ( 2=r ): the 

recursively calculated test for constancy of the log-likelihood function, the recursively calculated 

trace test statistics, eigenvalues and transformed eigenvalues, the max test of constant beta, and 

the 1-step prediction test.20 Virtually all tests, whose results are not reported here to save space21, 

                                                 
20 All tests are extensively discussed in Juselius (2006). 
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show that the model’s parameters have been constant throughout the sample period. This is 

especially true with regard to the concentrated model, i.e. one where the short-run dynamics, 

11 −∆Γ tx , and deterministic components, tDΦ , have been concentrated out. 

 The results presented in this section and the previous one suggest that our VAR model 

satisfies the I(1) assumptions, which postulate that (i) the rank of the matrix Π  is equal to r, 

(ii) the companion matrix has exactly rj −  unit roots, corresponding to the stochastic trends that 

drive the system variables, (iii) the residuals are independent, (iv) the sample size is large (our 

relatively small sample size is accounted for by the Bartlett correction of various test statistics) 

and (v) the parameters of the VAR model are stable throughout the sample. These conditions are 

the prerequisite for the Granger representation theorem to hold, i.e. for the VAR model to have a 

moving average representation (see equation (17) in the next section). 
 

D. Testing restrictions on long-run parameters 

The next step is to test restrictions on parameters of the long-run structure, i.e. of the matrices α  

and β . The point of departure for all tests discussed below are the estimates of α  and β  subject 

to rank restriction 2=r . The parameters of the former matrix are termed adjustment coefficients 

because they describe how the variables of the system adjust when they are pushed away from the 

steady state. An important test is that of a zero row in α , which is tantamount to weak exogeneity 

of the variable corresponding to that row. The hypothesis of long-run weak exogeneity, or no 

levels feedback, of a variable itx  for the long-run parameters β  means that the variable itx  has 

influenced the long-run stochastic path of the other variables in the system but has itself not been 

influenced by them. This can be seen from the moving average (MA) representation, which in its 

simplest form (without short-run dynamics and deterministic components) is given by: 

( ) ALCx t

t

s
st ++′= ∑

=
⊥⊥ εεαβ *

1

~
                 (17) 

where ( ) 1~ −
⊥⊥⊥⊥ ′≡ βαββ , ⊥α  and ⊥β  are the respective orthogonal complements to α  and β 22, 

( )LC *  is a lag polynomial and A depends on initial values. The term ∑⊥′ sεα  defines the 

common stochastic trends driving the system and ⊥β~  their loadings, describing how the common 

trends are transmitted to the system variables. The hypothesis of a zero row in α  corresponds to a 

unit vector in its complement, ⊥α . Thus, if the hypothesis of weak exogeneity of a given variable 

is accepted, the cumulated shocks to that variable alone define one of the common trends driving 

                                                                                                                                                               
21 With the exception of the recursively calculated trace test statistics discussed in the last section, see Figure A.3 in 
the Appendix. 
22 I.e. ( )rjj −×  matrices of full column rank such that ( ) ( ) j== ⊥⊥ ββαα ,rank,rank , 0=′ ⊥αα  and 0=′ ⊥ββ . 
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the system. As there are rj −  common trends, the number of weakly exogenous variables cannot 

exceed rj − , i.e. three in our case. 

 The tests results (see Table A.6 in the Appendix) show that the German bond rate and the 

deviation from PPP are both weakly exogenous when tested individually. Moreover, the 

hypothesis of the two variables being jointly weakly exogenous is also accepted. We can conclude 

that the cumulated shocks to each of these variables define two of the three common trends 

pushing the system. As will be shown in Section 5.E, the German bond rate is also strongly 

exogenous, which means that this variable itself, and not just the cumulated shocks to it, represent 

a common trend. The third common trend is a linear combination of cumulated shocks to the 

Polish and the German inflation rates and to the Polish bond rate (see also equation (21) in 

Section 5.E). Accepting the hypothesis of no long-run levels feedback for the two variables in 

question means that our VAR model does not explain the stochastic path of the deviation from 

PPP, which would be a problem if modelling this path was the goal of our analysis. From that 

follows that we could reduce the dimension of our system to three and only include the German 

bond rate and the deviation from PPP as weakly exogenous variables in the cointegration space. 

 A second test involving the adjustment coefficient matrix is that of a unit vector in α , 

meaning that the variable corresponding to this vector is exclusively adjusting (i.e. shocks to that 

variable have only temporary effects on the other variables of the system). This can again be seen 

from (17): as a unit vector in the matrix α  corresponds to a zero row in ⊥α , shocks to the given 

variable do not enter the term ∑⊥′ sεα , i.e. do not influence the level of tx  in the long run. We 

performed the test for each of the endogenous variables in our system (see Table A.7 in the 

Appendix for results) and found no evidence of a unit vector in α  at the 5 percent significance 

level. Thus, we conclude that none of the variables in the system is exclusively adjusting. 

 When testing restrictions on the parameters of β , the aim is to find out which of the model 

variables and which linear combinations of them are stationary. This leads to the identification of 

the “final” set of cointegration relations that are, ideally, economically meaningful equilibrium 

relations. As a first step, we performed tests of the long-run exclusion of variables from all 

cointegrating relations, i.e. tests of zero row restrictions on β . The results, reported in Table A.8 

in the Appendix, show that only the German bond rate (which is also weakly exogenous to the 

system) can be excluded from the long-run equilibrium relations. Interestingly enough, the shift 

dummy, 05 : 1995C , cannot be excluded from the cointegration space. We will draw on these results 

when formulating our final cointegration relations. 

 In a second step, we tested the stationarity of a variety of linear combinations of the 

system variables, starting from the variables themselves (see Table A.9 in the Appendix). We first 
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tested for stationarity of each single variable (hypotheses H1 to H5), coming to the conclusion that 

only the German inflation rate is by itself I(0). However, the p-value associated with that latter 

test is so low that we do not, in fact, believe that *
tp∆  is stationary.23 Then we tested a number of 

relations involving the inflation differential *
tt pp ∆−∆  (H6 to H8), the interest spread *

tt ii −  (H9 to 

H13), the domestic and the foreign real interest rates, tt pi ∆−  and **
tt pi ∆−  (H14 to H18). We do not 

report the results of all performed tests but rather present the outcome for the given simple 

relation and all its stationary combinations with other variables that we have found. For each of 

the hypotheses we also tested whether the relations are stationary when the shift dummy is 

included in the relationship but we only report the outcome when it was changed by the inclusion 

of the dummy. 

 The general outcome of this exercise is that none of the simple parity conditions is 

satisfied by the data. If PPP held, then the real exchange rate should be stationary or at least 

cointegrated with the inflation differential. However, the two variables can only be made 

stationary if the German bond rate or both bond rates are added to the linear combination (see H7 

and H8). If UIP held, then the interest spread should be stationary or at least cointegrated with the 

nominal depreciation rate. We were not able to test the latter hypothesis directly within our VAR 

framework because the nominal rate is not one of the system variables.24 However, the stationarity 

of the interest spread is decisively rejected (H6). If RIP held, then the real bond rates would be I(0) 

or at least cointegrated with each other, and the interest spread would be cointegrated with the 

inflation differential (we have already shown that these both simple relations are non-stationary). 

These hypotheses are also rejected, though (H14, H18, H19, and H20, respectively). A linear 

combination of the interest spread and the inflation spread can only be made stationary by 

augmenting it with both the real exchange rate and the shift dummy (H22); in case of the real bond 

rates stationarity cannot be achieved even in this way (H21). 

 Recall from Section 4 that we expected our cointegration relations to be special cases of 

equations (15) and (16), or these equations themselves. Relation (16) turned out to be non-

stationary even when augmented by a shift dummy (H21); therefore, there is no equilibrium 

relation between real interest rates in both countries and the real exchange rate. As for relation 

(15), describing a linear combination of the interest spread, the price differential and the real 

                                                 
23 If the German inflation rate is stationary, it cannot be cointegrated with any non-stationary single variable or linear 
combination of variables in the system so there was, theoretically, no point in testing e.g. the hypotheses of the 
inflation differential or the German real bond rate being stationary. However, the fact that one cannot reject a 
hypothesis does not necessarily mean that the latter is true: the probability of accepting a false hypothesis is never 
zero (unless one adopts the strategy of never accepting the null). We thus decided to test such combinations that, from 
the purely theoretical point of view, could not be stationary if the German inflation rate really was I(0). 
24 We tested the hypothesis of the nominal exchange rate being I(1), i.e. of its first difference being I(0), using a 
different specification of the VAR model where the vector of variables included the price differential, both interest 
rates, the spot rate and the domestic inflation rate, and could not reject this hypothesis. 
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exchange rate, it is stationary when the level shift is accounted for (H22). This equation thus 

became our primary candidate for a cointegration relation. However, when testing the restrictions 

imparted in relation (15) jointly with those incorporating any other stationary combination of the 

system variables, we found that the restrictions were only borderline accepted. Moreover, 

previous tests showed that the German bond rate can be excluded from the cointegration space 

altogether. These results made us look for other stationary combinations which could be thought 

of as “irreducible cointegration relations” and, ideally, should have a plausible economic 

interpretation as long-run steady-states.25 

 One candidate for an irreducible cointegration relation is the linear combination defined by 

H15, ( ) 05 : 1995
* bCpapi ttt −∆−∆− , which relates the domestic real interest rate to the foreign 

inflation. A relation that can be given economic interpretation, on the other hand, is the one 

defined by H23, ( ) 05 : 1995
*   1 cCpppbiapap tttt −−−−∆−∆ , which imposes a long-run homogeneity 

restriction (sum of the coefficients equal to zero) on the domestic and foreign inflation and the 

domestic interest rate. Its interpretation is as follows: the domestic inflation is partly imported and 

partly the result of inflation expectations, reflected in the domestic bond rate; it is also affected by 

the real exchange rate. These two linear combinations of the system variables are the ones that we 

eventually adopted as our cointegration relations. 

 

E. Identification of the long-run and the short-run structure 

In the previous section we established two stationary relations linear combinations of the system 

variables that are our potential cointegration relations. The restricted rank VAR model was then 

estimated subject to restrictions defining the two relations as well as two zero row restrictions on 

the matrix α  (recall from the previous section that *
ti  and tppp  are individually and jointly 

weakly exogenous). The result is given in Table A.10 and the corresponding restricted estimate of 

the matrix Π  in Table A.1.c (both tables are in the Appendix). The restrictions on α  and β  have 

hardly changed the estimate when compared with previous results. Our cointegration relations are 

defined as follows: 

05 : 1995
* 003.0 0.022 457.0543.01 CpppippCR ttttt ++−∆−∆=              (18) 

( ) ttttt CppiCR  ,05 : 1995
* 014.0881.142 −∆−∆−=                (19) 

 As can be easily seen, the first relation is just identified and the second is over-identified. 

The system as a whole is therefore formally (generically) over-identified26 and the restrictions are 

                                                 
25 An “irreducible cointegration relation” is a stationary linear combination of non-stationary variables that becomes 
non-stationary once any of them is dropped from the relation; see Davidson (1998). A theoretically meaningful 
equilibrium relation can be a linear combination of two or more irreducible cointegration relations. 
26 See Juselius (2006) for an intuitional exposition of generic identification and Johansen (1995) for technical details. 
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testable. The restrictions were accepted with a fairly large p-value based on a Likelihood Ratio 

(LR) test. Moreover, the cointegration relations are also empirically identified, i.e. the coefficients 

which have not been set to zero when formulating the restrictions are in fact significantly different 

from zero in the estimated system. As for economic identification, i.e. interpretability of the 

results, we already discussed this issue at the end of the previous section. 

 From the economic point of view, not only the cointegration relations but also the 

adjustment coefficients are of special interest. Based on the results in Table A.10, we have: 
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The zero coefficient values in the last two rows of α  are the result of the imposed restrictions; 

however, the unrestricted coefficients were insignificantly different from zero anyway. This 

means that both weakly exogenous variables, the German bond rate and the real exchange rate, do 

not equilibrium-adjust, i.e. their change in the present period is unaffected by the departure from 

equilibrium in the previous period. The coefficients 12α  and 21α  are insignificant so we set them 

to zero in the above equation. The reactions of the “truly endogenous” system variables to the 

departure from steady-states are plausible in the sense that the respective α  coefficients are 

significant, have the signs consistent with error-correcting behaviour (i.e. there is no overshooting 

in the system)27, and are of magnitude which by and large “makes sense”. The Polish inflation rate 

adjusts to the first cointegration relation, CR1, which is the equilibrium relation for this variable. 

If the departure from CR1 in a given month is positive, then tp∆  would fall in the following 

month, correcting approximately 92% of the equilibrium error, which amounts to very fast 

adjustment. The German inflation rate exhibits equilibrium-correcting behaviour with respect to 

CR2 and the Polish bond rate with respect to both relations, although the adjustment is much 

slower than that of tp∆ . Apart from the surprisingly high speed of adjustment of the Polish 

inflation rate, the estimated system seems to be economically plausible. 

 The over-identified long-run structure described above was the point of departure for the 

identification of the short-run structure: when testing restrictions on short-run parameters, we kept 

the parameters cβ̂  fixed at their previously estimated values.28 The VAR model discussed so far 

                                                 
27 The i-th cointegrating relation is significantly equilibrium-correcting if the parameters in the i-th column of the 
matrix α  are significantly different from zero and have the signs consistent with equilibrium-correcting behaviour, 
i.e. the signs opposite to those of the corresponding coefficients in the matrix β . 
28 The statistical motivation for this is the superconsistency of the estimator β̂  (or cβ̂ ). 
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is heavily overparametrised; especially the short-run matrix 1Γ  and the deterministic components 

matrix Φ  contains many insignificant coefficients. Our goal is now to achieve a parsimonious 

parametrisation of the short-run reduced-form VAR model. Based on parameter significance and 

the results of the LR test of over-identifying restrictions, we were able to impose a total of 56 

restrictions on the short-run structure. 

 The results are reported in Table A.11 in the Appendix; the columns represent the 

equations of the system. The unlagged “endogenous” variables29 have only been included in their 

own equations and the corresponding unit matrix of coefficients is not reported to save space. As 

can be seen from the table, most of the coefficients of the matrix 1Γ  could be set to zero without 

significantly changing the value of the likelihood function; only in the equation of the Polish 

interest rate and the deviation from PPP are the lagged differences of (some) system variables 

significant. 

 A particularly striking result is that of all coefficients in the German interest rate equation 

equal to zero. Combined with the results of the analysis in Section 5.D, where *ti  was found to be 

weakly exogenous (individually and jointly with the real exchange rate), this means that the 

German bond rate is strongly exogenous to the system and that the corresponding equation could 

be excluded from the model with no loss of information. As already mentioned in Section 5.D, 

another conclusion is that one of the stochastic trends to the system is *
ti  itself, not just shocks to 

it. 

 As for the adjustment coefficients, the results are similar to those described above, with the 

difference that the German inflation rate now adjusts to both cointegration relations and the speed 

of adjustment of the Polish inflation rate is somewhat lower. All in all, our restricted reduced-

form VAR does not entail any results that are inconsistent with economic theory or with the 

outcome of our previous analysis. Moreover, the residuals are essentially uncorrelated, as can be 

seen from the bottom panel of Table A.11: only the correlation coefficient between the residuals 

of the first and the fifth equation is significantly different from zero. Thus, our reduced-form 

model can be interpreted as a structural VAR model. 

 Based on the estimated over-identified system (20), the MA representation is as follows: 

                                                 
29 The term “endogenous” is in quotation marks because it stands for the variables that stand on the left-hand side of 
the system (including the weakly exogenous ones, like the real exchange rate and the German bond rate in our 
model), not necessarily those that are actually explained by the system. 
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The estimates of ⊥α , defining the common trends, and ⊥β~ , defining their loadings, are given in 

Table A.12 in the Appendix; for simplicity we set insignificant coefficients to zero in the above 

equation. Bearing in mind the result of strong exogeneity of the German bond rate, we have: 

*

1
 ,* t

t

s
si

i=∑
=

ε                     (22) 

i.e. the German bond rate itself, and not just shocks to it, constitutes the second common trend, 

which drives both bond rates in the long run. The third common trend, driving prices in both 

countries and the real exchange rate, is the cumulated sum to that latter variable. The first trend is 

a linear combination of cumulated shocks to the three endogenous variables, and it determines the 

levels of these three variables in the long run. We have not tried to find the structural MA 

representation or to give the shocks labels, i.e. to interpret them as “structural” shocks; this is a 

task for our future research. However, we note that the second trend, the German bond rate, can 

be interpreted as a “safe haven” or portfolio balance effect (see Juselius, MacDonald 2004a), 

which is related to the important role of the German mark – or rather, the (future) EMU for which 

Germany is a proxy – for the Polish economy. 

 

6 Summary and conclusions 

In this paper we tried to identify a set of economically meaningful long-run equilibrium relations 

that would reflect the international parity conditions: the purchasing power parity, the uncovered 

interest parity and the real interest parity. As these simple parities seldom hold empirically, the 

general idea was to model them jointly in order to uncover the dynamic structure underlying the 

stochastic behaviour of prices, interest rates and the real exchange rate in Poland versus the EMU, 

represented by Germany. The empirical analysis, based on a cointegrated VAR model, not only 

showed that the simple parities are inconsistent with our data set but it also failed to identify 

cointegration relations that would be linear combinations of all three parities. 

 Therefore, the question arises why the parities that are so well-established in the economic 

theory could not be pinned down when analysing the Polish-German data set, even when we 

analysed them jointly and allowed for time trends and level shifts in the data. We see the rationale 

for this in the fact that our sample was rather short, and covered the period of Poland’s transition 

from a centrally planned to a market economy. Therefore, the parities which are supposed to hold 
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in the long run could not (yet) be identified within our model. One has probably to wait several 

years before these long-run relations can actually be reflected in the data. 

 What the analysis did establish, though, is a VAR model with reasonably stable parameters 

and remarkably well-behaved residuals, which let us draw interesting conclusions about the 

stochastic behaviour of the variables of interest. We identified two meaningful long-run 

equilibrium relations that the system was adjusting to: one describing the domestic (i.e. Polish) 

inflation rate as being partly imported (from Germany), partly the result of inflation expectations, 

and partly affected by the real exchange rate, and the other bringing together the domestic real 

interest rate and the foreign inflation. The three variables of the system that can be considered 

endogenous – the Polish inflation and interest rate as well as the German inflation rate – exhibit 

equilibrium-adjusting behaviour, i.e. they are pulled back to the steady-state once they have been 

pushed away from it. The two remaining variables – the real exchange rate and the German 

interest rate – are weakly exogenous to the system, i.e. they affect the stochastic behaviour of the 

endogenous variables but are not affected by them. 

 The system is pushed by three stochastic common trends: one defined as cumulated shocks 

to the real exchange rate, one defined as the cumulated shocks to the German bond rate (and the 

bond rate itself, as it turned out to be strongly exogenous), and one being a linear combination of 

shocks to the endogenous variables. The second of these common trends can be interpreted as the 

“safe haven” effect, reflecting the important international role of the German mark in formerly 

communist economies of Central and Eastern Europe. We did not try to label the other two 

common trends driving the system or to identify structural shocks hitting it; we leave this task for 

our future research. 

 Referring to the question asked in the introduction to this paper – whether Poland is “ripe” 

for the common monetary policy – the answer is not a clear-cut “no”, despite the empirical failure 

of the parities. As the Polish-German inflation rates, interest rates, and the real exchange rate have 

followed a pattern that is consistent with long-run equilibrium-correcting behaviour, and because 

the estimated system shows such remarkable degree of stability, it can be argued that Poland has 

shown a tendency to converge to Germany both in nominal and in real terms. Therefore, we 

believe that it is rather sooner than later that Poland will be able to join the euro without fearing 

major turbulences. 
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Appendix 

Tables 

Table A.1: Estimate of the matrix Π  a 

a The unrestricted model 

tp2∆  -0.922  (-10.42) 0.383  (1.54) 0.337  (2.32) 0.666  (0.71) -0.024  (-5.71) -0.002  (-1.15) 
*2
tp∆  0.010  (0.24) -1.063  (-8.93) 0.013  (0.19) -0.138  (-0.31) 0.002  (0.82) -0.001  (-1.43) 

ti∆  0.027  (3.17) 0.059  (2.46) -0.050  (-3.61) 0.202  (2.26) -0.001  (-1.84) 0.001  (3.33) 
*
ti∆  0.005  (1.26) 0.006  (0.56) 0.008  (1.41) -0.095  (-2.50) 0.000  (1.69) -0.000  (-0.62) 

tppp∆  0.160  (0.28) 2.457  (1.54) -0.407  (-0.44) 6.399  (1.07) -0.026  (-0.98) 0.025  (2.42) 
Log-Likelihood = 4698.703          Trace correlation = 0.539 

b The model with rank restriction: r = 2 

tp2∆  -0.934  (-10.65) 0.419  (1.70) 0.371  (8.55) 0.438  (3.31) -0.022  (-10.13) -0.003  (-5.35) 
*2
tp∆  0.003  (0.08) -1.031  (-8.74) 0.090  (4.31) -0.546  (-8.60) 0.004  (3.97) -0.002  (-6.93) 

ti∆  0.025  (2.86) 0.070  (2.90) -0.017  (-3.97) 0.031  (2.41) 0.000  (1.22) 0.000  (4.11) 
*
ti∆  0.005  (1.26) 0.005  (0.46) -0.002  (-1.34) 0.001  (0.26) 0.000  (0.90) 0.000  (1.16) 

tppp∆  0.008  (0.01) 2.785  (1.75) -0.249  (-0.89) 1.470  (1.72) -0.011  (-0.77) 0.005  (1.40) 

Log-Likelihood = 4686.647          Trace correlation = 0.518 

c The model with rank restriction (r = 2) and restricted long-run parameters b 

tp2∆  -0.938  (-10.72) 0.266  (1.07) 0.437  (10.40) 0  (.NA) -0.021  (-10.62) -0.003  (-9.22) 
*2
tp∆  0.009  (0.22) -1.038  (-8.72) 0.032  (1.60) 0  (.NA) 0.002 (1.83) -0.001  (-3.96) 

ti∆  0.022  (2.56) 0.055  (2.24) -0.013  (-3.00) 0  (.NA) 0.000  (2.07) 0.000  (3.39) 
*
ti∆  0  (.NA) 0  (.NA) 0  (.NA) 0  (.NA) 0  (.NA) 0  (.NA) 

tppp∆  0  (.NA) 0  (.NA) 0  (.NA) 0  (.NA) 0  (.NA) 0  (.NA) 

Log-Likelihood = 4682.817          Trace correlation = 0.515 
a t-statistics in brackets     b Two last rows in α  equal to 0; restrictions on β : see equations (18)-(19) in the text 

 
 
Table A.2: Trace test of cointegration rank 

a For the full model 

j –r r Eigenvalue 
Trace test 
statistics 

Trace test 
statistics* 

95% critical 
value 

p-value p-value * 

5 
4 
3 
2 
1 

0 
1 
2 
3 
4 

0.496 
0.401 
0.107 
0.031 
0.024 

194.3 
97.0 
24.1 
8.0 
3.5 

183.7 
92.3 
23.1 
7.5 
2.1 

63.8 
42.8 
26.4 
13.5 
3.9 

0.000 
0.000 
0.090 
0.281 
0.065 

0.000 
0.000 
0.115 
0.325 
0.148 

b For the model without deterministic components (except for seasonal dummies) 

j – r r Eigenvalue 
Trace test 
statistics 

Trace test 
statistics* 

95% critical 
value 

p-value p-value * 

5 
4 
3 
2 
1 

0 
1 
2 
3 
4 

0.425 
0.340 
0.056 
0.034 
0.013 

152.4 
73.9 
14.9 
6.7 
1.8 

144.0 
70.3 
14.2 
6.1 
1.4 

69.6 
47.7 
29.8 
15.4 
3.8 

0.000 
0.000 
0.792 
0.615 
0.176 

0.000 
0.000 
0.829 
0.685 
0.233 

* = trace test statistics and p-values based on the Bartlett small-sample correction 
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Table A.3: Roots of the companion matrix for different ranks of the matrix Π  

Modulus of: 1ρ  
2ρ  3ρ  

4ρ  5ρ  
6ρ  

7ρ  
8ρ  

9ρ  
10ρ  

0=r  1.00 1.00 1.00 1.00 1.00 0.43 0.38 0.19 0.13 0.13 
1=r  1.00 1.00 1.00 1.00 0.41 0.41 0.41 0.38 0.14 0.14 
2=r  1.00 1.00 1.00 0.44 0.44 0.41 0.36 0.36 0.09 0.09 
3=r  1.00 1.00 0.84 0.44 0.44 0.43 0.36 0.36 0.09 0.09 
4=r  1.00 0.98 0.85 0.44 0.44 0.43 0.36 0.36 0.12 0.12 
5=r  0.98 0.98 0.85 0.43 0.43 0.42 0.36 0.36 0.11 0.11 

 
 
Table A.4: Unrestricted estimate of the matrix α  a 

 1α  2α  3α  4α  5α  

tp2∆  1.027 
(10.42) 

-0.608 
(-2.71) 

0.490 
(0.59) 

-0.027 
(-0.13) 

-0.235 
(-0.66) 

*2
tp∆  -0.157 

(-3.34) 
-0.875 
(-8.16) 

0.531 
(1.34) 

-0.063 
(-0.61) 

-0.059 
(-0.35) 

ti∆  -0.015 
(-1.59) 

0.085 
(3.96) 

0.204 
(2.58) 

-0.029 
(-1.39) 

-0.004 
(-0.13) 

*
ti∆  -0.004 

(-1.01) 
0.009 
(0.96) 

-0.069 
(-2.05) 

-0.012 
(-1.36) 

-0.016 
(-1.09) 

tppp∆  0.407 
(0.65) 

2.378 
(1.66) 

6.801 
(1.29) 

1.488 
(1.08) 

-3.359 
(-1.48) 

a t-statistics in brackets 
 
 
Table A.5: Specification tests 

 Full rank model Restricted rank model: r = 2 
 ( )νχ 2  p-value ( )νχ 2  p-value 

Tests for autocorrelation: 
Ljung-Box 
LM(1) 
LM(2) 

 
807.9 (825) 
29.5 (25) 
21.9 (25) 

 
0.658 
0.243 
0.642 

 
808.9 (840) 
33.4 (25) 
23.3 (25) 

 
0.774 
0.120 
0.558 

Test for normality 22.4 (10) 0.013 22.8 (10) 0.012 
Tests for ARCH: 
LM(1) 
LM(2) 

 
241.6 (225) 
465.6 (450) 

 
0.213 
0.296 

 
231.4 (225) 
473.2 (450) 

 
0.217 
0.370 

Trace correlation 0.539  0.518  

Univariate residual analysis Full rank model Restricted rank model: r = 2 

Equation 
Skewness / 

kurtosis 
R2 

Skewness / 
kurtosis 

R2 

tp2∆  0.23   3.90 0.829 0.25   3.92 0.828 
*2
tp∆  0.10   3.07 0.717 0.12   3.01 0.713 

ti∆  0.10   4.08 0.632 0.16   4.07 0.610 
*
ti∆  0.07   3.95 0.196 -0.05   3.83 0.155 

tppp∆  -0.24   2.87 0.388 -0.35   3.08 0.367 

Equation ARCH(2) a Normality a ARCH(2) a Normality a 

tp2∆  4.6  (0.100) 6.5  (0.038) 4.3  (0.117) 6.7  (0.036) 
*2
tp∆  0.1  (0.969) 0.6  (0.746) 0.2  (0.895) 0.5  (0.769) 

ti∆  10.5  (0.005) 8.7  (0.013) 9.7  (0.008) 8.4  (0.015) 
*
ti∆  0.8  (0.677) 7.3  (0.027) 0.7  (0.696) 6.0  (0.050) 

tppp∆  4.6  (0.099) 1.6  (0.457) 3.8  (0.147) 3.0  (0.221) 
a p-values in brackets     
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Table A.6: Tests of weak exogeneity (zero row in α ) a 

tp∆  *
tp∆  ti  *

ti  tppp  *
ti  and tppp  jointly 

79.2  (0.000) 51.3  (0.000) 14.2  (0.001) 1.7  (0.426) 2.9  (0.240) 1.7  (0.426) 
a LR test, ( )22χ , p-values in brackets 

 
 
Table A.7: Tests of unit vector in α  a 

tp∆  *
tp∆  ti  *

ti  tppp  

6.8  (0.077) 11.0  (0.012) 50.6  (0.000) 63.4  (0.000) 65.7  (0.000) 
a LR test, ( )32χ , p-values in brackets 

 
 
Table A.8: Tests of long-run exclusion a 

tp∆  *
tp∆  ti  *

ti  tppp  
05 : 1995C  

77.7  (0.000)  60.0  (0.000) 7.2  (0.028) 1.5  (0.463) 26.9  (0.000) 9.0  (0.011) 
59.9* (0.000)  46.3* (0.000) 5.5* (0.063) 1.2* (0.552) 20.7* (0.000) 7.0*  (0.031) 

a LR test, ( )22χ , p-values in brackets; * = Bartlett-corrected values 

 
 
Table A.9: Tests of stationarity of single relations 

 
tp∆  *

tp∆  ti  *
ti  tppp  

05 : 1995C  ( )νχ 2  p-value 

Tests of stationarity of single variables 
H1 1 0 0 0 0 0 67.9 (5) 0.000 
H2 0 1 0 0 0 0 8.0 (5) 0.155 
H3 0 0 1 0 0 0 70.5 (5) 0.000 
H4 0 0 0 1 0 0 68.3 (5) 0.000 
H5 0 0 0 0 1 0 70.3 (5) 0.000 

Tests of inflation spread relations 
H6 1 -1 0 0 0 0 70.6 (5) 0.000 
H7 1 -1 0 -2.93 0.03 0 4.21 (3) 0.240 
H8 1 -1 -0.24 -1.65 0.03 0 1.6 (2) 0.461 

Tests of interest spread relations 
H9 0 0 1 -1 0 0 70.8 (5) 0.000 
H10 0 -893.3 1 -1 0 -0.83 4.8 (3) 0.185 
H11 -1.38 -9.8 1 -1 0 -0.02 0.6 (2) 0.725 
H12 -1.86 0 1 -1 -0.04 -0.01 0.5 (2) 0.783 
H13 0 -43.74  1 -1 0.11 -0.06 1.2 (2) 0.538 

Tests of real interest rate relations 
H14 -1 0 1 0 0 0 41.9 (5) 0.000 
H15 -1 -13.7 1 0 0 -0.02 3.4 (3) 0.341 
H16 -1 -5.3 1 -3.18 0 -0.01 0.1 (2) 0.956 
H17 -1 -26.91 1 0 0.04 -0.04 1.255 (2) 0.534 
H18 0 -1 0 1 0 0 25.4 (5) 0.000 

Tests of other relevant relations 
H19 -1 166.35 1 -166.35 0 0 25.4(4) 0.000 
H20 1 -1 -1.07 1.07 0 0 43.7 (4) 0.000 
H21 -1 4.14 1 -4.14 -0.02 -0.00 10.1 (2) 0.007 
H22 1 -1 -0.51 0.51 0.02 0.00 1.3 (2) 0.515 
H23 1 -0.54 -0.46 0 0.02    0.00 0.2 (2) 0.891 
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Table A.10: Estimates of the long-run matrices for the restricted model a 

 1α  2α   
tp∆  *

tp∆  ti  *
ti  tppp  

05 : 1995C  

tp2∆  -0.922 
(-10.62) 

0.016 
(0.98) 1β ′  1 

(.NA)  
-0.543 
(-8.58) 

-0.457 
(-7.22) 

0 
(.NA) 

0.022 
(8.00)    

0.003 
(2.71) 

*2
tp∆  0.076 

(1.83) 
0.067 
(8.62) 2β ′  -1 

(.NA) 
14.881 
(-9.11)    

-1 
(.NA) 

0 
(.NA) 

0 
(.NA) 

-0.014 
(-2.12) 

ti∆  0.018 
(2.07) 

-0.004 
(-2.71) 

       

*
ti∆  0 

(0.00) 
0 

(0.00) 
       

tppp∆  0 
(0.00) 

0 
(0.00) 

       

Test of restricted model: ( ) 7.772 =χ      p-value = 0.364 Log-Likelihood = 4682.817 
a Two last rows in α  equal to 0; restrictions on β : see equations (18)-(19) in the text; t-statistics in brackets 

 
 

Table A.11: A parsimonious parameterisation of the short-run reduced-form VAR model a 

 
tp2∆  *2

tp∆  ti∆  *
ti∆  tppp∆  

1
2

−∆ tp    -0.0232   (-3.34)   
*

1
2

−∆ tp       

1−∆ ti    0.3004   (4.89)   
*

1−∆ ti    0.6825   (3.25)   

1−∆ tppp      0.1915   (2.57) 

11 −tCR b -0.7543   (-10.9) 0.0930  (2.83) 0.0144   (1.79)   

12 −tCR   0.0673  (10.6) -0.0028   (-2.12)   

LR test of over-identifying restrictions:     ( ) 2.69562 =χ      p-value = 0.110 

Residual correlations c (residual standard deviations on the diagonal): 

tp2∆
ε  0.0038     

*2
tp∆

ε  0.0750 0.0018    

ti∆ε  -0.0449    0.0984 0.0004   

*
ti∆

ε  0.0694   0.0978 0.1664 0.0002  

tppp∆ε  0.2887 -0.0727 0.0105 0.0029 0.0236 
a Unlagged “endogenous” variables only appear in their own equations; seasonal and other dummies are not 
reported; t-statistics in brackets 
b CRi = i-th cointegration, i=1,2 (see equations (18)-(19) in the text) 
c significant correlations: ± 0.1667 or larger 

 
 

Table A.12: MA representation of the restricted model a 

 
1  

~
⊥β  2  

~
⊥β  3  

~
⊥β   

tp2∆
ε  *2

tp∆
ε  

ti∆ε  *
ti∆

ε  
tppp∆ε  

tp∆  0.484  
(3.20) 

0.528 
(1.46) 

-0.026 
(-10.35) 1  ⊥′α  0.024 

(2.42) 
0.059 
(2.31) 

1 
(NA) 

0 
(NA) 

0 
(NA) 

*
tp∆  0.062 

(5.11) 
0.030 
(1.05) 

0.002 
(9.07) 2  ⊥′α  0 

(NA) 
0 

(NA) 
0 

(NA) 
1 

(NA) 
0 

(NA) 

ti  1.408 
(9.89) 

0.978 
(2.89)  

0.001 
(0.49) 3  ⊥′α  0 

(.NA) 
0 

(.NA) 
0 

(.NA) 
0 

(.NA) 
1 

(.NA) 
*
ti  0.033 

(0.87) 
1.034 

(11.35) 
0.001 
(1.67) 

      

tppp  8.571 
(1.24) 

-2.883 
(-0.18) 

1.208 
(10.67) 

      
a Two last rows in α  equal to 0; restrictions on β : see equations (18)-(19) in the text; t-statistics in brackets 

(NA = not available) 
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Figures 

Figure A.1: Data in levels and differences 

a Prices and inflation 
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Figure A.2: Cointegration relations a 

a Unrestricted model (r = 5) 
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b Restricted model (r = 2) 
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a The upper panel of each graph depicts the given cointegration relation based on the full model and the lower 
panel the same cointegration relation based on the concentrated model (without the short-run dynamics and the 
deterministic components). The order of the cointegration relations is that of decreasing stationarity. 
 
 
Figure A.3: Recursively calculated trace test statistics a 

a Forward recursive test b Backward recursive test 
Trace Test Statistics

The test statistics are scaled by the 5% critical v alues of the `Basic Model'
2000 2001 2002 2003 2004 2005

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

X(t)

H(0)| H(5) H(1)| H(5) H(2)| H(5) H(3)| H(5) H(4)| H(5)

2000 2001 2002 2003 2004 2005
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

R1(t)

 

Trace Test Statistics

The test statistics are scaled by the 5% critical v alues of the `Basic Model'
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a The base period for the forward test is 1994:04 to 1999:12 and for the backward test 1999:12 to 2006:01 
 


