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Controllability, Observability, Regularity, and the so-

called Problem of Transforming Values into Prices of Pro-

duction* 

THEODORE MARIOLIS
** 

 

ABSTRACT 

This paper specifies and interprets those direct relations which 

exist between the dual concepts of complete controllabil-

ity/observability (Kalman, 1960), on the one hand, and the con-

cept of the regular technique of production (Schefold, 1971), on 

the other. Specifically, it shows, first, that there is a cer-

tain dynamic system for determining labour values, which is con-

nected with the usual system for determining prices of produc-

tion (à la Sraffa, 1960, Part I) via the z-(Laplace) transform, 

and, second, that the said system of values is completely con-

trollable when and only when the system of production prices is 

regular. In view of the above, it could be considered that the 

z-(Laplace) transform constitutes the solution to the – suitably 

reformulated – Marxian ‘problem of transforming values into 

prices of production’. However, on the basis of an economic in-

terpretation of the z-(Laplace) transform, this paper shows, ul-

timately, not only that such a consideration is erroneous, but 

also that the supposed ‘problem’ is devoid of economic meaning. 

 

Key words: Control theory; controllability; observability; regu-

lar production technique; Sraffian theory; transformation prob-

lem 
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1. Introduction 

As is well known, the dual concepts of controllability and ob-

servability, which were first introduced by Kalman, 1960, are 

fundamental to the so-called „Modern Theory of Control Sys-

tems‟.
1
 On the other hand however, as is also known, the concept 

of the regular system/technique of production, which was first 

introduced by Schefold, 1971, pp. 19-20, 1976, is fundamental to 
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1
 Regarding the application of these concepts to the theory of economic policy, 

see, for example, Aoki, 1976, chs 3, 5 and Wohltmann, 1981, while regarding 

the relationships between the Traditional and Modern Theory of Control Sys-

tems, see Gilbert, 1963, Kalman, 1963 and, for example, D‟Azzo and Houpis, 

1988, chs 1, 13, 18-20 (for a brief discussion, see § 2.2 of the present pa-

per).  
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the modern „Theory of Production‟, and in particular for inves-

tigating the relations between long-period relative prices of 

commodities, the distribution of income and the technical condi-

tions of production, within the framework of production systems 

à la Sraffa, 1960.
2
 In this paper, first, we shall show that 

there is a one-to-one correspondence between a completely con-

trollable and completely observable linear dynamic system and a 

regular linear system/technique of single production, and, sec-

ond, on the basis of this relationship, we shall present a cri-

tique of the so-called „problem of transforming values into 

prices of production‟. Although this critique is connected with 

what has already been pointed out regarding the aforementioned 

„problem‟ (see, primarily, Steedman, 1977, 1985, and consider 

Steedman and Tomkins, 1998, Mariolis, 1999, pp. 45-53, 2002), we 

believe that it makes a further contribution to highlighting 

those insurmountable problems which are associated with any at-

tempt to find an economically meaningful relationship between 

values and prices of production. 

 Part 2 of the paper presents the main – for the investiga-

tion which follows – definitions and theorems.
3
 Part 3 specifies 

the relationship which exists between a completely controllable 

and completely observable linear dynamic system and a regular 

system/technique of single production. Part 4 presents a cri-

tique of the „transformation problem‟. Part 5 summarises the 

conclusion of this investigation. 

 

2. Main Definitions and Theorems 

2.1. As is well known, an important class of linear, time-

invariant, dynamic systems (e.g., physical or economic) can be 

described by the following system of difference equations (re-

garding the axiomatic foundation of this description: Kalman, 

1963, pp. 154-7 and 189-90):  

                                            
2
 Regarding these issues, see Bidard and Salvadori, 1995, Kurz and Salvadori, 

1995, ch. 6. It should be noted that the definition of the regular production 

system, which was initially provided by B. Schefold, contains a superfluous 

condition (see Bidard and Salvadori, 1995, p. 389). 

3
 Those who are familiar with the concepts of controllability and observability 

need not dwell on this Part of the paper. 
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 ( 1) ( ) ( ) ,   0,1,...v t v t A u t t     (1a) 

 ( ) ( )y t v t b  (1b) 

where ( ) [ ( )],jv t v t  j = 1,2,…, n, is the real 1n state vector of 

the system, A is the real, constant, nn system matrix (also 

known as „plant coefficient matrix‟), u(t) is the input of the 

system, which constitutes a scalar function of time (also known 

as „one-dimensional control vector‟), ℓ is a real, constant, 1n 

vector, b is a real, constant, n1 vector and y(t) is the output 

of the system.
4
  

 The state of a dynamic system is a mathematical structure 

containing the n variables ( )jv t , that is, the so-called state 

variables. The initial values (0)jv  of these variables and the 

input u(t) of the system are sufficient for uniquely determining 

the system behaviour for any t ≥ 0. The state variables need not 

be observable and measurable quantities (e.g., from a physical 

or, respectively, economic viewpoint). They may be purely mathe-

matical, abstract, quantities. On the contrary, the input and 

output of the system are concrete, observable and measurable 

quantities, that is, quantities which have a concrete meaning 

(e.g., physical or, respectively, economic). State space is the 

n-dimensional space, in which the components of the state vector 

represent its coordinate axes. Lastly, it should be noted that 

the choice (by the theorist) of state variables, that is, the 

choice of the smallest possible set of variables for uniquely 

determining the future behaviour of the system, is not unique. 

Of course, to each specific choice of the said variables corre-

sponds a uniquely determined state of the system (regarding all 

these issues, see also Luenberger, 1979, ch. 4, D‟Azzo and 

                                            
4
 The equations (1a, b) express a first-order, single-input single-output, 

time-invariant and linear discrete-time system. Ceteris paribus, the analog of 

(1a) in continuous time is the following system of differential equations 

  ( ) ( ) ( )v t v t A I u t     (1aa) 

where ( )v t  is the derivative of v(t) and I is the nn identity matrix. In what 

follows, we shall be dealing only with systems which are sufficiently de-

scribed by the equations (1a, b) or by (1aa, b). However, for brevity‟s sake, 

we shall refer to the latter equations only when we consider this to be com-

pletely necessary.    
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Houpis, 1988, chs 2 and 5).
5
  

 As far as the issues of interest to us here are concerned, 

only the following definitions and theorems are of particular 

importance (Gilbert, 1963, Kalman, 1963, Johnson, 1966, Ford and 

Johnson, 1968, Luenberger, 1979, chs 5 and 8, Kuo, 1995, ch. 5): 

Definition 2.1.1. The two descriptions  , ,A b  και  *, *, *A b  of 

the dynamic system under consideration are said to be strictly 

equivalent when their state vectors v(t) and, respectively, 

v*(t) are related for all t as follows: 

 *( ) ( )v t v t T  (2) 

where T is a nonsingular, constant, nn matrix. 

Remark: As can easily be shown (on the basis of (1a,b) and (2)), 

the existence of strict equivalence between the aforementioned 

descriptions entails the validity of the following relations 

(and vice versa): 

 
1*A T AT  (3a) 

 * T   (3b) 

 
1*b T b  (3c) 

which also define, evidently, a „similarity transformation by 

the similarity matrix T‟ or, which is the same thing, a change 

of the coordinate system in the state space. 

Definition 2.1.2. The system (1a) (that is, the description 

 ,A  ) is said to be completely controllable if the initial state 

v(0) = 0 can be transferred, by application of inputs u(t), to 

any state, in some finite time. In the opposite case, it is said 

to be uncontrollable.  

Theorem 2.1.1. The system (1a) is completely controllable iff 

                                            
5
 As underlined by Kalman, 1963, p. 154, the present axiomatic description of a 

dynamic system is based on the „Newtonian Principle of Causality‟, according 

to which “the motion of a system of particles is fully determined for all fu-

ture time by the present positions and momenta of the particles and by the 

present and future forces acting on the system. How the particles actually at-

tained their present positions and momenta is immaterial. Future forces can 

have no effect on what happens at present”. Therefore, the present description 

is entirely unsuitable for those quite complex systems (mental, economic, so-

cial), in the framework of which the future (to be precise: the expectations, 

hopes, fears, etc. of the subjects vis-à-vis the future) affects the present 

and which, consequently, cannot possibly be described without the category of 

„futurity‟ (see e.g., Willke, 1993, § 4.3). As is well known, the models for 

determining exchange rates (see e.g., Mussa, 1979) constitute typical examples 
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the nn matrix L (controllability matrix), whose rows are the 

vectors 
2 1, , ,..., nA A A     , has rank n. 

Remark: It emerges from this theorem that if the system is com-

pletely controllable (according to the aforementioned defini-

tion), then each initial state can be transferred to each final 

state, within n steps (regarding this delicate issue: Luenber-

ger, 1979, pp. 277 (footnote) and 279).    

Definition 2.1.3. The system (1a, b) (that is, the description 

[ , , ]A b ) is said to be completely observable if the knowledge of 

the values of the input and of the output, over a finite inter-

val of time, is sufficient to determine the value of the initial 

state v(0). In the opposite case, it is said to be unobservable.    

Theorem 2.1.2. The system (1a, b) is completely observable iff 

the nn matrix B (observability matrix), whose columns are the 

vectors 
2 1, , ,..., nb Ab A b A b

, has rank n.  

Remark: It emerges from this theorem that when the system is 

completely observable, the knowledge of n values of input and of 

output is sufficient for determining v(0) (Luenberger, 1979, p. 

287). In addition, it may be easily deduced from the above theo-

rems that the properties of complete controllability and ob-

servability are independent of the choice of basis in the state 

space, i.e., that all the strictly equivalent descriptions of a 

dynamic system are also equivalent from the viewpoint of com-

plete controllability/observability. Furthermore, in order to 

give a clear representation of the said dual properties, let us 

assume that the matrix A has n linearly independent eigenvec-

tors, and consequently that it is diagonalisable (regarding the 

opposite case, the investigation of which is based on the reduc-

tion of matrix A to an upper or lower triangular matrix, see, 

for example, Chen and Desoer, 1968). So, if we transform A into 

matrix 
1T AT

, where the columns of T are the right eigenvectors 

of A, then we may easily conclude (consider (2), (3a-c)) that 

the system is completely controllable (observable) iff vector   

(vector b) is not orthogonal to any right (left) eigenvector of 

                                                                                                                                
of such systems.  
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A. For, when and only when this condition is violated, is matrix 

1( )LT T B
, and therefore also matrix L(B) non-singular.

6
 This im-

plies, of course, that there is at least one component of v*(t), 

which is not affected by (does not affect) the input (the out-

put) of the system. Thus, those components of v*(t), which cor-

respond to the zero components of *( *)b , constitute the uncon-

trollable (unobservable) state variables of the system.  

Theorem 2.1.3. If and only if the system (1a, b) is not com-

pletely controllable and completely observable, is it strictly 

equivalent to a system of the type 

 

*

11

* *

* *21 22

1 2* *

31 33

* * * *

41 42 43 44

0 0 0

0 0
*( 1) *( ) ( ) , ,0,0

0 0

A

A A
v t v t u t

A A

A A A A

 
 
        
 
  

   (4a) 

  

*

2

*

4

0

( ) *( )
0

b
y t v t

b

 
 
 
 
 
 

 (4b) 

where 
* * * * *

1 2 3 4, , , ,v v v v v     
*

kv  is an1 kn  vector (k = 1,…, 4 and 

1 4... )n n n    and 
* * *, ,mk k mA b  (m = 1,…, 4) are submatrices and sub-

vectors of suitable dimensions. Thus, the overall system is 

split into four, mutually exclusive, subsystems (which is why 

the present theorem of R. E. Kalman is called the „decomposition 

theorem‟): subsystem 1 is completely controllable and unobserv-

able, subsystem 2 is completely controllable and completely ob-

servable, subsystem 3 is uncontrollable and unobservable, and 

subsystem 4 is uncontrollable and completely observable.  

Remark: It is shown that the aforementioned four subsystems are 

                                            
6
 If there is an eigenvalue λ  of matrix A, to which two linearly independent 
eigenvectors correspond, then there is no vector (b) for which the system is 

completely controllable (observable). For, in this case, each linear combina-

tion of eigenvectors of λ  is an eigenvector of A and, consequently, there is 
always an eigenvector of A, which is orthogonal to each given (b). Thus, the 

rank of L (of matrix B) is less than n. Furthermore, it is possible to show 

that the system is always uncontrollable and unobservable, irrespective of the 

choice of  and b, iff the matrix A satisfies a polynomial equation of degree 
less than n (regarding all this: Johnson, 1966, Ford and Johnson, 1968).   
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not uniquely determined, that is, the numerical values of 

*, *, *A b  are not uniquely determined. In fact, depending on the 

choice of matrix T, it is possible for certain submatrices of A* 

to be made equal to zero (see Kalman, 1963, pp. 165-7 and 172-

5). 

2.2. Apart from the previous method of describing a dynamic sys-

tem, i.e., by means of state variables, there is also, as is 

well known, another method of description, in the context of 

which the relations between the input and the output of the sys-

tem are represented by means of the so-called transfer function 

of the system. This latter method of description constituted the 

basis of the traditional theory of control, while the former 

constituted the basis of the modern theory. The relations exist-

ing between these two descriptions (or „languages‟, as Kalman 

refers to them, 1963, p. 152), which interest us here, can be 

rendered in brief as follows (Aseltine, 1958, chs 1-3, 8-9 and 

16, Gilbert, 1963, Kalman, 1963, D‟Azzo and Houpis, 1988, chs 4, 

13 and 22, Luenberger, 1979, ch. 8, Kuo, 1995, pp. 281-99):  

Definition 2.2.1. The z-transform of a given sequence of numbers 

y(0), y(1), y(2), …,is the series 

 
0

( ) ( ) / t

t

Y z y t z




     (5) 

where z is a complex variable.  

Remark: On the condition that the series (5) converges, the z-

transform thus converts a sequence of numbers defined in the 

real domain into an expression defined in the complex z-domain.   

Definition 2.2.2. The transfer function of the system (1a, b) is 

said to be the ratio of the z-transform of the output to the z-

transform of the input, when the initial conditions are all zero 

(v(0)=0).  

 If, therefore, we apply the z-transform to (1a, b), then 

we get
7
 

 ( ) (0) ( ) ( )zV z zv V z A U z     (6a) 

 ( ) ( )Y z V z b  (6b) 

                                            
7
 As can easily be shown (on the basis of (5)), given a sequence y(t), the se-

quence y(t+1) has the z-transform z [ ( ) (0)]z Y z y . 



 

 8 

where V(z), U(z), Y(z) are, respectively, the z-transforms of 

v(t), u(t) and y(t). Thus, setting v(0) = 0 results in the fol-

lowing: 

    
1 1

( ) ( ) ( ) (1/ ) (1/ )V z U z zI A U z z I A z
 

      (7a) 

    
1

( ) ( ) / ( )H z Y z U z zI A b


    (7b) 

where H(z) is the transfer function of the system.
8
 So, H(z) is 

a rational function which, it appears, completely represents the 

components , ,A b  of the system description (this perception of 

completeness which is fundamental to the traditional theory of 

control, see e.g., Aseltine, 1958, ch. 9, is in reality, as 

shown within the context of the modern theory and as we shall 

see below, erroneous). The values of z that make the denominator 

of the transfer function equal to zero (which denominator is, 

evidently, a polynomial of degree no greater than n) are called 

poles of the system (and are none other than the eigenvalues of 

matrix A), while the values of z which make the numerator equal 

to zero (the numerator is, evidently, a polynomial of degree no 

greater than n-1) are called zeros. The location of the poles 

and the zeros in the z-complex plane determines, as is well 

known, the transient response of the system, which can be speci-

fied by finding the inverse z-transform (or the inverse Laplace 

transform, in the continuous-time case) of functions H(z), Y(z) 

(e.g. see D‟Azzo and Houpis, 1988, chs 4 and 6-7). 

Theorem 2.2.1. If and only if the system (1a, b) is not com-

pletely controllable and completely observable, does the trans-

                                            
8
 Respectively, the transfer function of the system (1aa, b) is said to be the 

ratio of the Laplace transform of the output to the Laplace transform of the 

input, when the initial values of the state variables are all zero. As is well 

known, the Laplace transform of a function y(t), t ≥ 0, is (by definition) 

 

0

( ) ( ) stY s y t e dt



   (5a) 

where s is a complex variable. Thus, setting v(0) = 0 in (1aa, b) results in 

the following: 

  
1

( ) ( ) (1 )V s U s s I A


    (7aa) 

    
1

( ) ( ) / ( ) (1 )H s Y s U s s I A b


     (7ba) 

where V(s), U(s), Y(s) are, respectively, the Laplace transforms of v(t), 

u(t), y(t) and H(s) is the transfer function of the system. Lastly, regarding 

the general relations between the z-transform and the Laplace transform, see 

e.g., Aseltine, 1958, Appendix A, D‟Azzo and Houpis, 1988, ch. 22. 
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fer function represent only the completely controllable and com-

pletely observable subsystem of the system under consideration. 

That is, the following hold (consider relations (4a, b) and (7a, 

b)): 

  
11 * * 1zI A zI A T
        (8a) 

  
11 * *zI A b T zI A b


      (8b) 

 
1

* * *( )H z zI A b


      

 
1

* * *

2 2 22 2( )H z zI A b


     (8c) 

where 2I  is the 2 2n n  identity matrix, while, as can easily be 

seen from (8a, b), the vector 
1[ ]zI A   (and respectively the 

vector 
1[ ]zI A b ) represents only the completely controllable 

(the completely observable) subsystems, i.e., subsystems 1 and 2 

(2 and 4). 

 Theorem 2.2.2. If the transfer function has pole-zero can-

cellation, the system will be either uncontrollable or unobserv-

able, or both, depending on how state variables are defined. On 

the other hand, if the transfer function does not have pole-zero 

cancellation, the system can always be represented by dynamic 

equations as a completely controllable and observable system.  

 It emerges, therefore, from these two theorems that only 

if the system (1a, b) is completely controllable and completely 

observable is the description of the system in the state space 

completely equivalent to its description by means of the trans-

fer function. In other words, only in this case does the result-

ing transfer function contain all the information which charac-

terises the dynamic behaviour of the system or, which is the 

same thing, the knowledge of the transfer function is sufficient 

for uniquely determining the dynamic equations (1a, b) of the 

system.
9
  

 

                                            
9
 It is possible to show (Kalman, 1963, Luenberger, 1979, ch. 8) that precisely 

what was said in this Part of the paper about the discrete-time case applies 

also to the continuous-time case (with the exception of one modification, 

which concerns the formulation of the definitions of controllability and ob-

servability but which, however, does not alter the meaning of these concepts).  
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3. Controllability, Observability, and Regularity of a Produc-

tion Technique   

We assume a linear, profitable and indecomposable single produc-

tion technique à la Sraffa, 1960, Part I, which is defined by 

the pair [ , ]A  , where A (≥ 0) is the semi-positive nn matrix of 

material inputs and ( 0)  the positive 1n vector of labour in-

puts.
10
 The profitability of the technique means that the Perron-

Frobenius eigenvalue *  of A is smaller than unity, while the 

indecomposability of the technique means that all the commodi-

ties produced are basic à la Sraffa, 1960, §§ 6-7 (regarding 

these issues, see, for example, Kurz and Salvadori, 1995, ch. 

4).   

 If we assume, furthermore, that wages are paid at the be-

ginning of the production period, then for a given uniform rate 

of profit r the 1n vector of prices of production p(r) and the 

uniform nominal wage rate w(r) are determined up to a factor by 

the system 

  ( ) ( ) ( ) (1 )p r p r A w r r    (9) 

The economically meaningful interval of the rate of profit is 

0 r R  , where (1 *) / *R     is known as „the maximum rate of 

profit of the technique [ , ]  ‟, because only within this interval 

is p > 0 and w ≥ 0. Lastly, prices are normalised by setting 

 ( )p r b c  (10) 

where b is a given semi-positive n1 vector11 and c a positive 

constant, the dimension of which is units of money per unit of 

commodity b, while (9) and (10) give a continuous and strictly 

decreasing (for 1 r R   ) function between nominal wage rate and 

rate of profit, that is, the so-called „w-r relationship or 

trade-off‟ (regarding all the above, see, for example, Kurz and 

Salvadori, 1995, ch. 4):  

  
1

1 ( ) ( ) (1 ) (1 )r R p r w r r I A r


         

                                            
10
 The reader will ascertain later on (Part 4) why we introduce exactly the 

same symbols, (A, ℓ), as those in Part 2. 

11
 Also regarding the symbol b, the comment made in the previous footnote (10) 

applies. 
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   1
( ) (1 ) (1 )w r c r I A r b


      (11a) 

 0r R w    (11b) 

 Regarding the issues of interest here, suffice it for us 

to refer only to the following (Schefold, 1971, pp. 19-20, 1976, 

Miyao, 1977, Bidard and Salvadori, 1995):  

Definition 3.1. If the nn matrix L (labour profile matrix), 

whose rows are the vectors 
2 1,  ,  ,...,  ,nA A A      has rank n, the tech-

nique [ , ]A   is said to be regular. In the opposite case it is 

said to be irregular.  

Theorem 3.1. We assume that the matrix L has rank m (1 m n  ). 

Then, and only then, are there m commodities, the prices of 

which are linearly independent (that is, there is no nonzero 

vector  e , such that 0,  mp e   where mp  is the vector of prices 

of these m commodities) and n-m commodities, the prices of which 

can be expressed as constant linear combinations of those m 

prices for 1 r R   . 

Theorem 3.2. Let [ , ]A   and [ , ]A   be two nn techniques and let 

min{ , }m rankL rankL , where L is the labour profile matrix of the 

latter technique. The following statements are equivalent: 

(i) the prices and wage rates of the two techniques coincide at 

m+1 different profit rates, 1 min( , )r R R    (where R is the 

maximum rate of profit of the technique [ , ]A  . 

(ii) the prices and wage rates of the two techniques coincide at 

each profit rate, 1 r R R    , and m rankL rankL  . 

(iii) The two techniques are connected through the relations 

A A C    and   , where C is a matrix, for which LC = 0 holds. 

Moreover, if m = n, then
12
 A A  .  

                                            
12
 As is well known, it is entirely possible to consider that the following 

quantity system (see, e.g. Kurz and Salvadori, 1995, ch. 4) corresponds to the 

price system (9), (10):   

 ( )(1 )x Ax db g    (9a) 

 1x   (10a) 

where x is the n1 vector of gross outputs per unit of labour employed, b is a 

given semi-positive n1 vector, which represents the composition of consump-
tion, d is a scalar, which represents the level of consumption per unit of la-

bour employed, and g is the uniform (by assumption) rate of growth of the sys-
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 If we assume that there is a dynamic economic system, 

which can be described by the equations (1a, b) (or, respec-

tively, by the equations (1aa, b)), where ,A  express the tech-

nical data of production, then we may, taking into consideration 

that which has already been set out, conclude the following (the 

tenability and content of the aforementioned assumption will be 

discussed in Part 4 of this paper):  

a) Through the z-transform (or the Laplace transform, in the 

continuous-time case), the relations between v(t), u(t), y(t), 

which are defined in the time domain, are converted (compare 

(7a, b) or, respectively, (7ab, ba) with (11a)) into relations 

p(r)/w(r), p(r)b/w(r), which are defined in the profit rate do-

main
13
 (1 ) / ( /(1 ))r z z r s s      in the continuous-time case).  

b) Although complete controllability and regularity relate to 

different systems, which are however interconnected via the z-

transform (or the Laplace transform), their coexistence is al-

ways given. Just as uncontrollability, firstly, means that there 

are state variables, which are not affected (either directly or 

indirectly) by the input of the system, and secondly, that 

knowledge of the vector 
1( ) / ( )( [ ] )V z U z zI A    is not sufficient 

for uniquely determining the system (1a) (or, respectively, 

(1aa)), irregularity means, first, that there are commodities, 

the relative prices of which are not affected by changes in the 

distribution of income
14
, and, second, knowledge of the vector 

                                                                                                                                
tem. Thus, whatever holds for the relations between p, w, r and the rank of 

matrix L, holds analogously also for the relations between x, d, g and the 

rank of the matrix, the columns of which are the vectors 
2 1, , ,..., nb Ab A b A b

 (com-

pare, therefore, with Theorem 2.1.2). Lastly, for dynamic versions of the sys-

tems (9), (10) and (9a), (10a), which can be analysed on the basis of the con-

cepts of controllability and observability, see e.g., Aoki, 1976, pp. 31-3 and 

86-7, Takayama, 1987, pp. 503-21. Thus, for example, it holds that the tech-

nique is regular when and only when the following dynamic version of the sys-

tem of prices (in which it is assumed that the rate of profit is exogenously 

given and constant) 

 ( 1) ( ( ) ( ) )(1 )p t p t A w t r     (12) 

is completely controllable.  
13
 It should be stressed that there is no transformation (contrary to what one 

might for a moment believe) of u(t) into w(r) and v(t) into p(r). We shall re-

turn to this issue later (Part 4).  

14
 In the special (and extreme) case in which   is the left eigenvector of  A 

( 1)rankL  , p(r) and   are linearly dependent (this is the familiar case of 
the existence of a „uniform organic composition of capital‟). If, in addition, 
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1( ) / ( )( (1 )[ (1 )] )p r w r r I A r      at m+1 different values of the rate 

of profit, 1 r R   , is not sufficient for uniquely determining 

the production technique.
15
 

c) The reciprocal of the wage rate measured in terms of commod-

ity b (or, equivalently, the „labour commanded‟ price of commod-

ity b) constitutes the transfer function of the system. Conse-

quently, the w-r relationship expresses only the completely con-

trollable and completely observable subsystem of the system un-

der consideration.
16
 

 

4. On the Transformation Problem 

We assume a system, which uses the production technique [ , ]A   and 

let v be the 1n vector of quantities of labour „embodied‟ in 

the different commodities (or labour values). As is well known, 

the vector v is determined (by definition) by the following sys-

tem: 

  
1

v vA v I A


       (13) 

If we assume, now, that, first, a technical change takes place, 

which is characterised by the relations ( )A t A  and ( ) ( )t u t  , 

where u(t) is a positive scalar function of time, and, second, 

inputs occur at time t, while gross output appears at t+1, then 

the labour values are determined by the following system: 
17
 

 ( 1) ( ) ( ) ( ) ( )v t v t A t v t A u t       (14) 

which is none other than the system (1a). Consequently, by com-

                                                                                                                                
v(0) = 0 holds, then ( )v t  ( 0),  t    are also linearly dependent.  
15
 Put differently, “exactly n

2 
+ n magnitudes are needed to describe a regular 

technique with n commodities” (Kurz and Salvadori, 1995, p. 175).  

16
 It easily emerges from the application of Theorems 2.1.3 and 2.2.1 to the 

system of prices of production (9), (10) and from the Perron-Frobenius theo-

rems for semi-positive matrices that 
* *

3 40,  0p p   and that the Perron-Frobenius 

eigenvalue of A constitutes an eigenvalue of the submatrix 
*

22A  (where the sub-

systems 1, 2, 3, 4 are defined in agreement with Theorem 2.1.3). It is, last-

ly, evident that with the application of Theorem 2.1.3 the system of prices 

under consideration may be partitioned into basic and non-basic subsystems à 

la Sraffa, 1960 (of course, these subsystems are not always economically mea-

ningful precisely because
*

mkA , 
*

k  can also contain negative components).  

17
 For a version of this system of values, as well as for the system of produc-

tion prices which corresponds to it, see e.g., Wolfstetter, 1973, pp. 804-7, 

Okishio, 1993, pp. 90-4.  
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bining what was expounded in Parts 2 and 3, we are in a position 

to conclude the following: 

a) Traditionally, the so-called „problem of transforming values 

into prices of production‟ consists in investigating the quanti-

tative relations between systems (13) and (9) (for a systematic 

presentation of the issue, see e.g., Pasinetti, 1977, ch. 5, Ap-

pendix). This investigation shows that the said „problem‟ has 

absolutely no economic meaning (see mainly Steedman, 1977, 1985 

and, further, Mariolis, 1999, 2002). The present analysis showed 

that there is a specific quantitative relation between systems 

(14) and (9): if we assume that v(0) = 0 holds, the vector of 

„labour commanded‟ prices is equal to the ratio of the z-

transform (where 1/(1 ))z r   of the time sequence of the vector 

of values (0, (0), (0) (1),...)u Au u    to the z-transform of the index 

of technical change sequence  (0), (1), (2),...u u u , that is, the fol-

lowing holds 

  ( ) / ( ) ( ) / ( ) ( ) ( ) ( ) / ( )p r w r V z U z p r V z w r U z    (15) 

Thus, the content and economic meaning of this transformation 

should be examined.  

b) If the definition of the z-transform (see Definition 2.2.1) 

is interpreted from an economic viewpoint, it is possible to say 

that the magnitudes V(z), U(z) represent the „present value‟ – 

computed on the basis of the rate of interest z-1 – of the 

streams of the vector of values v(t) and, respectively, of the 

index of technical change u(t) (when period 0 represents the 

„present‟). It follows, therefore, that if these „present val-

ues‟ are computed on the basis of an interest rate equal to 

/(1 )r r  , then their ratio is equal to the vector of „labour 

commanded‟ prices
18
.  

c) However, this result should not be overestimated. Because, 

first, just as (9) is written (for 1 r R   ) 

                                            
18
 It may be deduced from the economic interpretation of the Laplace transform 

(see (5a)) that the magnitudes V(s), U(s) represent the „present value‟ – com-

puted on the basis of interest rate s – of the streams of v(t) and, respec-

tively, of u(t). Thus, whatever holds for the discrete-time case also holds, 

analogously, for the continuous-time case.  
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  
1 1

0

(1 ) (1 ) (1 )k k

k

p w r I A r w A r


 



        (9aa) 

and expresses (can be said to express) the making equal to zero 

of the „present values‟ of the following n „flow input – point 

output‟ production processes (see Sraffa, 1960, ch. 6, Howard, 

1980, Ahmad, 1991, Part II) 

    1..., , ,..., , ,0 ...,0,0,...,0,0,k kw A w A w A w p      (16) 

so too (15) is written 

 ( ) ( ) ( ) ( )p r U z w r V z  (15a) 

and expresses (can be said to express) the making equal to zero 

of the „present values‟ of the following n „flow input – flow 

output‟ production processes
19
 

    0, (1), (2), (3),... (0), (1), (2), (3),...wv wv wv pu pu pu pu  (17) 

Second, because (15) does not express a transformation of v(t) 

into p(r). In reality, it expresses a „transformation‟ of prices 

into prices, on the one hand because r enters into V(z) and U(z) 

and, on the other, because through w(r), p(r) enters into the 

„transformation operator‟ ( ( ) / ( ))w r U z  of V(z) into p(r). Besides, 

in order for there to indeed be a transformation of v(t) into 

p(r) there should be a transformation of the „labour‟ dimension 

into the „money‟ dimension, which, however, is both non-existent 

and impossible (as has been shown in the context of the critique 

of the „transformation problem‟ which already appears in the 

literature). For precisely this reason, the „transformation‟ of 

the j component of V(z) (the dimension of which is units of la-

bour per unit of commodity j) into the component ( )jp r  necessar-

ily (see (15)) takes place through w(r), that is, through a mag-

nitude whose dimension is units of money per unit of labour.
20
 In 

                                            
19
 In the specific case, in which u(t) is the so-called „unit impulse func-

tion‟, that is u(t) = 1, at t = 0, and u(t) = 0, for t  0, holds, U(z) = 1 

results and, thus, (9aa) and (15a) (or, equivalently, (16) and (17)) coincide. 

For the definition of the unit impulse function in the continuous-time case, 

the application of which to the system leads to an equivalent result (precise-

ly because U(s) = 1 holds), see e.g., Aseltine, chs 3 and 9. 

20
 It could be considered that this issue does not arise when u(t) is such that 

( ) ( )( ( ) 1)U z w r V z b    results or when w(r) is a non-dimensional magnitude 

(e.g., because prices can be normalised by setting ( )p r b vb ). However, the 

former of these two cases is non-existent (as may easily be deduced from the 
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other words, whatever holds for the relation between p(r) and v, 

which is the following (deduced from (9) and (13)): 

 ( ) ( )p r vT r  (18) 

where  
1

( ) ( ) (1 )T r w r I Dr r


    is the „transformation operator‟ and 

1[ ]D A I A   , also holds (analogously) for the relation between 

p(r) and v(t). Third, the validity of (15) is not always given, 

because it not only presupposes the invariability of A but also 

the economically meaningful convergence of the series 
0

[ ( ) / ]t

t

u t z




 . 

For example, if ( ) 1u t   holds (in which case no technological 

change takes place
21
), the said series does not converge for 

0 r R  , while if ( ) tu t u  holds, the interval (circle) of con-

vergence of the said series includes the entire economically 

meaningful interval of r if and only if *u  . Lastly, even if 

we disregard all the previous points of the critique, it should 

be noted that (15) does not express a „transformation‟ of v(t) 

into p(r), but rather a „transformation‟ (see (8a), (8c) and 

Part 3, point c) of the completely controllable and completely 

observable variables of the system into p(r) (the same holds 

analogously also for the „transformation‟ of v into p(r)).  

 

5. Conclusions   

On the basis of the principles of the Theory of Control, it was 

shown that the application of the z-(Laplace) transform to a 

suitably defined dynamic system for determining labour values 

leads to a system, which is analogous to the usual system for 

determining prices of production (and vice versa). Thus, those 

direct relations were identified and interpreted, which exist 

between the dual concepts of complete controllabil-

ity/observability and the concept of regularity.
22
 

                                                                                                                                
definition of the z-transform and from the equation of w(r)), while the exis-

tence of the latter case does not constitute, evidently, a solution to the 

said issue. So, for all these reasons, that which was stated in footnote 13 is 

correct. 

21
 In this case the system (14) is asymptotically stable, precisely because the 

production technique is (by assumption) profitable ( λ* < 1).  

22
 It is clear that the said relationship could be analysed (also) on the basis 
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 If the said transformation indeed constituted a „transfor-

mation of values into prices of production‟ (with the economic 

content and meaning of the term), then it should be said that 

the descriptions of capitalist economic systems in terms of val-

ues and in terms of production prices are not always equivalent 

and, above all, that the former description is the most reliable 

(because the transition from the former description to the lat-

ter entails a loss of information when the system under consid-

eration is not completely controllable/observable). However, be-

cause, first, in the context of the capitalist mode of produc-

tion (as a concept) by definition only the latter description 

holds,
23
 and, second, the z-(Laplace) transform (although a spe-

cific economic interpretation can be attributed to it) does not 

constitute a „transformation of values into production prices‟, 

it follows that only the latter description is economically 

meaningful.  

 In other words, while in the context of the Theory of Con-

trol the loss of information, which possibly takes place in the 

transition from the description of a system in the state space 

to its description in terms of the transfer function constitutes 

a crucial point of the critique of the latter description, in 

the context of the economic theory of the capitalist mode of 

production the loss of information, which possibly takes place 

in the transition from the description of the economic system in 

terms of labour values to its description in terms of prices of 

production (and therefore of the „w-r relationship‟) is devoid 

of any meaning whatsoever. To be precise, in fact, the descrip-

tion in terms of labour values is itself devoid of any meaning.  

 

 

                                                                                                                                
of systems (12) and (9). In this case, we would have (1 ) /r r z z   , and thus 

the rate of interest for computing the „present values‟ (see Part 4) would be 

( ) /(1 )r r r   (that is, r  could be considered as the nominal rate of interest 

and r as the rate of inflation). The present discussion, consequently, was 

conducted on the basis of (14) ( 0,  ( ) ( ))r p t v t   and (9), precisely because it 

aimed at a critique of the „transformation problem‟.  

23
 Within the context of this mode of production, the commodities are not ex-

changed as products of labour but as products of capital. Thus, the prices 

systematically deviate from the labour values. 
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