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ON THE USE OF SURVEY SAMPLE WEIGHTS
IN THE LiNEAR MODEL*

nv RiciIARl) D. l'URTIR

II uitiii idual.s late di/lereiti eoeflu-i&'nt ui a j,tiear moth!. nun tIn c/lone of rt'gre.aon trtlipiicu,' for
estilntItitig population arerage depends on the .ccnnplc design. lie exwni u ruriw,a estinzators of the
random cue flu lent model kiT panel data, where i/u' random component arises from 1/it' rsuidammi se/ct runt

oJ imulniduals out of a finite popuh,tum.

I. I NTRODUCTION

1.1 Problem

Sample surveys such as the Current Population Surve\ are a rich source of
economic data. If the sample is drawn according to the principles of sample
survey theory, each member will have an attached weight. For example. suppose
there are two strata A and B and that a sample is drawn in which members in A
are sampled at a r:'.te 6: 1,000 (six per thousand population individuals in A)
whereas membe in B are sampled at a rate of 3: L000. Then to compute a
population utal. say the total wage bill for the population as a whole, it is sensible
to give svice as much weight to an eat-flings measurement in B as to an earnings
measurement in A, that is. the weights will be proportional to the inverse of the
probability of being selected. But when ditlèrent classes or strata are sampled at
different rates, should the associated weights be used in estimating a behavioral
econometric model? And how should they be used? In practice we usually have
more information about the method by which the sample was drawn than just
sampling weights for each observation. We also know the type of sampling pro-
cedure (such as simple random sampling with replacement, simple random
sampling without replacement. stratified random sampling, single-stage Cluster
sampling. multi-stage sampling) as well as detailed probability descriptions of the
procedure. We often know the probability that any unit will be drawn as well as
the joint probability that any pair of units will be drawn. As before, this information
about the sampling design can he incorporated into estimates of population totals,
stan(lard error estimates for the estimated population totals, and so forth. But
what use should we make of this information in estimating a behavioral econo-
metric model'?

In the econometric literature, opinions divide. Some authors advocate that
the sample weights be used in linear econometric models in a way which is similar
to the use of weights in computing finite population totals: they recommend

rising weighted least-squares. Other writers argue that such sample survey

* I wish to thank my colleagues. John Paulus. Joe Sedransk. PA.VB. Swamy and my discussant.
Professor Arnold Zellner, for useful criticisms and comments. Thanks also go to my summer assistant,
Ken \Visc ofNorthfield Park and M.l.T.,for valuable advice and invaluable Fig Newtonv An expanded
version of this paper i available from the author.

See Ktcin and Morgan (1951), Klein 1953, pp 305313), Hu and Stormsdorlei (1970), and
Cohen. Rca, and Lernian (1970, pp. 193-194).
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information is irrelevant for econometric models 2 Most econometric textbookauthors do not discuss this issue.3

1.2. HO?floge,l),,s Cve/fuje,jts The ('Iwh 0/ Jw Re re.ssion Technique Doe,s Vnt
Dej,emi on the .cwnp/e Desiii,i

If the coefficients in the behavioral model are homogeneous throughout thepopulation then the sample design does not at1ct the validity of the usual (least-squares) estimates. To pursue this point consider the following example.Suppose there are q possible samples of size ii that can be drawn from apopulation of size N according to the sampling design chosen and that theprobability of selecting each sample is known. To represent this probabilitymodel for sanipline we comistruct a random variable S taking on q distinct values
s. with associated probabilities p, p2 pt,. Let the regression modelfor any sample, say the .sth, he given by

(If

where X is a n x k matrix of regressors, y is a it x I vector of regressands,is a fixed k x I sector of unknown coeflicients and u is a ii x I vector of Un-observed disturbances We treat X as fixed so that the only source of variationin y is due to the variation in the disturbance vector u. We postulate that u isgenerated b a classical probability' mechanism which is independent of thesampling design and exhibits the usual properties

where E denotes the expectator operator, We distinguish the operator by thesubscript e, where e stands for the classical probability mechanism generatingthe disturbances Assume X has full column rank for all .s so that the least-squaresestimator of, namely

b(s) = (XXr
exists.

To evaluate properties of b remember that we must take into account twosources of random variation: that caused by the random selection of individualsand that caused by the random variation in the disturbince vector, Since theunconditional expectation Eb(s) is the sum of the conditional cxpectatjons we have

E[b()] = E[b(.s')jS = .sjp1,

2 See Cramer (1971, p. 143), Fleiseher and Porici (1970 pp. 99 lIt), and Roth (1971) 1 becameassare of several of ihese references by reading Roth's
niemorandum Roth (1971)See e.g., Dhr)meS (1970), Gotdberger (19M). Goldbcrger

(1968), Johnston (1963), Kmenta
(1971) Malinvaud (1966), Theit (1971), Zelhier (1971), A notable exception is Klein's Pioneering text-book, Klein (1953):

Champerrossne --Champernoss (1969)-takcs up surrey sampling theory butdoes not relate it to the regression model.
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where E[b(s)IS = sJ represents the conditional expected value of bs) given the
event S = s. Given our specification for u we can show that b(s) is an unbiased
estimator of l. inserting (4) and (I) into (5) and simplifying gives

(6) ELb(s(i = E[i + (XX) 1X'ujS .sJp = =

The crucial relations used to derive (6) arc (a) X is fiXed for a given sample and
(bI E[uJS = .sj = 0. The assumption that u does not depend on the sampling
procedure is critical for establishing (b).

If we restrict our analysis to be conditioned upon the particular X matrix
which is drawn, then the Gauss--Markov theorem holds and the least-squares
estimator will he a best linear unbiased estimator (BLUE) of.4 Indeed, it would
appear that b(s) will have these optimal properties when we also allow for sampling
var iatio us.5

The implication of the foregoing analysis is that for homogeneous populations
we are not obliged to incorporate the structure of the sampling plan into our
regression analysis. Of course, the sample design is important regardless of
whether coefficients are homogeneous or heterogeneous.

1.3. Outline of the Paper

In the rest of the paper we adopt the assumption that the coefficients difThr
across individuals. Then it appears that the choice of the regression technique
depends on the sample design so we explore sonic procedures for combining the
information on the sample design with the specification of the behavioral model to
obtain estimates of certain population parameters. In Section 2 we review some
results from sample survey theory. We employ these results in Section 3 to form
estimators for the random coeffIcient regression model based on panel data.
Here the "random" component in the coefficient arises solely from the random
selection of individuals. Although this problem has been intentively studied
recently,6 the analysis has implicitly proceeded under the assumption of random
sampling from an infinite population. We consider the more usual sampling
design in which sampling is done without replacement from a finite population
with unequal probabilities. See Konijn (1962) for a related contribution when the
data source is a single cross section.7

See, e.g. Theil (1911, p. 119).
The proof follows the standard proof of the Gauss-Markov theorem, Theil (197!. pp. 119120).

The proof consists of showing that the covariance matrix of the least squares estimator. say F. is

1= po2(XX,I

while any other linear unbiased estimator, say -where 4, may be functionally dependent on s-
has a covariance matrix equal to

I' +

See Rao (1965). Zellner (1966). Swamy I l968. (1970). (1971). (1972), Theil (1971). I.indley and
Smith (1972) and Schmalensee (1972).

I am grateful to Professor Zellner for bringing Koniin's valuable study to my attention.
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2. SAM PLINIi FROM FIN ITI POPUlATIONS

In this section we review some elements of sampling theory from finite
populations.8 The object of this theory is descriptive: to estimate finite population
totals or averages.

2. 1 . Simple Random Swnpling Without Replaeenent

We start with the concept of an ordered random sample. Let the finite popula-
tion being sampled consist of N items, numbered I, 2.....N. An ordered sample
from this population is an arrangement of the items in a particular order. For
example, if the population consists of three elements {l, 2, 3, there are six possible
ordered samples of size two: (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2).° When each of
these ordered samples appears with equal frequency in repetitive sampling, the
sample is called an ordered random sample. Define the product N(N - I)(N - a 1) = ir(N. a). Probabilities are herein computed in accord with the
eq uivalence law of ordered random sampling:
Theorem I (The Equivalence Law of Ordered Random Sampling)

If an ordered random sample of size a is drawn from a population of size N,
then on any particular one of the a draws, each of the N items has the same prob-
ability 1/N of appearing.

Proof. See Hodges arid Lehmarrn (1970, pp. 55-59).
The theorem generalizes to more than one item in a general way but we need

consider only:
Tlu'o,-e,n 2

NAny pair of items, say I and), has the same probability 1/
2

of appearing on

any 2 specified draws. (Note that we do not indicate the aider in which I and J
appear on the two specified draws.)

Proof. Without loss of generality suppose that the two draws are the first and
the second. If! appears on the first and J appears on the second, the remaining
items can be drawn in ir(iV - 2,a - 2) = (N - 2),(N - 3).. (N - a + I) ways;
alternatively J may appear on the first and I on the second in m(N -- 2, a -- 2)
ways. Thus, the probability of {I, J on draws 1 and 2 is 2n(N - 2. a - 2)/
r(N, a) = = 2'(NHN - I).

Suppose we are not interested in an ordered random sample but in an un-
ordered random sample. We can obtain an unordered random sample by first
drawing an ordered random sample and then disregarding the order.'°

Let r designate the variable which we are measuring in the population; r maybe a scalar or a vector. For the present we will let y be a scalar. The value of v forthe first item in the population is the second r,. and so forth. If we consider

Hodges and Lehmann (1970. Sections 2.3. 4.3. 7.2. 9.1 and 10.3). Kendall and Stuart (1966.Chapters 39 40), and Cochran (1963) are useful introductions to the sampling theory. We draw onthem in this scct(on.
Note that we use braces ' when the order is irrelevant and parentheses '(1' when the orderbccoines important.

° Sec Hodges and Lehmann (1970, p. 53).
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%vij, =

a random drawing of one item, say , from this population, its expected value and
variance are

E[] = Pr ( = Yl) =

Var {5] = (y, - p)2( 1/N)

Note that the population mean and variance. p and are generated by a very
simple probability niechariism: the random drawing of one item from this
population.

It will simplify matters if we adopt the following notational conventions.
Let p(r) be the probability that the ith person is selected on the rth draw. Let
par, s) be the probability that the i and jth individuals are selected on the rand sib
draws respectively. I.et N = { 1. 2.....N and ñ = { I, 2 n. As a shorthand
we will write

N . \ N

= It.ij.
1=1 j= II tj

We next draw an ordered random sample, say (it. from this popula-
tion. By Theorem 1, each has the same probability distribution:

p.(r) = 1/N for all i e N and r e ñ.

Consequently for each rei

E(j.) = -

Var Tr) = (Yi - p)2N -I

In view of the proof of Theorem 2 we have

p134r,$) = 1/N(N - 1) for all r, se it, r sand Lje N, i I.

Thus the covariance between j, and , is equal for all r and s. If C is this common
covariance, C satisfies

Var ( y1) = no2 + tn2 - n)C.

When n = is a constant with zero variance so Na2 + N(N - l)C = 0
and

C = o2/(N - 1).

We now consider the problem of estimating . It is convenient to cast this
problem in the format of a linear model. Let c be a variable defined by c5 -
for I in N. If we observe the entire population, ji is known exactly; this implies that

145
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t:, I I, 2...., N are known quantities. However the sample values r - P.r in n, arc random variables vtth the following properties:

14) p(r) = N ' for all ic 1V and all re ñ

== l,N(N - I) for all i,IEN.i /and r.sEn.r
Our sample .2 j thus belongs in the following Setup:

= Ip +

= (I + pH'

where 0 is a a x a matrix, p (N -- ' and ' = , , ,.., . 'L2 , ' = (1. I 1) are I x a vectors For the model of (15), (16), and (17)
the best linear unbiased estimator(BLUE)0f11 is. of course, the Aitkcn generalizedleast-squares estimator

(IS) (l'clr 'i'c- .

Let

(101
I - (n - I )/)

One can easily verify that''

(20) 0-'
= [ii - 1)11']

so that

10' =r'l'
= r'n

Thus

(21) p = rn 'r = 'r
That is. the Aitken estimator and the ordinary least-squares estimator are identicalin this case.

2.2. Simple Random Sanipting Without Rep!acen1,,, Wit Ii Unequal Prohahfjj,i
We now relax the assumption that all individuals have an equal chance ofbeing selected on each draw and permit probabilities of being drawn to differbetween individuals and from drawing to drawing. Most sample designs arespecial cases of this scheme.'2 As before let pr, s) he the probability that theI and jth individuals are selected on the rand .sth draws respectivel' in a sample ofsize a from a population of size N: i and j range from I to N and r and s from

I! This result is well known. See, for example, Kendall and Stuart (1966, p. 167j.2 See Kendall and Stuart (1966. p. i 77ff).
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I

I to a where i and r s. The probability that the ith person is selected on the
rth draw, p1(r), is

(22) p1(r) = p(r. .$)'(n - I).
=I j-i
r s.i j

Since someone is always selected at the nh drawing.

1=1

Let r be the probability that the ith person is selected in the sample.

ri p( r).

Finally, let i be the joint probability that the ith and Ith persons are selected in
the sample.

= ri ,

r, s).

rs
Since p(r. s) p(s. r), we have, of course, that itH =

For our purposes, it will suffice o characterize the sampling design in terms
of n and ire,. From (23) and (24) we find

= U.

From (22), (24), and (25) we get

27) = (a - l)m

Before. we were careful to distinguish between the labelling of observations
in the sample and that in the population. The second person in our sample will
not usually be the second person in the population. However, now we tvill label
the sample observations in the order in which they are drawn and not distinguish
between the order in the sample and the order in the population. As long as we
are considering symmetric functions of sample observations this notational
convention will not lead us astray.

A result we shall often call upon is the following:
Theorem 3

Suppose a sample of size a, t'1, v2 v is drawn from a population of size N.

Then for any function g

E[ g(r)] = ir1g(y1)

E[ g(v1. vi)] = ir1g(y1,
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i',00f. So that there is 110 ambiguity let us first write out (29) and (30) fully

(291 'L 'J =
''

fl 1 \ \
(30') F .v1) ' = it4t'. y1).

1=1 I J I

To prove (29) note that

E{ gt'i'1)] = Y Eg('i).

But b definition Eg(v1) = g(t')p1(i). Thus

E{ g(i'1)] = >j g(r1)p4i) = g(v) p(i) V

This proves (29); equation (30) follows by a similar argument.
We can use Theorem 310 obtain a linear unbiased estimator oithe population

mean, p.

=
I '

Suppose the same weight i is to be assigned to an individual whenever he is
selected. A linear estimator will have the form

=

with the weights to be determined by the unbiasedness condition. Using (29)
with g(r) = r'v we fInd

E[] =
1= 1

Then equatine coefficients in (32) and (34) we must have

(35)

3. SURVEY SAMI'LING AN!) THE RANDOM COEFH(IENT

REGRESSION Mol)EL FOR PANEl. DATA

3.1. Introductjo,

Recently, there has been renewed interest in the random coefficient regression
model.'3 A specification leading to a random coefficient regression model occursin the survey sampling framework. Suppose the population consists ofN individuals

See the referenees in footnote 6. Also see Hildreih and Houck 1968). Swamy (1971). (1977)provides an extcfls,ve bibliography on this hiteratuic
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and let the economic relationship for the ith unit he given by

= X + uicN,
where y is a T x I vector of observations on the dependent variable,.V s a
T >< K matrix of observations with rank K on K independent variables. , is a
K x I vector of non-rwu/o,n coefficients and u is a T >< I vector of disturbance
terms with mean zero for each i.

It is convenient to think of T as the number ol time periods SO that. for
example, the tth element of y1 and u refer to the tth period. We allow for hetero-
geneity across individuals: each unit has its own coefficient vector.

The random coefficient model arises when a sample is drawn from a popula-
tion. At the beginning of the first sampling period n individuals are randomly
selected out of the population. In T successive periods the .wnc n individuals are
sampled. Assembling the observations on then individuals for Tperiods we ha ci 4

Yi XiIi + ii,

fl " IIIn + U.

The random selection of individuals determines the random coefficient model
for the system in (37). Let the population coefficient vector of interest he given by'

We will develop various estimators for D under two sampling schemes: simple
random sampling without replacement and random sampling without replacement
with unequal probabilities.

3.2. Simple Randon Samp/jug iVithoui Replacement

In simple random sampling the units are drawn without replacement with
equal probabilities. We shall make the following specilIcation initially for the
system of observations in (37) which came from the population in (36).
Assumption 3.1:

The number of units sampled (ii) and the number of time periods (T) are
such that n > K and T> K.
For each unit i in the population. the independent variables are fixed
in repeated samples on y. The rank of X [X. X. X,] is K for
every possible sample drawn.
The disturbance vectors u1 (i e N) are independently distributed each
having mean zero, The variance--covariance matrix of u1 =
The ii units are drawn by simple random sampling without replacement
from the population of N units.

As in Section 2 we donozdistinguish between the labeling order in thesampkand the population.
We could carry out the analysis for other population concepts such as = w,. where w

are known weights.
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As was stressed in the introduction, there are two different sources of random
variation in this model, one being the behavioral random error, the u vectors
and the other beine the variation in fi vectors caused by the random selection of
indiiduais. Iii evaluating expectations of random variables it will often be con-
venient to distinguish these two sources of variation. We shall use the shorthand
S to denote the summation over individual units, i.e., the variation caused b'
sampling. And we shall let c denote the integration over the behavioral random
errors, the u's.

Since the method of sampling is simple random sampling, the results reviewed
in Section 2 apply directly to the n's. In particular, from (10) we have

E1) = , iEfl.
We shall define the variance-covariance matrix for the population by

A = LT!L
We assume that A is positive definite. The sampling errors

Ic ñ have zero mean values.
tJsing(l I) we have

E() A, jEll.
Finally, the matrix version of(13) is (43):

E(ö.W) = NI i,jEfl, ij.
For the model 01(3.1) we shall consider two estimates. The first will be thesimple average of the least-squares estimators of each unit in the sample. The

second estimator is an approximate Aitken estimator.

A rerage Least-Squares Estimator

Let b be the first estimator,

b

where

= (XX1) 'Xy
Considering the variation in u above we have the usual result that

E(b1IS) =

where E(bIS) denotes the conditional expected value of b given the ith unit isdrawn. From (39) and (46) we obtain

E(b) = > EE[b1Is] = - E()i) = i.

That is, b is an unbiased estimator o1.
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Next we determine the variance covariance matrix for b and an estimator
of it. The error between b and D is

b D n '[)( + (XX1) 'Xu1)].

It will simplify notation to introduce P1 by

P, = (x;x1)

The variancecovariance matrix of b, say S,,,,, is

= E(b - b -
Evaluating SM we find

S,,,, ic? +

To obtain an estimate of 5,,,, we shall first evaluate the matrix S,,.

5,, =

Substituting

b1 = p, ± (XX1r 1Xu

into (51) and taking expectations gives

E[S,,J=(n - 1)A+(u - 1)
A (n -

I)N--J N

Let

(53 M1 = I - X1(XX1) 1X

(54) e1 =

As is well known

(55) sli =

is an unbiased estimator of r, so that

s(XX'
'I

is an unbiased estimator of (l/N) P1. In view of (52) and (56), an unbiased
estimator of A is

S,, I

[izi n'j N

where

= s11(XA'1) '.
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Thus an unbiased estirliate of S,. vil I be

- UI I

(9) - \ /'
tiIA --- 1)

A possible opera! onal di t1icuIt ith the estimator for A. A. is hat it ma
not he positive definite or even p siuive seiiijdefiijte. A 1(.5(1? U (O?1(Ii!iHIi for
A to he positive senii-detinite IS II K.' I 1oweer, this ditl!CIiIt\ does not extend
to the estimator for S0,

/ln /lpproxiinau' /1 itken L.stmu,tor

Assuming that the estimate of A is positive definite, we can create an estimator
for JI which uses more of the model peciIication than the average least square
estimator, b. This Attken estimator has the propert\ that it ill be dependent on
the partu-ular .V rflatri x which is drawn. To form this CS! iniator ot fi we follow
Swam- (1971, (' 'ipter 4). and write tlìe sample s stem of ii i observations 371
together as

(60) X + i) -V ) 4- u.

where

y = (y',y2 ;-
= [.V' .,V',

r,, 0 ...U it
U X2 U . I)

=

0 U

=(ó,,ô, o;.
U = lu', u u;'.

Conditional on X the a'!' x I disturbance vector
following variance covariance matrix

EflD(X) + u D(X) + u.V] 1-1(0) =

[x,Ax', + I - A

(61) :.V,A,V', XAX + !

fur (6!)). D(.V)i -t- u. has the

= V, AX

--

.V,AX + a!
where: = I iV - I (and a = (I Nt

. The matrix 11(0) is a svrni etric aT ni
matrix. It iS ftitictioiiiJI dependent on N, = and an unknown IK( K 4- I ) -- 2

Sc ScIin,ai,,ec (I 972, p. 6) for a proor of ito rcsuiI to, Swam \ SpL'ei Iicat,o I, ot the randot
coelfleient niodcl, S am (197 I - ('hapter -if that prool carries over to OLII Spei heat on

The /eroes in I) are 1 x K iiiitl matrices
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vector of pitralnetcls. 0. containin the distinct elements of i and ti arranged in a
particular order. It can readily he shawn that 11(0) has an iii'erse.' Conditional
on X. the BLU F of f s the Attken estimator,

b(0) = (X'It(0) tXL1X'iI(0)

Since A and G are unknown, b0) is not operational. \Ve can, however, form an
approxiniateAitken estimator by substituting unbiased estimates for A and .

Thus let 11(0) he the ni x itT matrix formed by substituting A for A and
s = (1 !n) s for o into 11(0). The approximate Aitken estimator is

blOt t.V'H(0) 1.Y) - 'X'H(0) 1v.

We conecture that under fairly general conditions blO) will have desirable
asvniptotic properties.

3.3. Random Smnpling Without Rt'platemeni huh (Inc quit! Prohithil,tu'.s

We now generalize from simple random sampling to random sampling
without replacement with unequal probabilities. \Ve againconsider two estimators:
a simple weighted average of the least-squares estnnators and an approximate
Aitken estimator.

We make the following assumption
.4sswnplion 3.2:

(1 )-(3(the same as Assumption 3.1(1) (3).
(4) Sampling is done without replacement with unequal probabilities. it will

be the overall probability that the ith unit is drawn and ir the joint
probability that the i and jth units are drawn.

U'eigiited 4reragc a! Least Squares

From (35) it follows that a natural estimator for is a simple weighted average
of the least-squares estimators, where the weights are inversely proportional to
the probability of being selected in the sample. That is. consider the estimator b*.

(64)

Using (29) and (46) we find

Nflb*) =

N '

:i
L(bS)1

' :iI =

See appendis.
Sc: Swamy l9l . (l)77 fur a di'cussioii of large saniple prircrtle' uhen .\ is inlinite. I-li',

anal,sis needs to he niodilied lot our 5 ork Hosiever. much oihis analisis does carry user to the present
problem. For Tsut1ictenti laige s tb n lixed. vt' can treat h, (i = I .2 01. as if they sscre sample 01

size from the population of Il's. .'.. 1(1 . 1 hen sic can cuttihinc the result ii itli the central
limit results of Hajek ( 196W for tinite populations, to get the full set of asymptotic properties of Ol.
Also. see Thetl 197), p. 399). Ii u and ? are symmetrically distributed about the null sector, then sic
can tise lie tvpeof irguflieni dci eloped'o Kakwani I 9671 tosliow that biOlis an uthased estimatoro1.
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so that b* is an unbiased estimator oF . Let he the variance covarjancc

By inspection of(65) we recognize that an unbiased estimator of S . is

(66
= +

i:
r!LT_-7yr))

An Approximate A itken Estimator

We now develop an approximate Aitken estimator for this model. As before
the analysis is conditioned on X.

To construct the Aitken procedure we would like to write an observation at,
say, the rth draw as

(67) y,. =X, ± v
where the disturbance v,. satisfies

(6S) E[VIX] = 0.
However, for random sampling without replacement with unequal probabilities,

U,. = X((i,. - j) + U,.
and

(69) E[v,!X] = 1p(r) -

Note that the expected value of', will not vanish unless p,(r) = I/N, i.e., we engage
in simple random sampling. To avoid this problem we transform each draw in
the following way. If the Ith unit in the population is chosen on the rth draw write

e,. = N 'p,(rY
and let

Yr = y,e,., = rCr. Ür = u,e,..

The transformed representation of the rth draw is then

(70j = Xrfir + U,.
and the expected value ofiL = D. The difhculty with this particular transformation
is that the variance-covariance matrix for the transformed system of it draws
depends on the draw-by-draw probabilities, the p(r) and p134r, s) terms. To circum-
vent this complication we assume that the sample design satisfies the following
equations,2°

20 If Interpret all quantities as relerring to a particular stratum then whenever the number
sampled (n) within a stratum is small relative to the number of units in th stratum (V). equations (71
and (72) are likely to be adequate approximations (within the stratum). See Cochran (1962 p. 260-262)for a description of a common method for selecting units with unequal probabilities but without
replacement which will approximately satisfy these equations within a stratum. In thiscase the approxi.
mate Aitken estimator developed in the text will be delined for each stratum. An estimate of the overall
population mean for all strata taken together can then be formed by suitably averaging the estimates
from the different Strata.
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matrix for b*. Evaluating Se,.,,. we find

(65)
=

+ - mini)
lti)ti



From (73) we find

(75)

By construction

for all , E ii and i e N

(72) p(r. s) = --- for all r, .sh. r sand i, /c N, 1 j.n(n - I)

We now analyze the transformed system of equations having the form of
equation (70) for all r e IL where ër = n/n1N when the Ith unit is chosen at the nh
draw. The following results will he useful in this analysis. From (71) and (72) we
can easily show that for draws r and s, r

I

E5(z,:) =
,

E5[r] = >1 Dmfr) =
: ' = =

I,et r be the sampiing error in the transformed random coefficient j,

E5[ör] - 0 rEii.

Each ö, will have the same variance -covariance matrix, say A.

A= Er; = - N.
Evaluating A gives

- its) I
= \r2

We assume is positive definite. By inspection of(76 we infer that an unbiased
estimator of A is

= b,b( it,) Pni) i bb

The covariance between , and . say , will he identical for all r and
satisfy

A

- for all rand se Ii, -

Using the foregoing results, the system of nT observations may be written as

(78)
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svhere

=
(;l.s__

S,)

u - Ü1.

= &

and \ and D(.Y) are civen beneath (60). Given X the disturbance in 78) has a
variance- covariance matrix G1q4

X A.v', + 51 x .v. -

1(79) G(q) = .1,A.\-, + ii

-

here q contains he distinct unknown para meters elements of A and 5. is ith& = Oi A2)(a1 it).
(IA and 5 were known.

li(q) ._ f(;- I\ VGp) 1:

would he the BLUE of Ji. An approximate Aitken estimator formed hstibstitinting
. & = A (\' -- I. and 5 In V 2) Y k z kr A. A and 5 into(I(p) to obtain G111 : the estimator is

(80) 1() = XG14
.

hi is not positive definite (or at least positive senlidefinile) we itce a negative
variance problem.2' There doe.s not appear to he an easy sot ution to the negative
variance problem. One can never he sure whether or not the result arises becauseof a model misspecnhcatl()n or is just an anomaly of a given sample.

.ln Extension

It is not di t)icult to see how liese results ma be cenera li,ed to Permit coii-
temporaneous correlation between us in the population That is. consider
.IS'11Iflplion 3.3.

II. (2). (4) same as corresponding cotiditiotis in Assumption 3 2.(31 The disturbance lectors u. (j each hae mean iero and Euu =for all i and j.
The correct unbiased estimator of A beco ii

1811
i) J(flTt,t I hh; I

it1, V'
i'here

5i1 = ;.!.!jj trace (J\i)
11 See Ss arn Ii 97) anti Sehim,Iensee t 1)72) br ltiSCttssj()n of this probtern arid additionatreferences
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The matrix G(q) and therefore (i( clia uges lso for Assumption 3.3 The ut h
block diaconal matri\ is still

.\ .v; -t- ill

hut the jth ofldiagona1 matrix becomes

where
= n(i, -- I)

4. FUTURI ExTENSIONs

In this paper we explore the consequences of using information Oil the design
of a sample survey to estimate population averages in a linear model. An analysis
of the sampline properties of the alternative estimators considered awaits further
study.

Finalls, we treat the sample design as herii given exogenously. It ma prove
illuminating to relax this assunipt ion and rank alternative sample designs on the
basis of their precision in estiniatjne population avcraoes in a linoa r model.

(01 O?fl i.s 1 1hazrI o/ (701cniorx
j ede,ai R c'ru Svxien,

I iasr oi /1(0)

H(0) niav he written as

(I) J1(0)=i)[Z®A1D+®/
= R + DBD

where ® is the Kronecker oroduct s nibol,

R=>011. >=I,, BZØA.
and Z = (:) is an equicorrclatecl matrix with = I

= .1.

Since A is positive deimnite (b assumption) A exists. The inverse of Z is readlv
found, see Rao M 9(. p. 3. problem 2) ii)).

Now

R '= '®/
B ' = ®A

Finally, using a result gi en m Rao (1965. p. 29. problem 29). 's e find

(-4) )R +DBI)( R 'D(D'R 11)1 'D'R

R 'D(DB DF '((DR - 'DL' ± BL '(DR -1J 'DR''.
lnspectin the r.h.s. of (4) we note that in view of (2) and (3). the largest matrix to
he inverted is nK h nK. If A is positive semidefmnitc. ii(t)j is also nonsingular.
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