This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Annals of Economic and Social Measurement, Volume 2, number 2

Volume Author/Editor: NBER
Volume Publisher:

Volume URL: http://www.nber.org/books/aesm73-2
Publication Date: April 1973

Chapter Title: On The Use of Survey Sample Weights in the Linear Model
Chapter Author: Richard Porter
Chapter URL: http://www.nber.org/chapters/c9887

Chapter pages in book: (p. 140-157)

ON THE USE OF SURVEY SAMPLE WEIGHTS
 IN THE LINEAR MODEL*

by Richard D. Portir

 cstimating popalation atcragas depends on the sample design tie commbe rarious estimators of the random: cocffic ient model for pand data. whers the ramdon component arises from the randim stection of indiciduals ond of a finite popudation.

1. Introduction

1.1. Problem

Sample survers such as the Current Population Survey are a rich source of economic data. If the sample is drawn according to the pritaciples of sample survey theory, each member will have an attached weight. For example. suppose there are two strata A and B and that a sample is drawn in which members in A are sampled at a rate $6: 1,000$ (six per thousand population individuals in A) whereas member, in B are sampled at a rate of $3: 1.000$. Then to compute a population :ctal. say the total wage bill for the population as a whole, it is sensible to give wice as much weight to an earnings measurement in B as to an earnings measurement in A, that is. the weights will be proportional to the inverse of the probability of being selected. But when different classes or strat:a are sampled at difierent rates. should the associated weights be used in estimating a behavioral econometric model? And how should they be used? In practice we asually have more information about the method by which the sample was drawn than just sampling weights for each observation. We also know the type of sampling procedure (such as simple random sampling with replacement, simple random sampling without replacement. stratified random sampling. single-stage Cluster sampling, multi-stage sampling) as well as detailed probability descriptions of the procedure. We often know the probability that any unit will be drawn as well as the joint probability that any pair of units will be drawn. As before this information about the sampling design can be incorporateci into estimates of population totals, standard error estimates for the estimated population totals. and so forth. But what use should we make of this information in estimating a behavioral econometric model?

In the econometric literature. opinions divide. Some authors advocate that the sample weights be used in linear econometric models in a way which is similar to the use of weights in computing finite population totals: they recommend using weighted ieast-squares. ${ }^{1}$ Other writers argue that such sample survey

* I wish to thank ny colleagues, John Paulus, Joe Sedransk. P.A.V.B. Swamy and my discussant. Professor Arnold Zellner. for useful criticisms and comments. Thanks also go to my summer assistant. Ken Wise of Northfield Park and M.I.T., for valuable advice and invaluable Fig Newtons. An expanded version of this paper is available from the author.
${ }^{1}$ See Klein and Morgan (1951). Klein (1953, pp. 305.313), Hu and Stormsdorfer (1970) and Cohen. Rea. and Lerman (1970, pp. 193-194).
information is irrelevant for econometric models. ${ }^{2}$ Most econometric textbook authors do not discuss this issue. ${ }^{3}$

1.2. Homogenerms Coffficients: The (Choice of the Regression Tectmiquie Does Noe Depend on thia Sample Design

If the coeflicients in the behavioral model are homogeneous throughout the population. then the sample design does not affect the validity of the ustal (teast squatres) estimates. To pursue this point consider the following example.

Suppose there are q possible samples of size n that can be drawn from a population of size N according to the sampling desigit chosen and that the probability of selecting each sample is known. To represent this probability nodel for sampling we construct a randon variable S taking on q distinct values $s_{1}, s_{2} \ldots \ldots s_{4}$ with associated probabilities $p_{1} . p_{2} \ldots \ldots p_{9}$. Let the regression model for ally sample. saty the sth. be given by (I)

$$
y_{s}=X_{s} \boldsymbol{\beta}+\mathbf{u}_{s} .
$$

where X_{s} is a $n \times k$ matrix of regressors. y_{s} is a $n \times 1$ vector of regressands. β is a fixed $l \times 1$ vector of unknown coeflicieits and u, is a $n \times 1$ vector of unobserved disturbances. We treall X, as fixed so that the only source of variation in \boldsymbol{y}_{s} is due to the variation in the disturbance vector u_{s}. We pestutate that u_{s} is generated by a classical probability mechanism which is independent of the sampling design and exhibits the usual properties

$$
\begin{array}{ll}
E_{c}\left(\mathbf{u}_{s} \mid X_{s}\right)=0 & \text { for all } s . \\
E_{c}\left(\mathbf{u}_{s} \mathbf{u}_{s}^{\prime} \mid X_{s}\right)=\sigma^{2} \mid & \text { for all } s \tag{3}
\end{array}
$$

where E_{c} denotes the expectator operator. We distinguish the operator by the subscript c. where r stands for the classical probability mechanism generating the disturbances. Assume X_{s} hats full column rank for alls so that the least-squares estimator of β a namely

$$
\begin{equation*}
\boldsymbol{b}(s)=\left(X_{s}^{\prime} X_{s}\right)^{-1} X_{s} y_{s} \tag{4}
\end{equation*}
$$

exists
To evaluate properties of \mathbf{b} remember that we must take into account two sources of random variation: that calused by the random selection of individuats and that caused by the random variation in the disturbance vector. Since the unconditional expectation $E b(s)$ is the sum of the conditional expectations, we have

$$
\begin{equation*}
E[\mathbf{b}(s)]=\sum_{i=1}^{q} E_{c}\left[\mathbf{b}(s) \mid S=s_{1}\right] p_{i} \tag{5}
\end{equation*}
$$

${ }^{2}$ See Cramer (1971. p. 143), Fleischer and Porter (1970. pp. 99 111). and Roth (1971). I became aware of several of these refercnces by reading Roth's memorandum. Roth (1971).
${ }^{3}$ See e.g. Dhrymes (1970). Goldberger (1964) Goldbandum. Roth (1971).
(1971). Malinvaud (1966). Theil (1971). Zellnei (1971). Goldberger (1968). Johnston (1963), Kmenta book. Klein (1953): Champernowne Champernowne (196ble exception is Klein's pioneering textdoes not relate it to the regression model.
where $E_{c}\left[\mathbf{b}(s) \mid S=s_{i}\right]$ represents the conditional expected value of $\mathbf{b}(s)$ given the event $S=s_{i}$. Given our specification for u we can show that $b(s)$ is an unbiased estimator of β. Inserting (4) and (1) into (5) and simplifying gives

$$
\begin{equation*}
E[b(s)]=\sum_{i=1}^{4} E_{c}\left[\boldsymbol{\beta}+\left(X_{i} X_{s}\right)^{-1} X_{s}^{\prime} \mathbf{u}_{s} \mid S=s_{i} J p_{i}=\boldsymbol{\beta} \sum_{i=1}^{4} p_{i}=\boldsymbol{\beta}\right. \tag{6}
\end{equation*}
$$

The crucial relations used to derive (6) are (a) X, is fixed for a given sannple and (b) $E_{c}\left[u_{s} \mid S=s_{i}\right]=0$. The assimption that u does not depend on the smpling procedure is critical for establishing (b).

If we restrict our analysis to be conditioned upon the particular X matrix which is drawn. then the Gauss-Markov theorem holds and the least-sqiares estimator will be a best linear unbiased estimator (BLUE) of $\beta .^{4}$ Indeed. it would appear that $b(s)$ will have these optimal properties when we also allow for sampling variations. ${ }^{5}$

The implication of the foregoing analysis is that for homogeneous populations we are not obliged to incorporate the structure of the sampling plan into our regression analysis. Of course. the sample design is important regardiess of whether coefficients are homogeneous or heterogencous.

1.3. Outline of the Paper

In the rest of the paper we adopt the assumption that the coefficients differ across individuals. Then it appears that the choice of the regression technique depends on the sample design so we explore some procedures for combining the information on the sample design with the specification of the behavioral model to obtain estimates of certain population parameters. In Section 2 we review some results from sample survey theory. We employ these results in Section 3 to form estimators for the random coefficient regression model based on panel data. Here the "random" component in the coefficient arises solely from the random selection of individuals. Although this problem has been intentively studied recently, ${ }^{6}$ the analysis has implicitly proceeded under the assumption of random sampling from an infinite population. We consider the more usual sampling design in which sampling is done without replacement from a finite population with unequal probabilities. See Konijn (1962) for a related contribution when the data source is a single cross section. ${ }^{\text {. }}$

[^0]
2. Sampling from Finite Populations

In this section we review some elements of sampling theory from finite populations. ${ }^{\text {K }}$ The object of this theory is descriptive : to estimate timite population totals or averages.

2.1. Simple Random Sampling Without Replacement

We start with the concept of an ordered random sample. Let the finite population being sampled consist of N items, mimbered $1,2, \ldots, N$. An ordered sample from this population is an arrangement of the items in a particular order. For example, if the population consists of threc elements $\{1,2,3\}$, there are six possible ordered samples of size two: (1,2), (2, 1), (1, 3), (3, 1), (2, 3), (3,2). ${ }^{9}$ When each of these ordered samples appears with equal frequency in repetitive sampling, the sample is called an ordered random sample. Define the product $N(N-1) \ldots$ $(N-n \div 1)=\pi(N, n)$. Probabilities are herein computed in accord with the equivalence law of ordered random sampling:
Theorem 1 (The Equivalence Law of Ordered Random Sampling)
If an ordered random sample of size n is drawn from a population of size N, then on any particular one of the n draws, each of the N items has the same probability $1 / N$ of appearing.

Proof. See Hodges and Lehmann (1970, pp. 55-59).
The theorem generalizes to more than one item in a general way but we need consider only:
Theorem 2
Any pair of items, say J and J, has the same probability $1 /\left(\begin{array}{l}N \\ 2 \\ 2\end{array}\right)$ of appecified draws. (Note that we on any 2 specified draws. (Note that we do not indicate the order in which I and J appear on the two specified draws.)

Proof. Without loss of generality suppose that the two draws are the first and the second. If I appears on the first and J appears on the second, the remaining items can be drawn in $\pi(N-2, n-2)=(N-2),(N-3) \ldots(N-n+1)$ ways; alternatively, J miay appear on the first and I on the second in $\pi(N-2, n-2)$ ways. Thus, the probability of $\{I, J ;$ on draws 1 and 2 is $2 \pi(N-2, n-2)$ \} $\pi(N, n)=1 /\binom{N}{2}=2(N)(N-1)$.

Suppose we are not interested in an ordered random sample but in an unordered random sampie. We can obtain an unordered random sample by first drawing an ordered random sample and then disregarding the order. ${ }^{10}$

Let y designate the variable which we are measuring in the population; y may be a scalar or a vector. For the present we will let y be a scalar. The value of y for the first item in the population is y_{1}, for the second y_{2}, and so forth. If we consider

[^1]a random drawing of one item. say \bar{y}. from this population. its expected value and variance are
\[

$$
\begin{gather*}
E[\dot{y}]=\sum_{i=1}^{N} y_{i} \operatorname{Pr}\left(\tilde{j}=y_{i}\right)=\sum_{i=1}^{N} y_{i}(1 / N) \equiv \mu \tag{7}\\
\operatorname{Var}[\tilde{y}]=\sum_{i=1}^{N}\left(y_{i}-\mu\right)^{2}(1 / N) \equiv \sigma^{2} . \tag{8}
\end{gather*}
$$
\]

Note that the population mean and variance. μ and σ^{2}. are generated by a very simple probability mechanism: the random drawing of one item from this population.

It will simplify matters if we adopi the following notational conventions. Let $p_{i}(r)$ be the probability that the ith person is selected on the rth draw. Let $p_{i j}(r, s)$ be the probability that the i and j th individuals are selected on the r and sth draws respectively. Let $\bar{N}=\{1,2 \ldots, N\}$ and $\bar{n}=\{1,2 \ldots, n\}$. As a shorthand we will write

$$
\dot{\sum} w_{i}=\sum_{i=1}^{N} w_{i}, \quad \dot{\sum} w_{i j}=\sum_{j=1,1 ; i=1}^{N} w_{i j}^{N} \quad \sum w_{i}=\sum_{i=1}^{n} w_{i}
$$

and

$$
\sum w_{i j}=\sum_{i=1}^{n} \sum_{i \neq j}^{n} w_{i j} .
$$

We next draw an ordered random sample, say $\left(\bar{y}, \bar{y}, \ldots, \bar{y}_{n}\right)$. from this population. By Theorem 1, each \tilde{y} has the same probability distribution:

$$
\begin{equation*}
p_{i}(r)=1 / N \quad \text { for all } i \in \bar{N} \text { and } r \in \bar{n} \text {. } \tag{9}
\end{equation*}
$$

Consequently for each $r \in \bar{n}$

$$
\begin{gather*}
E\left(\tilde{y}_{r}\right)=\dot{\sum} y_{i} N^{-1}=\mu \tag{10}\\
\operatorname{Var}\left(\tilde{y}_{r}\right)=\dot{\sum}\left(y_{i}-\mu\right)^{2} N^{-1}=\sigma^{2} . \tag{11}
\end{gather*}
$$

In view of the proof of Theorem 2 we have

$$
\begin{equation*}
p_{i j}(r . s)=1 / N(N-1) \quad \text { for all } r . s \in \bar{n}, r \neq s \text { and } i, j \in \bar{N}, i \neq j . \tag{12}
\end{equation*}
$$

Thus the covariance between \tilde{y}_{r} and \tilde{y}_{s} is equal for all r and s. If C is this common covariance, C satisfies

$$
\operatorname{Var}\left(\sum \tilde{y}_{i}\right)=n \sigma^{2}+\left(n^{2}-n\right) C .
$$

When $n=N, \sum \tilde{y}_{i}$ is a constant with zero variance so $N \sigma^{2}+N(N-1) C=0$ and

$$
\begin{equation*}
C=-\sigma^{2} /(N-1) . \tag{13}
\end{equation*}
$$

We now consider the problem of estimating μ. It is convenient to cast this problem in the format of a linear model. Let ε_{i} be a variable defined by $\varepsilon_{i} \equiv y_{i}-\mu$, for i in \bar{N}. If we observe the entire population, μ is known exactly ; this implies that
$\varepsilon_{i}, i=1.2 \ldots N$ are known quantities. However the sample values $\grave{c}_{r} \equiv \bar{y}_{r}-\mu$, r in \bar{n} are random variables with the following properties:
(14)

$$
\begin{array}{ll}
p_{i}(r)=N^{-1} & \text { for all } i \in \bar{N} \text { and all } r \in \bar{n} \\
p_{i j}(r, s)=1, N(N-1) & \text { for all } i . j \in \bar{N}, i \neq j \text { and } r, s \in \bar{n}, r \neq s
\end{array}
$$

Our sample $\left.\left(j_{1} \cdot j_{2} \ldots \ldots\right)^{\prime}\right)$ thus belongs in the following setup:

$$
\begin{gather*}
\tilde{y}=1 \mu+\tilde{\varepsilon} \tag{15}\\
E(\tilde{\varepsilon})=0 \tag{16}\\
E \tilde{\varepsilon} \tilde{\varepsilon}=\sigma^{2} \Omega, \Omega=(1-\rho) I+\rho l^{\prime}
\end{gather*}
$$

where Ω is a $n \times n$ matrix. $\rho \equiv-(N-1)^{-1}$ and $\tilde{y}^{\prime}=\left(\tilde{y}_{1}, \tilde{y}_{2}, \ldots, \tilde{y}_{n}\right) \cdot \tilde{\varepsilon}^{\prime}=\left(\dot{\varepsilon}_{1}\right.$. $\left.\dot{\varepsilon}_{2} \ldots \ldots \bar{\varepsilon}_{n}\right) I^{\prime}=(1,1 \ldots \ldots 1)$ are $1 \times n$ vectors. For the model of (15), (16). and (i7) the best linear unbiased estimater (BLUE) of μ is. of course. the Aitken generalized
least-squares estimator

$$
\begin{equation*}
\hat{\mu}=\left(I^{-i} \|\right)^{-1} \| \Omega^{-1} \hat{\mathbf{y}} \tag{18}
\end{equation*}
$$

Let
(19)

$$
r=\{1+(n-1) p\}
$$

One can easily verify that ${ }^{11}$

$$
\begin{equation*}
\Omega^{-1}=\frac{1}{(1-\rho)!}[n-\rho M] \tag{20}
\end{equation*}
$$

so that

$$
\begin{aligned}
& I \Omega^{-1}=r^{-1} I \\
& I \Omega^{-1} I=r^{-1} n .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\hat{\mu}=m^{-i} r^{-1} \mathrm{I} \tilde{\mathbf{y}}=\frac{\sum y_{i}}{n}=(\mathbf{I})^{-1} \mathrm{I} \hat{\mathbf{y}} \tag{21}
\end{equation*}
$$

That is the Aitken estimator and the ordinary least-squares estimator are identical in this case.

2.2. Simple Random Sampling Without Replacement With Unedual Probahilities,

We now relax the assumption that atl individuals have an equal chance of being selected on each draw and permit probabilities of being drawn to differ between individuals and from drawing to drawing. Most sample designs are special cases of this scheme. ${ }^{12}$ As before let $\left.p_{i j} f r, s\right)$ be the probability that the i and j th individuals are selected on the r and sth draws respectively in a sample of size n from a population of size $N: i$ and j range from 1 to N and r and s from
" This result is weli known. See, for example. Kendall and Stuart (1966. p. 16.7).
${ }^{12}$ See Kendall and Stuart (1966, p. 177 ff).

1 to n where $i \neq j$ and $r \neq s$. The probability that the i th person is selected on the r th draw, $p_{i}(r)$, is

$$
\begin{equation*}
p_{i}(r)=\sum_{\substack{s==1 \\ r \neq i, i \neq j}}^{n} \sum_{i=j}^{\#} p_{i}(r, s)(n-1) . \tag{22}
\end{equation*}
$$

Since someone is always selected at the r th drawing.

$$
\begin{equation*}
\sum_{i=1}^{s} p_{i}(r)=1 . \tag{23}
\end{equation*}
$$

Let π_{i} be the probability that the i th person is selected in the sample,

$$
\begin{equation*}
\pi_{i}=\sum_{r=1}^{n} p_{i}(r) . \tag{24}
\end{equation*}
$$

Finally, let $\pi_{i j}$ be the joint probability that the i th and jth persons are selected in the sample,

$$
\begin{equation*}
\pi_{i j}=\sum_{\substack{r=1 \\ r \neq s}}^{n} \sum_{i=1}^{n} p_{i j}(r . s) . \tag{25}
\end{equation*}
$$

Since $p_{i j}(r, s)=p_{j i}(s, r)$, we have, of course, that $\pi_{i j}=\pi_{j i}$.
For our purposes, it will suffice io characterize the sampling design in terms of π_{i} and $\pi_{i j}$. From (23) and (24) we find

$$
\begin{equation*}
\dot{\sum} \pi_{i}=n . \tag{26}
\end{equation*}
$$

Fromı (22), (24), and (25) we get

$$
\begin{gather*}
\sum_{j=1}^{N} \pi_{i j}=(n-1) \pi_{i} \tag{2.7}\\
\sum_{i=1}^{N} \sum_{i=1}^{N} \pi_{i j}=n(n-1) .
\end{gather*}
$$

Before, we were careful to distinguish between the labelling of observations in the sample and that in the population. The second person in our sample will not usually be the second person in the population. However, now we will tabel the sample observations in the order in which they are drawn and not distinguish between the order in the sample and the order in the population. As long as we are considering symmetric functions of sample observations this notational convention will not lead us astray.

A result we shall often call upon is the following:
Theorem 3
Suppose a sample of size $n, y_{1}, y_{2}, \ldots, y_{n}$ is drawn from a population of size N. Then for any function g

$$
\begin{gather*}
E\left[\sum g\left(y_{i}\right)\right]=\sum \pi_{i} g\left(y_{i}\right) \tag{29}\\
E\left[\sum g\left(y_{i}, y_{j}\right)\right]=\sum \pi_{i j} g\left(y_{i}, y_{j}\right) . \tag{30}
\end{gather*}
$$

Proof. So that there is no ambiguty tet us first write out (29) and (30) fully

$$
\begin{gathered}
E\left[\sum_{i, 1}^{n} g\left(y_{i}\right)\right]=\sum_{i=1}^{n} \pi_{i} g\left(y_{i}\right) \\
E\left[\sum_{i=1}^{n} \sum_{i=1}^{n} g\left(y_{i}, y_{j}\right)\right]=\sum_{i=1}^{\infty} \sum_{i \neq 1}^{n} \pi_{i j} g\left(y_{i}, y_{j}\right) .
\end{gathered}
$$

To prove (29) note that

$$
\begin{equation*}
I\left[\sum g\left(y_{i}\right)\right]=\sum_{i} E g\left(y_{i}\right) . \tag{31}
\end{equation*}
$$

But by definition $E g\left(y_{i}\right)=\dot{\sum} ; g(y) p$, , (i). Thus

$$
E\left[\sum g\left(y_{i}\right)\right]=\sum_{i} \sum_{j} g\left(y_{j}\right) p,(i)=\sum_{i}^{\dot{~}} g\left(y_{j} ; \sum_{i} p_{j}(i)=\sum_{j} g\left(y_{j} ; \pi_{j} .\right.\right.
$$

This proves (29) : equation (30) follows by a similar argument.
We can use Theorem 3 to obtain a tinear unbased estimator of the population mean. μ.

$$
\begin{equation*}
\mu=\frac{1}{N} \sum_{i=1}^{V} s_{i} . \tag{32}
\end{equation*}
$$

Suppose the same weight r_{i} is to be assigned to an individual whenever he is selected. A linear estimator will have the form

$$
\begin{equation*}
\hat{\mu}=\sum_{i=1}^{n} c_{i} y_{i} . \tag{33}
\end{equation*}
$$

with the weights to be determincd by the unbiasedness condition. Using (29) with $g\left(y_{i}\right)=\varepsilon_{i} y_{i}$ we find

$$
\begin{equation*}
E[\hat{\mu}]=\sum_{i=1}^{N}\left(c_{i} v_{i}\right) \pi_{i} . \tag{34}
\end{equation*}
$$

Then equating coefficients in (32) and (34) we must have

$$
\begin{equation*}
\hat{\mu}=\frac{1}{N} \sum_{i=1}^{n} \frac{y_{i}}{\pi_{i}} . \tag{35}
\end{equation*}
$$

3. Survey Sampling and the Random Coffficient Regression Model for Panfl Data

3.1. Imroduction

Recently, there has been renewed interest in the random coefficient regression model ${ }^{13} \mathrm{~A}$ specification leading to a random coefficient regression model occurs in the survey sampling framework. Suppose the population consists of N individuals
${ }^{13}$ See the references in footnote 6 . Also sec Hildreth and Houck (1968). Swamy (1971). (1972) provides an extensive bibliography on this literature.
and let the economic relationship for the ith mit be given by

$$
\begin{equation*}
\mathbf{y}_{i}=X_{i} \boldsymbol{\beta}_{i}+\mathbf{u}_{i}, i \in \bar{N}, \tag{36}
\end{equation*}
$$

where \mathbf{y}_{i} is a $T \times 1$ vector of observations on the dependent variable. X_{i} is a $T \times K$ matrix of observations with rank K on K independent variables. β, is a $K \times I$ vector of non-random coefficients and u_{i} is a $T \times I$ vector of disturbance terms with mean zero for each i.

It is convenient to think of T as the number of time periods so that. for example, the t thelement of y_{i} and \mathbf{u}_{i} refer to the th period. We allos for heterogeneity across individuals: each unit has its own coefficient vector.

The random coefficient model arises when a sample is drawn from a population. At the beginning of the first sampling period n individuals are randomly selected out of the population. In T successive periods the same n individuals are sampled. Assembling the observations on the n individuals for T periodis we hall e ${ }^{\text {th }}$

$$
\begin{align*}
\mathbf{y}_{1} & =X_{1} \boldsymbol{\beta}_{1}+\mathbf{u}_{1} \\
\mathbf{y}_{2} & =X_{2} \boldsymbol{\beta}_{2}+\mathbf{u}_{2} \tag{37}\\
& \vdots \\
\mathbf{y}_{n} & =X_{n} \boldsymbol{\beta}_{\mathrm{n}}+\mathbf{u}_{n} .
\end{align*}
$$

The random selection of individuals determines the randon coeflicient model for the system in (37). Let the population coefficient vector of interest be given be ${ }^{15}$

$$
\begin{equation*}
\boldsymbol{\beta}=\frac{1}{N} \dot{\sum} \boldsymbol{\beta}_{i} . \tag{38}
\end{equation*}
$$

We will develop various estimators for β under two sampling schemes: simple random sampling without replacement and random sampling without replacement with unequal probabilities.

3.2. Simple Random Sampling Withour Replacememt

In simple random sampling the units are drawn without replacement with equal probabilities. We shall make the following specification initially for the system of observations in (37) which came from the poputation in (36).

Assumption 3.1:

1. The number of units sampled (n) and the number of time periods (T) are such that $n>K$ and $T>K$.
2. For each unit i in the population, the independent variables are fixed in repeated samples on \mathbf{y}_{i}. The rank of $X \equiv\left[X_{1}^{\prime} \cdot X_{2}^{\prime} \ldots \ldots X_{n}^{\prime}\right]^{\prime}$ is K for every possible sample drawn.
3. The disturbance vectors $u_{i}(i \in \bar{N})$ are independently distributed each having mean zero. The variance-covariance matrix of $\mathbf{u}_{i}=\sigma_{i i} I_{T}$
4. The n units are drawn by simple random sampling without replacement from the population of N units.
${ }^{14}$ As in Section 2 we donot distinguish between the labeling order in the satneple and the popalation.
${ }^{15}$ We could carry out the analysis for olher population concepts such as $\boldsymbol{\beta}^{*}=\dot{\Sigma} w_{i} \boldsymbol{\beta}_{i}$. where w_{i} are known weighls.

As was stressed in the introduction, there are two different sources of random variation in this model, one being the behavioral random error, the u veciors and the other being the variation in β vectors callused by the random selection of individuais. In evalhating expectations of random variables it will often be convenient to distinguish these two sources of variation. We shat! use the shorthand S to denote the summation over individual units, i.e., the variation cansed by sampling. And we shall let c denote the integration over the behavioral random errors, the u's.

Since the method of sampling is simple random sampling, the results reviewed in Section 2 apply directly to the $\boldsymbol{\beta}$'s. In particular, from (10) we have

$$
\begin{equation*}
E_{S}\left(\beta_{i}\right)=\beta, \quad i \in \tilde{n} . \tag{39}
\end{equation*}
$$

We shall define the variance-covariance matrix for the population by

$$
\begin{equation*}
\Delta=\sum^{\left(\boldsymbol{\beta}_{i}-\boldsymbol{\beta}\right)\left(\boldsymbol{\beta}_{i}-\boldsymbol{\beta} r^{\prime}\right.} N_{i} . \tag{40}
\end{equation*}
$$

We assume that Δ is positive definite. The sampling errors
(41)

$$
\delta_{i}=\boldsymbol{\beta}_{i}-\boldsymbol{\beta} \quad i \in \bar{n} \text { have zero mean values. }
$$

Using (11) we have
(42)

$$
E\left(\delta_{i} \delta_{i}^{\prime}\right)=\Delta, \quad i \in \bar{n} .
$$

Finally, the matrix version of (13) is (43):

$$
\begin{equation*}
E\left(\delta_{i} \delta_{j}^{\prime}\right)=-\frac{\Delta}{\bar{N}-1} \quad i, j \in \bar{n}, \quad i \neq j . \tag{43}
\end{equation*}
$$

For the model of (3.1) we shall consider two estimates. The first will be the simple average of the least-squares estimators of each unit in the sample. The second estimator is an approximate Aitken estimator.

Aterage Least-Squares Estimator
Let b be the first estimator.

$$
\begin{equation*}
\mathbf{b}=\frac{1}{n} \sum \mathbf{b}_{i} \tag{44}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{b}_{i}=\left(X_{i}^{\prime} X_{i}\right)^{-1} X_{i}^{\prime} y_{i} . \tag{45}
\end{equation*}
$$

Considering the variation in \mathbf{u}_{i} above we have the usual result that

$$
\begin{equation*}
E_{c}\left(\mathbf{b}_{i} \mid S\right)=\boldsymbol{\beta}_{i} \tag{46}
\end{equation*}
$$

where $E_{i}(\mathbf{b} \mid S)$ denotes the conditional expected value of \mathbf{b}_{i} given the i th unit is drawn. From (39) and (46) we obtain

$$
\begin{equation*}
E(\mathbf{b})=\frac{1}{n} \sum E_{s} E_{c}\left[\mathbf{b}_{i} \mid S\right]=\frac{1}{n} \sum E_{s}\left(\boldsymbol{\beta}_{i}\right)=\beta . \tag{47}
\end{equation*}
$$

That is, b is an unbiased estimator of β.

Next we determine the variance covariance matrix for \mathbf{b} and an estimator of it. The error between b and β is

$$
\begin{equation*}
\text { b } \boldsymbol{\beta}-n^{-1}\left[\sum\left(\delta_{i}+\left(X_{i}^{\prime} X_{i}\right)^{-1} X_{i}^{\prime} \mathbf{u}_{i}\right)\right] . \tag{48}
\end{equation*}
$$

It will simplify notation to introduce P_{i} by

$$
\begin{equation*}
P_{i}=\sigma_{i i}\left(X_{i}^{\prime} X_{i}\right)^{-i} . \tag{49}
\end{equation*}
$$

The variance-covariance matrix of b, say $S_{b r}$, is

$$
S_{b h}=E(\mathbf{b}-\boldsymbol{\beta})(\mathbf{b}-\boldsymbol{\beta})^{\prime} .
$$

Evaluating $S_{b t}$ we find

$$
\begin{equation*}
S_{b b}=\frac{\Delta(N-n)}{n(N-1)}+\frac{1}{N n} \sum P_{i} . \tag{50}
\end{equation*}
$$

To obtain an estimate of $S_{h b}$ we shall first evaluate the matrix S_{b}.

$$
\begin{equation*}
S_{h}=\sum \mathbf{b}_{i} \mathbf{b}_{i}^{\prime}-\frac{1}{n}\left(\sum \mathbf{b}_{i}\right)\left(\sum \mathbf{b}_{i}^{\prime}\right) . \tag{5!}
\end{equation*}
$$

Substituting

$$
\mathbf{b}_{\mathbf{i}}=\boldsymbol{\beta}_{i}+\left(X_{i}^{\prime} X_{i}\right)^{-1} X_{i}^{\prime} \mathbf{u}_{i}
$$

into (51) and taking expectations gives

$$
\begin{equation*}
E\left[S_{b}\right]=(n-1) \Delta+(n-1) \frac{\Delta}{N-1}+\frac{(n-1)}{N} \dot{\sum} P_{i} . \tag{52}
\end{equation*}
$$

Let
(54)

$$
\begin{gather*}
M_{i}=I-X_{i}\left(X_{i}^{\prime} X_{i}\right)^{-1} X_{\mathrm{i}}^{\prime} \tag{53}\\
\mathbf{e}_{i}=M_{i} y_{i} .
\end{gather*}
$$

As is well known

$$
\begin{equation*}
s_{i i}=\frac{\mathbf{e}_{i \mathbf{e}_{i}}}{T-K} \tag{55}
\end{equation*}
$$

is an unbiased estimator of $\sigma_{i i}$ so that

$$
\begin{equation*}
\frac{1}{n} \sum s_{i i}\left(X_{i}^{\prime} X_{i}\right)^{-1} \tag{56}
\end{equation*}
$$

is an unbiased estimator of (1/N) $\sum P_{i}$. In view of (52) and (56), an unbiased estimator of Δ is

$$
\begin{equation*}
\hat{\Delta}=\left[\frac{S_{b}}{n-1}-\frac{1}{n} \sum \hat{P}_{i}\right] \frac{N-1}{N} . \tag{57}
\end{equation*}
$$

where
(58)

$$
\hat{P}_{i}=s_{i i}\left(X_{i}^{\prime} X_{i}\right)^{-1}
$$

Thus an unbiased estimate of $S_{i,}$ will be

$$
\begin{equation*}
\dot{S}_{n}=\bar{S}_{n(N-1)^{(N-}+n^{2}}^{\left(N P_{1}\right.} \tag{159}
\end{equation*}
$$

A possible operational difficulty with the estimator for $\Lambda \bar{A}$. is that it man not be positive definite or even positive semi-definite. A accessary condition for \hat{A} to be positive semi-defnite is $n=k^{\text {. }}$ " Howerer this diflicult! does not extend to the estimator for $S_{b t}$.

An Approximate Aitken Estimator

Assuming that the estimate of Δ is positive definite we can create an estimater for β whicl uses more of the model specitication than the arerage least sumare estimator. b. This Aitken estimator has the property that it will be dependent on the partictar X matrix which is drawn. To form this estmator of β we follow Swamy (1971. (! ? pter 4) and write the sample system of $n T$ observations (37 , together als
(6)

$$
y=x \beta+D(X) \delta+u
$$

where

$$
\left.\begin{array}{c}
y=\left(y_{1}^{\prime} \cdot y_{2} \ldots \ldots\right.
\end{array} \boldsymbol{y}_{n}\right)^{\prime} .
$$

Conditional on X the $n T \times 1$ disturbance vector for (60). $D(X)+$ a hats the foilowing varante covariance matrix

(61)

$$
\left[\begin{array}{cccc}
X_{1} \Delta X_{1}^{\prime}+\sigma I & -z X_{1} \Delta X_{2}^{\prime \prime} & \cdots & --X_{1} \Delta X_{n}^{\prime} \\
-z X_{2} \Delta X_{1}^{\prime} & X_{2} \Delta X_{2}^{\prime \prime}+\sigma I & \cdots & --X_{2} \Delta X_{n} \\
\vdots & & & \vdots \\
-z X_{n} \Delta X_{1} & \cdots & & X_{n}^{\prime} \Delta X_{n}^{\prime}+\sigma I
\end{array}\right]
$$

where $z=1 / N-1)$ and $\sigma=\left(1 N \sum \sigma_{n}\right.$. The matrix $H(\theta)$ is a symmetriont $\times n I$ matrix. It is functionally dependent on X . z and an unknown ! $[K(K+1)+2]$
${ }^{10}$ Sec Schmatensé (1472 p. 6 for a proof of this result for Swamy specitiation of the random codlicient model. Swamy (1971. (hapter t) That proof earries over to our specification

The croces in D are $T \times K$ null matrices
vector of parancters. θ. contaning the distinct demenis of Δ and σ arranged in a particntar order. It can readily be stiewn that $H(\theta)$ has an inverse ${ }^{\text {a }}$ Conditional on X the BLLE of β as the Atken estimator.
(62)

$$
\mathbf{b}(\theta)=\left(X^{\prime} H(\theta)^{-1} X\right)^{-1} X^{\prime} H(\theta)^{1} y
$$

Since Δ and σ are unknown. $b(\theta)$ is not operational. We can. however. form an approximate Aitken estimator by substituting unbiased estimates for A and σ. Thus let $H(\hat{\theta})$ be the $n T \times n T$ matrix formed by substituting $\hat{\Delta}$ for Λ and $s=(1 / n) \sum s_{i i}$ for σ into $H(0)$. The approximate Aitken estimator is

$$
\begin{equation*}
\mathbf{b}(\hat{\boldsymbol{\theta}})=\left|X H(\hat{\boldsymbol{\theta}})^{-1} X\right|^{-1} X^{\prime} H(\hat{\boldsymbol{\theta}})^{-1} \mathbf{y} \tag{6.3}
\end{equation*}
$$

We conjecture that under fair!y gencral conditions b($\hat{\theta}$) will have desirable asymptotic properties. ${ }^{1 "}$

3.3. Random Sampling Withoni Replacement With Unéqual Prohabilitio's

We now generalize from simple random sampling to random sampling without replacement with unequal probabilities. We again consider wo wstimators: a simple weighted average of the least-squares estimators and an approximate Aitken estimator.

We make the following assumption Assumption 3.2
(1)-(3) the same as Assumption 3.1 (1) (3).
(4) Sampling is done without replacement with unequal probabilities. π_{i} will be the overall probability that the i th unit is drawn and π_{i} the joint probability that the i and j th units are drawn.

Weighted Average of Ledst Sauares

From (35) it follows that a natural estimator for β is a simple weighted aterage of the least-squares estimators. where the weights are inversely proportional to the probability of being selected in the sample. That is. consiter the estimator \mathbf{b}^{*}.

$$
\begin{equation*}
\mathbf{b}^{*}=\frac{1}{N} \sum \frac{\mathbf{b}_{i}}{\pi_{i}} \tag{64}
\end{equation*}
$$

Using (29) and (46) we find

$$
N E\left(\mathbf{b}^{*}\right)=E_{S}\left[\begin{array}{c}
E_{i}\left(\mathbf{b}_{i} \mid S\right) \\
\pi_{i}
\end{array}\right]=E_{i}\left[\sum_{\pi_{i}}^{\boldsymbol{\beta}_{i}}\right]=\dot{\sum} \beta_{i}
$$

[^2]so that b^{*} is an unbiased estimator of β. Let $S_{p \cdot n}$. be the variance covariance natrix for \mathbf{b}^{*}. Evaluating $S_{b \mapsto}$, we find

By inspection of (65) we recognize that an unbiased estimator of $S_{r \cdot \infty}$ is

$$
\begin{equation*}
\hat{S}_{b^{*}, *}=\frac{1}{N^{2}}\left[\sum \frac{\left(1-\pi_{i} \mid \mathbf{b}_{\mathbf{i}} \mathbf{b}_{i}^{\prime}\right.}{\pi_{i}^{2}}+\sum \frac{\mathbf{b}_{i} \mathbf{b}^{\prime}\left(\pi_{i j}-\pi_{i} \pi_{j}\right)}{\pi_{i j} \pi_{j} \pi_{j}}+\sum \frac{\hat{P}_{i}}{\pi_{i}}\right] . \tag{66}
\end{equation*}
$$

All Approximate Aitken Estimator

We now develop an approximate Aitken estimator for this model. As before the analysis is conditioned on X.

To construct the Aitken procedure we would like to write an observation at. say, the th draw as

$$
\begin{equation*}
\mathbf{y}_{r}=X_{r} \boldsymbol{\beta}+\mathbf{v}_{r} \tag{67}
\end{equation*}
$$

where the disturbance \boldsymbol{v}_{r} satisfies

$$
\begin{equation*}
E\left[\mathbf{v}_{r} \mid X\right]=\mathbf{0} . \tag{68}
\end{equation*}
$$

However. for random sampling without replacement with unequal probabilities.

$$
v_{r}=X_{r}\left(\boldsymbol{\beta}_{r}-\boldsymbol{\beta}\right)+u_{r}
$$

and

$$
\begin{equation*}
E\left[\mathrm{v}_{r} \mid X\right]=X_{r}\left(\dot{\sum}_{i}^{\dot{ }} \boldsymbol{\beta}_{i} p_{i}(r)-\beta\right) . \tag{69}
\end{equation*}
$$

Note that the expected value of \mathbf{v}_{r} will not vanish unless $p_{i}(r)=1 / N$.i.e., we engage in simple random sampling. To avoid this problem we transform each draw in the following way. If the th unit in the population is chosen on the rth draw write

$$
e_{r}=N^{-1} p_{1}(r)^{-1}
$$

and let

$$
\overline{\mathbf{y}}_{r}=\mathbf{y}_{r} e_{r} . \quad \tilde{\boldsymbol{\beta}}_{r}=\boldsymbol{\beta}_{r} e_{r} . \quad \tilde{\mathbf{u}}_{r}=\mathbf{u}_{r} e_{r} .
$$

The transformed representation of the rth draw is then

$$
\begin{equation*}
\tilde{\boldsymbol{y}}_{r}=X \tilde{\boldsymbol{\beta}}_{r}+\tilde{\mathbf{u}}_{r} \tag{70}
\end{equation*}
$$

and the expected value of $\overline{\boldsymbol{\beta}}=\boldsymbol{\beta}$. The difficulty with this particular transformation is that the variance-covariance matrix for the transformed system of n draws depends on the draw-by-draw probabilities, the $p_{i}(r)$ and $p_{i j}(r, s)$ terms. To circumvent this complication we assume that the sample design satisfies the following equations. ${ }^{20}$
${ }^{20}$ If we interpret all quantities as referring to a particular stratum then whenever the number sampled (n) within a straum is snall relative to the number of units in the stratum (N). equations (71) and i72) are likely to be adequate approximations (within the stratum). See Cochran (1962. p. 260-262) for a description of a common method for selecting units with unequat probabilities but without eplace ment which will approximately satisfy thesc equations within a stratum. In this case the approximate Aitken estimator developed in the text will be defined for each stratum. An estimate of the overall population mean for all strata taken together can then be formed by suitably averaging the estimates from the different strata.

$$
\begin{gather*}
p_{i}(r)=\frac{\pi_{i}}{n} \quad \text { for all } r \in \bar{n} \text { and } i \in \bar{N} \tag{71}\\
p_{i j}(r, s)=\frac{\pi_{i j}}{n(n-1)} \quad \text { for all } r, s \subseteq \bar{n}, r \neq s \text { and } i, j \in \bar{N}, i \neq j .
\end{gather*}
$$

We now anailyze the transformed system of equations having the form of equation (70) for all $r \in \bar{n}$. where $e_{r}=n / \pi_{i} N$ when the th unit is chosen at the r th draw. The following results will be useful in this analysis. From (71) and (72) we can easily show that for draws r and $s, r \neq s$,

$$
\begin{gather*}
E_{s}\left(z_{r}\right)=\frac{1}{n} \dot{\sum} \pi_{i} z_{i} \tag{73}\\
E_{s}\left(z_{r_{s}} z_{s}\right)=\frac{1}{n(n-n)} \sum \pi_{i j} z_{i} z_{j} .
\end{gather*}
$$

From (73) we find
(75)

$$
E_{\mathrm{S}}\left[\tilde{\boldsymbol{\beta}}_{r}\right]=\sum_{i}^{\sum_{i}} \tilde{\boldsymbol{\beta}}_{i} p_{i}(r)=\sum_{i} \boldsymbol{\beta}_{i} \pi_{i} n=\frac{1}{N} \sum_{i} \boldsymbol{\beta}_{i}=\boldsymbol{\beta} .
$$

Let δ_{r} be the sampiing error in the transformed random coefficient $\tilde{\beta}$,

$$
\begin{equation*}
\boldsymbol{\delta}_{r}=\overline{\boldsymbol{\beta}}_{r}-\boldsymbol{\beta}, \quad r \in \bar{n} . \tag{75}
\end{equation*}
$$

By construction

$$
E_{S}\left[\delta_{r}\right]-0 \quad r \in \bar{n} .
$$

Each δ_{r} will have the same variance-covariance matrix. say $\dot{\Delta}$.

$$
\dot{\Delta}=E \bar{\delta}_{r} \delta_{r}^{\prime}=E \tilde{\beta}_{\beta} \tilde{\beta}_{r}^{\prime}-\beta \beta^{\prime}
$$

Evaluating $\tilde{\Delta}$ gives

$$
\begin{equation*}
\tilde{\Delta}=\sum \frac{\beta_{i} \beta_{i}^{2}\left(n-n_{i}\right)}{N^{2} \pi_{i}}-\frac{1}{N^{2}} \dot{\Sigma} \beta_{i} \beta_{j} . \tag{76}
\end{equation*}
$$

We assume $\bar{\Delta}$ is positive definite. By inspection of (76) we infer that an unbiased estimator of $\bar{\Delta}$ is

$$
\begin{equation*}
\hat{\Delta}=\sum \frac{\mathbf{b}_{i} \mathbf{b}_{i}^{\prime}\left(n-\pi_{i}\right)}{N^{2} \pi_{i}^{2}}-\sum \frac{\hat{P}_{i}\left(n-\pi_{i}\right)}{N^{2} \pi_{i}^{2}}-\frac{1}{N^{2}} \sum \frac{\mathbf{b}_{i} \mathbf{b}_{j}}{\pi_{i j}} . \tag{77}
\end{equation*}
$$

The covariance between $\boldsymbol{\delta}_{r}$ and $\boldsymbol{\delta}_{s}$. saly $\bar{\Delta}_{c}$, will be identical for all $r \neq s$ and satisfy

$$
\tilde{\Delta}_{c}=-\frac{\tilde{\Delta}}{N-i} \quad \text { for all } r \text { and } s \in \bar{n}, r \neq s
$$

Using the foregoing results, the system of $n T$ observations may be written as

$$
\begin{equation*}
\tilde{y}=X \beta+D(X) \delta+\tilde{\mathbf{u}} \tag{78}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tilde{y}=\left|\tilde{y}_{1}, \tilde{j}_{2} \ldots \tilde{\boldsymbol{y}}_{n}\right| \\
& \tilde{u}-\left(\tilde{u}_{1}, \tilde{u}_{2} \ldots \ldots \bar{u}_{n}\right\}^{\prime} \\
& \dot{\delta}=\left\{\dot{\delta}_{\mathrm{i}}, \tilde{\delta}_{2} \ldots \ldots \dot{o}_{n}^{\prime} \mid\right.
\end{aligned}
$$

and X and $D(X)$ are given beneath (for). Given X the disturbance in (7s) has a variatice covariance matrix G((φ)
(79)
where ϕ contains the distinct unk nown parameters elements of $\bar{\Delta}$ and $\dot{\sigma}$. With $\bar{\sigma}=\left(n_{i} N^{2}\right) \sum\left(\sigma_{i i} \pi_{i}\right)$.

If Δ and $\grave{\sigma}$ were known.

$$
\mathrm{b}(\varphi)-i X^{\prime}\left(H(\varphi)^{\prime} X\right)^{\prime} X^{\prime}\left(i(\varphi)^{\prime}{ }^{\prime}\right.
$$

would be the BLUE of β. An approximate Aitken estimator may be formed by substituting $\hat{\bar{U}} . \tilde{\Delta}_{i}=\overline{\bar{X}}(\mathbb{N}-1)$ and $\overline{\bar{\sigma}}=\left(n N^{\prime}\right) \sum_{\sum}^{2}\left(s_{i i} \pi_{i}^{2}\right)$ for $\bar{\Delta} \tilde{\Delta}_{i}$ and $\bar{\sigma}$ into $G(\varphi)$ to obtain $G \hat{\varphi})$: the estimator is

$$
\begin{equation*}
\left.h(\hat{\varphi})=(X G \hat{\varphi})^{\prime} \gamma^{\prime}\right)^{\prime} X^{\prime} G(\hat{\varphi})^{\prime} \tilde{\mathbf{y}} . \tag{80}
\end{equation*}
$$

If $\hat{\bar{\Delta}}$ is not positive definite for at least positive semidefinite) we face a negative variance problem. ${ }^{21}$ There does not appear to be an casy solution to the negative eariance problem. One can never be sure whether or not the result arises because of a model misspecification or is jest an amomaly of a siven sample

An Extemsion

It is not difticult to see how these results may be generalized to permit conemporaneous correlation between u s in the population. That is. consider Aswinption 3.3.
(11). (2). (4) same as corresponding conditions in Assumption 3.2.
(3) The disturbance vectors $\mathbf{u}_{4}, \vec{i} \in \overline{\mathrm{~V}}$ eath have mean /cro and $E u_{i} \mathbf{u}_{i}^{\prime}=\sigma_{i j} I$ for all i and j.
The correct unbiased estimator of $\bar{\Delta}$ becomes

where

$$
s_{i j}=y_{i} M_{,} M_{j} v_{j} \operatorname{trace}\left(M_{i} M_{j}\right)
$$

${ }^{21}$ Sce Swamy (1971) and Schmalensee (1972) for discussions of this problem and additional

The matrix $(i(\varphi)$ and therefote (i) $\hat{\Phi})$ changes atso for Assmption 3... The ith bock diagonal matrix is still

$$
x_{i} \tilde{\Delta} X_{i}^{\prime}+\bar{\Pi} I
$$

but the : jth ofl-diagonal natrix becomes

$$
X_{i} \tilde{I}_{4} \dot{H}_{j}+\dot{\sigma}_{l} l \quad \text { where } \bar{\sigma}_{l}=\frac{1}{n \mid n-1)^{2}} \sum \pi_{i}, \sigma_{i} j_{i}^{\prime} i_{j}^{\prime}
$$

4. Future Extinshons

In this paper we explore the consequences of using information on the design of a sample survey to estimate population averages in a linear model. An analysis of the sampling properties of the alternative estimators considered awaits further study.

Finally. we treat the sample design as being given exogenomsly It may prove illuminating to relax this assumption and rank alternative sample designs oil the basis of their precision in estimating popalation averages in a linear model.

Eicmomist. Beard of Goternors Federal Reserte Sysem

$$
\text { Applidix: Inerse or } H i(\theta)
$$

$H(\theta)$ may bo written as

$$
\begin{align*}
H(\boldsymbol{\theta}) & =D[Z \otimes \Delta] D^{\prime}+\sum \otimes I \tag{1}\\
& =R+D B D^{\prime}
\end{align*}
$$

where \otimes is the Kronecker product symbol.

$$
R=\sum \otimes I_{T} . \quad \sum=\sigma I_{n} . \quad B=Z \otimes \Delta .
$$

and $Z=\left(z_{i j}\right)$ is an equicorrelated matrix with $z_{i i}=1$.

$$
\ddot{z}_{i j}=\cdots!\neq i
$$

Since Δ is positive detinite (by assomption) Δ 'exists. The inverse of Z is readily found see Rao il965. p. 53 . problem ?(iill.

Now
(2)
(3)

$$
\begin{gathered}
R^{\prime}=\Sigma^{1} \otimes I^{\prime} \\
B^{1}=Z^{1} \otimes A^{\prime} .
\end{gathered}
$$

Finally. using a result given in Rao (1965. p. 29. problem 29). we find
(H) $\quad(R+D B D)^{1}=R^{1}-R^{1} D\left(D R^{1} D\right)^{1} D R^{1}$

$$
\not+R^{-1} D\left(D B^{-1} D\right)^{-1}\left(\left(D R^{-1} i\right)^{-1}+B\right)^{-1}\left(D R^{-1} D\right)^{-1} D R^{-1} .
$$

Inspecting the r.h.s. of (4) we note that in siew of (2) and (3) the largest matrix io be inverted is $n K$ by $n K$. If Δ is positive semidefmite. $H(1)$ is also nonsingular.

Rherences

 Holden-Diy
Cochran, W. G. (1963). Stmphing Technituts. Second Edition. New York: John Wiley and Sons
 (iovernment Printing Otfice
Cramer. J. S. (1971). Fmpiricul ficmomaries. Amsterdam: North-Holiand
Dhryntes. P. J. (1970). Eromometras. New York: Harper and Rowi
Fleisher, B. M. and Porter, R. D. (1970). 7he Labor Supply of Males 45.59 : A Prifiniaur: Report. Columbus: Center for Human Resource Research. The Ohio State University
Goldberger. A.S. (1964). Ecommetria Theort: New York: John Wiley and Sons.
(1968). Topics in Regressiom Andysis. New York: The Mac Millan Compans

Hajek. J. 11960). Limiting Distributions in Sinple Random Sampling from a Finite Poputation. Pub. Mah. Mast Hungurium Ailat. Sci.. S. 361-374.
Hildreth. C. and Houck. J. P. (1968) Some Estimators for a Linear Model with Randonn Coeflictents. Journel af ala Ameriaton Statisiticul Associatum 63.584 .595.
Hodges. J. I.. and Lehmann. E. L. (1970). Basic Cancepts of Probahility and Statistics. Second Edition San Francisco: Ilolden-Day
Hu. T. W. and Stromsdorfer. E. W. (1970). A Problem of Weighting Bias in Estinating the Weighted
 Asvaciuiom. 513-516.
Juhnston. J (1963). Ecomametria Mehum. New York: McGraw-Hill
Kakwani. N. C. (1967). The Unbiasedness of Zellner's Seemingly Unrelated Regression Equations Estimators. Jonrmal of the Amorizom Sutastiad Associution 62141 -142
Kendall, M. G. and Sthart, A. (1966). The Adeanced Theory af Sutistics. Volume Three. New York: Hafner Publishing Company
Klein. L. R. and Morgan. J. (1951) Resolts of Alternative Statistical Treatments of Sample Sursey Data. Jontual af the Americum Sturssical Avsociatiom, 46. 442460.
Klein. L. R. (i953). A Textook of Ecomomerrics. Evanston: Row. Peterson and Company.
Kmenta. J. (1971). Elements of Ecomometrics. New York: The MacMillan Company.
Konijn. H. S. (146?). Regression Analysis in Sample Surveys. Joarnal of the Ameracan Statistical Assmiution. 57. 590-606.
Lindley. D. V. and Smith. A. F. M. (1972). Bayes Estimates for the Linear Model. Journaf of the Roval Statistical Sorioty. B. 34. 141.
Malinvand. E. (1966). Stutisticul Atrhuts of Economatrics. Chicago: Rand McNally and Company
Rao. C. R. (1965). Litear Statistical heforence and Its Applicutions. New York: John Wilcy and Sons
Roth. 1. (1971). Application of Regression Analysis to Sample Survey Dita. Unpublished mentorandum. Social Security Administration.
Schmalensee. R. (1972). Variance Estimation in a Random Coefficient Regression Model Report \# 72 10. Department of Economics. University of California. San Diego
Swamy. P. A. V. B. (1968). Statistical Inference in a Random Coefficient Regression Model. Ph.D. thesis. University of Wisconsin. Madison
-- (1970). Efficient Inference in a Random Coefticient Regression Model. Ecomamatrica. 38 (1971)
(1971). Statistical Inforence in Random Coefficient Regressiom Models. New York: SpringerVerlag.

- (1972). Linear Models with Randion Coeffeients. To be published in Zarembka. P. (edior). Froniters in Ecumometrics. New York: Academic Press
Theil. H. (1971). Principles of Ecumomerrics. New York: John Wiley and Sons.
Zellner. A. (1966). On the Aggregation Problem: A New Approach to a Troublesome Protlem Report \# 6628 . Center for Mathematical Studies in Business and Economics. University of Chicago. Published in Fox. K. A.. et al. (editors). Ecomomic Miotels. Estimutiom and Rask Progrutuning: Essays in Honor of Gerhard Tintner. New York: Springer-Verlag. 1969

[^3]
[^0]: ${ }^{4}$ See. e.g. Theil (1971. p. 119).
 ${ }^{5}$ The proof follows the standard proof of the Gauss-Markov theorem, Theil (1971, pp. 119-120). The proof consists of showing that the covariance matrix of the least squares estimator. say t. is

 $$
 V=\sum_{i=1}^{q} p_{i} \sigma^{2}\left(X_{s i}^{\prime} X_{\mathrm{si}}\right)^{-1}
 $$

 while any other linear unbiased estimator. say $A_{1} y_{s}$ where A_{s} may be functionally dependent on s - has a covariance mutrix equal to

 $$
 V^{\prime}+\sum_{i=1}^{q} p_{i}\left(A_{s i}^{\prime} A_{s i}\right) .
 $$

 ${ }^{6}$ See Rao (1965). Zellner (1966), Swamy (1968). (1970). (1971), (1972). Theil (1971). Lindley and Smith (1972) and Schmalensee (1972).
 ${ }^{7}$ I am grateful to Professor Zellner for bringing Konijn's valuable study to my attention.

[^1]: ${ }^{8}$ Hodges and Lehmann 11970. Sections 2.3. 4.3.7.2. 9.1 and 10.3). Kendall and Stuart (1966. Chapters 39 40), and Cochran (196,3) are useful intreductions to the sampling theory. We draw on themi in this section.
 "Note that we use braces " $;$ " when the order is irrelevant and parentheses " 1% " when the order becones important.
 ${ }^{10}$ See Hodges and Lehmann (1970. p. 54).

[^2]: ${ }^{14}$ Sec appendia.
 analysis needs to be modified for our wark. Howerer batheh of his analswis dee carry owe to the present problem. For t sufficienti? large with $/ 1$ fixed. we can treat $b_{1}(i=1,2 \ldots .$. . as if they were sample of size a from the pepalation of β s, ic... $\beta_{1}, \beta_{2}, \ldots, \beta_{1}$. Then we can combine the result with the central limit results of Hajch (1960) for finie populations. to get the full set of asymptotic properties of betol. Also. sec Theil (1971. p. 399). If uand δ are symmetrically distributed about the null vecior, then we

[^3]: (1971). An Introduction to Ralesian Interence in Eronmmetrics. New York: John Wiley and Sons

