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Annals of Economic and Social Measurement. 23,1973

ON THE USE OF SURVEY SAMPLE WEIGHTS
IN THE LINEAR MODEL*

BY RicHARD D). PORTER

If individuals have different coefficients in a lincar model. then the choice ol regression technigue for
extimating population averages depends on the sample design. We examme various estimators of the
random cocfficient model for pancl data. where the random component arises from the random selection
of individuals owt of « finite poprdation.

I. INTRODUCTION
1.1. Problem

Sample surveys such as the Current Population Survey are a rich sonrce of
economic data. If the sample is drawn according to the principles of sample
survey theory, cach member will have an atiached weighi. For example. suppose
there are two strata A and B and that a sample is drawn in which members in A
are sampled at a r=te 6:1,000 (six per thousand population individuals in A}
whereas member, in B are sampled at a rate of 3:1.000. Then to cempute a
population *otal. say the total wage bill for the population as a whole, itis sensible
to give awice as much weight to an earnings measurement in B as to an earnings
measurement in A, that is. the weights will be proportional to the iverse of the
probability of being selected. But when different classes or strata are sa mpled at
different rates. should the associated weights be used in estimating a behavioral
econonetric model? And how should they be used? In practice we usnally have
more information abont the method by which the sample was drawn than just
sampling weights for each observation. We also know the type of sumpling pro-
cedure (such as simple random sampling with replacement, simple random
sampling without replacement. stratified random sampling. single-stage Cluster
sampling, multi-stage sampling) as well as detailed probability descriptions of the
procedure. We often know the probability that any unit will be drawn as well as
the joint probability that any pair of units will be drawn. As before. this information
about the sampling design can be incorporated into estimates of population totals,
standard error estimates for the estimated population totals. and so forth. But
what nse should we make of this information in estimating a behavioral econo-
metric model?

In the econometric literature. opinions divide. Some aunthors advocate that
the sample weights be used in linear econometric models in a way which is similar
to the use of weights in computing finite population totals: they recommend
using weighted icast-squares.” Other writers argue that such sample survey

* | wish to thank my colleagues, John Paulus, Joe Sedransk. P.A.V.B. Swamy and my discussant.
Professor Arnold Zellner. for useful criticisms and comments. Thanks also go to my summer assistant.
Ken Wise of Northfield Park and M.LT.,for valuable advice and invaluable Fig Newtons. Anexpanded
version of this paper is available from the author.

' See Klein and Morgan (1951). Klein (1933, pp. 305-313), Hu and Stormsdorfer (1970). and
Cohen. Rea. and Lerman (1970, pp. 193-194).
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information is trrelevant for econometric models.” Most econometric textbook
authors do not discuss this issuc 3

oo . o . . . H N T o N
1.2, Homogeneons Cocflicients : The Choice of the Regression Technigiie Does Not
Depend on the Sample Design

If the coeflicients in the behavioral model are homogeneous throughout the
population. then the sample design does not affect the validity of the usual (feast-
Squares) cstimates. To pursue this point consider the following example.

Suppose there are 4 possible samples of size n that can be drawn from a
population of size N according to the sampling design chosen and that the
probability of selecting each sample is known. To represent this probability
nodcl for sampling we construct 4 random variable § taking on ¢ distinet values
Stas2--os, with associated probabilities Pi-Pa P, Let the regression model
for any sample. say the sth. be given by

(n Y\ =AB +u,.

where X, is a0 x & matrix of regressors. v_ is a n x 1 vector of regressands.
Bisafixed & x 1 vector of urknown coeflicients wund u,is an x | veetor of un-
observed disturbances. We treat X, as fixed so that the only source of variation
Iy, is due to the variation in the disturbance vector u,. We pestulate that u, is
generated by a classical probability mechanism which is independent of the
sampling design and exhibits the usual properties

(2) EluiX) =0 for all 5.

(3) EuuX) = a2 for all s.

where E_ denotes the Cxpectator operator. We distinguish the operator by the
subscript ¢. where ¢ stands for the clussical probability mechanism generating
the disturbances. Assume X has full column rank for ail s so that the least-squares
estimator of B. namely

) bis) = (XX 'xy,

exists.

To evaluate properties of b remember that we must take into account two
sources of random variation : (hat caused by the random selection of individuals
and that caused by the random variation in the disturbance vector. Since the
unconditional expeetation Eb(s)is the sum of the conditional expectations, we have

q
EDi) = Y Ebs)s = sp,.

i=1

A ton (1963), Kmenta
(1971). Malinvaud (1966). The notable exception is Klein's pioncering tex-
book. Klein (1953)- Champerrowne — Champernowne (1969)—takes up survey sampling theory but
does not relate it to the regression mode].
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where E[b(s)|S = s;] represents the conditional expected value of bis) given the
event § = s5;. Given our specification for u we can show that b(s) is an unbiased
estimator of fi. Inserting (4} and (1) into (5) and simplifying gives

q 4
(6) Elbts)) = > E[B+ (X X) '"XulS=sip=B> p =8
=] P 3
The crucial relations used to derive {6) are (a) X, is fixed for a given sainple and
{b) E[u)S = s;] = 0. The assumption that u does not depend on the sampling
procedure is critical for establishing (b).

If we restrict our analysis to be conditioned upon the particular X matrix
which is drawn. then the Gauss-Markov theorem holds and the least-squares
estimator will be a best linear unbiased estimator (BLUE) of B.* Indeed. it wonld
appear that b(s) will have these optimal properties when we ulso allow for sampling
variations.®

The implication of the foregoing analysis is that for homogeneous populations
we are not obliged to incorporate the structure of the samphing plan into ounr
regression analysis. Of course, the sample design is important regardiess of
whether coeflicients are homogeneous or heterogencous.

1.3. Outline of the Paper

In the rest of the paper we adopt the assumption that the coeflicients differ
across individuals. Then it appears that the choice of tne regression technique
depends on the sample design so we explore some procedures for combining the
information on the sample design with the specification of the behavioral model to
obtain estimates of certain population parameters. In Section 2 we review some
results from sample survey theory. We employ these results in Section 3 to form
estimators for the random coefficient regression model based on panel data.
Here the “‘random’ component in the coeflicient arises solely from the random
selection of individuals. Although this problem has been intentively studied
recently,® the analysis has implicitly proceeded nnder the assumption of random
sampling from an infinite population. We consider the more usual sampling
design in which sampling is done without replacement from a finite population
with nnequal probabilities. See Komyjn (1962) for 2 related contribution when the
data source is a single cross section.”

* See. c.g. Theil (1971 p. 119).
* The proof follows the standard proof of the Gauss-Markov theorem, Theil (1971, pp. 119-120).
The proof consists of showing that the covariance matrix of the least squares cstimator. say ¥ is

b

V= poHNLX )

st si

i=1

while any other linear unbiased estimator. say A,y,--where 4, may be functionally dependent on s--
has a covariance matrix equal to

M=

Vo) pldAud).

i

=1

©® See Rao (1965). Zellner (1966), Swamy (1968). (1970). (1971), (1972). Theil {(1971). Lindley and
Smith (1972) and Schmalensee (1672).
’ I am grateful to Professor Zellner for bringing Konijn's valuable study to my attention,
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2. SAMPLING FROM FINITE POPULATIONS

In this section we review some elements of samphing theory from hmlc
populations.® The object of this theory is descriptive : to estimale tinite population
lotals or averages.

2.1. Simple Random Sampling Without Replacement

We start with the concept of an ordered random sample. Let the finite popula-
tion being sampled consist of N items, nmbered 2., N. An ordered sample
from this population is an arrangement of the items in a particular order. For
example, if the population consists of three elements {1.2, 3], there are six possible
ordered samples of size two: (I, 2)0(2, 1, (1 3003, 1).(2.3).(3,2).° When cach of
these ordered samples appears with equal frequency in repetitive sampling, the
sample is called an ordered random sample. Define the product N(N — 1). ..
(N —n+ 1) = a(N.n). Probabilities are herein computed in accord with the

quivalence law of ordered random sampling:
Theorem I (The Equivalence Law of Ordered Random Sampling)

If an ordered random sample of size n is drawn from a population of size N,
then on any particular one of the n draws, each of the N items has the same prob-
ability /N of appearing.

Proof. See Hodges and Lehmann (1970, pp- 55-59).

The theorem generalizes to more than one item in a general way but we need
consider only:

Theorem 2

N .
Any pair of items, say [ and J, has the same probability l/( 5 ) ofappearingon

any 2 specified draws. (Note that we do not indicate the order in which I and J
appear on the two specified draws.)

Proof. Without loss of generality suppose that the two draws are the first and
the second. If I appears on the first and J appears on the second, the remaining
items can be drawn in a(N — 2, — =(N—-2AN-3)..(N—n+ I) ways;
alternatively, J may appear on the first and J on the second in n(N - 2, n - 2)
ways. Thus, the probability of {1.J} on draws | and 2 is 2niN — 2,n -2y

N
N, n = I/( 7) = NN = 1).

Suppose we are not interested in an ordered random sample but in an un-
ordered random sampie. We can obtain an unordered random sample by first
drawing an ordered random sample and then disregarding the order.!©

Let y designate the variable which we are measuring in the population ¥ may
be a scalar or a vector. For the present we will let y be a scalar. The value of y for
the first item in the population is ¥y, for thesecond y,, and so forth. If we consider

§ Hodges and Lehmann (1970, Sections 2.3. 43 7.2 9 and 10.3). Kendall and Stuart (1966.
Chapters 39-40), and Cochran (1963) are useful introductions to the sampling theory. We draw on
them in this section.

? Note that we use braces 117 when the order is irrelevant and parentheses ()™ when the order
becaines important.

'? See Hodges and Lehmann (1970, P 54).
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a random drawing of one item. say 7. from this population. its expected value and
variance are

N N
? Ey]= ) wPriF=vd= ) yliNy=p
f et pa *
N -
® Var[y] = ¥ (3, — W (l/N) = o,
i=1

Note that the population mean and variance. y and o°. are generated by a very
simple probability mechanism: the random drawing of one item from this
population.

It will simplify matters if we adopt the following notational conventions.
Let p(r) be the probability that the ith person is selected on the rth draw. Let
pi{r, s) be the probability that the i and jth individuals are selected on the r and sth
draws respectively. Let N = {1.2....,N} and it = {1.2..... n!. As a shorthand
we wiil write

. N . N N n
Yowi= Y w,  Ywg=oy Y oW, powi= oW,
i=1 j=1i=1 i=1
i#]
and
4
Z“'l = Z Z “‘l
i=t j=1
i)
We next draw an ordered random sample, say (¥, ¥, . .. . ¥,}. from this popula-
? tion. By Theorem 1, each ¥ has the same probability distribution:
9) pir) = 1/N forallie N and rei.
Consequently for each rei
(10) EG) =Y 3N~ =g
(1) Var(5,) = Y5 — 0*N "' = o2,

In view of the proof of Theorem 2 we have
(12) pifr.s) = 1/N(N = 1) forall r.sei,r#sandi,jeN,i # j.

Thus the covariance between J, and ¥, is equal for all r and s. If C is this common
covariance, C satisfies

Var (Zf. = ne? + (n* — n)C.
When n = N,Z)?i is a constant with zero variance so Na? + N(N — )C =0
and
(13) C = —c¢*/(N - 1)

We now consider the problem of estimating p. It is convenient to cast this
probiem in the format of a linear model. Let ¢; be a variable defined by £, = y; — p,
foriin N. If we observe the entire population, y is known exactly ; this implies that
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£.i=12_. N are known quantities. However the sample values 2, = §, — g,
¥ in A are random variables with the foltowing propertics :

(14) pir) = N1 forallie Nandall ren
Pifr.s) = LN(N - 1) forallijeNi#jandr.senr # s.

Our sample (Fy. Vs

-~ 7)) thus belongs in the following setup:

(13) y=1lu+¢
{16) E@ =0
B (17 EEE = 0°Q,Q = (1 — o+ plY
where Q is a n x n matrix. p = —(N - D™ and § = (7). ¥, §,). & = (,.
Eyoo 8 )V =(1 1. .. I)are I x n vectors. For the model of (13).(16). and (17

the best linear unbiased estimator (BLUE) of g is. of course. the Aitken generalized
least-squares estimator

(18) A=y ey
Let
(19) F=114(n - pl

One can easily verify that!!

I
{20) Q= ~—[rl — pllI]
(t - p)r
so that
Q™ =,y
rQ=—"1=,"1,
Thus
(2h ft=rm" Ny = —Z"J' = (') 'ry.
1

That is. the Aitken estimator and the ordinary least-squares estimator are identical
in this case.

2.2, Simple Random Sampling Without Replacement With Unequal Probubilities

; We now relax the assumption that all individuals have an equal chance of
being selected on each draw and permit probabilities of being drawn to differ
between individuals and from drawing to drawing. Most samiple designs are
special cases of this scheme.!? As before let p;{r, s) be the probability that the
i and jth individuals are selected on the r and sth draws respectively in a sample of
size n from a population of size N:iand j range from i to N and v and s from

' This result is weli knowa. Sce. for example. Kendall and Stuart (1966, p. 167).
2 See Kendall and Stuart {1966, p. 177 ff).
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I to n where i # jand r # s. The probability that the ith person is selected on the
rth draw, p(r), is

(22) pAr) = Y Y pir.s)iin — L.
.\!:#]\,l‘!;;

Since someone is always selected at the rth drawing.

N
(23) Y opin =1

i=1

Let ; be the probability that the ith person is selected in the sample,

(24) mo= ) pin.
r=1

Finally, let 7;; be the joint probability that the ith and jth persons are selected in
the sample,

n n

(25) My = 3 Y Pifrs).

r=1s=1
r¥s

Since p;jir, s) = p;is, r). we have, of course, that 7;; = w;;.
For our purposes, it will suffice io characterize the sampling design in terms
of n; and n;;. From (23} and (24) we find

(26) Yo, =n

Froni (22),(24), and (25) we get

N

(27) Y m;={n— bz,
iT1
N N
(28) Y ¥ @, =nn- 1)
Tt
t#j

Before. we were careful to distinguish between the labelling of observations
in the sample and that in the population. The second person in our sample will
not usually be the second person in the population. However, now we will label
the sample observations in the order in which they are drawn and not distinguish
between the order in the sample and the order in the population. As long as we
are considering symmetric functions of sample observations this notational
convention will not lead us astray.

A result we shall often call upon is the following:

Theorem 3

Suppose a sample of sizen, y,, v,. ..., v, 1s drawn from a population of size N.
Then for any function g
(29) ELY gy = 3. mgy)
(30) E[Y glyiv)) = Z T8y V)
147
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Proof. So that there is no ambiguity et us first write out (29) and (30) fully:

] N
(29') EL; gu-,-)J Z. gy
T on n 1 A N
(30) E _Zl Z gty x)) |- El }Zl Ty b)),
AT i
To prove (29) note that
{31 E[Y gte)] =3 Egly).

But by definition Eg(y;) = Z,- gly)p (i) Thus
KLY g6 = £ ¥ glvpfid = ¥ g) Y pid = gy pn,.
i i i J

This proves (29): equation (30) follows by a similar argument. .
We can use Theorem 3 to ebtain a linear unbiased estimator of the population
mean. g
l N
(32) H= g LN

Suppose the same weight r; is to be assigned to an individual whenever he is
selected. A linear estimator will have the form

(33 a= UiV

with the weights to be determined by the unbiasedness condition. Using (29)
with g(1,) = ;) we find

N
(34) E[f] = ) (.

i=1

Then equating coefficients in (32) and (34) we must have

1 » :
(35) ‘[A{ = — Z —
=1’

-

3. SURVEY SAMPLING AND THE RANDOM COFFFICIENT
" REGRESSION MODEL FOR PANEL DATA
31 Introduction
Recently, there has been renewed interest in the r

model.'* A specification leadingtoar
inthe survey

andom coeflicicnt regression
andom coefhicient regression model occurs
sampling framework. Suppose the population consists of N individuals

"*Sec the references in footnote 6. Also sec Hildreth
provides an extensive bibliography on this Jiter

and Houck (1968). Swamy (1971). (1972)
ature.
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and let the economic relationship for the ith unit be given by
(36) v, =XNp; +u.ieN,

where ¥, is a T x 1 vector of observations on the dependent variable. X 5 a
T x K matrix of observations with rank K on K independent variables. B, s a
K x 1 vector of non-random coethicients and u; is a T x | vector of disturbance
terms with mean zero for each i.

It is convenient to think of T as the number of time periods so that. for
example, the rth element of y; and u, refer to the tth period. We allow for hetero-
geneity across individuals: each unit has its own coefhcicnt vector.

‘The random coeflicient model arises when a sample is drawn from a popula-
tion. At the beginning of the first sampling period # individuals are randomly
selected out of the population. In T suceessive periods the same n individuals are
sampled. Assembling the observations on the i individuals for T periods we have'

vi =B, +u
37 v, = XsB, +u,

.‘.n = ‘\.IIBH + un‘

The random selection of individuals determines the random coefticient model
for the system in (37). Let the population coeflicient vector of interest be given by'?

(38) b= %ZB.--

We will develop various estimators for B under two sampling schemes: simple
random sampling without replacement and random sampling without replacement
with unequal probabilities.

3.2. Simple Random Sampling Without Replacement

In simple random sampling the units are drawn without replacement with
equal probabilities. We shall make the following specification initially for the
system of observations in (37) which came from the pepulation in (36},
Assumption 3.1:

1. The number of units sampled (1) and the number of time periods (T) are

such thatn > Kand T > K.

2. For each unit i in the population, the independent variables are fixed
in repeated samples on y;. The rank of X = [X|. X; X.] s K for
every possible sample drawn.

. The disturbance vectors u; (i€ N) are independently distributed each
having mean zero. The variance-covariance matrix of w; = o,/

. The n units are drawn by simple random sampling without replacement
from the population of N units.

4 Asin Section 2 we do not dislinguish belween the labeling order in the sample and the population.
'S We could carry oul lhe analysis for other populalion concepts such as p* = Z w, ;. where w;
are known weighls.
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As was stressed in the introduction, there are two different sources ofrandom
variation in this model, one being the behavioral random error. the u veciors,
and the other being the variation in # vectors caused by the random selection of C
individuals. In evaluating expectations of random variables it will often be con-
venient to distinguish these two sources of variation. We shall use the shorthand
§ to denote the summation over individual units, ie.. the variation caused by
sampling. And we shall let ¢ denote the integration over the behavioral random
errors, the u's.

Since the method of sampling is simple random sampling, the results reviewed
in Section 2 apply directly to the B's. In particular, from (10) we have

(39) E(B) = B, ien.

We shall define the variance-covariance matrix for the population by
wil s ( P )’

a-y BBy

We assume that A is positive definite. The sampling errors

(40)

(41) o, =8 -8 i € i have zero mean values.

Using (11) we have

(42) E®8)=A  ien
Finally, the matrix version of (13) 1s (43):
(43) E8) = _ﬁﬁ ijen, — i#j

For the model of (3.1) we shall consider two estimates. The first will be the
simple average of the least-squares estimators of each unit in the sample. The
second estimator is an approximate Aitken estimator.

Average Least-Squares Estimator

Let b be the first estimator,

I
(@d) b=-Yb,.
n
where
(45) b, = (XX, 'Xiy,.

Considering the variation in u; above we have the usual result that
(46) E(bS) = B,

where E (b]S) denotes the conditional expected value of b; given the ith unit is
drawn. From (39) and (46) we obtain

1
(47) E) = ¥ EGEDbS] = |y Egp) = p.

Thatis, b is an unbiased estimator of p.
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Next we determine the variance covariance matrix for b and an estimator
of it. The error between band B is

{48) b B =n""D + (XiX) "X
It will simplify notation to introduce P, by
(49) Po= o, (XX
The variance-covariance matrix of b, say §,,., is
Sin = E(b — B)(b — f).
Evaluating S, we find

_ﬂN—n) |

e S = o R

To obtain an estimate of S,, we shall first evaluate the matrix S,.

(s1) 5, = b — (T h)(Eb).

Substituting
bi = '}i + (X;'Xi)_ l‘\’;ui

into (51) and taking expectations gives

A n - 1e
(52) E(S}=0m— DA+ (n - l)ﬁ + —-—A—J—Z P,
Let
(53) M, =1 - X{XX) X!
(54) € = 1\4,—)’54
Asis well known
ee;

55 S
(33) 7 g
1s an unbiased estimator of ¢, so that

1
(56) =Y s XiX)!

n

is an unbiased estimator of (l/N}Z P.. In view of (52) and (56), an unbiased

estimator of A is

R S le N =1
e A= [ e
where
(58) P =s/X:X) "
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Thus an unbiased estimate of 8, will be

. - (N i I

(59) S - 1P

= A +o, )P
nN -1 =

A possible operational difficulty with the estimator for A, A is that it nty
not be positive definite or even positive semi-definite. A anccessary condition for
A to be positive semi-definite is o> K However. this difliculty does not extend
to the estimator for 5,

An Approximate Aitken Estimator

Assuming that the estimate of A is positive definite. we can create an estimitor
for B which uses more of the mode! specitication than the average least square
estimator. b. This Aitken estimator has the property that it will be dependent on
the particular N matrix which is drawn. To form this estimator of § we follow
Swamy (1971, Clapter 4). and write the sample svstem of n'f observations {37
together as
(60) y=XB + DI + u

where

u P PR

Conditional on X the »71 < 1 disturbance vector for (60). DIXN)S + u. has the
foilowing variance covariance matrix

E[ID(X)S + u! 'DIX) + u)1X] = H(0) -
[N, AN + 6l
(61) ~INLAY

—2X, AN N AN + al
wherez = L{N — ando = (1 z\"lz @, The matrix F(@)isa svymmetrienT < nT

matrix. It is functionally dependent on Y. = and an unknown Y{K(K 4 1)+ 2]

- |

10 See Schnalensee 197 ; : o1 : i
See Schmalensee (1972, p. 6} for a proat of this result for Swamy™s specitication of the random
coul!lc_njm model. Swamy (1971, Chapter 4) That proof currics over 10 our specification.
' The seroesin D are T x K null matrices,
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veetor of paramcters. 0. containing the distinet clemenis of A and ¢ arranged in a
particular order. It can readily be shiown that H(9) has an inverse.'® Conditional
on X the BLUE of §is the Altken estimator,

(62) b(0) = (X"H{0) ‘X)X H(@) ‘v,

Since A and ¢ arc unknown. hi6) is not operational. We can. however, form an
approximate Aitken estimator by substituting unbiased estimates for A and a.
Thus let H®) be the a7 x nT matrix formed by substituting A for A and
s = (I/n) Y s, for ¢ into H(0). The approximate Aitken estimator is

(63) b = (X H®) X)X HB)

We conjecture that under fairly general conditions b®) will have desirable
asvmptotic pruperties.'”

3.3, Random Sampling Without Replacement With Unequal Probabilities

We now generalize from simple random sampling to random sampling
without replucement with unequal probabilities. We again consider two estimators :
a simple weighted average of the least-squares estimators and an approximate
Aitken cstimator.

We make the following assumption
Asswmption 3.2

(13 the same as Assumption 3.1 (1) (3).

{#) Sampling is donc without replacement with unequal probabilities. m; will

be the overall probability that the ith unit is drawn and r;; the joint
probabtlity that the i and jth units are drawn.

Weighted Average of Leuast Squares

rom (35) it follows that a natural estimator for B is a simple weighted average
of the least-squares estimators. where the weights arc inversely proportional to
the probability of being selected in the sample. That is. consider the estimator b*.

I < b
4 HEE
(64 b N =

Using (29) and {46) wc find

NEb*) = I\l v b"-(*-’-f’é)] =E|Y &'J =3B
n ;

!

P See appendia.

M S Swaray (19711 (1972) for a di-cussion of large sample propertics when N iy intinite. His
analysis needs to be modified for ous work. However. ninch of his @nalysis does carry over to the present
problem. For Tsuflicientiy large with z fixed. we can treavh, (i = 1,20, i) ax if they were sample of
size 1 from the population of B's, e (B, B... ... B2 Then we can combine the result with the centrai
limit results of Hajek (1960) for finiic popul.nmn\ to get the full set of asymprotic propertics of b0).
Also. see Thail (1971, p. 399). 11 u and 8 are symmetrically distribnted about the aull vecior. then we
cannse thetype of.lr}:umunl devetoped by Kakwani (1967110 show that bid)is un unbased cstimator of .
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so that b* is an unbiascd estimator of B. Let S,.,. be the variance covariance
matrix for b*. Evaluating §,.,. we find

i [ - Px - ﬁ:B:“ - T(‘-) . Biﬁ;(n”‘ - 71,-71})
(65) Spe = 3| 3 LI S AT }

N ; nn;

By inspection of (65) we recognize thuat an unbiased estimator of S,.,. is
- ! [ (1 — m)bp .bb(n; — nm) P
(66) Spows = 3| 3=t YL TS ]

N2 n; L n

ity i

An Approximate Aithen Estimator

We now develop ant approximate Aitken estimator for this model. As before

the analysis 1s conditioned on X. A
To construct the Aitken procedure we would like to write an observation at,

say, the rth draw as

(67) .vr = /\"B + ‘.r
where the disturbance v, satisfies
(68) Elv|X]=0.

However. for random sampling without replacement with uncqual probabilities.
t, = Xr(Br - B) +u,
and

(69) E[v,iX] = x',(Zprifr) - ﬁ).

Note that the expected value of v, will not vanish unless p(r) = 1/N.ie., we cngage
in simple random sampling. To avoid this problem we transform each draw in
the following way. If the ith unit in the population is chosen on the rth draw write

¢, = N'p(r)~!

and let

Jo=ve. B o=Be. G =ue.
The transformed representation of the #th draw is then
(70) .= XB +1,

and the expected value of f§, = B. The difficulty with this particular transformation
is that the variance-covariance matrix for the transformed system of n draws
depends on the draw-by-draw probabilities, the pir)and p,(r, s) terms. To circum-
vent this complication we assume that the sample design satisfies the following
equations.>®

2°1f we interpret all Quantities as referring 10 a particular stratum then whenever the nuntber
sampled (n} within a strawm is small relative 1o the aumber of uts in the stratum (V). equations (71)
and {72) are likely to be adequate approximations (within the stratum). See Cochran (1962, p. 260-262)
for a description of a common method for selecting units with unequal probabilities but without
replaccment which will approximatcly satisfy these cquations within a stratum. In this case the approxi-
niate Aitken estimator developed in the text will be defined for each stratum. An estimate of the overall

populalioq mean for all strata taken together can then be formed by suitably averaging the cstimates
from the different strata.
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(n pir) = g foraltrenandie N
n

TT.. _
(72) pijlr.s) = -(»»-‘!-ﬂ forallr.sesnr #sandijeN.i #|.
nin —

We now analyze the transformed system of equations having the form of
equation (70) for all r e i, wherc e, = n/m, N when the Ith unit is chosen at the rth
draw. The following results will be useful in this analysis. From (71) and (72) we
can easily show that for draws r and s. r # s,

1 .
(73) Efz) = Y s,
(74) )= S
(2,25 S & e

From (73) we find

= . A T
(75) ES[BJ = Zﬁ,[’,(l} = Z ﬂl TF' = ‘V ZBI = l}

Ten

Let &, be the sampiing error in the transformed random coeflicient fi,
(75) 5, =f, —B. rei.
By construction

EJ8,1=0 rein.
Each 8, will have the same variance -covariance matrix, say A.

A= E8,5, = EBB, — Bp.

Evaluating A gives

(76) A= Z Ll - ,'[“i) B ’l Z p.B,

y?' o 2
N n; N~

We assume A is positive definite. By mspection of (76} we infer that an unbiased
estimator of A is

2 bbin - 7)) Pin - m) l hb
77 A = - te N = " - 7‘" - '-5 —Zf‘l‘ b ) ‘"l ’J.
1 Z Nin} Z N<n; N- Z n;
The covariance between 8, and 8. say 5(, will be identical for all r # v and

satisfy

< A

A= - forall rand sein,r # ».

N —i

Using the foregoing results, the system of nT observations may be written as
(78) ¥=XB+DIXW +
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where
V=¥ 5. . ¥,
i - (). i, ]
0 = (0,0, ... 3,

and X and DY) are given beneath (60). Given X the disturbance 1in (78) has o
variance: covariance matrix Glg)

Fn&n+&1 VAN, ,n&x;]
(79) Gw#:‘.L&X} NLANS + G VLAY
[ XA N . N AN

\\huc @ contains the distinct unknown parameters elements of Aand &, with
= {(n'N~ )Z(r’ ).
If A and 6 were known.

W) < iN'Go) 'N) "N Gl 'y

would be the BLUE of B. An approx.malc Aitken umm(m may be formed by
stubstituting A. A =AN -1 and & = s (n N )\ (s; ©7) for A. A‘ and 6 into
Glo) 10 obtain (;up)_ the estimator is

(80) M) = (X'Gid) ' X) NGl T,
If A IS not posm\c definite (or at least positive semidefinite) we face a Negative
virtance problem.>! There docs not appear to be an easy solution io the negative

variance problem. One can never be sure whether or not the result arises because
of a model misspecification or is just an anomaly of o given sample,

An Extension

[tis not diflicult to see how these results may be generalized to permit con-
temporancous correlation between u's in the population. That is. consider
Asswmnption 3.3,

(. 2) () same as corresponding conditions in Assumption 3.2,

{31 The disturbance vectors u i€ Ny each have mean seroand Luu, = g, [

for all i and ;.
The correct unbiased estimator of A becomes

i mem-ﬁ_vﬁm—m; -y lymﬁhyﬂ

2 o z22 T2 Tl
Nen? RNTe A\ T, A SN T,

(81
where
Sip = NV My, trace (MM )

G Cuame . - - . .
Sce Swamy (1974} and Schmalensee (1972) for discussions of this problem and additional
references.
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The matrix G(g) and therefore Gy changes also for Assumption

block diagonal matrix is still
NAX, + 5
but the ./ jth ofi-diagonal miatrix becomes
i

NYAX 4G, where 6, = non “}_‘ 000

4. FUTURE EXTENSIONS

I

by

RE

3. The iith

I this paper we explore the conscquences of using information on the design
of a sample survey to estimate population averages in a linear model. An analyvsis
of the sampling properties of the alternative estimators considered awaits further

study.

Fivally. we treat ihe sample design as being given exogenously. [t may prove
ihiminating to relax this assumption and rank alternative sample designs o the
basis of their precision in estimating popalation averages in @ linear model.

Eeononiist. Board of Governors
Federal Reserce System

APPENDIX: INVERSE OF [7(8)
H(9) may be written as
() HO =DZ@AD +Y &1
= R + DBI
where & is the Kronecker product svmbot.
R=Y&l,.. Y=a, B=Z@A
and Z' = (z;;) is an cquicorrelated matrix with =, =

L= oLl #

Since A is positive definite (by assumption) A ! exists. The inverse of Z is readily

found. see Rao {1965, p. 53, problem (i,
Now
(2) R'=Y "ai,

(3) B'=z"A "

Finally. using a result given in Rao (1965, p. 29. problem 29). we find

(4 (R+DBDY "= R "R 'DIDR ')y 'DR !

~ ROMDIDB'DY "WWOR DY 4+ By “DR Dy 'DR Y

Inspecting the r.hs. of (4) we note that in view of (2) and (3). the largest matrix o
beinverted is nK by nk. If A is positive semidefinite. H(0) is also nonsingnlar,
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