This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: New Measures of Wage-Earner Compensation in Manufacturing, 1914-57

Volume Author/Editor: Albert Rees

Volume Publisher: NBER

Volume URL: http://www.nber.org/books/rees60-1
Publication Date: 1960

Chapter Title: Sources and Methods for the Estimates of Average Earnings per Hour at Work

Chapter Author: Albert Rees
Chapter URL: http://www.nber.org/chapters/c9485
Chapter pages in book: (p. 7-20)

2

Sources and Methods for the Estimates of Average Earnings per Hour at Work

The NBER series on average eamings per hour at work is composed of a number of segnents which will be discussed below in turn. The order of discussion is not strictly chronological, but follows the logic of the construction of the scries.

1947-57

For all years in this period excep rest, average earnings per hour at work were computed directly from the Census of Manufactures or the Ammal Survey of Manufactures by dividing total wages by total manhours worked by production workers. The figure for 191^{8} is interpolated using BLS average earnings per hour paid as an interpolator. The 1947 figmes from BLS and the Censns are the same, as are the interpolated 1948 figures.

1932.39

The Censuses of Mamfactures of 1933, 1935, 1937, and 1939 included special reports of man-hour statistics for selected indhstries. The industry coverage inc eased from 3^{2} industries in 1933 to 171 industrics in 1939, using a classification of industries more detailed than that of the body of the Census of Mamfactures. The coverage of establishments within the selected industries was generally very high. For the selected industries as a whole the proportion of all wage camers covered by the manhour statistics was 89.2 per cent in 1933, 91.3 per cent in 1935 . 91.6 per cent in 1937 , and 89.7 per cent in 1939.

The proportion of mamfacturing wage eamers covered by the BLS man-hour data was 28 per eent in 1932 , 1^{2} per cent in 193 p , and 55 per fent in 19fo. The covemge was somewhat higher than this on the average for the detailed industries for which average homry camings were published, but it was still substantially befow the within-industry coverage of the Census man-hom statistios. The higher coverage of the latter and their ind hasion of very small firms ane the reasons for plating principal reliance on them.

To obtain our estimates of average canings per hour of work for all manufacturing, the industries of the Census mam-hour statistics were first matched with those of the BLS a werage hourly camines series. This matching could be done with accuracy for 1939 becanse the BI.S published the 1939 Census cmployment corresponding to its industry definitions. For 1933 , 1933, and 1937 there may be some croms in matching. For cach pair of mached industries the Census average hourly earnings were divided by the BLS average hourly camings. The rewhting matios for 1939 are shown in Table . These ratios were averaged, using employment weights. The average ratio wats then used to adjust the BL.S allmamlachming series on the assmmption that the percentage difference wonk be the same for the industries not covered by Census man-homr statistics as for those covered. Line 2 of Table 3 shows the correction ratios for each of the four Census years. The 1933 correction factor was applied to 1932 . For 1924 , 93^{66}, and 198^{8} the comection factors for the two adjacent Census years were averaged.
As a check on the procedure just described, the same procedure was followed for arerage weekly hours. The combined corrections for average hourly earnings and average weekly hours were then applied to the BL.S series on average weekly eamings, and the correted figures were compared with average weekly carnings derived from the full Consus of Mamufactures (average annual carmings divided by 5^{2}). In cach case BIS weekly carnings were adjusted downard, and in cach case the adjusted figme was still above the Census figme (see Table 3). The small remaining underadjustment cannot be corrected becamse there is no basis for allocating it between hours and carnings.

The 1939 ratios of Censas to BLS average homly canings by industries are positively correlated with the coverage of the BIS man-hour sample in 1940 . For 4^{i} of the industrics in Tabic 2 for which BLS coverage data have been published, the coefficient of correlation between the carnings ratio and the perentage of coverage was +48 , which is sigmificant at the 1 per cent level. Since the Census man-hour data show that in 1939 the smallest establishments had below average carnings, this

[^0]Sources and Methods for Estimates of Average Earnings per Hour
TABI.E: 2
Comparison of Average Hourly Earnings Data by Industry, 1939

Industry	Average Hourly Earuings (cents)		Ratio (Cul. 2 Divitled by Col. 1) (3)
	$\begin{gathered} \text { BI.S } \\ (1) \end{gathered}$	Census Mim-Hour Statistics (2)	
Slaughtering and meat packing	68.6	64.8.	. 945
Flour	60.5	55.1	. 911
Sugar, beet	58.5	52.6	. 899
Sugar refiting, cane	63.6	61.6	. 969
Malt liquors	91.6	84.7	. 925
Tobaceo	47.6	$44.6{ }^{\circ}$. 937
Cotton smallwares	47.4	44.8	. 945
Cotton manufactures except smallwares	38.9	$37.8{ }^{\text {n }}$. 972
Dyeing and finishing textiles	53.5	52.4 "	. 979
Silk and rayon grods	42.9	$41.1{ }^{\text {a }}$. 958
Woolen and worsted goods	52.8	$51.3{ }^{\text {a }}$. 972
Carpets and rugs, wool	64.4	65.1	1.011
Knit eloth	46.8	47.0	1.004
Knit underwear	41.0	38.6	. 941
Knit outerwear	46.1	$43.4{ }^{\text {a }}$. 941
Hosiery	53.6	$49.3{ }^{\text {a }}$. 920
Work shirts	30.9	30.0	. 971
Shirts, collars, and nightwear, men's and boys'	39.8	$36.1{ }^{\text {a }}$. 907
Underwear and neckwear, men's and boys'	40.1	39.30	. 980
Men's clothing, ne.c.	58.1	$51.5{ }^{\text {a.b }}$. 886
Lumber and timber	48.9	$46.0{ }^{\text {a }}$. 941
Furniture	53.0	49.1 -	. 926
Paper and pulp	62.0	$61.0{ }^{\text {a }}$. 984
Rayon and allied products	64.6	65.3	1.011
Soap	70.7	70.1	. 992
Drugs, medicines, and insecticides	59.2	52.2	. 882
Petroleum refining	97.4	92.0	. 945
Rubber products	75.4	$73.1{ }^{\text {a }}$. 969
Leather	63.4	$61.4{ }^{\text {a }}$. 968
Cement	69.9	67.1	. 960
Brick, tile, and terra cotta	54.3	50.3 ${ }^{\text {a }}$. 926
Pottery and related products	62.5	57.7 . ${ }^{\text {ce }}$. 923
Glass	72.1	$69.1{ }^{\text {a }}$. 958
Nonferrous alloying, rolling, and drawing	72.9	68.0	. 933

Sources and Methods for Estimates of Average Lamings per Hour
TABLE 2 (Cominuad)
Comparison of Average Hourty Earnings Data by Ludustry, 1939
$\left.\begin{array}{lccc} & \text { Average Hourly larnings (conts) }\end{array}\right)$

[^1]Sources and Methods for Estimates of Average Larnings per Hour
TABLE 3
BLS and Census Data on Hours and Farnings, Mannfacturing, Census Years, 1933-39

	1933	1935	1937	1939
1. Average hourly earnings, BLS (ϕ)	44.2	55.0	62.4	63.3
2. Adjusiment ratio	.988	.977	.971	.953
3. Adjusted hourly camings (ϕ)	43.7	53.7	60.6	60.3
4. Average weckly hours, BLS	38.1	36.6	38.6	37.7
5. Adjustment ratio	.996	.998	.982	.993
6. Adjusied weckly hours	37.9	36.5	37.9	37.4
7. Average weekly carnings, BLS $(\$)$	16.73	20.13	24.05	23.86
8. Adjusted wcekly carnings ${ }^{a}(\$)$	16.46	19.63	22.94	22.59
9. Average wecklycarnings, Census ${ }^{t}(\$)$	16.42	19.53	22.71	22.16

Sourca: Computed from Censuses of Manufactures, 1933-39, especially "Man-hom Statistics for SAlected Industries," and Minthly I.cbor Reticte, July, 1955, p. 803.
"The product of hates 2,5 , and $\%$.
${ }^{6} 1939$ definition of inanufacturing used in all ycars.
Table a suggests the explanation for the fall in these ratios. It gives, for nine selected industrics, the Census man-hour data on average hourly earnings by size of establishment, expressed as percentages of the indnstry average. The indnstries were selected to inchude those with the sharpest falls in the earnings ratio, phas two industrics, basic stecl and automobiles, in which there was an especially sharp growth in nnion organization during the period.

Table 4 shows that in each of the nine industries, wages in the smallest establishments fell relative to the industry arerage from 1933 to 1939. In several industries, the smallest establishments had carnings higher than the industry average in 1993, and the 1933 camings ratio was above mity in each of those cases. The fall in the relative camings of these smallest plants meant that in 1939 their omission or muderrepresentation had a greater tendency to pull n p the BI.S average carnings than in 1933, even thongh the sample coverage had improved.
Two possible explanations of the shift in the carnings pattern by establishment size snggest themselves. One is that unionization affected the large establishments most. This is supported by the very large change shown in Table 4 for the antomobile indnstry. The shift in the sted industry, however, is about areage for the industries shown. The other possible explamation is that very small plants cut wages less than others during the Great Depression, perhaps becanse workers were more specialized to the plant or there were closer personal relations between em-

Sources and Melhods for Estimates of Average Earmings per Howr

TABLE 4
Average Hourlv Eamings by Estahbhmont Size, Selected Indastics, 193.3 and 1039 (per cent of industry average)

No. of Wage				1939
	Flour		W'oolen and Worsted	
1-20	87	76	104	90:
21-100	96	95	102	93.
101-2500	113	120		
101-500			99	$98{ }^{\circ}$
Over 500			101	$104{ }^{\circ}$
Earnings ratio ${ }^{\text {b }}$. 965	. 911	1.008	. 972
	Mesiery		Finit Undirucear	
1-20)	87	79	123	96
21-100	91	85	98	94
101-500	96	95	105	101
Over 500	105	109	87	100
Earnings ratio *	. 969	. 920	1.049	. 941
	Petrcleun Refming		Leather	
1-20	90	76	109	88
21-100	88	85	99	92
101.500	93	96	O	92
101.2500				
Over 500	105	105	100	102
Earnings ratio ${ }^{\text {b }}$. 982	. 945	1.054	. 968
	Machine Tools			
1-20	99	81		
21-100	95	88		
101-2500	101	102		
Earnings ratio ${ }^{\text {b }}$	1.030	. 008		
	Blast Furnaues, Stecl Works, and Rolliti Mills .			
1-20	96		Automoólies	
1-100			1	65
21-100		82		
01-500	96		78	64
500-2500	100	8	88	80
Over 2500	102	100	98	100
Farnings ratio:	. 976	103	104	105
	. 976	. 98	. 980	968

Sourace: Computed from Census of Manufactures, 1933 and 1939, "Man-hour Statistios for Se'ected Indhstries."
${ }^{a}$ Regelar factorics only.
${ }^{b}$ Average hourly earnings, Cicnsus man-hour statistics, divided by average hourly carnings, BLS.
c Includes stecl castings in both years.

Soatres and Methods for Estimates of Average Eamings per Hour

ployers and workers. ${ }^{2}$ This argument might account for the cases in which wages in the smallest plants were above the industry averages in 1933.

1939-47

No Census man-hour data are available for the period 1939.47. The NBER camings series for these years was obtained by interpolating a factor for the adjustment of the BLS series with the aist of scattered data from several sources.

The procedure was first to estimate average weekly hours at work for the years $194^{0-4} 6$. As shown in Table 3, the ratio of Census to BLS hours was .993 in the pared industries in 1939. By 19.17 it was .971 for all manufacturing; the drop is due, of course, to the increase in paid vacations, holidays, and sick leave. Available cvidence suggests that this increase was not uniform over the period, but began in carnest after 1943 as a result primaty of policies of the National W'ar Labor hoard. By the end of 1943 , the Board had a genemal policy of approving or ordering a one-week paid matation after one year of service and two weeks after five years, and of approving straight-time pay for six holidays if not worked where this conformed to area or industry practice. ${ }^{3}$

Rough estimates of vacations and holidays paid for aind not worked in 1943 and 1946 were made from data of the National Industrial Conference Board. ${ }^{4}$

The 1943 data cover 150 companies, of which 110 were in manulacturing. Sixty-four per cent of the total number of companies had paid vacation plans; one week after one year and two weeks atter five years was typical. I have assumed that the average for all workers in the companies with plans was one week; for all companies, this means 1.19 per cent of hours paid for were vacation hours. No data were available for paid holidays. Accordingly, the ratio of hours worked to hours paid for 1943 was assumed to be .989 . The figures for $194^{0} 4^{2}$ were linear interpolations between this ratio and the one for 1939 of .993 , derived from the Census data.

The NICB study of 1946 covered 254 companies, of which 215 were in manufacturing. The typical paid vacation plan was unchanged, but the percentage of all companies with plans rose to 88 . In addition, 4^{2} per
${ }^{2}$ This point was suggested by H. G. Lewis.
${ }^{3}$ See The Termination Report of the National War Labor Bogrd, W::shingion, 1917, Vol. I, pp. $33^{8-41}, 361 \cdot 6$. Since wages were being held down by wage contols, employers had a strong incentive to give all allowable fringe benefits.

4 Wartime Infuences on Vecation Policies, Studies in Personnel Policy No. 56. New York. 1943, and Vacation and Holiday Practice, Studies in Personnel Policy No. 75, . .ew York, 1946 .

Sources and Methods for Iistimates of Average Earnings per Hour cent of all companies gave pay for the most widely observed hohiday (Christmas), and the areage momber of holidays observed by matmutacturina companios giving holiday pay was 55 , or an atrage of 2.9 paid holidays a year for all mamfatorers. The estinate of total vatation and holiday time patd for and not worked derived from this survey was e.5 per cent of all time paid. This gives a matio of .95 of homs at work to honrs paid, just above the 1947 ratio, 97 , of Census to BLS hours. The years 1944 and 1945 were obtaned by linear interpolation between the 1943 and $1 \mathrm{gqf}^{\mathrm{f}}$ estimates from the NICB surveys. These surveys may not represent conditions in all mamfacturing very acomately; howerer, the series of homes ratios based on them falls slowly fiom 1939 to 1943 and more rapidly thereafter, a result in keeping with the timing of actions by the Wiar I abor Roard.

The series of homrs at work obtained by the methods just deseribed then had to be tamstomed into a series on homely eanings. This wats done by taking the ratios of Census 10 BI.S average weekly earnings in tg39 and r9-7 and making a lincar interpolation for the intervening years. The BLS average weekly eamings for each year were multiplied by these ratios and the aldusted weekly eannings estimates were divided by the series on homrs worked per week. The estimates are shown in Table 5.

TABLE 5
Estimates of Hours and Earnings, Manufacturing: 1939-47

Year	Average Weckly Hours, BL.S (1)	Adjustment Ratios (2)	Listimated Hours at Work (3)	Average Weekiy Earnings		Average Earnings per Hour at Work ${ }^{n}$ (6)
				BLS (4)	Adjusted (5)	
1939	37.7	. 993	37.4	\$23.86		
1940	38.1	. 992	37.8	$\$ 23.86$ 25.20	\$22.59	\$0.603
1941	40.6	. 991	40.2	2.5 .20 29.58	23.95 28.23	0.634
1942	42.9	. 990	42.5	29.58 36.65	28.23	0.701
1943	44.9	. 989	44.4	36.65 43.14	35.11	0.827
1944	45.2	. 984	44.5	43.14 46.08	41.48	0.934
1945	4.3 .4	. 980	42.5	46.08 44.39	44.48	1.00
1946	40.4	. 975	39.4	44.39 43.82	43.01	1.04
1947	40.4	. 971	39.2		42.62	1.08
		.	39.2	49.97	48.80	1.24

[^2]
1920.31

For the period 1090-3t, two earning: series are avaitable: that of the National Industio: Conferenre Board (NICB) and the historical estimates of the Burean of I.abor Statistics. The yearto-year movement of the NBER camings scries for this period is based on the NICB data. The level of the NICB series has been adjusted downard to the levels of the adjacent segments of the NBER scries. The downward adjustment is 11.4 per cent in 1932; it is based on a one-year overlap between the NICI series and the $1933-39$ segment of the NBER serics previously described. In 1920 , the adjustnent amounts to 6.4 per cent; for intervening years the adjustment factors are obtainced by linear interpolation. The adjustment factor for 1920 was gotten by extending the estimates for 19144^{-19}, to be described below, into 1990 , using as an extrapolator the index of wage rates developed by Daniel Creaner.s

The need for the downward adjustment of the level of the NICB stries arises from the probable overrepresentation of large firms in the NICB sample, and from the underrepresentation of the South. ${ }^{6}$

The NICB data for 192 cover only the last six months; the data for 1920 cover only the last seven months. The ammal average for 1922 was estimated by using Creamer's wage rate index as an interpolator for the missing months; for 1920 Creamer's index was used to extrapolate the NICB data back to January.;

The use of NICB rather than BLS data in estimating hourly earnings for $1920-31$ requires explanation. For 1923.31 , the basic BLS data are for twelve industries, each of which was studied for a limited number

[^3] of payroll periods every other year. To turn these data into a contimons ammal series the BIS had to do a good deal of interpolation. la contrast, the NICB data lor $1923-32$ are a contimons menthly series covering twenty five industries.s The BIS data are undonbtedly more representitive within industries, especially goographically, than the NICB data. However, mon of the eflect of the bias in NICB coverage may have been removed by adjusting the level of the series downand.
The level of carnings in the BLS historical series also appears to be too hight. To see why requires an understanding of tine construction of the BL.S series.

The BLS estimates for 1923-29 were made essentially as follows: (1) The BI.S average homly carnings data for twelve industries were combined into ant ammal series. (2) Average weekiy earmings for the same industrics were obtaned from the contimons BSLS payroll and employnent serics, which uses the biemial Censuses of Manmfactures as bench marks. (3) Average weekly hours for these inchastries were obtained by dividing the weekly camings data of step 2 by the hourly eamings estimates of step 1. (4) By minor adjustments based on Census preailing hours dat:a for 1923 and 1929 , the hours series of step 4 was converted into an estimate of average weekly hours for all mamfacturing. (5) Average howly eamings for all manufacturing were obtained by dividing average weckly camings for all mannfactming-taken from the payroll and entployment series-by the average weekly hours of step f^{9} For 930 and 1931, the BLS estimates of hourly earnings in all mamufacturing are interpolations based on the trend of hourly earnings in the twetve surreyed industries.

It is my contention that error is introdnced into the BI.S estimates at step 3. The divisor and dividend in this step come from samples with very different characteristics. The weekly earnings data, because they use Census bench marks, have reasonably futl coverage of small establishments; the hourly eamings data probably do not. The resulting weekly homs series is too low-considerably lower than the homs reported directly in the stadies of the twelve industries. ${ }^{10}$ The level of honrs is not appreciably affected by step 4 . The divisor of step 5 is thus too smatl and the resulting hourly earnings series is too high.

The accuracy of the contention of the last paragraph can best be judged by comparing the BLS historical series on weekly hours with other

[^4]
Sources and Methods for Fistimates of Average Eamings per Hour

 available information on weekly hours dating the r920's, some of which is shown in Table 6. The first colum of this table shows the actual weelly hours implicit in the NBFR hombly amings ectimates; these are obiained by dividing the BLS-Census weekly earnings series by the NBER hourly earnings scrics. The second column is the NICB hours series, which lies slightly above the implicit NBFR series. The BLS series, in the third columm, lics two to four hours below the other two serics in each year.TABLE 6
Average Weckly Hours, All Manufacturing, 1923-29

Column 1: BLS aserage weekly carnings divided by NBi:R average homb camings
Cohumn 2: M. Ada bency, Hazes, Hours, wid fmploemem in the lhited Stotes, 1914-1036, New York, National Indistrial (bnference Boated, 1936, !p. 44-46.

Column 3: Monthly Laber Review, Ju'y 1955, p. 805
Column 4: Computed from frequency distributions in tise Consus of Manufactures, using the 1939 definition of manufactung.

The last column of Table 6 shows the average prevailing or full-time hours of work as computed from the Census for 1923 and 1929 . (No such data are available for the intervening Census ycars.) The relation between these and the NBER or NICB data secms more rasomable than their relation to the BLS data. It is hard to understand why in prosperous years firms would report "prevailing hours" 12 or 13 per cent higher than average actual hours.

Ju constructing its listorical series, the BLS did not use its industry earnings data for 1920.22 they were not considered an adequate basis for all manufacturing estimates. Instead, the series is based on W. I. King's study, which gives combined data for wage carners and salaricd

Sources and Methods for listimates of Average lamings per Hour workers." The BI S has adjusted the level of King's carnings data, using ammal carnings data for wage carners and for salaricd workers fom the Censuses of Mimmfacturcs of 1 gho and 1993 . to ght momatre for wege camers alone. However, in a period of severe depression, wages modoubtedly differed from salaries in movement as well as in level. Perhaps becanse of the inclusion of salarics, the BI. $\$$ hourly camings series based on King's data drops only 12 per cent from 1920 to 1922 , while the NBER series based on NICB and Creamer drops is per cent.

The King data have the additional disadvantage that they do bot oterlap the BLS estimates that begin with 1923, or the BLS estimate for 1919 , so that the BL.S historical series uses no direct evidence on the movement of wages from 1922 to 1923 or from 1919 to 1920 . In the NBER estimates, all segments overlap, thongh the need for considerable splicing is itself a disadrantage.

Ihe King sudy gives :ctnal and prevaling hours for 192 for the same sample of establishments. These data :he shown in Table 7 together

TABLE 7

Sotrees: Sce text and notes to Table 6 .
with figures from other sources. The BL.S apparently did not rely wholly on King in obtaming the level of hours for 1920.22, but relied in part on its cstimates for $1929-29$. The result is that the BL.S cstimate is agam the lowest avalable; this again implies a high cstimate of hourly carnings. The aserage actual weckly hours implicit in the NBER carnings estimates are very close to those of the King and NICB data. If the King study is used to get a ratio of actual to precailing hours and this ratio is

[^5]Sources and Methois for İstimates of Average liamings per Hour applied to the prevailing hours computed from the Census, an even higher figure is obtaincel. (See the last tro lines of Table 7 .)

1914-19

The NBER eanings serics lor $19 . f$ eg is a direct contination of the series for $1890.1 \mathrm{~g}^{4}$ presented in Real Wages in Mantacturing, asoo19r.4, ${ }^{12}$ in the sense that the same general sources and methods are used. Since the methods will be fully described in that study, the discussion here will be brief.

Table 8 shows the NBER hourly carnings series for $1914-19$ and the principal series from which it is derived. Columm a shows average anmal carnings per full-time equivalent worker in all mannfacturing; the 194 and $19!9$ figures are computed from the Censuses of Mantaftures: the

TABLL 8
Anatal, Daily, and Howrly Barnings, Manufacturing, 1914-19

	Average Annual Larnings ${ }^{\circ}$ (1)	Days in Operaltion (2)	Average: Daily Eamings (3)	Full- '「ine I)aty Houts (4)	Average liourly liarnings (conts)		
					NBER (5)	Douglas All Mig. (6)	Douglas Payroll (i)
1914	\$574	281	\$2.04	9.28	22.0	28.7	21.3
1915	592	284	2.08	9.23	2?.6	28.7	21.2
1916	702	291	2.41	9.19	26.2	32.0	25.0
1917	837	291	2.88	9.11	31.6	36.4	29.9
1918	1077	291	3.70	8.86	41.7	44.8	37.4
1919	1142	279	4.10	8.59	47.7	52.9	44.8

Sources
Column 1:1914 and 1919 computed from Census of Mannactures: 1915-18 interpolations based on data from Massachusetts, Anmual Report on the Statistics of "Iamuactures; New Jersey, Burcan of Statistics of Labor and Industrirs, Annual Reports (1915 and 1916 only); and Pennsyivania, Department of I abor and Industry, Anmul Reports.

Column 2: Computed from state sources used for column 1.
Column 3: Cohumn 1 divided by columu 2.
Columu 4: 1914 and 1919 computed from Censuses of Mamufactures; 1915-18 interpolations based on Donglas, Real If ages in the United Sitates, p. 114.

Columa 5: Cohum 3 divided by column 4.
Coiumr 6: Dougtas, Real Wages in the United States, p. 101.
Column 7: Ihid., p. 108.
a Per full-time cquivalent worker.
12 Aibent Recs with the assistance of Donald P. Jacols, l'maceton for NBFR, in press. fignes for the remaining years are interpolations. Ammal carnings data from the state labor statistics of thee states are used as interpolators: New Jerscy for 191416, Massachusetts for 1914-18, and Pemusylvania for 191.4-19. ${ }^{13}$ Column 2 is the average mmber of days fer year that establishments were in operation; these are from the same state sources as the interpolator of cohmm 1. Dividing cohmm \& by celumn a gives average daily carnings (column 3).

Cohmn 4 shows estimates of average hours per day. These are prevailing or full-time hours; in the method of this segment, the allowance for layoffs or short work weeks is in the days in operation. The estimates of daily hours for 1914 and 1919 are computed from the frequency dis. tributions of prevailing weekly hours in the Censuses of Mamfactures; it is assumed that there were six days in the full-time work week. The fignres for 1915-18 are interpolated, using as an interpolator the Douglas series of full-time weckly hours in "payroll" industries (those for which the data are not umion scales). Cohmm 5, average hourly camings, is column 3 divided by columm 4 .

The BLS historical series omits the ycars 1915-18. For 1919, the BLS a verage hourly earnings fignre is an average computed directly from wage surveys of 27 industrics. and should be more accurate than the BLS estimates for the 1920's. Omr estimate for 1919 happens to be identical with the BLS figure: 47.7 cents per homr. The BLS estimate for 1914, 22.3 cents, is slightly above the NBER cstimate of 29.0 cents. ${ }^{14}$

For comparison, Table 8 also shows two of the Douglas hourly camings serics: average hourly eamings in all mamfactmring and in payroll industrics. Becanse of its heavy reliance on union scales, the all-imunfactming series lies above the NBER serics in 1914, but it rises less rapidly. The NBER serics rises 11% per cent, compared with 84 per cent for the Douglas all-manufacturing series; the rise in the former is more concentrated in the war years 1917 and 1918.

The serics for payroll industrics lies slightly below the NBER scries, but has much the same movement for the period as a whole; it rises no per cent.

[^6]
[^0]: ${ }^{1}$ BLS Bulletin 697, p. 35.

[^1]: Sompre: Computed from Consus of Manfactures, 1939: "Man-lume Statistics for 171 Selexted Industrics": and Monthy I Ahar Reviau, lichnary 1948, pp. 222-230.
 "Employment-weighted atcrage for more than onc industry as detined in the (ensus man-hour data.
 ${ }^{3}$ Larnings for "men's hats and caps" estimated, using 1947 ratio to carnings of other inclustries in the group.
 "Larnings for "china decorating" estimated, using 1947 ratio.

 correlation reinforces the view that omission of many of these small establishments biases the BL.S emmings data upward.

 An umexpected featire of Table 3 is that the ratio of Cinsus to BLS average hourly carnings falls from 1933 to 1939. This is not, for the most part, a result of the increase in the mumber of industries covered by the comparisons. The fall occurs in the ratios for most of the industries individually. The improved coverage of the BLS data orer the period would lead one to expect the opposite movement.

[^2]: Soureces: See text.
 " Columan 5 divided by column 3.

[^3]: 5 Daniel Creanmer, with the assistance of Mirtin Bennstein, Behavior of Wage Rates
 of wage rates for all manfacturing is based on reports of changes in wage rates from establishments in the BLS employment and parroll simple in thinteen indistrics. Within establishnents, wase changes are weighted by the mamber of workers affected; within indust:ies (mat mesi), they are weighted by the ammber of establishments reporting each average wage change. Establishments not reporting any change are considered to have made none.

 The use of an index of wage rates to represent average hourly earnings wonld involve considerable error aver long periods. For brief periods, the results should be reasonably satisfactory.
 a Of 1,44 plants reporting to the $N I C B$ in the fonrth quatter of 1930 , only 109 were in the Sonth, and of these 37 were in the border states Delatiare, Maryland, and West Virginia. Sce National Industrial Conference Board, Wages in the United States, 1954-1930, Nex York, 1931, Pp. 42-43-

 TIn Wages, Prices, Profits, and Productixity, King's data were nsed for this interpolation (W. I. King, Emplosment Hours and Earmings in Prosperity and Depression, United States, 1920-1922, New lork, NBER, 1929i. Cre:mer's index has wo advantages for present purposes. It is monthly rother than quarterly, which is inportant in 1g20, :nd it covers only wages, whereas King's data are for wages and salaries combined.

[^4]: 8 The BI.S conns foundries and machine shops as one industry; NICB connts five branches of this indtistry as separatc industries.
 ${ }^{9}$ Sce "BI.S Historical Estimates of lamings, Wages. and Homs," Monthly Labor Review, July 19\%5, pp. $805-806$.
 10 The statement following the dash is based on work in progress by Fithel B. Jones.

[^5]: ${ }_{11}$ Employment Hoars and Earnings, p. 113.

[^6]: 13 This method of estimating ammal camings is simaia: 10 that used by Douglas in Real Wages in the United States for the period before 191.. Differences in the catimates for Consus yeas arise becanse we use a 1939 definition of mamfachuring, whike Donglas uses a current definition. For the non-census years after $19{ }^{2}+$ Donglas vised a very differem method of interpolation, largely becanse it provided monthly dana (ibid. pp. 236298). The resulting anmual camings series are quite different: Donglas's averages for

 14 For disctission of the 192.4 estimates, see Real Wages in Mamufacturing. rSor-Ighf, and "BLS Historical listimatics of Earnings, Wages, and Homs," Pp. Bog-8op.

