This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Annals of Economic and Social Measurement, Volume 2, number 4

Volume Author/Editor: Sanford V. Berg, editor
Volume Publisher:
Volume URL: http://www.nber.org/books/aesm73-4
Publication Date: October 1973

Chapter Title: Random Coefficients Models: The Analysis Of A Cross Section Of: Time Series By
Chapter Author: Barr Rosenberg
Chapter URL: http://www.nber.org/chapters/c9934
Chapter pages in book: (p. 397-428)

## RANDOM COEFFICIENTS MODELS

## THE ANALYSIS OF A CROSS SECTION OF TIME SERIES by STOCHASTICALLY CONVERGENT PARAMETER REGRESSION ${ }^{1}$

by Barr Rostinberg


#### Abstract

     




## I. The: "Convergent Paramhter" Model.

A. Consider the familiar cross-section time-series regression problem. where an undogenous variable $y$ and exogenotis variables $x_{1} \ldots \ldots, x_{k}$ are observed for each of $N$ individuals. $n=1 \ldots . N$ in each of time periods. $t=1 \ldots . T$. The regression parameters $h_{1} \ldots . h_{k}$ are the partial derivatives of the endogenous with respect to the exogemets variables. The parameter vector $\boldsymbol{b}_{n r}=\left(h_{1: n}: \ldots: b_{k n}\right)$ specific to individual $n$ in period $t$ is determined by the behavior and environment of that individual at that date. In most conomic applications. it is unreasonable to expect these parameters to be the same for all individuals in all periods.

A variety of cross section. time series regression models have previously introduced stochastic variation in individual parameters. The most widely known methods are extensions of the analysis of covariance: shifts in the intercept term arc associated with each indisidual ("individual effects") and with each time period ("time effects"). Sometimes these shifts in the intercept are introduced as dummy variables, or equivalently. as stochastic terms with diffise prior distributions (Hildrath ( 949.1950 ). Hoch (1962). Wilks (1943:195-200) In other applicatiens these shifis are trated as storhastic terms with proper prior distributions. or "error components" (Wallace and Hussaia (1969)). Serial correlation in individual disturbances may be superimposed upon these models (Parks (1967). However. this class of models has the deficiency of possulating that regression parameters other than the intercept are identical for all individuals in all periods.

Where regression parameters do vary. an estimator assuming constant parameters has two important defects. First. the estimator is inefficient and the associated sampling theory is invalid. ustally leading to downard biased estimates of error tariance. Second, when the pattern of parameter variation is of interest in

The bulk of this resarch. reported in "Varying Parameter Regression in the Analysis of a Cross Section of Time Serics." IBER Working Paper No. IP 165. 1969 (revised 1973). was completed under NSF Grant GS 2102. added by sutisidized funds of the Computer Cinter. University of Califorma. Burkeley. The resalch was completed under NSF Giant GS 3306. The resourceful asssisance of Daryi Carlson, and the indomitable work al Mrs. Eilen McGibbon in preparing various stages of the manaseripl. are grateftilly ack nowledyed.
its own eight, a constimt parameter model is totally incapabic of shedding light on this aspect of the coonomic process.

Two models have introduced more general parameter variation. In Swamys work individual parameters are randomly dispersed across the pepalation, hut are constant orer tinc ( 1970 , 1971). In Hsiao's recent paper (1973). regression paramcters are the sums of "individual effects" and "eime effects." so that the model extends to the regression parameters the methods previonsly applicd to the intercept term ainne. These two approaches are appealing. However, they do not allow the individua: parameters to vary independently of the rest of the population. If individual pa ameters do vary stochastically, these methods camot track the individual parameter vectors nor model the stochastic variations,
$B$. What pattern e f parameter variation can be expected in a cross section of economic decision mis:" There are certainly tendencies for different individats. parameters to be alike. Social interaction within a population tends to preserve similarity among individuals playing the same roke. When conformity is highly valued, or when the role of a deviate is, for any reason, diffientt, individnals will tend to converge in behavior and in environment toward group norms, or toward subgroup norms if a deviant subgroup coalesces. Under competition, individuals will strive for profitable differentiation from the population, but as soon as such differentiation is achieved, competitive responses by others will tend to offset it. Uniformity may be enforced by institutional devices, such as trade organizations, or may result from interdependent individual responses to similar environments. as, for example, in loosely organized groups such as consumers.

On the other hand, within a group of individuals, each being somewhat different in innate characteristics and in environment. freedom of action will facilitate continual developments which are in opposition to, or at least independent of, the converging trends. These independent events will be a source of diversity which, when balanced against the conforming forces. may preserve a relatively stable degree of differentiation in the population, Individual characteristics will be different. but will not remain constant over time. The differences may behave as if subjected to sequential random increments and as if contimially converging toward zero from the position randomly arrived at. Individual differences will then be serially correlated but nonconstant.

To fix ideas, it may be helpfill to consider an example. In analyzing the returns to stockholders, it is useful to white for each stock in a miniterse of $N$ stocks and for each holding period within a sequence of $T$ holding periods:

$$
\begin{aligned}
& r_{n t}=b_{9, n t}+b_{1 n t} r_{M, 2 t}+b_{2 n t} f_{2 t}+\ldots+b_{k} \quad 1, n t f_{k, 1}+u_{n t} \\
& n=1, \ldots, N, \quad t=1 \ldots, T
\end{aligned}
$$

where $r_{n t}$ is the (excess) return on stock $n$ over holding period $t, r_{m}$ is the (excess) return on a stock market index in period $t$. and the $f_{i t} . i=2 \ldots . k \cdot 1$. are other major economic or social factors which influence the returns on securitics. The coefficient $b_{1}$, widely known in fina ance as the stock's "beta," is a partial derivative with respect to return on the index. The "beta" and the other cocflicients are important in the theory and practice of investment management. since they determine the risk of a diversified portfolio (see, for example, Sharpe (1970)). The "beta,"
in particular, has been widely studied empirically. It has been shown that "beta." for any security. is scrially correlated but nonconstant. A possible stochastic model for "beta" is :

$$
b_{n t}=\left(1-\phi \bar{b}_{n}+\phi b_{n, t-1}+\varepsilon_{n t}\right.
$$

The autoregressive parameter $\phi$ induces serial correlation. the term ( $1-\phi$ ) implements a tendency to converge towatd a normal walue $b_{n}$, and the serially independent random increments $:$ introduce slochastic variation over time. The characteristics of this process have been studied by Rosenberg and Ohlson (1973). The restilts support the model, and in particular. show significant nonconstancy in beta and confirm the tendency of beta to converge toward a normal value $\bar{b}_{n}$.

This paper is concerned with the case where the normal value is a population norm common to several individuals. Every individual parametur vector is regarded as the sum of a population mean parameter vector and an individual difference. with the latter tending to converge toward zuro.

Each individual difference is assumed to converge at the same rate and to be subject to randon slıocks of the same variarıce. This is cluariy an oversimplification as a model of many economic processes. For example. in a study of competition in the computer industry. one would suspect that the tendency of IBM to converge toward the group norm would differ from other firms. Also. in many populations. individuals fall naturally into subgroups, so that a two-level hierarchy. in which individuals converge toward subgroup norms and subgroups may or may not converge toward the population norm may be more appropriate. Nevertheless, the simple convergence structure is ustd here for several reasons.

One reason is heuristic: although the computational difficulty of the estimation problem does not increase as the convergence patterns become more complex. the notation becomes more painful. A second reason is one of operational uscful$r_{2}$ ess. When the stochastic paramcter process is known a priori, as it may be when the process determining behasioral modificiations is weil understood. it is quite possible to operate in the fully general framework. However. when the parameter process is to be estimated from the dita. a simple strueture niust be postulated. The simplification that all individual parameters have convergence and stochasticshift characteristics which are identical and unchanging over time is analogous to the traditional regression assumption that all parameters are identical in that it asserts a similarity across the population which is necessary to develop an operationally feasible method. However. while the assumption of fixed parameters was originally thought to be needed before computations could be carricd out at all. here the simplifying assumption is imposed, not by computational recessity, but by the experimenter's ignorance as to the exact nature of the parameter process.

There may also be events which induce simultaneous shifts in all of the individual parameters. It will be assumed that the effects of these constitute a series of serially independent communal increments occurring in all parameter vectors.

The individual parameter vector may contain both parameters whiell vary across the population ("cross-varying parameters") and paraneters which are the same for all individuals in any time period ("eross-fixed parameters"). Accordingly. each $k$-element individual parameter vector is partitioned as $\mathbf{b}_{n i}=\left(\mathbf{c}_{i}^{\prime} ; \mathbf{a}_{n t}^{\prime}\right)^{\prime}$. where $c_{i}$ is a (possibly empty) $k$-element subvector of cross-fixed parameters and $a_{n t}$ is a
 variables $x_{1} \ldots \ldots x_{k}$ are partitioncd correspondingly with $w_{1} \ldots \ldots w_{n}$, the explanatory variables having cross-fixed coefficients and $z_{1} \ldots \ldots z_{\text {, }}$, the explanatory vari-
 tion mean parameter vector.

The convergent parametcr regression strteture then takes the form:

$$
\begin{gather*}
y_{n t}=\sum_{i=1}^{N} u_{i m r^{\prime} i_{1}}+\sum_{j=1}^{\sum} a_{m t^{\prime} t_{m t}+u_{n t} \quad t=1 \ldots T . n=1 .} \quad I:\left(u_{n t}\right)=0 \quad I\left(a_{m}: u_{n t}\right)=\delta_{s t} \sigma^{2}\left(\delta_{m n} R_{n}+R_{6}\right) \tag{1}
\end{gather*}
$$

or in vector notation.

$$
!_{n t}=\left\{\mathbf{w}_{n 1}: \mathbf{z}_{n t}\right)\binom{\mathbf{c}_{1}}{\mathbf{a}_{n}}+u_{n}=\mathbf{x}_{n c}^{\prime} \mathbf{b}_{m}+u_{n} .
$$

Parameter Transition Ri'lations:

$$
\mathbf{c}_{\mathrm{r} \cdot \mathrm{l}}=\mathbf{c}_{t}+\gamma_{t} \quad t=1 \ldots . T-1
$$

and
(3) $\quad \mathbf{a}_{n, t+1}=\overline{\mathbf{a}}_{1}+\Delta_{\phi}\left(\mathbf{a}_{n t}-\overline{\mathbf{a}}_{t}\right)+\boldsymbol{\eta}_{m t} \quad t=1, \ldots T-1 . n-1 \ldots .$.
where

$$
\begin{array}{lc}
E\left(\gamma_{t}\right)=0 & E\left(\gamma_{s} \gamma_{t}\right)=\delta_{s} \sigma^{2} Q_{s} \\
E\left(\eta_{m s}\right)=0 & E\left(\boldsymbol{\eta}_{m s} \eta_{m}^{\prime}\right)=i_{r r} \sigma^{2}\left(\delta_{m n} Q_{a}+Q_{c_{i}}\right)
\end{array}
$$

and

$$
E\left(u_{m s} \gamma_{s}^{\prime}\right)=0 \quad E\left(u_{m s} \eta_{m t}\right)=0 \quad E\left(\gamma \eta_{n!}\right)=\dot{j}_{s:} \sigma^{2} Q_{c}
$$

Here. $\delta_{i j}$ is the Kronecker delta equal to 1 if $i=j$. equal to zero otherwise. The disturbances are assumed to be serially uncorrelated and to be composed of a communal disturbance with variance $\sigma^{2} R_{i} \geq 0$. and uncorrelated individial terms with possibly heterosccdastic variances $\sigma^{2} R_{n} \cdot n=1 \ldots \ldots$. . with $R_{n}>0$ for all $n$. The cross-fixed parameter vector is subjeci to seriaily uncorrelated increments having mean zero and variance matrix $\sigma^{2} \mathbf{Q}_{\text {. }}$. The convergence matrix $\boldsymbol{S}_{0}$ is diagonal with diagonal entries $\phi_{i} .0 \leq \phi_{i}<1$. for $i=1 \ldots$ i. These diagonal entries are "convergence rates." in that $\phi_{j}$ is the proportion of the individaal divergence $a_{j m t}-\bar{a}_{j t}$ which survives to period $t+1$. The cross-tarying paramcter vectors are subject to serially uncorrelated individual parameter s!ifts. Each shift is the sum of a communal component with aro mean and varame matrix $\sigma^{2} \mathrm{Q}_{1}$; and an individual component with zero mean and variance matrix $\sigma^{2} \mathrm{Q}_{a}$. The disturbances are uncorrelated with the parameter process. The contemporancous covariance between the cross-fixed parameter shift vector and any individual cross-varying parameter shift vector or. equivalently the covariance between the cross-fixed parameter shift and the communal component of the cros-starying parameter shifts. is $\sigma^{2} \mathbf{Q}_{c a}$. The variance matrices of parameter shifts may be positive semi-definite permitting some parameters to remain fixed oier time. All stochastic terms are assumed to be independent of the exogenous variables.
C. It is important for some purposes to view all individuai parameter icctors

i- element subectior of cross-varying paramears whin $k=k+$ i. The explanatory variables $x_{1} \ldots x_{k}$ are partitioned correspondingly, with $w_{1} \ldots \ldots w_{\text {. }}$. The cxplana tory variables having cross-fixed coeflicients. and $z_{1} \ldots \ldots=$, the explanatory vari-
 tion mean parameter vector.

The convergent parameter regression structure then takes the fom

$$
\begin{gather*}
y_{n t}=\sum_{i=1}^{N} w_{i n t} c_{i t}+\sum_{j=1}^{\dot{K}}=_{j n t} u_{j m t}+u_{n t} \quad t=1 \ldots . T_{. n} \cdots 1 \ldots . N  \tag{1}\\
E\left(u_{n t}\right)=0 \quad \ell\left(u_{m, i} i u_{n t}\right)=\delta_{s t} \sigma^{2}\left(j_{m n} R_{n}+R_{6}\right)
\end{gather*}
$$

or in vector notation.

$$
Y_{n r}=\left(\mathbf{w}_{n t}^{\prime}: \boldsymbol{z}_{n t}^{\prime}\right)\binom{\mathbf{c}_{1}}{\mathbf{a}_{n t}}+u_{n: i}=\mathbf{x}_{n t}^{\prime} \mathbf{b}_{n t}+u_{n t}
$$

Parameter Transition Pelations:

$$
\begin{equation*}
\mathbf{c}_{t \rightarrow 1}=\mathbf{c}_{t}+\gamma_{t} \quad t=1 \ldots T-1 \tag{2}
\end{equation*}
$$

and
(3) $\quad \mathbf{a}_{n, t+1}=\overline{\mathbf{a}}_{1}+\mathbf{A}_{\phi}\left(\mathbf{a}_{n t}-\overline{\mathbf{a}}_{1}\right)+\mathbf{\eta}_{n t} \quad t=1 \ldots .!-1 . n=1 \ldots$.
where

$$
\begin{aligned}
& E\left(\gamma_{t}\right)=0 \quad E\left(\gamma_{s} \gamma_{1}\right)=\delta_{, 1} \sigma^{2} Q . \\
& E\left(\eta_{n t}\right)=0 \quad E\left(\eta_{m s} \eta_{n t}\right)=\dot{d}_{s t} \sigma^{2}\left(\dot{\sigma}_{m n} Q_{a}+Q_{( }\right) \\
& E\left(u_{m s} \gamma_{t}^{\prime}\right)=0 \quad I\left(u_{m s} \eta_{n_{1}}\right)=0 \quad E\left(\gamma_{s} \eta_{\eta_{i t}^{\prime}}\right)=\dot{\sigma}_{s t} \sigma^{2} Q_{i a}
\end{aligned}
$$

and
Here, $\dot{d}_{i j}$ is the Kronecker delta equal to 1 if $i=j$. equal to zere otherwise. The disturbances are assumed to be serially uncorrelated. and to be composed of a communal disturbance with variance $\sigma^{2} R_{G} \geq 0$. and uncorrclated individual terms with possibly heteroscedastic variances $\sigma^{2} R_{n}, n=1 \ldots \ldots N$. with $R_{n}>0$ for all $n$. The cross-fixed parameter vector is subject to serially uncorrelated increments having mean zero and variance matrix $\sigma^{2} \mathbf{Q}_{6}$. The convergence matrix $\boldsymbol{A}_{6}$ is diagonal with diagonal entries $\phi_{i}, 0 \leq \phi_{i}<1$. for $i=1 \ldots$. . These diagonal entries are "convergence rates," in that $\phi_{j}$ is the proportion of the indisidual divergence $a_{j n t}-\bar{u}_{j t}$ which survives to period $t+1$. The cross-varying parameter vectors are subject to serially uncorrelated individual parameter shilts. Each shift is the sum of a communal component with zero mean and variance matrix $\sigma^{2} Q_{i}$ and an individual component with zero mean and variance matrix $\sigma^{2} \mathbf{Q}_{4}$. The disturbances are uncorrelated with the parameter process. The contemporaneotis covariance between the cross-fixed parameter shift vector and ans indisidual cross-varying parameter shift vector, or, equivalently, the covariance between the cross-fixed parameter shift and the communal component of the cross-tarying parameter shifts, is $\sigma^{2} \mathbf{Q}_{\text {ca }}$. The variance matrices of parameter shifts may be positive semi-definite, permitting some parameters to remain fixed ovei time. All stochastic terms are assumed to be independent of the cxogenous variables.
C. It is important for some purposes to view all individual parameter vectors as components of a single "grand parameter vector" $\left.\beta_{i}=\left(c^{\prime} a_{1} \ldots \ldots\right)_{1}\right)_{1}$. with
dimension $K=N i+n$. All the individual regressions in each period make up a single regression for the grand parameter vector
(4)

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right)_{1}=\left(\begin{array}{ccc}
\mathbf{w}_{1}^{\prime} & \mathbf{z}_{1}^{\prime} & \\
\mathbf{w}_{2}^{\prime} & \mathbf{a}_{2}^{\prime} & \mathbf{0} \\
\vdots & 0 & \vdots \\
\mathbf{w}_{v}^{\prime} & & \mathbf{z}_{\mathrm{s}}^{\prime}
\end{array}\right)_{1}\left(\begin{array}{c}
\mathbf{c} \\
\mathbf{a}_{1} \\
\vdots \\
\mathbf{a}_{N}
\end{array}\right)+\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{N}
\end{array}\right) \quad \mathrm{t}=1, \ldots, T
$$

or

$$
\mathbf{y}_{t}=\mathbf{X} \boldsymbol{\beta}_{t}+\mathbf{u}_{t}, \quad E\left[\mathbf{u}_{t} \mathbf{u}_{t}^{\prime}\right]=\sigma^{2} \mathbf{R}
$$

where 1 denotes a vector of units. The parameter transition relations coalesce similarly into a single transition relation


or
where

$$
\begin{gathered}
\boldsymbol{\beta}_{t+1}=\boldsymbol{\Phi} \mathbf{\beta}_{:}+\mathbf{d}_{i}, \quad E\left[\mathbf{d}_{t} \mathbf{d}_{t}^{\prime}\right]=\sigma^{2} \mathbf{Q} \\
\mathbf{Q}=\left(\begin{array}{ccccc}
\mathbf{Q}_{c} & \mathbf{Q}_{c a} & \mathbf{Q}_{c u} & \cdots & \mathbf{Q}_{c u} \\
\mathbf{Q}_{c a}^{\prime} & \mathbf{Q}_{a}+\mathbf{Q}_{G} & \mathbf{Q}_{G} & \cdots & \mathbf{Q}_{G} \\
\mathbf{Q}_{c a}^{\prime} & \mathbf{Q}_{G} & \mathbf{Q}_{u}+\mathbf{Q}_{G} & \cdots & \mathbf{Q}_{G} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mathbf{Q}_{c a}^{\prime} & \mathbf{Q}_{G} & \mathbf{Q}_{G} & & \mathbf{Q}_{a}+\mathbf{Q}_{G}
\end{array}\right)
\end{gathered}
$$

D. One important property of the convergent parameter model is the stationary cross-sectiona! parameter dispersion which it genemte. If the coos section of the individual parameter vectors is examined in aby alle pertiod for any individual $n$.

$$
\begin{equation*}
\mathbf{a}_{n, t+1}-\overline{\mathbf{a}}_{t: 1}=\Lambda_{\phi}\left(\mathbf{a}_{n i}-\overline{\mathbf{a}}_{t}\right)+\boldsymbol{\eta}_{m i}-\bar{\eta}_{t} \tag{6}
\end{equation*}
$$

Sinee parameter shifts between periods $t$ and $t+1$ are uncortclated with the parameters in period $t$,
(7) $\quad E\left[\left(\mathbf{a}_{n, t+1}-\overline{\mathbf{a}}_{t+1}\right)\left(\mathbf{a}_{n, t+1}-\overline{\mathbf{a}}_{t+1}\right)\right]=$

$$
\left.\Delta_{\phi} E\left[\left(a_{n t}-\bar{a}_{t}\right)\left(\mathbf{a}_{n t}-\bar{a}_{t}\right)\right] A_{\phi}^{\prime}+N-1{ }_{N}^{\prime} Q_{n}\right)
$$

and for $m \neq n$

$$
\begin{align*}
E\left[\left(a_{m, t+1}-\overline{\mathbf{a}}_{t+1}\right)\left(\mathbf{a}_{n, t+1}-\overline{\mathbf{a}}_{t+1}\right)\right]= &  \tag{8}\\
& \mathbf{\Delta}_{\cdot p} E\left[\left(\mathbf{a}_{m t}-\overline{\mathbf{a}}_{t}\right)\left(\mathbf{a}_{t: i}-\overline{\mathbf{a}}_{t}\right)\right] \mathbf{A}_{b}-\frac{1}{N}\left(\sigma^{2} \mathbf{Q}_{u}\right) .
\end{align*}
$$

Since $\boldsymbol{\Delta}_{\phi}$ is diagonal, the stationary solutions to these difference equations are easily found to be :

$$
\begin{gather*}
\left\{E\left[\left(\mathbf{a}_{n t}-\overline{\mathbf{a}}_{1}\right)\left(\mathbf{a}_{n t}-\overline{\mathbf{a}}_{t}\right)\right\}_{i j}=\frac{N-1 \sigma^{2}\left\{\mathbf{Q}_{u}\right\}_{i j}}{N} 1-\phi_{i} \phi_{j}\right.  \tag{9}\\
\left\{E\left[\left(\mathbf{a}_{m t}-\overline{\mathbf{a}}_{t}\right)\left(\mathbf{a}_{n t}-\overline{\mathbf{a}}_{i}\right)^{\prime}\right]\right\}_{i j}=\frac{-1}{N} \frac{\sigma^{2}\left\{\mathbf{Q}_{u}\right\} i j}{1-\phi_{i} \phi_{j}} \text { for } m \neq n \tag{10}
\end{gather*}
$$

where $\left\{\mathbf{A}_{i}\right\}_{j}$ denotes element $(i, j)$ in the matrix $\mathbf{A}$. Since the eigenvalues of $\Delta_{\phi}$ are smaller that one, this is, indeed, the stationary joint distribution of the crossvarying parameter vectors about their sample nean in any single time period. Notice that the dispersion about the sample mean is identical to that in a sample of vectors drawn independently from a multivariate population with variance matrix $\sigma^{2} \boldsymbol{\Omega}$ given by

$$
\begin{equation*}
u_{i j} \equiv\left\{\Omega_{i j}^{\prime}=\frac{\left\{Q_{i i_{i j}}\right.}{\mathrm{i}-\phi_{i} \phi_{j}} .\right. \tag{!1}
\end{equation*}
$$

Thus, in any single cross section, the individual cross-varying parameter vectors in a convergent-parameter siructure are distributed as if randomly drawn from a population with dispersion matrix $\sigma^{2} \Omega$. Cross-sectional regressions of this kind, often calied random or randomly dispersed parameter regressions, have been studied previously (Rao (1965), Swamy (1970). Rosenberg (1973a)).

The parameter interrelationships in the convergent-parameter model are diagrammed in two ways in Figure I. In both diagrams, a link between vectors denotes a transition relation. Figure la exhibits the interrelationships among individual parameter vectors. At the top of the diagram is a representation of the stationary joint distribution of the individual parameter vectors in the initial period. The vector $b_{0}$ is brought in as the meare of the hypothetical multivariate population from which the initial parameter vectors are drawn.


In the transitions between successive periods in Figure 1a. the solid lines denote the contributions of the individual parameter vectors to their own subsequent values. and the broken lines denote the contribution of the sample mean to the subsequent valaes of the individual vectors.

Figure 1 b shows the elementary structure of the serially independent transitions between successive grand parameter vectors. The grand regression is a Markovian or sequential parameter regression problem in that the grand parameter vector obeys a first order Markor process.

## II. Estmation in the Convergent Parameter Mode

Let $\boldsymbol{\theta}$ denote the reetor of parameters in the stochastic specification. including the second moments of the stochastic terms $R_{1} \ldots, R_{s}, R_{G} \cdot \mathbf{Q}_{c}, \mathbf{Q}_{c u}, \mathbf{Q}_{u} . \mathbf{Q}_{G}$ and the convergence rates $\phi_{1} \ldots, \phi_{2}$, but excluding the scale parameter $\sigma^{2}$. Let $R_{g}$ denoie the admissible region of parameter values. which may be constrained by a priori information as weil as nonnegativity and symmetry conditions on the second moments. Let $y^{\prime}=\left(y_{1}^{\prime}: \ldots ; y_{s}^{\prime}\right)^{\prime}$ denote the vector of all observations through periods.

In this section, Maximum Likelihood and Bayesian methods for estimating 0. $\sigma^{2}$. and $\boldsymbol{\beta}_{T}$ are developed under the assumption that all stochastic terms follow a
multivariate normal distribution. The central results are recursive formulat which yield: (i) for any 0 , the numerical values of the sample likelihood $\mathscr{y}^{\prime}\left(0 \mid y^{T}\right)$ and the marginal posterior distribution for $\boldsymbol{\theta}, \boldsymbol{p}^{\prime \prime}\left(\boldsymbol{\theta} \mid \mathbf{y}^{\boldsymbol{r}}\right.$ ) ; (ii) the maximum likelihood estimators $\tilde{\beta}_{T I T}^{(0)}$ and $\hat{\sigma}_{\text {w! }}^{2}(0)$ and the conditional posterior distributions $p^{\prime \prime}\left(\sigma^{2} \mid 0 . r^{T}\right)$. $p^{\prime \prime}\left(\boldsymbol{\beta}_{v} \mid \boldsymbol{\theta}, \mathbf{y}^{\top}\right)$. conditional on that $\boldsymbol{0}$. Repeated application of these formulae, over a range of $\theta$ values in $R_{\theta}$, allows Maximum Likelihood or Bayesian estimation. Moreover, if $\boldsymbol{\theta}$ be known, the estimator $\hat{\boldsymbol{\theta}}_{\boldsymbol{T} \mid \boldsymbol{f}}(\boldsymbol{\theta})$ is a minimum mean square error linear unbiased estimator, without the requirement of normality in the stochastic terms. The formulae in this section follow from theorems in Rosenberg (1973b).

The probability density function (pd) of the endogenous variables may always be decomposed as $p\left(y^{T}\right)=\prod_{t=1}^{r} p\left(y_{i} \mid y^{\prime \prime}{ }^{1}\right)$. The Markoy process for the grand parameter veetor, together with serial independence in the disturbances, are key simplifying assumptions which permit this decomposition to be exploited by a recursive procedure. Two cases will be dealt with in successive subsections: (A) a proper prior distribution for $\mathbf{b}_{0}$ : and (B) a diffuse prior distribution for $\mathbf{b}_{0}$, or equivalently, $\mathbf{b}_{0}$ fixed but unk nown. In each case. fully general formulae which hold for any regression model with sequential or Mark or paranieter variation will be exhibied and then specialized to the convergent parameter model.

## A. Proper Prior Distribution for $\mathbf{b}_{\mathbf{0}}$

Let $b_{0}$, have a proper multivariate normal prior distribution

$$
\mathbf{b}_{i j}-\operatorname{Normal}\left(\binom{\overline{\mathbf{c}}_{0}}{\overline{\mathbf{a}}_{0}}, \quad \sigma^{2}\left(\begin{array}{ll}
\mathbf{P}_{0, c} & \mathbf{P}_{0, c a}  \tag{12}\\
\mathbf{P}_{0 . c a}^{\prime} & \mathbf{P}_{0, a}
\end{array}\right)\right)
$$

independently of all other stochastic terms. Thei all regression parameters and endogenous variables follow a joint proper multivariate normal pdfand it is easily shown that

where

$$
\sigma^{2} \mathbf{F}_{1}(\boldsymbol{\theta}) \equiv \operatorname{var}\left[\mathbf{y}_{i} \mid \sigma, \boldsymbol{\theta}, \mathbf{y}^{\prime \cdots 1}\right]=\sigma^{2}\left(\mathbf{X}_{1} \mathbf{M}_{t \mid-1},(\boldsymbol{\theta}) \mathbf{X}_{t}^{\prime}+\mathbf{R}\right)
$$

and where, in general.

$$
\boldsymbol{\mu}_{r ;}(\boldsymbol{\theta}) \equiv E\left[\boldsymbol{\beta}, \boldsymbol{\theta}_{\boldsymbol{\theta}}, \boldsymbol{y}^{\mathrm{s}}\right] . \quad \sigma^{2} \mathbf{M}_{r \mid}(\boldsymbol{\theta}) \equiv \operatorname{yar}\left[\boldsymbol{\beta}, \mid \sigma, \boldsymbol{\theta}, y^{\top}\right] .
$$

The notation $\mathbf{e}_{A}$ denotes the norni $e^{\prime}$ Ae. The subseript $r \mid s$ denotes an estimator or distribution for an item in period $r$, conditional on regression information up to and including period $s$.

Therefore, when $\mu(\theta)$ and $F(\theta)$ are computed by the recursise formulae provided below, the sample likelihood is

$$
\mathscr{P}\left(\sigma, \theta \mid \mathbf{y}^{T}\right)=\left(2 \pi \sigma^{2}\right)^{-T v} 2\left(\prod_{1=1}^{T} \zeta(\theta)\right)^{-12} \exp \left\{\begin{array}{c}
T N s^{2}(\theta)  \tag{14}\\
2 \sigma^{2}
\end{array}\right\} .
$$

where

$$
\zeta_{1}(\boldsymbol{\theta})=\left|F_{i}(\boldsymbol{\theta})\right| . \quad v_{t}(\boldsymbol{\theta})=\left\|\mathbf{y}_{1}-\mathbf{X}_{t} \boldsymbol{\mu}_{t \mid \ldots, 1}(\boldsymbol{\theta})\right\|_{\mathbf{F},:(\boldsymbol{\theta}} \cdot \quad s^{2}(\boldsymbol{\theta})=\frac{\sum_{t=1}^{T} v_{1}(\boldsymbol{\theta})}{T N}
$$

Atso, from the joint nomat distribution of $y^{I}$ and $\beta_{l}$.


These formutate provede the basis for Maximum Likethood and Baycsiani cotimation.

## A.1. Maximam Likelihood Estimation

The maximum valuc of the natural log of the likctitood function (14). for any 0 , is

$$
\begin{align*}
&\left.\mu \theta y^{T}\right) \equiv \max _{\sigma^{2}} \ln \rho(\sigma, \theta \mid y)=-\frac{i}{2}\left(T \cup\left(\ln \binom{2 \pi}{T N}+1\right)\right.  \tag{16}\\
&+T N \ln \left(T N s^{2}(\theta)+\sum_{=-1}^{T} \ln (\theta)\right)
\end{align*}
$$

The maximum liketihood estimators of $\sigma^{2}$ and $\beta_{1}$. conditionat on $\theta$. arc

$$
\begin{equation*}
\hat{\sigma}_{M L}^{2}(\theta)=s^{2}(\theta) . \quad \hat{\boldsymbol{\beta}}_{T \mid T}(\theta)=\boldsymbol{\mu}_{T \mid T}(\theta) . \tag{17}
\end{equation*}
$$

For maximum tikelihood estimation. it is necessary to scarch $R_{t}$ for that $\boldsymbol{\theta} \hat{\boldsymbol{\theta}}_{\text {ML }}$. which maximizes the tog tiketihood function (16). The maximum likclihood estimators of $\sigma^{2}$ and $\boldsymbol{\beta}_{r}$ are then $\hat{\sigma}_{M_{L}}^{2}\left(\dot{\boldsymbol{\theta}}_{m}\right)$ and $\hat{\boldsymbol{\beta}}_{\mathrm{ri}}\left(\hat{\boldsymbol{\theta}}_{M}\right)$.

## A.2. Bayesian Estimation

Let $p^{\prime}(\boldsymbol{\theta})$ be a possibly difluse prior pdf for $\boldsymbol{\theta}$. and let $p^{\prime}(\sigma)=1 \sigma$ be a diffuse prior for $\sigma$, following Zeltner (1971: Ch. 2). Then ihe posterior pdf for $\boldsymbol{\beta}_{T}, \sigma . \boldsymbol{\theta}$. is

$$
\begin{equation*}
p^{\prime \prime}\left(\boldsymbol{\beta}_{T} \cdot \boldsymbol{\sigma} \cdot \mathbf{0} \mathbf{j}=p\left(\boldsymbol{\beta}_{T} \mid \sigma \cdot \mathbf{0} \cdot \mathbf{y}^{T}\right) p^{\prime \prime}(\sigma . \boldsymbol{\theta}) .\right. \tag{18}
\end{equation*}
$$

where the conditionat pdf for $\beta_{T}$ is given in (15) and the marginal postcrior pdf for $\sigma$ and $\boldsymbol{\theta}$ is. from (!4),

$$
\begin{align*}
& p^{\prime \prime}(\sigma . \boldsymbol{\theta}) \times \mathscr{L}^{\prime}\left(\sigma . \theta \mid y^{\top}\right) p^{\prime}(\sigma) p^{\prime}(\boldsymbol{\theta})  \tag{19}\\
& \times \sigma^{-(T N+1} p(\theta)\left(\prod_{1=1}^{T} \zeta,(\theta)\right)^{-12} \exp \left\{\frac{T N s^{2}(\theta)}{2 \sigma^{2}}\right\} .
\end{align*}
$$

This may be decomposed into the marginat posterior pdf for 0 .

$$
\begin{equation*}
p^{\prime \prime}(\theta)=\int_{R_{c}} p^{\prime \prime}(\sigma, \theta) d \sigma \times p^{\prime}(\theta)\left(\prod_{t=1}^{T} \zeta_{i}(\theta)\right)^{-1 \cdot 2}\left(s^{2}(\theta)\right)^{-x^{2}} . \tag{20}
\end{equation*}
$$

and the conditionai posterior pdf for $\sigma$.

$$
\begin{equation*}
\rho^{\prime \prime}(\sigma \mid \theta) \times \sigma^{-(S T, n} \operatorname{cxp}\left\{-\frac{T N s^{2}(\theta)}{2 \sigma^{2}}\right\} . \tag{21}
\end{equation*}
$$

Let $\sigma^{2}(0)$ be the conditional posterior mean of $\sigma^{2} \cdot \overrightarrow{\sigma^{2}}(\theta)=T N s^{2}(\theta)(T N-2)$.

The conditional posterior pdf for $\beta_{r}$ is multivariate Student $t$ :

Hence, the moments of the marginal posterior pdf are

$$
\begin{align*}
\breve{\boldsymbol{\beta}}_{T \mid T} & \left.\equiv E\left[\boldsymbol{\beta}_{T} \mid \mathbf{y}^{T}\right]=\int_{R_{\theta}} \boldsymbol{\mu}_{T \mid \boldsymbol{T}}(\boldsymbol{\theta})\right) \boldsymbol{p}^{\prime \prime}(\boldsymbol{\theta}) d \boldsymbol{\theta} \\
\overline{\mathbf{M}}_{T!T} & \equiv \operatorname{var}\left[\boldsymbol{\beta}_{T} \mid \mathbf{y}^{T}\right]  \tag{23}\\
& =\int_{R_{\theta}}\left(\bar{\sigma}^{2}(\boldsymbol{\theta}) \mathbf{M}_{T \mid \boldsymbol{T}}(\boldsymbol{\theta})+\left(\boldsymbol{\mu}_{T \mid \boldsymbol{r}}(\boldsymbol{\theta})-\overline{\boldsymbol{\beta}}_{T ; T}\right)\left(\boldsymbol{\mu}_{T ; T}^{\prime}(\boldsymbol{\theta})-\overline{\boldsymbol{\beta}}_{T i r}\right) \boldsymbol{p}^{\prime \prime}(\boldsymbol{\theta}) d \boldsymbol{\theta} .\right.
\end{align*}
$$

Thus, the posterior pdis for $\boldsymbol{\beta}_{T}$ and $\sigma$, conditional on $\theta$, are available in analytical form, so that Bayesian estimation may be carriced out by numerical integration, with respect to $p^{\prime \prime}(\boldsymbol{\theta})$. over $R_{\theta}$.

## A.3. The Recursite Formulae

The required recursive formulae are well known in the applied physical sciences, and are often referred to as the Kalman-Bucy filter. (Sec. for example, Aoki (1967). Ho and Lee (1964). Kalman (1960), and Kalman and Bucy (1961).) For the special case of the convergent parameter regression model, the predictive pdf for the grand parameter vector in the initial period follows from the prior pdfi12) for $b_{0}$ and the stationary dispersion of the individual parameter vectors (11!:

$$
\boldsymbol{\mu}_{1!\Omega}=\left(\begin{array}{c}
\overline{\mathbf{c}}_{0}  \tag{24a}\\
\overline{\mathbf{a}}_{0} \\
\vdots \\
\overline{\mathbf{a}}_{0}
\end{array}\right) . \quad \mathbf{M}_{1 \mid 0}(\boldsymbol{\theta})=
$$



In a later period $t$, suppose that the regression information through period $t-1$ has been exploited to yield the posterior moments $\mu_{t-1!t-1}(0)$ and $\sigma^{2} \mathbf{M}_{t-1 \mid t-1}(\boldsymbol{\theta})$. Then the conditional predictive pdf for the parameters in period $t$. has moments given by the

Parameter Extrapolation Formulae:
(24b)

$$
\begin{aligned}
\mu_{\mathrm{t} \mid \mathrm{t}-1}(\theta) & =\Phi\left(\theta \mu_{t-1 \mid t-i}(\theta)\right. \\
& \mathbf{M}_{t \mid t-1}(\theta)=\Phi(\theta) \mathbf{M}_{t-1 \mid t-1}(\theta) \Phi(\theta)+\mathbf{Q}(\theta)
\end{aligned}
$$

The predictive pdf for the parameters $\{24 a)$ or $(24 b . c)$ implies a predictive $p d f$ for the endogenous variables in that period.

## Forecasting Formulae


(24g)

$$
\mathbf{L}_{t}(\boldsymbol{\theta}) \equiv \frac{1}{\sigma^{2}} \operatorname{cov}\left(\boldsymbol{\beta}_{t}-\boldsymbol{\mu}_{t \mid t-1}(\boldsymbol{\theta}) \cdot \mathbf{e}_{t}(\boldsymbol{\theta}) \mid \sigma, \theta, y^{y^{-1}}\right)=\mathbf{M}_{t \mid t-1}(\boldsymbol{\theta}) \mathbf{X}_{t}^{\prime}
$$

(24h) $\quad \mathrm{v}_{t}(\boldsymbol{\theta})=\mathbf{e}_{t}^{\prime}(\boldsymbol{\theta}) \mathbf{F}_{t}^{-1}(\boldsymbol{\theta}) \mathbf{e}_{t}(\boldsymbol{\theta})$
(24i)

$$
\zeta_{1}(\boldsymbol{\theta})=\left|\mathbf{F}_{1}(\boldsymbol{\theta})\right| .
$$

Finally. the observations on the endogenous variables in period $t$ are intorporated into a revised conditional pdf. given by the
Recision Formulae
$(24 \mathrm{~m}) \quad \mathbf{K}_{t}(\boldsymbol{\theta})=\mathbf{L}_{t}(\boldsymbol{\theta}) \mathbf{F}_{t}{ }^{-1}(\boldsymbol{\theta})$
(24n) $\quad \boldsymbol{\mu}_{t \mid l}(\boldsymbol{\theta})=\boldsymbol{\mu}_{\mathrm{t} \mid t-1}(\boldsymbol{\theta})+\mathbf{K}_{t}(\boldsymbol{\theta}) \mathrm{e}_{\mathbf{t}}(\boldsymbol{\theta})$
(240) $\left.\quad \mathbf{M}_{t \mid f}(\boldsymbol{\theta})=\mathbf{M}_{t \mid t-1}(\boldsymbol{\theta})-\mathbf{L}_{t}(\boldsymbol{\theta}) \mathbf{F}_{t}^{\prime} \cdot(\boldsymbol{\theta}) \mathbf{L}_{t}^{\prime} \boldsymbol{\theta}\right)=\left(\mathbf{I}-\mathbf{K}_{t}(\boldsymbol{\theta}) \mathbf{X}_{t}\right) \mathbf{M}_{t \mid t-1}(\boldsymbol{\theta})$.

## B. No Prior Distribution for $\mathbf{b}_{0}$

Where no prior distribution for $\mathbf{b}_{9}$ exists (or. equivalently. where $\mathbf{b}_{0}$ is a fixed but unknown vector from the classical viewpoint). a "starting problem" exists. This problem proved to be quite troublesomc. Indeed. the solution proposed in Aoki(1967) was erroneous. because it was based on false "identities" for gencralized matrix inverses ( p .80 ). Fortunately. there is a straightorward solution to the problem. It may be shown (Rosenberg (1973b)) that the pdf for B, conditional on $\boldsymbol{y}^{\prime}, \boldsymbol{\theta}, \sigma^{2}$, and $\mathbf{b}_{0}$. is of the form

$$
\begin{equation*}
p\left(\boldsymbol{\beta}\left|\mid \mathbf{b}_{0} \cdot \sigma, \boldsymbol{\theta} \cdot \boldsymbol{y}^{\prime}\right)=\operatorname{Normail}\left(\xi_{s \mid r}\left(\mathbf{b}_{0} \cdot \boldsymbol{\theta}\right), \sigma^{2} \mathbf{M}_{s \mid}^{*} \mid \boldsymbol{\theta}\right)\right) . \tag{25}
\end{equation*}
$$

where the mean value is linear in $\mathbf{b}_{0}$.

$$
\xi_{v_{i}, t}\left(\mathbf{b}_{\mathbf{0}}, \boldsymbol{\theta}\right) \equiv E\left[\mathbf{b}_{s} \mid \mathbf{b}_{0}, \boldsymbol{\theta} \cdot \mathbf{y}^{\prime}\right] \equiv \boldsymbol{\mu}_{v, 1}^{*}(\boldsymbol{\theta})+\Xi_{s, 1}(\boldsymbol{\theta}) \mathbf{b}_{0 \mid} .
$$

It follows that

$$
\begin{align*}
& \left.A \underline{\underline{y}}^{T} \mid \mathbf{b}_{n}, \sigma . \boldsymbol{\theta}\right)=\prod_{i=1}^{T}\left(2 \pi \sigma^{2}\right)^{-s 2} \mid \mathbf{F}_{i}^{*}\left(\left.\boldsymbol{\theta}\right|^{-12}\right. \tag{26}
\end{align*}
$$

where

$$
\mathbf{F}_{1}^{*}(\boldsymbol{\theta}) \equiv \frac{1}{\sigma^{2}} \operatorname{var}\left[\mathbf{y}_{t} \mid \mathbf{b}_{\boldsymbol{\theta}}, \sigma \cdot \boldsymbol{\theta} \cdot \mathbf{y}^{t-1}\right]=\mathbf{X}_{t} \mathbf{M}_{t,-1}^{*}(\theta) \mathbf{X}_{t}+\mathbf{R}(\boldsymbol{\theta}) .
$$

This is formally equivalent to the pdf in a regression with regressands $\mathrm{e}_{\mathrm{t}}^{*}(\boldsymbol{\theta})$. regressor matrices $\mathbf{Y}_{1}(\boldsymbol{\theta})$, and with $\mathbf{b}_{0}$ the unknown parameter vector, where

$$
\mathbf{e}_{t}^{*}(\boldsymbol{\theta})=\mathbf{y}_{1}-\mathbf{X}_{t} t_{i t-1}^{*}(\boldsymbol{\theta}), \quad \mathbf{Y}_{1}(\boldsymbol{\theta})=X_{1} \Xi_{t, t-1}(\boldsymbol{\theta}) .
$$

In analogy with the familiar linear regression, it may be shown that

$$
\begin{align*}
& \left.+\left.\right|_{( } \mathbf{b}_{0}-\hat{\mathbf{b}}_{0}(\boldsymbol{\theta})\left(\mathbf{w}_{\mathrm{n}}, \mathbf{0}\right)\right\} \text {. } \tag{1271}
\end{align*}
$$

where
(28)

$$
\begin{aligned}
& \hat{\mathbf{b}}_{0}(\boldsymbol{\theta})=\left(\sum_{i=1}^{1} \mathbf{H}_{t}^{*}(\boldsymbol{\theta})\right)^{1} \sum_{t=1}^{T} \mathbf{h}_{t}^{* *}(\boldsymbol{\theta}) . \quad \mathbf{W}_{0}(\boldsymbol{\theta})=\left(\sum_{i=1}^{1} \mathbf{H}_{t}^{*}(\boldsymbol{\theta})\right)^{1} .
\end{aligned}
$$

and where, for each $t$.

$$
\begin{array}{lll}
n_{t}^{*}(\theta)=\mathbf{e}_{1}^{*}(\theta)^{\prime} \mathbf{F}_{t}^{*} & { }^{1}(\theta) \mathbf{e}_{t}^{*}(\theta) . & \mathbf{H}_{r}^{*}(\theta)=\mathbf{1}_{1}^{\prime}(\theta) \mathbf{F}_{t}^{*} \\
{ }^{1}(\theta i)_{:}^{*}(\theta) \\
\zeta_{1}^{*}(\theta)=\left|\mathbf{F}_{t}^{*}(\theta)\right| . & \mathbf{h}_{1}^{*}(\theta)=\mathbf{l}(\theta) \mathbf{F}_{t}^{*} \quad{ }^{1}(\theta) \mathbf{e}_{1}^{*}(\theta)
\end{array}
$$

## B.1. Maximum Likehihood Fstimation

From (27). the maximum value of the natural log of the likelihood function. for any $\theta$, is

$$
\begin{align*}
& \left.J N \ln \left((T N-k) s^{2}(\theta)\right)+\sum_{i=1}^{r} \ln s_{1}^{*}(\theta)\right) \text {. } \tag{29}
\end{align*}
$$

The Maximum I inethood cstimator of $\boldsymbol{b}_{0}$. conditional on $\boldsymbol{\theta}$, is $\hat{\mathbf{b}}_{0}(\theta)$ given in (28) The Maximum Likelhood estimators for $\sigma^{2}$ and $\boldsymbol{\beta}_{\boldsymbol{f}}$. conditional on $\boldsymbol{\theta}$. are

As in A. above the unconditional Maximum Likelihood estimators are


## B.2. Bayesian Estimation

Assume the same prior densities for $\theta$ and $\sigma$ as in A.2. above. The posterior pdf for all parameters is

$$
\begin{equation*}
p^{\prime \prime}\left(\boldsymbol{\beta}_{r}, \mathbf{b}_{0}, \sigma, \theta\right)=p\left(\boldsymbol{F}_{T} \mid \mathbf{b}_{0}, \sigma, \theta, \mathbf{y}^{T}\right) p^{\prime \prime}\left(\mathbf{b}_{0}, \sigma, \theta\right) \tag{31}
\end{equation*}
$$

The conditional pdf for $\boldsymbol{\beta}_{T}$ is given in (25) The marginal posterior pdf for the other parameters is
(32) $\quad p^{\prime \prime}\left(b_{0}, \sigma, \theta\right)=p\left(\mathbf{b}_{3}, \sigma, \theta \mid y^{T}\right) p^{\prime}(\sigma) p^{\prime}(0)$
$x \sigma^{-(T N-11} p^{\prime}(\boldsymbol{\theta})\left(\prod_{r=1}^{T} \zeta_{r}^{*}(\boldsymbol{\theta})\right)^{-1,2} \exp \left\{-\frac{1}{2} \sigma^{2}\left((T N-k) s^{2}(\boldsymbol{\theta})+\| \mathbf{b}_{0}-\hat{\mathbf{b}}_{0}(\boldsymbol{\theta})\left(\boldsymbol{w}_{0}(\boldsymbol{\theta})\right)\right\}\right.$.

Integrating with respect to $\mathbf{b}_{\mathbf{0}}$ and $\sigma$, the marginal posterior pdf for $\boldsymbol{\theta}$ is found to be

$$
\begin{equation*}
p^{\prime \prime}(\theta) \times p^{\prime}(\theta)\left(\prod_{t=1}^{T} \sum_{i}^{b_{t}^{*}(\theta)}\right)^{-12}\left|\mathbf{W}_{1,}(\theta)\right|^{12}\left(s^{2}(\theta)\right)\left(\left.T N \cdot k\right|^{2} .\right. \tag{33}
\end{equation*}
$$

The conditional posterior pdf for $\sigma$ is

$$
\begin{equation*}
p^{\prime \prime}(\sigma \mid \boldsymbol{\theta}) \times \sigma^{-(N T+1-k)} \exp \left\{-\frac{(T N-k) s^{2}(\boldsymbol{\theta})}{2 \sigma^{2}}\right\} . \tag{34}
\end{equation*}
$$

The mean is $\overline{\sigma^{2}}(\boldsymbol{\theta})=\left[(T N-k) s^{2}(\theta)(T N-k-2)\right]$. The conditional posterior pdf for $\boldsymbol{\beta}_{T}$ is again multivariate Student $t$ :

$$
\begin{align*}
p^{\prime \prime}\left(\boldsymbol{\beta}_{T} \mid \boldsymbol{\theta}\right) \propto & \left|s^{2}(\boldsymbol{\theta}) \mathbf{M}_{T \mid T}(\boldsymbol{\theta})\right|^{-12}  \tag{35}\\
& \times\left(T N-k+\left\|\boldsymbol{\beta}_{T}-\boldsymbol{\mu}_{T Y T}(\boldsymbol{\theta})\right\|_{\left(s^{2}(\boldsymbol{\theta}) \mathbf{M}_{T I T}(\boldsymbol{\theta})\right)^{-1}}\right)^{-(T N-k+K) \cdot 2} .
\end{align*}
$$

where
(36)

$$
\begin{gathered}
\boldsymbol{\mu}_{T \mid T}(\boldsymbol{\theta})=\boldsymbol{\mu}_{T \mid T}^{*}(\boldsymbol{\theta})+\Xi_{T \mid T}(\boldsymbol{\theta}) \hat{\mathbf{b}}_{\boldsymbol{\theta}}(\boldsymbol{\theta}) . \\
\mathbf{M}_{T \mid T}(\boldsymbol{\theta})=\mathbf{M}_{T \mid T}^{*}(\boldsymbol{\theta})+\bar{\Xi}_{T \mid T}\left(\boldsymbol{\theta} \mid \mathbf{W}_{v}(\boldsymbol{\theta}) \mathbf{E}_{T \mid T}^{\prime}(\boldsymbol{\theta}) .\right.
\end{gathered}
$$

The moments of the marginal posterior pdf of $\boldsymbol{\beta}_{T}$ are again given by formula (23).

## B.3. The Recursive Formulae

The recursive formulae are closely related to those in the previous case. The initial conditions are somewhat changed.

## Initial Conditions:

(37a)

$$
\begin{gathered}
\mu_{1 \mid 0}^{*}(\boldsymbol{\theta})=\mathbf{0} . \quad \Xi_{1 \mid 0}(\boldsymbol{\theta})=\left(\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
0 & \mathbf{I} \\
\mathbf{0} & \mathbf{I} \\
\vdots & \vdots \\
\mathbf{0} & \mathbf{I}
\end{array}\right) \\
\mathbf{M}_{1 \mid 0}(\boldsymbol{\theta})=\left(\begin{array}{ccccc}
0 & 0 & 0 & \ldots & 0 \\
0 & \Omega(\boldsymbol{\theta}) & 0 & \ldots & 0 \\
0 & 0 & \Omega(\theta) & \ldots & 0 \\
\vdots & & & & \vdots \\
0 & 0 & 0 & \ldots & \Omega(\boldsymbol{\theta})
\end{array}\right) .
\end{gathered}
$$

All other formulac in the previous list ( $24 \mathrm{~b}, \ldots, 24 \mathrm{o}$ ) carry over to the present case, with the variables $\mu, \mathbf{M}, \mathbf{e}, \mathbf{F}, \boldsymbol{v}, \zeta, \mathbf{L}, \mathbf{K}$ having a superscript ${ }^{*}$. In addition, the following formulae are inserted in the list in alphabetical order:

Parameter Extrapolation:

$$
\begin{gather*}
\Xi_{t \mid-1}(\theta)=\Phi(\theta) E_{1-1 \mid t-1}(\theta)  \tag{37d}\\
4 \mid 1
\end{gather*}
$$

## Forccusting:

(37.)

$$
\begin{align*}
& r_{i}(0)=X_{i} \Xi_{i t} \quad(0) \\
& \mathrm{h}_{1}^{*}(\theta)=\mathrm{I}_{1}^{\prime}(\theta) \mathrm{F}_{t}^{*} \quad{ }^{1}(\theta) \mathrm{e}_{t}^{*}(\theta)  \tag{37k}\\
& \mathbf{H}_{t}^{*}(\boldsymbol{\theta})=\mathbf{M}_{i}^{\prime \prime}(\boldsymbol{\theta}) \mathbf{I}_{t}^{\text {* }}{ }^{\mathbf{1}(\boldsymbol{\theta}) \mathbf{Y}_{t}^{\prime}(\boldsymbol{\theta})}
\end{align*}
$$

Retision:
(37p)

$$
\Xi_{t \mid t}(\boldsymbol{\theta})=\Xi_{l, t}(\boldsymbol{\theta})-\mathbf{K}_{t}^{*}(\boldsymbol{\theta})_{l}^{\prime}(\boldsymbol{\theta})=i \mathbf{I}-\mathbf{K}_{t}^{*}(\boldsymbol{\theta}) \mathbf{X}_{t}\left(\Xi_{t \mid t, 1}(\boldsymbol{\theta})\right.
$$

C. Both Maximum Likefihood and Bayesian estimation require an efficien! meams of searching $R_{f}$. It is sometimes convenient to transform the patameters to a vector $\theta^{*}$ such that the admissible region for the transformed parameters. $R_{v}$. coincides with Euclideal space. For instanee, the variance natrices ate required to be positive semi-definite symmetric. This constraint may be imposed by expressing each matrix as the product of a lower-triangular matrix with its transpose. for instance. $Q_{b}=\mathbf{T T}^{\prime}$. Seatching the spate of uneonstrained hower-trianguiar matrices $\mathbf{T}$ is equiatent to searching the space of positive semi-definite symmetrie matrices $\mathbf{Q}_{b}$. and the constraints are removed from the transformed problem. Similarly. for the convergence rates $\phi_{i}$. a convenient transformation is $\phi_{i}=d_{i}^{2}\left(1+d_{i}^{2}\right)$, since the admissable range $0 \leq \phi_{i}<1$ is equivaleni to the range
 for $\boldsymbol{\theta}$ and also that $\left.\boldsymbol{i} \boldsymbol{\theta} \quad \boldsymbol{\theta} *\right|_{0 \cdot 0}=\mathbf{0}$. so that attention must be given to avoiding the spurious local extremum at $\boldsymbol{\theta}^{\boldsymbol{*}}=\mathbf{0}$.

A good initial estmate of the stochastic specitication is also helpfill. The following algorithm provides an initial estimate when the sample size is large:
(i) First. under the temporary simplifying assumption that parameters are not dispersed across the population. estimates of the mean patameters in every period. $\overline{\overline{\mathbf{b}}}_{1} \ldots . \overline{\overline{\mathbf{b}}}_{T}$. are generated. If the population mean is assumed to be essentially unchanging over time. ( $\mathbf{Q}_{6}=\mathbf{Q}_{c a}=\mathbf{Q}_{i}=\mathbf{0}$ ) this is done by ordinary least squares. Otherwise, the population mean changes sequentially over time according to a Markor process with incremental variance


This variance, toget her with the realized values of the poputation mean parameters. may be estimated by an application of the previons formulate to this simpler sequential model. The eommunal disturbance varia nee $\sigma^{2} R_{4}$, may also be estimated at this stage.
(ii) If the sample size is large, the residuals about these sample mean parameter estimates will approximate the contributions of the parameter dispersion and the disturbances.

$$
\bar{e}_{n t}=y_{n t}-\mathbf{x}_{n t} \overline{\overline{\mathbf{b}}}_{t} \simeq y_{n t}-\mathbf{x}_{n t}^{\prime} \overline{\mathbf{b}}_{t}=\mathbf{x}_{n t}^{\prime}\left(\mathbf{a}_{n t}-\overline{\mathbf{a}}_{\mathbf{a}}\right)+u_{n t} .
$$

Therefore.

$$
\begin{equation*}
E\left[\bar{c}_{n t}^{2}\right] \simeq g_{0}+\sum_{i=1}^{\hat{1}} \sum_{i}^{\lambda} g_{i j} z_{i n t} z_{j n t} \quad n=1 \ldots \ldots N \quad t=1 \ldots . T \tag{38}
\end{equation*}
$$

where

$$
g_{n}=\sigma^{2}\left(1+R_{i:}\right) \quad g_{i}=\sigma^{2}\left(a_{2 i} \text {, and } \varepsilon_{1}=2 \sigma^{2}(\cdot,)_{1}, \text { for } j \therefore\right. \text { i. }
$$

Note that for simplenty. $R_{n}$ is assumed here to cythel unty for all $n$.) Aiso ior any sime lay .
(39)

$$
E\left[\bar{e}_{m, i} \bar{e}_{\ldots, t}\right]=\sum_{i=1}^{\hat{1}} \sum_{j=1}^{2} g_{i, j} z_{i n t} z_{m, t} \quad n=1 \ldots, N \quad t=\tau+1 \ldots . T
$$

where

$$
g_{\mathrm{rij}}=\sigma^{2} \omega_{i j} \phi_{i} .
$$

If (38) is treated as a regression equation. with the squared residuals reyressed on the cross products of the explanatory variables. then estimater of $g_{0}, g_{1} \ldots \ldots g_{i \lambda}$. $\ldots, g_{i j}$ and. hence. of $\sigma^{2}$ and $\Omega$ are obtained. Similarly. for each time lag $\tau$. a regression of the lagged products of the residnatis on the lagged prodncts of the explanatory variables of form (39) provides estimates of $\sigma^{2} \hat{S}_{3} \Omega$.

The various $\dot{g} s$ are nonlinear functions of the underiying parameters $A_{6}$, and $Q_{a}$. The estimates $\hat{y}_{i j}$ may be examined for their implications about the pattern of parameter variation. and initial estimates of the underlying parameters may be obtained by inspection or if necessary. by nonlinear regression of the various $\dot{g}_{1 i}$ onto $\boldsymbol{\Lambda}_{\boldsymbol{\phi}}$ and $\mathbf{Q}_{a}$

## D. Minimum Mean Square Error Lincar Estimatom

Suppose that $\theta$ is known. Let a minimum mean square linear unbiased estimator be defined as follows:
(i) An estimator $\boldsymbol{\beta}_{T \mid T}$ is linear unbiased iff it is a linear function of $y^{r}$ such that $E\left[\boldsymbol{\beta}_{T i T} \mid \boldsymbol{\theta}\right]=E\left[\boldsymbol{\beta}_{T} \mid \boldsymbol{\theta}\right]$.
(ii) The minimum mean square error linear unbiased estimator $\hat{\boldsymbol{\beta}}_{T \mid T}$ is defined by the condition that for every linear combiation of the parameters. $\alpha \beta_{T}$, and for every linear unbiased estimator $\boldsymbol{\beta}_{T I T} \cdot E\left[\mid \alpha \hat{\boldsymbol{\beta}}_{T I T}-\alpha^{\prime} \boldsymbol{\beta}_{I} I^{2} ; \boldsymbol{\theta}\right] \leq$ $E\left[\left(\alpha \boldsymbol{\beta}_{T \mid T}-\alpha \boldsymbol{\beta}_{r}\right)^{2} \mid \theta\right]$
Then it inay be shown (Rosenberg (1973b) that the estimators $\hat{\boldsymbol{\beta}}_{714}(\boldsymbol{\theta})$ derived in Sections 11.A.2. and II.B.2. are mininum mean square error linear unbiased estimators, witi mean square error matrices $\sigma^{2} \mathbf{M}_{T T^{T}}(\boldsymbol{\theta})$. Also. s $s^{2}(\boldsymbol{\theta})$ is an unbiased estimator of $\sigma^{2}$. These properties do not require that the stochastic terms be normally distributed.

## III. Approximate Formulat:

The number of arithmetic operations in the recursive formulat mereases as $N^{3} \dot{i}^{2}$, and the number of entries in $\mathbf{M}$ increases as $N^{2} i^{2}$. Consequently, the exact method requires excessive computer time and storage when $N$ is large. Fortunately a natural simplifying approximation eliminates these problems.

The parameter covariance matrix $\sigma^{2}$ Mi may be partitioned as

Throughout the recursive procedure, the largest part of the covariance between the parameters of different individuals arises from the common influence of the population mean. As a consequence, the matrices $\sigma^{2} \mathbf{A}_{m \text { : }} \cdot m \neq n$.giving the covariance between the $m$ th and $n$th individual parameter vectors, are similar for all pairs of individuals, as are the matrices $D_{n}$ for all individuals. Accordingly. the following approximation suggests itself:

$$
\tilde{\mathbf{M}}=\left(\begin{array}{ccccc}
\tilde{\mathbf{C}} & \tilde{\mathbf{D}} & \tilde{\mathbf{D}} & \ldots & \tilde{\mathbf{D}}  \tag{40}\\
\tilde{\mathbf{D}}^{\prime} & \tilde{\mathbf{A}}_{i}+\tilde{\mathbf{A}}_{1} & \tilde{\mathbf{A}}_{6 i} & \ldots & \tilde{\mathbf{A}}_{i} \\
\tilde{\mathbf{D}}^{\prime} & \tilde{\mathbf{A}}_{6} & \tilde{\mathbf{A}}_{i ;}+\tilde{\mathbf{A}}_{2} & \ldots & \tilde{\mathbf{A}}_{6} \\
\vdots & \vdots & & \cdots & \\
\tilde{\mathbf{D}}^{\prime} & \tilde{\mathbf{A}}_{G} & \tilde{\mathbf{A}}_{G} & \ldots & \tilde{\mathbf{A}}_{6 i}+\tilde{\mathbf{A}}_{s}
\end{array}\right)
$$

Here

$$
\sigma^{2} \tilde{\mathbf{A}}_{\mathbf{6}}=\sigma^{2}\binom{\sum_{m, n=1}^{\mathbb{M}} \mathbf{A}_{m n}}{\frac{m \neq n}{N(N-1)}}
$$

is the average interindividual covariance,

$$
\sigma^{2} \tilde{\mathbf{D}}=\sigma^{2}\left(\frac{\sum_{n=1}^{N} \mathbf{D}_{n}}{N}\right)
$$

is the average covariance between cross-fixed parameters and individual crossvarying parameters, and the matrices $\sigma^{2} \tilde{\mathbf{A}}_{n}=\sigma^{2}\left(\mathbf{A}_{n n}-\overline{\mathbf{A}}_{6}\right), n=1, \ldots . N$ are the excess of intra-individual over average interindividual covariance. The superscript tilde denotes an approximation to a statistic.

The simplifying approximation reduces the number of distinct entries in $\mathbf{M}$ to order $\lambda^{2} N$ and the number of arithmetic operations to order $\hbar^{2} N$. Estimation for a given $\boldsymbol{\theta}$ then requires the same order of magnitude of storage and computations as would be required by ordinary regressions for all individuals in the population, in which similarities across individuals would be in no way exploited.

In this section, the recursive formulae resulting from this approximation are given in terms of the individual parameters. These formulac, the exact recursive formulae, and the formulae for another approximation were derived in detail in (Rosenberg (1973c)), but only the approximation that was found to be preferable will be reported here. To simplify the presentation, the notation $(\boldsymbol{\theta})$ and the subscript $t$ on the variables $\mathbf{y}, \mathbf{e}, \mathbf{X} . \mathbf{Z}, \mathbf{W}, \mathbf{F}, \mathbf{K} . \mathbf{L} . \mathbf{Y}$ will be omitted where no confusion can result.

## 4. Approximate Recarsite Formulae

The initial conditions ( $24 a$ ) and ( $37 a$ ) both satisfy the approximation exactly, and may be used in the forms already given.

## Parameter Extrapolation

Suppose that for some $t, \tilde{\mathbf{M}}_{t-1 / t-1}$ satisfies the approximation $(40)$. Then the parameter extrapolation formulae are

$$
\begin{aligned}
& \mathrm{b}\left\{\begin{array}{l}
\tilde{\mathbf{c}}_{t \mid t-1}=\tilde{\mathbf{c}}_{t-1 \mid t-1} \\
\overline{\mathrm{a}}_{n, t \mid t-1}=\boldsymbol{\Lambda}_{\phi} \tilde{\mathbf{a}}_{n, t-1 \mid t-1}+\left(\mathbf{I}-\boldsymbol{\Delta}_{\phi}\right) \overline{\mathbf{a}}_{\mathbf{t}-1 \mid t-1} \quad n=1, \ldots, N
\end{array}\right. \\
& \tilde{\mathbf{C}}_{\mathrm{t} \mid t-1}=\tilde{\mathbf{C}}_{\mathrm{i}-1 \mid t-1}+\mathbf{Q}_{c} \\
& \tilde{\mathbf{D}}_{t \mid t-1}=\overline{\mathbf{D}}_{t-1 \mid t-1}+\mathbf{Q}_{c a} \\
& \mathrm{c}\left\{\begin{array}{l}
\tilde{\mathbf{A}}_{G,| | t-1}=\tilde{\mathbf{A}}_{G, t-1!t-1}+\mathbf{Q}_{6}+\frac{\overline{\overline{\mathbf{A}}}_{1-1 \mid t-1}-\Delta_{\phi} \overline{\tilde{\mathbf{A}}}_{t-1 \mid t-1} \Delta_{\phi}}{N} \\
\tilde{\mathbf{A}}_{n, t \mid t-1}=\Delta_{\varphi} \overline{\mathbf{A}}_{n, t-1 \mid t-1} \Delta_{\phi}+\mathbf{Q}_{u}
\end{array}\right. \\
& +\frac{\Delta_{\phi}\left(\tilde{A}_{n, t-1!:-1}-\overline{\tilde{A}}_{t-1 \mid t-1}\right)\left(\mathbf{I}-\Delta_{\phi}\right)+\left(\mathbf{I}-\Delta_{\phi}\right)\left(\overline{\mathbf{A}}_{n . t-1 \mid t-1}-\overline{\tilde{A}}_{1-1 \mid t-1}\right) \Delta_{\phi}}{N}
\end{aligned}
$$

$$
\begin{aligned}
& n=1, \ldots, N
\end{aligned}
$$

where $\tilde{\mu}$ and $\frac{\because}{=}$ have been partitioned as

$$
\tilde{\mu}=\left(\begin{array}{c}
\tilde{\mathbf{c}} \\
\tilde{\mathbf{a}}_{1} \\
\vdots \\
\tilde{\mathbf{a}}_{N}
\end{array}\right) \quad \tilde{\Xi}=\left(\begin{array}{c}
\tilde{\Xi}_{c} \\
\bar{\Xi}_{1} \\
\vdots \\
\tilde{\Xi}_{N}
\end{array}\right)
$$

and where the bar denotes an average over $n=1, \ldots, N$, e.g.,

Note that if $\mathbf{M}_{t-1 / t-1}$ satisfies the approximation, then $\mathbf{M}_{t \mid t-1}$ also exactly satisfies it.

## Forecasting

$$
\begin{aligned}
& \text { The forecast error vector is } \\
& \qquad \mathrm{e}\left\{\mathbf{e}=\mathbf{y}-\mathbf{X} \tilde{\boldsymbol{\beta}}_{t \mid t-1}=\left(\begin{array}{c}
y_{1}-\left(\mathbf{w}_{1}^{\prime}: \mathbf{z}_{1}\right)\left(\begin{array}{c}
\tilde{\mathbf{c}}_{\tilde{\mathbf{a}}_{1}} \\
\vdots \\
\vdots \\
y_{N}-\left(\mathbf{w}_{N}^{\prime}: \mathbf{z}_{N}^{\prime}\right) \\
4 \\
\tilde{\mathbf{a}}_{N}-1
\end{array}\right)_{t \mid r-1}
\end{array}\right) \equiv\left(\begin{array}{c}
e_{1} \\
\vdots \\
e_{N}
\end{array}\right) .\right.
\end{aligned}
$$

$$
\text { When } \mathbf{M}_{t} \text { if , satisfies the approximation (t(0). F simplifies to }
$$

where

$$
f_{n}=\boldsymbol{z}_{n} \mathbf{A}_{n,| |,: ~}^{\boldsymbol{z}_{n}}+R_{n}, \quad n=1 \ldots \ldots .
$$

and where $t$ is again a vecior of units.
When the communal disturbance variance $R_{6}$, is zero. the middle term vanishes. Otherwise it may be adjoined to the first term:

$$
\begin{aligned}
& \equiv \boldsymbol{\Psi} \boldsymbol{P}_{t \mid-1} \Psi^{\prime}+\mathbf{A}_{j} .
\end{aligned}
$$

Let $\psi_{n}=\left(\boldsymbol{w}_{n}^{\prime}: \boldsymbol{Z}_{n}^{\prime}:[1]\right)^{\prime}$ denote the $n$th column of $\boldsymbol{\Psi}^{\prime}$. Here the commental disturbanec changes status from a component of the disturbances with variance $\sigma^{2} R_{6}$ to a cross-fixed parameter. with a coefficient vector of units, having forecast value of zero and forecast error variance of $\sigma^{2} R_{6}$. Square brackets endose terms which appear only when this artifice is in use. $k$ [or $k+1]$ dimensional matrices such as $\mathbf{P}$ will be partitioned in the self-cxplanatory notation:

$$
\mathbf{P}=\left(\begin{array}{c}
\mathbf{P}_{\mathrm{c}} \\
\mathbf{P}_{u} \\
\left.\mathbf{P}_{u}\right]
\end{array}\right)=\left(\begin{array}{ccc}
\mathbf{P}_{u c} & \mathbf{P}_{c u} & {\left[P_{c u}\right]} \\
\mathbf{P}_{w} & \mathbf{P}_{c u} & {\left[P_{a u}\right]} \\
{\left[P_{u k}\right.} & {\left[P_{u u}\right]} & {\left[P_{u u}\right.}
\end{array}\right] .
$$

When $\mathbf{M}_{\mathbf{t}-1 \mathrm{p},-\mathrm{l}}$ satisfies the approximation. $\mathbf{L}$ simplifies to

$$
\begin{aligned}
& =\left(\begin{array}{c}
P_{c} \\
\mathbf{P}_{a} \\
\vdots \\
\mathbf{P}_{u}
\end{array}\right) \boldsymbol{\Psi}+\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
i_{1} & 0 & & 0 \\
& & \cdots & \\
0 & 0 & & i_{n}
\end{array}\right)
\end{aligned}
$$

wherc $i_{n}=\tilde{\mathbf{A}}_{\text {n.tit }-1} \mathbf{z}_{n}$.
The inversion of $\mathbf{F}$ can be simplified by the matrix inversion identity

$$
\begin{equation*}
\mathbf{F}^{-1}=\mathbf{A}_{f}^{-1}-\mathbf{A}_{f} \boldsymbol{\Psi}\left(\boldsymbol{\Psi}^{\prime} \mathbf{A}_{f}^{-1} \boldsymbol{\Psi}+\mathbf{P}{ }^{1}, \boldsymbol{\Psi}^{\prime} \mathbf{J}_{j}^{1}\right. \tag{41}
\end{equation*}
$$

The matrix $\boldsymbol{\Psi} \boldsymbol{\Delta}_{f}^{-1} \boldsymbol{\Psi}=\sum_{n=1}^{\boldsymbol{S}}\left(\psi_{n} \psi_{n}^{\prime} f_{n}\right)$. which has the form of a precision matrix.
 $h=\Psi^{\prime} \mathbf{\Lambda}_{j}^{\prime} e=\sum_{n=1}^{\prime}\left(\Psi_{n^{\prime}}^{\prime \prime} f_{n}\right)$. Then the residual sum of syuares is

The determinant of $\mathbf{F}$ is given by the determinantal identity
(42)

$$
|\mathbf{F}|=\left|\mathbf{A}_{i}+\boldsymbol{P} \mathbf{P} \Psi^{\prime}\right|=\left|\mathbf{A}_{j}\right| \cdot|\mathbf{P}| \cdot\left|\mathbf{P}{ }^{\prime}+\boldsymbol{\Psi} \mathbf{I}_{i}{ }^{\prime} \boldsymbol{\Psi}\right|
$$

which yiclds
(i) $\left\{\begin{aligned} & y_{t} \\ &=\left(\prod_{n=1}^{y} i_{n}\right) \cdot|\boldsymbol{P}| \cdot\left|\mathbf{S}^{-1}\right|\end{aligned}\right.$

Whet her or not $\mathbf{M}_{1}$, n,, satisfies the approximation, $I$ 'is given by

Therefore.

$$
(k)\left\{\quad \mathbf{h}_{r}^{*}=\mathbf{i} \mathbf{F}^{-1} \mathbf{e}=\sum_{n=1}^{1} \mathbf{r}_{n}\binom{c_{n}-\psi_{n} S h}{f_{n}}\right.
$$

(l) $\{$

## Recision

The first term of $L$, when post-multiplied by $F^{\prime}$. assumes the simple form

$$
\begin{aligned}
& =\binom{\mathbf{P}_{i}}{\mathbf{P}_{d}}\left(\mathbf{P}^{-1}\left(\mathbf{H}+\mathbf{P}^{-1}\right)^{-1}\right) \boldsymbol{\Psi} \mathbf{A}_{j}{ }^{1}=\left(\mathbf{I}:[0], \mathbf{S} \boldsymbol{\Psi} \boldsymbol{\Delta}_{j}{ }^{1} .\right.
\end{aligned}
$$

The revision matrix $K$ may therefore be written:

$$
m\left\{K=\left(\begin{array}{ccc}
1 & 0 & {[0]} \\
0 & I & {[0]} \\
0 & \vdots & \\
0 & j & {[0]}
\end{array}\right) S \Psi^{\prime} \Delta_{j}^{\prime}+\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
i_{r} & 0 & \ldots & 0 \\
\vdots & & & \\
0 & 0 & \ldots & j_{-}
\end{array}\right)\left(A_{j}{ }^{1}-A_{j}{ }^{\prime} \Psi S \Psi \mathcal{S}_{j}{ }^{1}\right)\right.
$$

Row-by-row evaluation of the revision equation for $\beta$ yiclds

$$
n\left\{\begin{array}{c}
\tilde{\mathbf{c}}_{t \mid t}=\tilde{\mathbf{c}}_{t ; t-1}+\mathbf{S}_{1} \mathbf{h} \\
\tilde{\mathbf{a}}_{n .| | t}=\tilde{a}_{n . t \mid t-1}+\mathbf{S}_{u} \mathbf{h}+\dot{i}_{n}\binom{c_{n}-\psi_{n} \mathbf{S h}}{/_{n}} \quad n=1 \ldots \ldots .
\end{array}\right.
$$

Thus. a communai revision equal to Sh is made. Fach cross-tarying parameter estimate sector is further incremented by a multiple of the corresponding vector $\lambda .{ }^{1}$

For revision of $\mathbf{M}$, it is necessary to evaluate the term - $\mathbf{L F}{ }^{1} \mathbf{L}$. After substitution of the expressions for $\mathbf{F}^{-1}$ and $L$. use of the equality $\mathbf{P}-\mathbf{S H P}=$ $(\mathbf{I}-\mathbf{S H}) \mathbf{P}=\mathbf{S} \mathbf{P}^{-1} \mathbf{P}=\mathbf{S}$ in partitioned form yields the revision formulat for the various components of the matrix:
$0\left\{\quad \overline{\mathrm{C}}_{t, 1}=\mathrm{S}_{\mathrm{cc}}\right.$
(43)

$$
\begin{aligned}
\mathbf{D}_{n, t \mid t}= & \mathbf{S}_{c a}-\mathbf{S}_{\mathbf{r}} \frac{\boldsymbol{\psi}_{n} \lambda_{n}^{\prime}}{f_{n}} \quad n=1, \ldots N \\
\mathbf{A}_{m n,| |}= & \mathbf{S}_{u a t}+\delta_{m m}\left(\overline{\mathbf{A}}_{r, t| |-1}-\frac{\lambda_{m} \lambda_{m}^{\prime}}{f_{m}^{\prime}}\right)+\frac{\lambda_{m} \psi_{m}^{\prime} \mathbf{S}_{n} \psi_{n}^{\prime}}{f_{m}^{\prime}} \lambda_{m} \psi_{m}^{\prime} \mathbf{S}_{a}^{\prime} \\
& -\frac{\mathbf{S}_{a} \psi_{n} \lambda_{n}^{\prime}}{f_{n}} \quad m=1 \ldots N \quad n=1 \ldots N
\end{aligned}
$$

From these formulae, it is apparent that $S$ gives the variance in an individual estimate stemming from the communal sources of error after the new regression information has been incorporated

The revised interindividual covariances (43). (44) are not identical unless $\mathbf{x}_{n t}, t=1 \ldots T$ and $R_{n}$ are the same for all individuals. Hence, if the regressers and disturbance variances are identical for all $n$. so that $\mathbf{M}$ satisfies (40) without adjustment, the "approximate" formulae in this section coincide with the true recursive formulae. When this is not the case, in order to preserve the simplifying conditions of the approximation. it is natural to force the interindividual covariances to equal their a verages. This arbitrary adjustment is the sole cause of inefficiency in the approximation. The average values are:


[^0]For computational purposes. the last term can be simplified:

$$
\begin{aligned}
& \sum_{\substack{m, n=1 \\
m \neq n}}^{\sum}\left(\lambda_{1, m} \dot{\psi}_{m}^{\prime} S \psi_{n} \hat{\lambda}_{n}^{\prime} f_{m} f_{n}\right) \\
& N(N-1) \\
& =\frac{N}{N-1}\left(\sum_{n=1}^{N}\left(\hat{i}_{n} \psi_{n}^{\prime} f_{n}\right) .\binom{\sum_{n=1}^{v}\left(\lambda_{n} \psi_{n}^{\prime} f_{n}\right)}{N}\right. \\
& -\frac{\sum_{n=1}^{N}\left(\lambda_{n} \psi_{n}^{\prime} S \psi_{n} \lambda_{n} \int_{n}^{2}\right)}{N(N-1)}
\end{aligned}
$$

The intra-individual variance increments are then set to be exact.
$0!$

$$
\overline{\mathbf{A}}_{n .| | t}=\mathbf{A}_{n n, s \mid 1}-\overline{\mathbf{A}}_{6, t \mid r} \quad n=1 \ldots .
$$

When $N$ is small, an "increment" $\tilde{\mathbf{A}}_{n, \text { th }}$ mady occasionally fail to be positive definite in the first few periods of the sample because the previous data for that individual have provided more information about an individual parameter than all sample data have provided about the sample mean. In this event. the :pproximated matrix $\overline{\mathbf{M}}$ is not positive definite. and the method can break down. During the recursive algorithm, difficulties arise only when $f_{n}$ is nompositice in the following period
 to equal 0 . After completion of the algorithm. the indinami increments $\tilde{\mathbf{A}}_{\text {et }}$ : can be checked for nompositive eigenvalues, but this chech sp probably unneci:sary, since nonpositive cigenvalues were never encounterad in more than 150 simulations with $N=10$. 20 . or 40 at times $T=10$. 15 . or 20 .

## B. An Approximation to the Distrinution of $\boldsymbol{\beta}_{r}$

In Maximum Likelihood estimation. the asymptetic approximate distribu-
 to be tractable. $\mathbf{M}_{T \mid T}$ may be approximated by $\overrightarrow{\mathbf{M}}_{T I T}$. so that the variance matrix for $\beta$ will satisfy (40). In Bayesian estimation. where $\beta_{T: 1}$ hats the secend moment given in (23). the numerical integration is facihated by the une of $\overline{\mathbf{M}}_{T \mid T}$ and by the further approximation:

After this simplification. the integrand satisfics (iti) and ience $\overline{\mathbf{M}}_{\text {P! }}$ will satisty (40) as well.

Statistical inference in the presence of a distribution with variance matrix $\overline{\mathrm{I}}$ satisfying (40) requircs evaluation of $|\overline{\mathbf{M}}|$ and of the term

$$
\left.q=\left(\begin{array}{c}
\tilde{\mathbf{a}}^{\prime}-\mathbf{c}^{\prime \prime} \\
\tilde{\mathbf{a}}_{1}-\mathbf{a}_{1}^{\prime \prime} \\
\tilde{\mathbf{a}}_{2}-\mathbf{a}_{2}^{\prime \prime} \\
\vdots \\
\tilde{\mathbf{a}}_{y}-\mathbf{a}_{y}^{\prime \prime}
\end{array}\right) \tilde{\mathbf{n}}^{\prime} \quad \begin{array}{c}
\tilde{\mathbf{c}}-c^{\prime \prime} \\
\tilde{\mathbf{a}}_{1}-\mathbf{a}_{1}^{\prime \prime} \\
\tilde{\mathbf{a}}_{2}-\mathbf{a}_{3}^{\prime \prime} \\
\vdots \\
\mathbf{a}_{3}^{\prime \prime}
\end{array}\right) .
$$

By an application of the determinantal identity (+2).


An application of the matrix inversion identity (41) yields a rank $k$ formula for $\overline{\mathbf{M}}^{-1}$. After some matrix manipulations, an expression for the statistic of may be derived in terms of the matrix
(47)

$$
\begin{aligned}
& \mathbf{A}=\left(\sum_{n=1}^{N} \tilde{\mathbf{A}}_{n}^{-1}+\left(\tilde{\mathbf{A}}_{;}-\tilde{\mathbf{D}}^{\prime} \tilde{\mathbf{C}}^{-1} \tilde{\mathbf{D}}\right)^{-1}\right):
\end{aligned}
$$

$$
\begin{aligned}
& -\| \sum_{n=1}^{N} \tilde{A}_{n}^{-1}\left(\bar{a}_{n}-\mathbf{a}_{1}^{0}-\tilde{D} \tilde{C}^{-1}\left(\overline{\mathbf{c}}-c^{0}\right) \|_{\left[A^{-1}\right]} .\right.
\end{aligned}
$$

IV. The Statistical Efficiency and Validity of tife Approximation

In this section, the properties of the approximation (hereafter referred to as A.I), conditional on $\theta$ being correctly specified, will be analyzed. Upon examination of the recursive formulae that make up A.I, it may be seen to yield a linear unbiased estimator that is inefficient as a result of the simplifications in step (o). Recursive formulae for the true mean square error matrix of $\tilde{\boldsymbol{\beta}}_{7 \mid T}$. as opposed to the approximation $\tilde{\mathbf{M}}$, may be derived. Then, for any $\boldsymbol{\theta}$, and for any set of explanatory variables $\mathbf{X}$, the exact properties of A.i may be computed, and two questions may be answered:
(i) How much larger is the mean square error of A.I than that of the exact. fully efficient method?
(ii) How valid is the approximated mean square error matrix $\overline{\mathbf{M}}_{T \mid r}$ as an estimate of the true mean square error matrix for the approximare estimator, and how accurate is the approximated likelihood?
In addition, the properties of A.I may be compared with those of Ordinary Least Squares (OL.S). These calculations, for a variety of convergent parameter regression structures ( $\boldsymbol{\theta}, \mathbf{X}$ ), are reported in detail in Rosenberg (1973c. Sec. 5). The broad outlines will be summarized here.

## A. Contergent Paraneter Structures To Be Analyzed

Under the simplifying assumption that the cross-fixed parameters are constant over time and that the individual disturbance variances $R_{n}=R$ are identical for all $n$, a convergent parameter structure is specified by:
(i) the explanatory variables, X
(ii) the communal disturbance variance, $\sigma^{2} R_{G}$
(iii) the communal parameter shift variance, $\sigma^{2} \mathrm{Q}_{6}$
(iv) the individual parameter shift variance, $\sigma^{2} \mathrm{Q}_{a}$
(v) the convergence rates for parameters, $\phi_{1} \ldots, \phi_{\text {; }}$

In selecting a set of representative structures among the infinite variety of options, the first problem is to construct the explinatory variables. The performance of the approximation is easily seen to be invariant to a linear transformation on the explanatory variables and a simultaneous inverse transformation on the parameter process. Accordingly, the explanatory variables can be normalized to have mean zero and variance unity, with inclusion of a constant being optional. provided that effects of changing scale are introduced through the parameter process. The correlation structure of the explanatory variables may be specified by four parameters, $\mathbf{X}\left(\rho_{T}, \rho_{0}, \rho_{v}, \rho_{t}\right)$, as follows:

$$
\begin{aligned}
& \operatorname{corr}\left(x_{i n t}, x_{j n t}\right)=\left\{\begin{array}{c}
\rho_{0} \\
\rho_{0}+\rho_{v} \\
\rho_{0}+\rho_{t}
\end{array}\right\} \text { for } \begin{cases}i \neq j, & m \neq n \\
i=j, & m \neq n \\
i \neq j, & m=n\end{cases} \\
& \operatorname{corr}\left(x_{i n t}, x_{j m, i-s}\right)=\rho_{7}^{s} \operatorname{corr}\left(x_{i m r}, x_{j m t}\right) .
\end{aligned}
$$

Thus, $\rho_{0}$ is the correlation between different variables for different individuals in the same period, $\rho_{V}$ is the increment to this when the same variable is observed for different individuals, $\mu_{t}$ is the increment when two different variables are observed for the same individual, and $\rho_{\boldsymbol{\gamma}}$ is the attenuating factor for serial correlation. A set of pseudo-random, normally distributed explanatory variables obeying this correlation is easily constructed. In specifying $\boldsymbol{\theta}$, the covariances between parameter shifts for different parameters can be assumed to be zero, since variations in correlation are introduced in $\mathbf{X}$.

For each specification of $\mathbf{X}$, any combination of the remaining options $R_{G}, Q_{G}: \mathbf{Q}_{a}$, and $\Delta_{\phi}$ may be selected. The stochastic specification can be summarized by two statistics: the average convergence rate, $\bar{\phi}=\sum_{i=1}^{i} \phi_{i} / 2$, and the approximate proportion of variance due to parameter dispersion, $\bar{j}=$ $\mathbf{i}^{\prime} \mathbf{R}_{\mathbf{l}} /\left(\mathrm{t}^{\prime} \mathbf{\Omega}_{\mathbf{1}}+R+R_{G}\right)$. The first statistic captures the degree of serial memory in the parameter dispersion. and the second expresses the importance of parameter dispersion as a source of noise in the system.

In Rosenberg (19730), efficiency and validity measures were computed for 166 structures. In all of these, $\kappa$ and $i$ were set to 3 . Cross-section sizes of $N=10,20,40$ were tried, with 40 being the largest feasible cross section because efficiency evaluation requires calculations increasing as $N^{3}$. The performance of the approximation was evaluated after each five time periods through to a maximum of thirty time periods, and it was found to stabilize within fifteen periods. Accordingly, all results are based on evaluations after fifteen or more periods.

Fifty-one widely varied structures were tried lirst in an effort to discover which of the parameters in the specitication most influenced efliciency. Then fiftyone additional structures were studied to analyze the effects of extreme values in the more influential parameters. Finally, a study of sixty-four structures was carried out tocompare A.I with OLS, again for extreme values of the influential parameters In these last structures. commual parameter shift variance $\sigma^{2} Q_{2}$, was set to zero, so that the inefficiency observed in OLS would be due solely to nomresponsiveness to parameter dispersion.

The most important conclusions based on results in all the stratures are summarized below. Also, detailed results for the last 64 structures are reported by grouping the results according to the presence or absence of serial correlation in $\mathbf{X}$, and by eight pairs of talues for the two summary statistics $\bar{\phi}$ and $\bar{f}$. In this way, the 64 structures are segregated into 16 grotips. and the results will be summarized by the worst value for each group. This simplification hides the systematic effects of variations other than serial correlation that were made in $\mathbf{X}$, but since these effects are small relative to the effect of serial correlation, the summary tables do give an accurate representation of the performance of the approximation.

## B. The Statistical Efficicncy of the Approximation

Each measure of efliciency will be reported as a percentage incficiency, i.e., as $100\left(z_{a} z_{\boldsymbol{e}}-1\right)$ where $z_{u}$ is a mean square error measure for the method under analysis, and $z_{e}$, is the same measure for the exact method. Perhaps the most interesting single measure of eificiency is the $k$ th root of the determinant of the mean square error matrix (the "generalized mean square error") for the poputation mean parameter vector. The pattern of inefficiency is summarized in Table 1.

The inefficiency of A.I is far less than the inefficiency of OL.S, but inefficiency does increase as serial correlation in $\mathbf{X}$ increases. Detailed analysis of mean square estimation errors for the separate parameters shows that almost all inefficiency in A.I arises in estimating the cross-fixed parameters. The maximal inefficiency of A.I. for a cross-fixed parameter is 95 percent, whereas the maximal inefficiency for à cross-varying parameter is only 2.5 percent. (OLS reaches 258 percent inefficiency for a cross-varying parameter.) In a targe sample. the mean square error in cross-fixed parameters. even when inflated by substantial inefficiency. is very small relative to the mean square error in cross-varying parameters. For this

## TABIE 1

Maximum Percentage. Inthmoteve in Gift:rallzed Mean Sqlare Error for the Population Mean Parabiltfr Vector

| Serial Correlation in $\mathbf{X}$ | Stochastic Specifications |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} \hat{\phi} & =0.6(k) \\ t & =0.957 \end{aligned}$ |  | 0.83 .3 | 0.600 | 0.833 | 0.800 | 0.517 | 0.800 | 0.517 |
|  |  |  | 0.977 | 0.938 | 0.972 | 0963 | 0.93\% | 0.971 | 0.980 |
| $\mu_{T}=0$ | A. ${ }^{\text {I }}$ | $0^{7}$ | 17 | 06 | 16 | 13 | (1) | 14 | 12 |
|  | OL. | 232 | 342 | 269 | 37s | 33. | 234 | 368 | 536 |
| $f_{j}=0.6$ <br> or | A I | 10 | 36 | (H) | 15 | 36 | 20 | $3 \times$ | 34 |
| $p_{1}=0.9$ | OLS | 317 | 546 | 269 | 510 | 363 | 267 | 369 | $6+4$ |

reason. if the eriterion of performance is taken as the arithmetic averape of the cigentalues of the mean spuate erfor matrix (rather than the geometric average implicd by the generalized variancel. A.I performs extremedy well. with a maximum metliciency of ies dian 5 percent versas over 200 pereent for OLS.

The following inflemes of the parameters in the stochastic specification emerge:
(a) As $N$ increases. the inefficiency of A. 1 tends to decrease.
(b) As $\phi$ increases for any parameter. inefficiency inctases for that parameter, and as $\bar{\phi}$ increases for a regression, inelficieney inereases for that regression.
(c) As fincreases for a regression, mefficiency increases.
(d) As the commonal parameter shift variance $Q_{\text {c }}$, increases, inefliciency decreases.
(c) The variance of the communal distmonater. $R_{c,}$, hats little effect.
(f) With regard to the structure of the explanatory variables, the presence of a constant has litte effet the presence of seriat correlation increases inclifiency. the presence of eorrelation across variables for the same individual has litte effect. and correlation of the variables across mendiduals redues meffeciency. The last is to be expected, since if the correlation rises to one the approximation becomes exact and hence porfectly efficient.

Comparison of forecasting efficiency provides anotiter importamt test of the approximation. Consider forceast crrors for single dependent variables
 $\sum_{n} \hat{V}_{n T}-\sum_{n} \mathbf{x}_{n} \mathbf{b}_{n, T T T}$, . The somes of error are the unpredictable disturbatices and parameter shifts in period $T$. and the esimation crom for the parameters in period $T-1$. Differences actoss methods in mean square estimation efror in period $T-1$ therefore determine differences in the mean square forceast error. Moreover sinee the explanatory variables are generated by a stationary stochastic process. the mean square forecast error weighs the efficieney of estimating varions dimensions of the parameter vectors by the expected magnitude of the components of the explanatory variables corresponding to these demensions.

For A.I two possible forcasting procedures are amalable: to forecast cach individual by the estimated parameters for that mdividal (Method li. or to forecast all individnals by the population mean parameter estimate (Method M). Method M should be less efficient. since it discards the disagegregated parameter estimates. For OLS with fixed parameters. these two methods coincide.

The criterion of forceasting performance for the single dependent variables is the sum of the mean square errors in the individal forceasts:
where the subseripts indicate the use of individal or population mean parameter estimates. For the aggregate forceast, the criterion is the mean square error:

$$
\begin{aligned}
& A_{1}=I\left[\left(\sum_{n=1}^{n} a_{n!}-\sum_{n=1}^{D} x_{n} \hat{b}_{n| | l}\right)^{2}\right] . \\
& A_{M}=I:\left[\left(\sum_{n=1}^{N} y_{n T}-\left(\sum_{n=1}^{\infty} x_{n T}^{\prime}\right) \hat{\overline{\mathbf{b}}}_{T I I} \quad\right)^{2}\right] \text {. }
\end{aligned}
$$

TABLE 2
Maximem Prrent lnetformey in Sum or Mean Square Errors in indididat Foricasis (16 Groupings from 64 Different Specifications, with $N=20, Y=15$ )


TABLE 3
Maximum Percent Inepficiency in Mean Suuare Error in Forecasting the Aggregate ( 16 Groupings from 64 Difierent Specifications, with $N=20, T=15$ )

|  | Specification |  | Using the Individual Parameter Forecasts $\left(A_{1}\right)$ | Using Popul Paran | Forecast <br> Mean <br> ( $A_{u}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | A. 1 | A. 1 | OLS |
| $r_{1}=0$ | $\bar{\phi}=0.600$ | $j=0.957$ | 1 | 85 | 148 |
|  | 0.833 | 0.977 | 3 | 28 | 170 |
|  | 0.600 | 0.938 | 1 | 51 | 153 |
|  | 08.3 | 0.972 | 3 | x | 18.3 |
|  | $0 \times 00$ | 0.963 | 4 | 15 | 255 |
|  | 0.517 | 0938 | 4 | 4 | 278 |
|  | (2800 | 0.971 | 2 | 56 | 23.4 |
|  | 0517 | 0.980 | 14 | 28 | 326 |
| $\begin{aligned} & \mu_{1}=0.0 \\ & \text { ur } \\ & p_{1}=0.9 \end{aligned}$ | $\zeta=0.600$0.83 .30.6600.330.300051700.8000.517 | $j=0.957$ | 1 | 50 | 112 |
|  |  | 0.977 | 3 | (1) | 182 |
|  |  | 0.938 |  | 29 | 105 |
|  |  | 0.972 | $=$ | 71 | 205 |
|  |  | $0963$ | 1 | 139 | 148 |
|  |  | $0.938$ | 1 | 5 | 79 |
|  |  | 0.971 | 1 | 10 | 131 |
|  |  | 0.980 | 0 | 12 | 210 |

In Tables 2 and 3, maximal pereentage inefficienees of A. 1 and OLS ate compared. A. 1 is almost perfectly eifcient in forecasting the individnal dependent variables but suffers a pereentage ineficiency of up to 14 pereent in foreasting the aggregate, due to relatively greater inefficiency in estanating the cross-fixed parameters. OLS has a percentage ineffieiency of more than 200 percent in many cases. Notice that the results are dependent upon the ( $\boldsymbol{X}, \boldsymbol{\theta}$ ) specifieations chosen. but that for each specification, the results are the exaet theoretieal values, not the output of some sampling experiment.

## C. Validity of Approximated Mean Square Error and Goodness of Fit

Let $\tilde{\sigma}^{2}$ denote $s^{2}(\theta)$ from A. 1 or from OLS, and let $\hat{\sigma}^{2}$ denote $s^{2}(\theta)$ from the Exact Method. Let $I$ and / denote the approximate and exact log likelihoods of the true structure, and let $l_{z p}$, denote the exact log likelihood of the fixed-parameter structure.

In order to validate the approximated mean square error yielded by A.! or OLS, the statistics

$$
V_{n}=\sqrt[k]{\left.\frac{\mid a p p r o x i m a t e d ~ m e a n ~ s q u a r e ~ e r r o r ~ m a t r i x ~ f o r ~}{} \hat{\mathbf{b}}_{n} \right\rvert\,} \text { for } n=1 \ldots, N
$$

and

$$
V=\sqrt[k]{\begin{array}{l}
\mid \text { lapproximated mean square error matrix for } \overline{\bar{b}} \mid \\
\mid t r u e ~ m e a n ~ s q u a r e ~ e r r o r ~ m a t r i x ~ f o r ~ \\
\overline{\mathbf{b}}
\end{array}}
$$

are computed. The generalized mean square error ratios $V_{n}$ are reiatively constant $\bar{V}$ across the popuiation, so their value is summarized by the arithmetic mean $\bar{V}=\sum_{n=1}^{N} V_{n} / N$. The effect of estimation error in $\sigma^{2}$, which is omitted in these ratios, is introduced by computation of the additional ratios $\left(\tilde{\sigma}^{2} / \hat{\sigma}^{2}\right) V$. and $\left(\left(\tilde{\sigma}^{2} / \hat{\sigma}^{2}\right) \bar{V}\right)$. The ratio $\left(\tilde{\sigma}^{2} / \hat{\sigma}^{2}\right)$ and the difference in log likelihoods are also computed. If A.I were exact, all ratios would be equal to their ideal value of unity, and the difference in log likelihood would be zero.

The results show a clear pattern. The validity of the approximation increases with $N$ in more than 95 percent of the cases, an extremely encouraging property since sample sizes will be much larger in applications. Moreover, as the sample size doubles from $N=20$ to $N=40$, the difference $l-l$ declines in almost all eases, although the magnitude of I typically doubles. Thus, the proportional error in $/$ declines more rapidly than $1 / \mathrm{N}$. If these results persist in large samples, the approximated log likelihood should be virtually perfect

The values of the statisties that deviated most from the ideal values are given in Table 4 for the sixty-four structures already reported. The approximation is everywhere more valid than OLS. Moreover, the error in the approximated log likelihood is nowhere more than one-twentieth of the difference between the approximated log likelihood for the convergent-parameter structure and the log likelihood of the fixed-parameter structure. Hence, the approximated log likelihood reliably rejects the fixed-parameter model despite the small sample size.

TABIE: +
 $\therefore \div 201 \% 15$

"For OI S. the watacscomputed under the ermencous assumption of fixed parameters are compared to the true properties of OLS. The diflerence in log likelihoods is an exceptom: the figure is the texaty log likelihood of tixed parametors minus the exac: log tikelihood of the true structure

Throughon the results, A.I appears to be entirely valid when the explanatory variables are serially independent, but to understate the estimation error variance when the explanatory variables are serially correlated. In the most severe case. one with serial correlation of 0.9 . the approximated mean square error falls to 45 percent of the true value. This is a serious defect, in view of the prevalence of serial correlation in economic variables. It will have to be taken into account in applications. Fortunately, the degree of understatement decreases with $N$ and in large samples. the downward bias may be small. It is interesting to note that the approximated sampling properties of OLS are far worse. In fact. the estimated generalized mean square crror of OLS falls below one-twentieth of the true vallue for individual parameters and below one-ninth of the true value for the population mean parameters. These deficiencies highlight the dangers of using the fixedparameter assumption where it is inappropriate.

In summary, the approximation is highly efficient in estimating the crossvarying parameters and satisfactorily efficient in estimating the cross-fixed parameters, and the approximated likelihood can apparently be used with confidence. The only defect of the approximation that must be taken into account is understatement of the mean square error in the casc of serially correlated explanatory variables. Subject to this caution, the approximation may be substituted into the recursive formulae of Section II. The results allso imply that the method is sharply superior to ordinary least squares-in terms of efficiency and in terms of validity of sampling theory--when parameter dispersion is present. These results are overly favorable to the method, since $\theta$ is presumed known, whereas. in fact, it must be estimated. However, the very large difference in sample log likelihood between the true structure and the fixed-parameter structure suggests that if $\theta$ were estimated by maximum approximated likelihood then the estimated structure would be relatively close to the true structure. Hence, much of the gain in efficiency due to recognition of parameter variation would be achieved. Moreover, the very large sample sizes in many cross-section. time-series applications promise excellent estimates of $\boldsymbol{\theta}$, and therefore full exploitation of the potential efficiency of the
method-provided. of course that the model pernits an appropriate description of the true parameter process.

Finally. notice that the computations involved in the method are fasible : the calculations required to evaluate a smgie stochastic specification with $N=40$ were equivalent to repeating the approximation more than 500 times. enough iterations for Maximum Likelihood estimation or Bayesian estimation with $\boldsymbol{\theta}$ of reasonable dimension.

## V. Conclusion

There are numerous extensions of the method that need not be added to all already lengthy paper. "Smoothed"' estimates of parameter vectors $\boldsymbol{\beta}$, for $t<\tau$ may be computed by modifications of the recursive formulae derived here (sec. e.g., Rosenberg (1973b)). A more complex model. where individual parameters converge to subgroup norms, which in turn maly converge to the population norm. is relatively easy to implement. An underlying population mean, which serves as the norm for convergence in place of the sample mean inevery period. nay be added to the model if variations in the sample mean are not desired to affect the convergence pattern. Nonconstant variances or convergence rates. which differ accoss individuals or over time as functions of known characteristics of the individual or time period may be easily introduced, and the parameters specifying these finctions may be adjoined to $\theta$ without changing the estimation approach.

To summarize. a model of parameter variation in a cross section of time series was presented. in which individual parameters obey randonı walks subordinated to a tendency to converge toward the population norm. The model involves an intuitively plausible dynamic model of the deterninants of individual diversity, and it is consistent with the empirical observation that in some cross sections of time series, individual parameters vary relative to one another as it subjected to sequential random increments. but that cross-sectional parameter dispersion nevertheless remains roughly constant. Next, a computationally feasible method for Maximum Likelihood or Bayesian estimation of the parameters specifying the stochastic structure as well as of the individual regression parameters themselves. was derived. The approximation involved in these computations was validated, subject to the one defect of understating mean square error when explanatory variables are serially correlated. The method was shown to be superior to Ordinary Least Squares in the presence of stochastic parameter variation of the type conjectured.

Unidersity of California, Berkeiey

## Bibliogiraphy

Aoki. Masanao (1967). Optimization of Stochastic Systems. New York: Academic Press. Balestra, P. and Nerlove. M. (1966), "Pooling Cross-Section and Time Series Data in the Estimation of a Dynamic Model: The Demand for Naturai Gas.' Econometrica. 34 (July). 585-612.
Chetty, V. K. (1968). "Pooling of Time Series and Cross Section Data." Econometrica, 36 (Aprii). 279-290.
Hildreth, Clifford (1949). "Preliminary Considerations Regarding Time Series andior Cross-Section Studies." Cowles Commission Discussion Paper No. 333.
-_-_ (1950). "Combining Cross Section and Time Series Data." Cowles Commission Discussion Paper No. 347.





 Social Sciemes, Stanford I'miocoits
 of ASME. Serios D. Journal al Banic Engiacomp. 22. Pp. 3545.
 Transactions of ASME. Suries D. Jomrnal of Bank Engintoring. 83. pp. 95. 108.
 Applications. Eiconomelricu. 27 (ApriJ). 197214.
 an! Stuistics. i9 (Nowember). 380393.
Mundlak. Yatr (1963). "Estimation of Production ath Behavioral Functions from a Combination of
 Stantord. Calit: Stanterd Universiyy Press.
 Rand McNally \& Co
(1968). Further Evidace on the Estimation of Dynamic Economic Relations fiom a Time Serics of Cross-Sections." (owtes Conmassion Discession Paper No. 257.
Parks. Richard W. (1967). "Efticiont Estimation of a Systeme of Regression Equationis When Dis turbances Are Both Serially att Comtomporancousiy Correlated.' J.4.SA. 62 (Juthe) E00 509.
Rao. C. R. (1965). "The Theory of Last Squares When the Paranoters Are Stochastic." Biomeriku. 52. pp. 447-458.

Rosenberg. Barr (1973a). "Lincar Regression with Rantomly Dispersed Paranteters." Biometriku. 60. pp. $65 \cdots 2$.
(1973b). Estimation in the Cicmetal Lincem Sitochastic Parameter Model." Rescardh Report Cambridge Mass: National Burean of Ecomonic Rescarch. Computer Restath Cinter (1973c). Varyug Parametur Regressien in the Auty ys of a Cross Scetion of Tinte Serics. Working Paper No. IP 165. Berketey: Institute of Businews and Fconomic Researih. University of California.
Sharpe. William F. (1970). Portfoho Theory and Capital Markets. New York: MeGraw Hill Book Company:
 motrica. 38. pp. 31] 323

- (1971). Statistical Intarice in Random Cuffacm Regrewien Wodels. Berlin-Hedeliorg-New York: Springer-Verlag.
Telser. Lester (1964). "Incratice Esimation oi a Sit of Lincar Regression Equations." J.4.S.A. 59 (Siptember), 845-862
Wallace. T. D. and Hussain. Ashiq (1969). ${ }^{\text {. The Ese of Error Componemt Models in Combining Cross }}$ Section with Time Series Data." Economerrice. 1 (January). 37.1. 55.72.
Wilks. S. S. (1943). Mathematical Statisios. Princolon. NJ. Prinction University Pross
Ze!lner. Arnold (1962). "An Efticient Method of Estimating Sceningly Unrclated Rutations and Tesis for Aggregation Bias." JASA. 57 (June). 348-367.






 Social Sucuces, St:mond I!niversit!
 of ASME. Series D, Journal of Bawa Engmearins. X2. pp 3545
Kalman, R. L. and Bucy. R. S. (1961). Mew Renuls m Lincar lolicring :md Prdition Theong Transactions of ASME. Seric: D. journal of Baw l:ngincaring. 83. pp. 95108
Kuh. E. (1959). "The Validity of Cross-Sectionally Estinated Behavioral Equations in Time Series Applicaiions, Economarica. 27 (April). 197 214.
 and Sataistics. 39 (November). 380-393
Mundlak. Yair (1963). "Estimation of Production and Behavional Functions from a Combination of Cross-Section and Time-Serics Data. Midasurenten in Eiomumics. Edited by Carl F. Christ a al Stanford. Calif: Stanford University Press.
Nerlove. Mare (1965). Estimation and Idenificution of (ohb-Doughas Producton Functoms. Chiagg Rand MeNally \& (a.
(1968). 'Further Evidence on the Esamation of Dynnmic Economit Refations from : Time Series of Cross-bections. Cowles Commission Discussion Paper No. 257.
Parks. Richard W. 1!967). Efficient Estimation of a Swatem of Regression Equations Whan Disturbances Are Both Serially and contemporanesensly (orrelated," J.ASA, 62 (June). 500 - 509.
Rao. C. R. (1965), "The Theory of least Squares When the Paraneters Are Stochastic." Biometrina. 52, pp. 447-458.
Rosenberg, Barr (1973a), "Linear Regression with Randomly Dispersad Parameters,"Biometrika. 60. pp. 65-72.
- (1973b). Estimation in the Gencral Lincar Stochantic Parancter Model." Rescardi Repont. Cambridge Mans: National Buraa of Somonnic Research, Computer Research Center
. (1973c). "Varying Parameter Regression in the Analysis of a Cross Section of Tine Series." Working Paper No. IP 165. Berke!cy: Institute of Business and Economic Research, University of California.
Sharpe. William F. (1970). Portfolio Theory and Capital Markets. Now York: McGraw Hiil Book Company.
Swamy, P. A. V. B. (1970). "Efficient Infereme in a Random Coefficon Regression Model." Eionometricti. 38. pp. 311 -32.3.
 York: Springer Verlag.
Telser, Lester (1964), "lerative Estimation of a Set of Linear Regression Equations, JASA. 59 (Septenber). 845-862.
Wailace, T. D. and Hussain. Ashig (1969). "The Use of Error Components Models in Combining Cross Seetion with Tine Series Data." Economerica. 3 (Janlary). 37.1. 55-72. 72
Wilks. S. S. (1943), Mathematical Staliatics. Princeton. N.J. Princeton University Press.
Zellner. Arnold (1962). "An Efficient Mcthod of Estim:ating Seemingly Unrelated Relations and Tests for Aggregation Bias." JASA. 57 (June). 348367.
——. (1971). An Inraduchen w Bayesian Inference in Ecmomerics. New York: Johon Wiley \& Soins


[^0]:    'Note that the factor multiplying $\lambda$ is equal to that part of the forecast errer not explained by the communal parameter revision divided by the individual increntent to forecast error variance. Thus one part of the forecast error $\psi_{n} \mathbf{S h}$. is attributed to an error in estinating the population mean parameter vector; a proportion of the communally unexplained forecast error. equal to $\boldsymbol{Z}_{n} \lambda_{n} f_{n}$. is attributed to an errer in estmating the individual cross-varying parameters: and the balance ef the communally unexplained erfor, the proportion I- $\left(\boldsymbol{I}_{n} \lambda_{n} \cdot f_{n}\right)=R_{n} f_{n}$. remains as a residual after revision of the parameter estimates. The communally unexplained forecast error is therefore divided between error in forecasting individual parameters and the individual disturbance in proportion to the contributions of these sources of error to prediction error variance.

