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RANI)OM COEFFICIENTS MODELS

THE ANALYSIS OF A ('ROSS SECTION OF: TIME SERIES BY
STOCHASTCALLY CONVERGENT PARAMETER REGRESSION'

nv BARR Ros1Nul:R(;

1 hIs paper i/el e/ujs a '1l;Uu're,,1_paran',.,,r" regreswn nash'! i"r a eras', ',t'iIUIit o/ flnit' 'ru's
:,' I wail da er.s,f: ill Ill,' rri,'r(',,,m ;Uir laSter: result: /ro,fl st'qtu'.ztial rtmdtmi in, re,ne,iI', w i/ic i,iditic/,,al
parani, It': 'I i:,',' e,indwn t, aI/i art' .:uh,,rdivat,'j 10 Ii tI '! 'iu,il tt',iden, V P'r n,latdua! paramel er Ill
'Ill> ,'ri,',' (l tli,' j,ip,>l,,,i,,i, >i', in. /1,,' m,i,I,'f ipapi,,': i(u'L'Or 1:'> s-s,',ii>,,,,>j flirwueter dijiersiii 101/I

III))! ,>p1',:a(2i hut terla f/ urr,'/,jietj :ti,/it',du,ij plira))it'(t'e.e 3,/a', uiiupil II/.t'li#Il,I',J (1)2,1 !iatesuu, estI,1,,itm'(
cit, 1/er,: cii br tile ,P(IhI,'I ill lJflt).5 inia LIII th1i I it ih,'s the twa (a (hIlt,', it'd', :hh' It ti 0

ill,! f,'u,ic/ It I', iJtjs/,I, 'tIn/V t'/ft an, I he e.s(iliiahort are compared a Oh ,c,din,ir h'a tqliart's.

I. Thi: "('ONVIR(,LN'J PARAMEI FR" MODE!.

l. Consider the lamiliar cross-section, time-series regression problem, where an
endogenous ariable v and exogenous variables x 'sk are observed for each of
N individuals, it = I N in each of I time periods. t = I T. The regression
parameters I /t1 are the partial deriatives of the endogenous with ICSpCCt to
the exogenous variables. The parameter vector b,,, =_ (h1, b,;' specific to
individual ii in period t is determined by the behavior and environment of that
ind,vidual at that date. In most economic applications, it is unreasonable to expect
these parameters to he the same for all mdii idiials in all periods.

A variety of cross section. time series regression models have previously
introduced stochastic ',ariation in individual parameters. The most widely known
methods are extension', of the analysis of covariance : shifts in the intercept term
are associated with each individual ("individual effects'') and with each time
period ("time eflects"). Sonietinies these shifts in the intercept are introduced as
dummy variables, or equivalently, OS stochastic terms with diffuse prior distribu-
tions (Hildreth (1949, 1950), Hoeh (1962), Wilks (1943: 195- 200)j. In other applica-
tions, these shifts are treated as stochastic terms with proper prior distributions, or
''error components (VaIlacc and Hussain (1069)). Serial correlation in individual
d!sturhances may he superimposed upon these models (Parks (1967)). However,
this class of models has the deficiency of postulating that regression paranleters
other than the intercept are identical for all individuals in all periods.

Where regression parameters do vary, an estimator assuming constant param-
eters has two important defects. First, the estimator is inefficient and the associ-
ated sampling theory is in\alidl. usually leading to downward-biased estimates of
error arianee. Second. when the pattern of parameter variation is of interest in

the bulk 01 ihi', research, reported in "Varying Parameter Regression in ihc Anal) ',i, of a Cross
Seetton of.I ime Series," IBLR Working Paper No, IP 165. 969 revised 19731. was completed under
NSJ- Grant (iS 2102. aided h suhsidited fiuicls of the Computer (.enier. Lniversity of California,
Brkcicv, The research ssas completed undct NSF Giant GS 3306. 'the rc-ourceful assIstance of Darvl
Cartson, and the indomitable work a! Mrs. Ellen McGihhon iii preparing ',anous stages of the mann-
script. arc grateulI) ,icknosvledecd
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its own right, a constant parameter model i totall\ incapa hR.' ol shedding Iil o

this aspect of the economic process.
Two models have introduced more general paranieter variation. lii Swaniv's

work. individual parameters are randomi dispersed across the population hut are
constant over time (1970, 1971). In 1-Isiao's recent paper ( I97). regression param-

eters arc the sums of "individual elThcts'' and "time effects.'' SO that the model
extends to the regression parameters the methods previously applied to the
intercept term 'ne. These two approaches are appealing. However, they do not
allow the individua parameters to vary independently of the rest of the popula-
tion. If individual pa:anieters do vary stochastically, these methods cannot track
the individual parameter vectors nor model the stochastic variations.

B. What pattern f parameter variation can he expected in a cross section of
economic decision uni; s'! There are certainly tendencies for difkreni individuals'
parameters to be alike. Social interaction within a population tends to preserve
similarity among individuals playing the same role. When cnfurmity is highly
valued, or when the role of a deviate is, for any reason. difficult, individuals will
tend to converge in behavior and in environment toward group norms, or toward
subgroup norms if a deviant subgroup coalesces. Under competition, indjiduals
will strive for profitable differentiation from the population. but as soon as such
differentiation is achieved, competitive responses by others will tend to ofliset it.
Uniformity may he enforced by institutional devices, such as trade organizations,
or may result from interdependent individual responses to similar environments,
as, for example. in loosely organized groups such as consumers.

On the other hand, within a group of individuals, each being somewhat dif-
ferent in innate characteristics and in environment, freedom of action will facilitate
continual developments which are in opposition to. or at least independent of. the
converging trends. These independent events will be a source of diversity which.
when balanced against the conforming forces. may preserve a relatively stable
degree of differentiation in the population. Individual characteristics will he dif-
ferent. but will not remain constant over time. The dit1r'nces may behave as if
subjected to sequential random increnients and as if continually converging
toward zero from the position randomly arrived at. Individual differences will
then be serially correlated hut nonconstant.

l'o fix ideas, it may be helpful to consider an example. In analyzing the
returns to stockholders, it is useful to write for each stock in a universe of N stocks
and for each holding period within a sequence of 7 holding periods:

r, = b,1,,1 b H,rII + h,,,,i, + .. + h in' Ik I I + U,

t=l T

where r1 is the (excess) return on stock n over holding period r. is the texcess)
return on a stock market index in period 1. and the/i,. I = 2 L -- I, ire other
major economic or social lactors which influence the returns on securities. The
coefficient h1 ,widely known in finance as the stock's "beta." is a partial derivative
with respect to return on the index. The "beta" and the other coefficients are
important in the theory and practice of investnlent management. since they deter-
mine the risk ofa diversified portfolio (see, for example, Sharpe 11970)). The "beta,"
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n in particular, has been widely studied empirically. It has been shown thai ''beta.''
for any security, is serially correlated hiii nnnconslani A possible stochastic
model for "beta" is:

= (1 )b + 4th,,, +

The autoregressie parameter induces serial correlation, the term (I -
e implements a tendency to converge tosard a normal value h,, and the serially

independent random increments introduce stochastic variation over time. The
characteristics of this process have been studied by Rosenberg and Ohlson (1973).
The results support the model, and, in particular, show significant nonconstancy
in beta and confirm the tendency of beta to converge toward a normal value h.

of This paper is concerned with the case where the normal value isa population
Is' norm common to several individuals. Every individual parameter vector is
ye regarded as the sum of a population mean parameter vector and an u1(!ividual
ly difference, with the latter tending to converge toward zero.
ill Each individual difference is assumed to converge at the same rate and to he
rd subject to random shocks of the same variance. This is clearly an oversimplifica-
us tion as a model of many economic processes. For example, in a study of competi-
ch tion in the computer industry, one would suspect that the tendency of IBM to
it. converge toward the group norm would differ from other firms. Also, in many

populations. individuals fall naturally into subgroups. so that a two-level hier-
ts. archy, in which individuals converge toward subgroup norms and subgroups may

or may not converge toward the population norm, may be more appropriate.
Nevertheless, the simple convergence structure is used here for several reasons.

ate One reason is heuristic: although the coniputational difficulty of the estima-
the tion problem does not increase as the convergence patterns become more complex,
ch. the notation becomes more painful. A second reason is one of operational useful-
blc rcss. When the stochastic parameter process is known a priori, as it may he when
dif- the process determining behavioral modifications is well understood, it is quite

if possible to operate in the fully' general framework. However, when the parameter
irig process is to he estimated from the data, a simple structure niust he postulated.
will Uhe simplification that all individual parameters have convergence and stochastic-

shift characteristics which are identical and unchanging over time is analogous to
the the traditional regression assumption that all parameters are identical, in that it
cks asserts a similarity across the population which is necessary to develop an opera-

tionally feasible method. However, while the assumption of fixed parameters was
originally thought to be needed before computations could be carried out at all,
here the simplifying assumption is imposed, not by computational necessity. hut
by the experimenter's ignorance as to the exact nature of the parameter process.

There may also be events which induce simultaneous shifts in all of the indivi-
dual parameters. It will be assumed that the etTects of these constitute a series ofçtsS,
serially independent communal increments occurring in all parameter vectors.tier

The individual parameter vector may contain both parameters which varye
across the population ("cross-varying parameters") and parameters which are theatie
same for all individuals in any time period ("cross-fixed parameters"). Accordingly,are
each k-element individual parameter vector is partitioned as b, = (c :a)', whereeter-
c. is a (possibly empty) K-clement subvector of cross-fixed parameters and a, is a

eta,
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)-cicment suhveetor oicros-arying paramelers. with k = - .. Ihe expIintorv
variahlesv x- tre partitioned correspondingly. with i the cx plaiia--

tory variables having cross-fixed coeflicients. aii(l = ....:,, the exf)laflator sari-

ablc having cross-varying coefficients. Let , () I

b,, .\ he the popu a-

ion meaii parameter vector.
The convergent parameter regression structure then takes the form

t,,, = + :,tl,,,, 14,, 1 = I I .11 I..

E( U,,,) () L( u,,.,i , ) = O, ( ,, R,, -r R ,,

or in vector notation.

= :z,,)l -t- =
a,,

Parameter Irun. ition

c, - = C, '/, 1 = I 1

and

=ti,--A.(a,,,---,)-t-q,, ,= 1-- Ln: I

where E(y,) = 0 L(yy,) =

= 0 E(qmjj,) = + Q,)

and E(i,,y) = 0 E(ii,,q.,,) = 0 E(y,q.) =

Here, ,. is the Kronecker delta equal to 1 if I = j. equal to zero otherwise. The
disturbances are assumed to he serially uncorrelated, and to be composed of a
communal disturbance with variance rR4. 0, and uncorrelated individual
terms with possibly heteroscedastic variances PR,,, = I \' with R,, > 0
for all ii. The cross-fixed parameter vector is subject to serially uneorrelated incre-
ments having mean zero and variance matrix o-2Q, The conergcnce mairix
is diagonal with diagonal entries , 0 < 1. for I = I ). These diagonal
entries are "convergence rates,'' in that is the proportion of the individual
divergence aj,,, which survives to period t + I - The cross-varying parameter
vectors are subject to seriaJly uncorrelated individual parameter shifts. Each shift
is the sum of a communal component with zero mean and arianee matrix Q,,
and an individual component with zero mean and variance matrix (rQ, The
disturbances are uncorrelated with the parameter process. The contemporaneous
covarianee between the cross-fixed parameter shift vector and an indi idual
cross-varying parameter shift vector, or. equivalently. t lie CO\ arianee between the
cross-fixed parameter shift and the communal component of the cross-ar\ing
parameter shifts, is a2Q. The variance matrices of parameter shifts may be
positive semi-definite, permitting sonic parameters to remain fixed o er time.
All stochastic terms are assumed to he independent of the exogenous ariables.

C. It is important for some purposes to view all indi iduai parameter ectors
as components of a single ''grand paiameter vector , (C a .....a), . 'MIll
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,-eicment suhvcctor 0fcross-aryilg p raiuclers. wli k = K -t- .. 1h Cxplanttorv

variables x1 Vk are partitioned correspondingly, with w1 u the explana..

tory variables having cross-fixed coellicients. and the eplanatorv Vjirj-

(t) -

hm - uc the po pula-

t ion mean parameter vector.
The convergent parameter regression structure then takes the form

(1) Y,11
=

intu + ,,, + 11,, i=l J,u-1 V

ables having cross-varying coefficients. Let b

E( ii, ) 0 LI )
2 R , -- R ,

or in vector notation.
Cl

=

Paroou'fer 'f,'a,isil ion j' c/a tioH.s

Cl, I = c, ± y, t = 1 7 -

and

a11 =ã, --A(a, - ,) --ij,, ( = 1 1-- l,n

where E)y1) = 0 E(yy1) =

= 0 L(flmsIJt) =

and L(Um') = 0 L(u,q1) = 0 L(yi11) =

Here, 5 is the Kronecker delta equal to I if i = j. equal to zero otherwise. The
disturbances are assumed to be seriall) uncorrelated. and to be composed ol a
communal disturbance with variance 2R(; 0. and uncorrelated individual
terms with possibly heteroscedastic variances a2R,, = I V with R > 0
for all a. The cross-fixed parameter vector is subject to serially uncorrelated incre-
ments having mean zero and variance matrix 2Qe The convergence matrix
is diagonal with diagonal entries , 0 < I. for I = I ). These diagonal
entries are "convergence rates:' in that is the proportion of the mdix idual
divergence which survives o period t + I The cross-i arving parameter
vectors are subject to serially uncorrelated individual parameter shills. Each shift
is the sum of a communal component with zero mean and arianue matrix
and an individual component with zero mean and variance inatlix Q1 The
disturbances are uncorrelated with the parameter process. The conteniporaneous
covariance between the cross-fixed parameter shift vector and any indi idual
cross-varying parameter shift vector, or, equivalently, the coariancc het ccii the
cross-fixed parameter shift and the communal component of the cross-tarving
parameter shifts, is a2Q. The variance matrices of parameter shifts may be
positive semi-definite, permitting some parameters to remain fixed over time.
All stochastic terms are assumed to be independent of the exogenous ariahies.

C. It is important for some purposes to view all indi idual parameter cctOrS
as components of a single "grand parameter vector'' II, a1;.. :i l. with
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dimension K = N,. + i. All the individual regressions in each period make up a
single regression foi the grand parameter vector

R=

where

/ c

a1

a2

R 1- R(, R(; R;
\ /R,

R, R, + R(; .

R(; R; R + R(;

0 0

0 A
(IA)

=
(I - Au,)

A +
(I

N N

Pt + d,. E[d1dj = o2Q

/
Q

Qca Q0 + Q; Q(; Q

Q = Q:. Q6 Q - Q .. Qo
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where i denotes a vector of units. The parameter transition relations coalesce
similarly into a single transition relation

(I - A) (I -- A)
A

(I A)
N N N

lay', \Iix/,

z,I U

(4)
1,', i 0 a1

+

Yx

or = Xj, + u,, E[u,u,] =

IC

/
a1

/ 7

I
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I). One important property ot the convergent uainct Illildel I,, I he
stationary cross-sectional parameter dispersion which it eene ttc.. If the
section of the individual parameter vectors is examined in any tate period, lr
any individual n,

a,,11 - I = !\(a,,1 ii,)
-

tj,

Since parameter shifts between periods i and -+- I are uncoicIatcd vitIi th'
parameters in period r,

+ - )(a, + =

- ä1)(a,,,
A

and for pn

E[(Um I . a + l(a, - )'] =

-- --- iJ]A (a2Q)

Since A is diagonal, the stationary solutions to these difference equations are
easily found to be:

E[(a1 - 1)(a1 a,)] =
a Q,,

iV 1

- - 1
(i2jQ}IJE[(a, a,)(a, - a,)] = for m

wheie A1J denotes element (i,j) in the matrix A. Since the cigenvalues of A., aresmaller than one, this is, indeed, the stationary joint distribution of the cross-
varying parameter vectors about their sample mean in any single time period.Notice that the dispersion about the sample mean is identical to that in a sample
of vectors drawn independcnt1 from a multivariate population with variancematrix 2ç given by

(,JjJ

=
Thus, in any single cross section. the individual cross-varying parameter \ectorsin a convergentparaiuer structure are distributed as if randomly drawn from apopulation with dispersion matrix Cross-sectional regressions of this kind.often called random or randomly dispersed parameter regressions, have beenstudied previously (Rao (1965), Swamy (1970). Rosenberg (l973a)t.The parameter interrelationsJips in the model arediagrammed in two ways in Figure I. In both diagrams, a link between vectorsdenotes a transition relation. Figure Ia exhibits the interrelationships amongindividual parameter vectors. At the top of the diagram is a representation of thestationary joint distribution of the individual parameter vectors in the initialperiod. The sector b0 is brought in as the mean of the livpotlietjiI multivariatepopulation from which the initial parameter vee1or tre (Irawn.
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In the transitions between successive periods in Figure Ia. the solid lines
denote the contributions of the individual parameter vectors to their own subse-
quent values, and the broken lines denote the contribution of the sample mean to
the subsequent values of the ifldividual vectors.

Figure lb shows the elementary structure of the serially independent transi-
tions between successive grand parameter vectors. l'he grand regression is a
Markovian or sequential parameter regression problem in that the grand param-
eter vector obeys a first order Markov process.

11. ESTIMATION tN Till. CONVERGENT PARAMFi FR MolmL

Let 0 denote the vector of parameters in the stochastic specification, includ-
ing the second moments of the stochastic terms R1 .....R, R(S. Q, Q,, Q1, Q;
and the convergence rates , but excluding the scale parameter (T. Let
R0 denote the admissible region of parameter values, which may be constrained
by' a priori information as well as nonnegativity and symmetry conditions on the
second moments. Let v' = (V'1 . . . : v)' denote the vector of all observations
through period s.

In this Section, Maximum Likelihood and Rayesian methods for estimating
9, 2, and PT are developed under the assumption that all stochastic terms follow a
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multivariate normal distribution. The central results are recursi' e formulae whtch

yiekl: (i) for any 0. the numerical values of the sample likelihood (0Iy') and the

marginal posterior distribution For 0, p'(0ly )
(ii) the maximum likelihood estlina-

tors (0) and â,,(0). and the conditional posterior distributions p'(a2IO. v').

P'(i 0, yT), conditional on that 0. Repeated application of these formulae. over a

range of 0 values in R0, allows Maximum Likelihood or Bayesian estimatiOn.

Moreover, if 0 he known, the estimatOr TIT(0) is a minimum mean square error

linear unbiased estimator, without the requirement ol' normality in the stochastic

terms. The formulae in this section foUow from theorems in Rosenberg (l973b).

The probability density function (pdl) of the endogenouS variables may

always be decomposed as
p(yT) = fly' p(yyt '). The Markov process for the

grand parameter vector, together with serial independence in the disturbances. arc

key simplifying assumptions which permit this decomposition to he exploited by

a recursive procedure. Two cases will he dealt with in successi'e subsections

(A) a proper prior distribution for b0 : and (13) a dilTuse prior distribution foi b0

or equivalently. b( fixed but iink nown. In each case, fully general l'ormulae which

hold for any regression model with sequential or Markov parameter variation will

be exhibited and then specialized to the convergent parameter model.

A. Proper Prior Distribution for b(

Let ho have a proper multivariate normal prior distribution

(12)
hIco\

b,, Normal

independently of all other stochastic terms. Then all regression parameters and
endogenous variables follow a joint proper multivariate normal pdf. and it is

easily shown that

jy'lu. 0) fl (22) 21IF,(0)
2 exp - X011 (0)I1 FO

where

t2F1(0) var [Yk. 0. y' = HXIMI0_ i(01X

and where, in general.

3lrk(0) E[f30. y]. r \lris(0) var [rI 0. y'j.

The notation et' A denotes the norm e'Ae. The subscript rI.s denotes an estimator or
distribution for an item in period r, conditional on regression information up to and
including period s.

Therefore, when 11(0) and F(0) are computed by the recursive formulae
provided below, the sample likelihood is

. 0 T) = (22) T.V 2(11 (0))

- 1 2

p {

where

= iI(0)l, v,(0) = - i(°)IIF, o, 52(0)
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Also, from the joint iturnial distribution of y1 and

vD 0 (_._2) tJ 2 IMTi(0)!

x eXJ) I! I

These formulae provide the basis for Maxin-iuiu Likelihood and Bayeiaii cI ma-
tion.

A. I Maximum Likelihood Estimation

0, is
The maxmum value of the natural log of the likelihood funtion (I 4). for any

I(Oy' ) a max in Jfri. 0y' ) =
2

T\ In

- TA ln(TXs2(0)j Ir J1(Q))

The maximum likelihood estimators of (72 and (,. conditional on 0. are

,i(0) = H0. TIl(°) = Pijr(0).
For maximum likelihood estimation, it is necessary to search R1, for that

0, 0, which m.aximiies the lo likelihood function (16). The maximnun likelihood
estimators of if and fi,. are then a11(0111) and ).

A.2. Bayesian Estimation

1.et p'(0) be a possibly diffuse prior pdf for 0. and let p'(ai Si. I a he a diffuse
prior for a, following Zellner (1971: Ch. 2). Then the posterior pdf for ll.. a. 0. is

P"(Iir. (7,0) = p(1lTif.0.y1)p"(a.0),

where the conditional pdf for flT is given iii (15). and the marginal posterior pdf
for a and 0 is. from (14).

p"(a,O) a

fl L(0))
T 1 2

5
i=1

This may be decomposed into the marginal posterior pdf for 0,

(20) p'(0)
= j p"(a,O)da P'(0)(fl (0))

2

(52(0), - L' 2

and the conditional posterior pdf for a.

(21) p'(IO) 5 exp

Lxp
2a2 ('

f T\'.,2(0)

). 2a

Let a(0) be the conditional posterior mean oIoi. (710) = TNs(0)'(TN - 2).

407



The conditional posterior pdf br i1. is inultivariate Student I

(22) p'(,{O) s2(0)M11(0)! '2(_ft\ + Ji, - jt(Oh. j 'I .kP 2

Hence, the moments of the marginal posterior pdf arc

DTIT
= E[PTIYT]

=
PTl(°))P° dO.

(23)

= JR.
(TT(0) JiTT)(iITIT(0) D1PO do.

Thus, the posterior pdfs for D1 and i. conditional on 0. are available iii
analytical form. so that Bayesian estimation may be carned Out by numerical
integration, with respect to p"(0), over R.

A. 3. The Recursire Formulae

The required recursive formulae are well known in the applied phsical
sciences, and are often referred to as the Kalman-Bucy fIlter. (See, for example.
Aoki (1967), Ho and Lee (1964). Kalman (1960). and Kalnian and Bucy (1961).)
For the special case of the convergent parameter regression model, the predictive
pdf for the grand parameter vector in the initial period follows from the prior
pdf(12) for b0 and thestationary dispersion ofihe individual parameter vectors) II):

Co

C'

P0,c

Oc 'O.a + (0)

P.ca Po.a Po.i + [(0)

P0 P0., ... r0., +
In a later period 1, suppose that the regression information through period

1 has been exploited to yield the posterior moments (0) and
T2M_11,_1(0). Then the conditional predictive pdf for the parameters m period 1.

has moments given by the

Parameter Exrapolatio,z Formu/at':

I1)jz (0) = 1(0)1) i r (0)

N1, (0) = (0)M, (0)'(0) + Q(0)
The predictive pdf for the parameters (24aj or (24h,c) implies a predictive pdffor the endogenous variables in that period.
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F(0) var [y,Ib. a, 0. y'

This is formally equivalent to the pdf
regressor matrices i,(0), and with b0 the

e(0) = ', - X41(0),
409

= XM ,(o)x; + R(0).

in a regression vth regressands e7(0),

unknown parameter vector, where

= X!,, ,(0).

I

toreeasliflg !'ormulac'

(24e) e,(9) -- E(YEIO, Y' ) = Y, - XttIri i (9)

(241) F,(O( - var (eEIa, 0 E I) = X,M,, 1(0)X; + R(0)

L,(0) , Coy (f - (0), e,(Oa, o, = ri1

v,(0) = e;(0)l'1 1(0)e1(0)

(0) = IF(0)I.

Finally. the observations on the endogenous variables in period t are incor-
porated into a revised conditional pdf. given by the

Rerisiwi Formulae

K(0) = L(0)F, '(0)

= - ,(0) + K,(0)e,(0)

(240) M,1(9) = M,1, (0) - L,(0)F, '(0)L(0) = (I - K,(0)X,)M,t, -

B. No Prior Di.stribuüon for b()

Where no prior distribution for b) exists (or. equivalently. 'here b is a fixed
but unknown vector from the classical viewpoint), a "starting problem" exists.

This problem proved to be quite troublesome. Indeed, the sokilion proposed iii
Aoki(1967)was erroneous, because it was based on false "identities" for generalized
matrix inverses (p. 80). Fortunately, there is a straightforward solution to the
problem. It may be shown (Rosenberg(1973h)) that the pdf for ,. conditional on

YE, 0, a2, and b0. is of the form

p(Jb0, a, 0, y') = Normal (1,(b0.0), aM,(0)),

where the mean value is linear in h0,

E[bjb.0. Y'] ,0) +

It follows that

,"Ib. a,0) = ,j, (2a2Y" 2IF70JI 2

x exp X,ji_ ,(0) -. X,:,1 ,(0)bF,Io, 1}

where



In analogy with the familiar linear regression, it may be shown that

27) /b0,OIy') (2ma2) 2(11 (0))

b -- (0)

where

(28) (0)
= (

I-14'(0))

S'i e*(9) -
L..d-I=

i
I

h'(0), wtO) (i H(0))

- :)

TNk I:\ --k

and where, for each t.

7)0) = e7(0)'F7 '(0)e7(0). 1170 - y;)o)F7 t(o1)o)

7(0) = F7(0)I. h7(0) = 1(0)F7 '(0)e7(0).

13.1. Maximum Lik.'!1Iiod J( i,flatw)i

From (27). the maximum value of the natural log of the likelihood function.

for any 0. is

(29) ?i0v'l nia In 0. bIy) = - (

TN(!n( ..) I

IN In ((TN k)s2(0)) In

The Maximum I hood estimator of h4, . conditional on 0. is b0(0) givea in (2).
The Maximum Likelihood estimators for a2 and 1 . conditional on 0. are

(30} â,(0) .s(0). D ,(0) ,(0) +

i\s in A. I al)ove, the unconditional Maxinuim Likelihood estimators are
°.fL bO(O(, ). aML(O ui) I1( r(O.c,.). where O maximizes (29) o\er R

B.2. Ba'e.siiiu Lcrimo!ion

Assume the same prior densities for 0 and a as in A.2. above. The posterior
pdf for all parameters is

p'(I. b0, a. 0) = p(ts1Ib a, 0, v' )p'(b1. , 0).

The conditional pdf for is given in (25). The marginal posterior pdf for the other
paran1eftr is

p(b. a, 0) = p(b. a, 0vT)p(a)p(0)

h70)

( l(o)(fl 7(0))
i,2 - ((TN -- k)s2(0) ± b0 -
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Integrating with respect to b0 and , the marginal posterior pdf for 0 is found to be

1 -12
(33) p'(0) P(0)fl 7(0)) W11(0)It 2(s2(o)

The conditional posterior pdl for o is

I (TN - k)s2(0)
p"(ajO) 12.T I - k exp

2a

The mean is a2(0) = [(TN - k)s2(0)/(TN - k - 2)]. The conditional posterior
pdf for T is again multivariate Student t:

p"(Pl0) Is2(0)MTT(0)L 12

x (TN -- k -i- IT - J1.1.(0)II2(o ii(OU- - (TN

where

gJ1T(0) = E'-(0) ± TIT(0)bO(0)S

MTT(0) = MIT(0) ±

The moments of the marginal posterior pdf of - are again given by formula (23).

B. 3. The Recursire Frnu4iae

The recursive formulae are closely related to those in the previous case. The
initial conditions arc somewhat changed.

Initial Conditions:

(12. 2

All other formulae in the previous list (24b.....24o) carry over to the present case,
with the variables p, M, e, F, u.. L, K having a superscript In addition, the follow

ing formulae are inserted in the list in alphabetical order:

Paraneter Extra polauun:

(37d) (0) 1(0)!l_ lr- (0)

411

(37a)

M110(0)

= 0,

= 0

'0

0

O.(0)

0

0

o(0) =

0

0

f(0)

0

/1 0

0I
0I

\o I

0

0

... 0



L,nz_ry,na

(0) - I(7(0)i(9) = (I - K'(0)X1),1,
(37p) =

C. Both Maxirnulil
LikelihOod and Bayesian estimatiOn require an efficient

means of searching Re,. It is sonietimes cOflVCfliCflt to transfoiTli) the parameters to

a vectOr O such that the admissible region for the transformed parameters. R..

COInCIdCS with Euclidean space. For instance, the variance matrices are required

to be positi'e senu-dehflhte symmetric. This constraint may be imposed by

expressing each matrix as the product of a lower-triangular matrix with its trans-

pose. for instanCe, Q = 1]. Searching the space of unconstrained lower-tri-

angular matrices T is equivalent to searching the space of positive semi-delinite

symmetric matrices Q. and the constraints arc remoed from the iraiisformcd

problem. Similarly, for the convergence rates . a convenient transformation is

= d (1 + d), since the admissahie range 0 I is equi alent to the range

r < d, < i. However, note that in both cases and 0* yield identical values

for 0. and also that 0 = 0. so that attention mUst be given to avoiding

the spurious local extremuni at O 0.

A good initial estimate of the stochastic specification is also helpful. The

following algorithm pros ides an initial estimate when the sample size is large:

First. under the temporary simplifying assumption that parameters are

not dispersed across the population. estiniateS of the mean parameters in e\er

period. b1 b1.. are generated. If the population mean is assumed to he

essentially unchanging over time. (Q, = Q,, Q, = 0). this is done by ordinary

least squares. Otherwise, the population mean changes sequentially ocr time

according to a Markov process with incremental variance

Q Q1
(J-

+

This variance, together with the realized values of thepopulation mean parameters.

may be estimated by an application of the previous formulae to this simpler
sequential model. The communal disturbance vari:'nce r2R1, may also he estimated

at this stage.
If the sample size is large, the residuals about these sample mean pam-

eter estimates will approximate the contributions of the parameter dispersion and

tile disturbances,

en1 = yni - = zni(ari - ã) -- u,

Therefore,

(38) Eie1] g0 +
it i ii = N =i T
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[orccastl?ig
X1 (0)

(37k)
hi0) = Y;(0F7 '(0)e(0)

(371)
ll'i0) - y;(o)F

Reii.sirnl



w Ii crc

I + ). = iul ' = 2u'j Iou j

Note th:'., iou sun !!tv. R is a:;;urucj here to qiid uiiity fui all a.) i\iso. br any
ume lag T.

(39t E[i,i,.1

where

=

If (38) is treated as a regression equation, with the squared residuals reeressed on
the cross products of the explanatory variables, then estimate5 of g>. g1 g.

g)) and, hence, of .12 and are obtained. Similarly, for each time lag r. a
regression of the lagged products of the residuals on the lagged products of the
explanatory variables of form (39) provides estimates of

The various g's are nonlinear functions of the underivin parameters z\,, and
Q. The estimates

rfj may be examined for their implications about the pattern
of parameter variation, and initial estimates of the underlvine parameters may be
obtained by inspection or. ii necessary, by nonlinear regression of the various
onto A and Q

D. i%Jinilnwn MeanSquare Error Linear Estlinaitmi

Suppose that 0 is known. Let a minimum mean square linear unbiased
estimator be defined as follows:

An estimator PTIT is linear unbiased if it is a linear Function of T such
that EITITIO] =
The minimum mean square error linear unbiased estimator TT is defined
by the condition that for every linear combination of the parameters,

IT' and forevery linear unbiased estimator TIT' E[('AT.T - ITt 0]
- c)2i0}

Then it may be shown (Rosenberg (I 973b)) that the estimators 1TT(O derived in
Sections 1 l.A.2. and Il.R.2. are minimum mean square error linear unbia5ed
estimators, with mean square error matrices C2NITIT(0). Also. s(0) is an unbiased
estimator of These properties do not require that the stochastic terms he
normally distributed.

Ill. AI'pRoxl1ATI: FORMULAI:

The number of arithmetic operations in the recuisive formulae increases as
\T3)2 and the number of entries in i1 increases as N2).2. Consequently, the exact
method requires excessive computer time and storage when N is large. For-
tunately, a natural simplifying approximation eliminates these problems.
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l'lie para nietcI covariaiiCc nat rix (T M iiiitv hC P rt !t ioned a'

L'

Throughout the recursive procedure, the largest part of the coarjance
between the parameters of different individuals arises from the Common influence
of the population mean. As a consequence, the matrices a2A,nr. ni giving the
covariance between the inth and iith individual parameter vectors, are similar for
all pairs of individuals, as are the matrices D for all individuals. Accordingly, the
following approximation suggests itself:

fl S..
- - -Li A;+A A(;

(40) ii Li A1; A(, + A, ..

\fY A, A(; + A I

Here
v.v
L_pn.n I mPi

a2
mn
N(Nl)

is the average interindividual covariance,

I'
a2

LJ

N

is the average covariance between cross-fixed parameters and individual cioss-
varying parameters, and the matrices a2A = a2(A - A1,), ii = I N are the
excess olintra-individual over average interindividual covariance. The superscript
tilde denotes an approximation to a statistic.

The simplifying approximation reduces the number of distinct entries in M
to order A-'N and the number of arithmetic operations to order k2N. Estimation
for a given 0 then requires the same order of magnitude of storage and computa-
tions as would be required by ordinary regressions for all individuals in the popula-
tion, in which similarities across individuals would be in no way exploited.

In this section, the recursive formulae resulting from this approximation are
given in terms of the individual parameters. These formulae, the exact recursie
formulae, and the formulae for another approximation were derived in detail in
(Rosenberg (l973c)), but only the approximation that was found to be preferable
will be reported here. To simplify the presentation, the notation (0) and the
subscript i on the variables y, e, X. Z, W. F, K. L. 1' will he omitted where no
confusion can result.
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A. Approximate RecUrSir(! Formulae

The initial conditions (24a) and (37a) both satisfy the approximation exactly,
and may he used in the foiii already given.

Paraneter Extrapolation

Suppose that for some i. - satisfies the approximation (40). Then the
parameter extrapolation formulae are

b
Cf( -- = c, - ,

= Aã,,,111_1 + (I - A)ä, ii = 1,..., N
c:,1,1 +Q,

- D, - - *

c A6,1,_1 = A;,ji,_1 Q + Ar_Hr

Anrjr_ i = H'- ± Q11

. A, 'ir- )(I - A
+ (1 - A)(A, 111.,A

Forecasting

The forecast error vector is

= y - X,111 =

(w :z

YN - (w

415

(

C

C

a, rIr-

"1')

-

dLhni = ii=I.....N

- i = - i - + (1 - Ar - 'it - ii=1.....N
where ft and have been partitioned as

a1

a

and where the bar denotes an average over n = 1,..., N. e.g..
-
a,,,,,_ Ir-1a,_ -

Note that if M,_ satisfies the approximation, then M, also exactly satis-
fies it.



a

'N hen M, sat islIc the approXilnatloil (40). F simplifies to

I!'
-4- 11,tt -

F

g1L =

zi - -C D
f.' A1, I 'I

'--'1

= iu R. n = I N

and where is again a ector of units.

When the communal disturbance variance R1, is zero, the middle term

vanishes. Otherwise. it may he adjoined to the lirst term

'i'pl11 I' + A1-.

Let 4'u (w :z [1]) denote the nih column of'I". Here the communal disturbance

changes status from a component of the disturbances with variance (JR1; to a

cross-fixed parameter. with a coellicient vector of units, having forecast alue of

zero and forecast error variance of Square brackets enclose terms which

appear only when this artifice is in use. k [or k - I] dimensional matrices such as

P vili be partitioned in the self-explanatory notation

/
c'

/
cu [I',,,]\

I'
I

P = I = P, P1 [ '(ill]

f(; \

I A1, ...
I +

- . . .

[PJ, \ [ uc

When M1 - H' I
satisfies the approxinlaliOlL L simplifies to

o ... 0

A1111

0 '-. 0

Where 'i.,, = -
The inversion of F can be siniplitied h the matrix iflverSlOIl ideritit

)41) F = Af1 - iqi(qv- ift I
I) iq'

The matrix 'P'A, 'P = (s,,4i !). which has the form ol a precision matri\,
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'V.' zl]

z[l,

IC

\10]

1)

A1

[0]

[0]

[0]

R1]

'1 1

[Ii (I

(-)

I',

W

F

where



will he denoted by I-I. Let S = (P4tJ 'P P = (H + 1' Also, leth = (%I,e, I,. Fhen the residua suni of sqtiares is

Therefore.

(k( {

(1) H = r'F

Reuiskn,

+ 'i ''rzj. = (I:[O](SLt1

The revision matrix K ma therefore be wr!tten:

Ill

'I I

(Ii) = cF = ef c - el\f 'PS'VL1 'c = h SIt.

The determinant of I is given by the (leterminantal identity

Whether ot not M satisfies the approximatioli, I is gi'.en h

I(j) I = =

I
j

The fIrst term of L. when post-multiplied by F assumes the simple form
P p
'

'P'(AJ I - 'P(Il + P ''F1) =
U 11(11 -f. P

h = F 'e = I

= - (
''nmn)s( Iii;)

n 1 f'n tn = I in i In

s'rL1 +

:o 0

00

0 0 "I
Ross -by-row evaluation of the revision equal ion for J yields

Crir = + Sh

- A, ''PS'P' ').

(42)

which yields

(I) {

Fl = I, + 'PP'P' = p I p tq

= (ii Fl. IS

lLiIi = n.tr + Sh + 1r
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Thus, a communal revision equal to Sh is made. Each cross-varying paranleter

estimate vector is further incremented b a multiple of the COrrepon(lirtg vector

A.1

For revisiOn of NI, it is necessary to evaluate the term - IF 'L'. After substi-

tution of the expressions for F - and L, use of the equality P - SUP =
(1 - SI-1)P SP 'P = S in partitioned form yields the revision formulae for the

various components of the matrix

{
zr = s

(43) = - C", = N

(441 A,,1, = S4 ± A111,
)

Si.iA

.1;,

From these formulae, it is apparent that S gives the variance in an individual
estimate stemming from the communal sources of error atier the new regression

information has been incorporated.
The revised interindividual covariances (43). (44) are not identical unless

x,, = I.. . . land R are the same for all individuals. Hence, if the regressors and
disturbance variances are identical for all n, so that NI satisfies (40) without
adjustment, the "approximate" formulae iii this section coincide with the true
recursive formulae. When this is not the case, in order to preserve the simplifying
conditions of the approximation. it is natural to force the interindividual co-
variances to equal their averages. This arbitrary adjustment is the sole cause of
inefficiency in the approximation. The average values are:

- s s
iV

CQ

m.iii
- ('I',Aif)

N
t)

-

Note that the factor multiplying . is equal to that part of the forecast error not explained by the
communal parameter revision, divided b the individual increment to rorecast error viriance. Thus, one
part of the forecast error, 4sSh. is attributed to an error in estimating the population mean parameter
vector; a proportion of the communally unexplained forecast error, equal to z,,. f, is attributed to an
error in estimating the individual cross-varying parameters; and the balance of the communally unex-
plaiaed error, the proportion I - = RJ, remains as a residual after revision of the parameter
estimates. The communally unexplained forecast error is therefore divided between error in fore-
casting individual parameters and the individual disturbance in proportion to the contributions of these
sOurces 1)1 error to prediction error variance.
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for comptitali nal purposes, the last terni can be simplified

I,,)

fill 11

N)N - 1)

N(N-l)
The intraindividual variance increments arc themi set to be exact.

AlL111 = A,,1, A1,,11

Wh N is small, an ''increment' Afl11, may occasionally fail to be posilic definite
in the first few periods of the sample. because the previous data for that individual
have provided more inforniat ion about an mdi dna I pa ranieter than all sample
data have provided imbou it he sample ilican. In t Ii is c'. cut. I h PPro.simated matrix

is not positive definite, and the method can break doo it. During the recursive
algorithm, difficulties arise only when J is nonpvi1 i c i the following period

+ I, in which case the negative cigenvafues ol'.-%, can pectively adjusted
to equal 0. After completion of the algorithm, the indt1 :ii: ucremenis A,
can be checked for nonpositive cigenvalues, but this check Probably unnece-
sary, since nonpositive cigenvalues were never encountered in more than I 5))
simulations with N = 10. 20. or 40 at limes T = 10. 15. er i).

B. An Approximation to the I)islrihutio,m o/1l.

In Maximum Likelihood estimation die asymptotic approximale disimihu-
tion for T(T(°ML) is normal (tT' O)1 .(0)) In order for this distribution
to be tractable, M11.1 may be approximated by M1 . so that the variance matrix
for will satisfy (40). In Bayesian estimation, where D, has the second moment
given in (23). the numerical integration is faciltiated h the ue of 111T and by the
further approximation:

!\' i,J1;, i)\ (X,i,1 /)
tV- l\

J

.I)

(45)

1ê1.1

/ aJ(JOl - iflJ
- I11T

After this simplification. the integrand satisfies 4(h. and iflCC \I will satisfy
(40) as well.

Statistical inference in the presence of a distribution with 'ariance matrix '1

satisfying (40) requires evaluation of 1i. and ol the term

(J =

- a?
aa, I a2--a.:

- (I -- a a - a
419
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fly an application of the determina ntal iclentit i42L

M = / 1 0 0

0I f

An application of the matrix inversion identity (41 ) yields a iank k forniula for
IcI - After some matrix manipulations. an expression for the statistic q ma he
derived in terms of the matrix

IV. THE STATISTICAL EFFICIENCY AND VALIDITY OF THE APPRoxl1ATION

In this section. the properties of the approximation (hereafter referred to as
A.!), conditional on 0 being correctly specified, will be analyzed. Upon examina-
tion of the recursive formulae that make tip Al, it may he seen to yield a linear
unbiased estimator that is inefficient as a result of the simplifications in step (0).
Recursive formulae for the true mean square error matrix of jTT. as opposed to
the approximation ici, may be derived. Then, for any 0, and for any set of explana-
tory variables X, the exact properties of A.i may be computed. and two questions
may be answered:

How much larger is the mean square error of A.1 than that of the exact.
fully efficient method?
How valid is the approximated mean square error matrix MTIT as an
estimate of the true mean square error matrix for the approximate estinla-
(or, and how accurate is the approximated likelihood?

In addition, the properties of A.! may he compared with those of Ordinary Least
Squares (OLS). These calculations, for a variety of convergent parameter regression
structures (O,X), are reported in detail in Rosenberg (1973c, Sec. 5). The broad

outlines will be summarized here.



4. Cwwer gent Parameter Stru(fl(,-e f() j3 .j ?Uj/.v/
Under the SiIflpIifyi aSStiJflptjon that the cross-fixed palameters arcconstant over tune arid that the ifldivjduil disturbance variances R,, = R a-eidentical for all ii, a Convergent parameter structure is specified by:(i the explanatory variables, X

the COfl)fluInal disturbance variance
the cornniunal parameter shift variance (72Q(,
the individual parameter shift variance a2Q
the convergence rates for parameters, 4 ,..,In selecting a set of representati'e structures among the infInite variety ofoptions, the first problem is to construct the explanatory variables The per-formance ofthe approximation is easily SCCfl to be invariant to a linear transformjtion on the explanatory variables and a simultaneous inverse transformation onthe parameter process. Accordingly, the explanatory variables can he norniali,eclto have mean zero and variance unity, with inclusion of a constant being oplional.provided that effects of changing scale are introduced through the parameterprocess. The correlation structure of the explanatory variables may be specifiedby four parameters, X(p, p0. p, p1), as followS

corr(x1, x1,,)
1j,

for i =j. in n

corr(xjnt,xjm._) = p. corr (Xjur, jm:)

Thus, p0 is the correlation between different variables for different individuals inthe same period, Pv is the increment to this when the same variable is observedfor different individuals, p is the increment when two different variables areobserved for the same individual, and Pr is the attenuating factor for serial correla-tion. A set of pseudo-random, normally distributed explanatory variables obeyingthis correlation is easily constructed. In specifying 0, the covarlances betweenparameter shifts for different parameters can he assumed to be zero, since varia-tions in correlation are introduced in X.
For each specification of X, any combination of the remaining options---RG, Q.. Q. and A---may be selected. The stochastic specification can be sum-marized by two statistics: the average convergence rate. = 4J., and theapproximate proportion of variance due to parameter dispersion, f =iTh/(i'th + R ± RG). The first statistic captures the degree of serial memory in

the parameter dispersion, and the second expresses the importance of parameter
dispersion as a source of noise in the system.

In Rosenberg (1 973c), efficiency and validity measures were computed for 166
structures In all ofthese i.and , were set to3. Cross-section sizes ofN = 10,20, 40
were tried, with 40 being the largest feasible cross section because efficiency evalua-tion requires calculations increasing as N3. The performance of the approxima-
tion was evaluated after each five time periods through to a maximum of thirty
time periods, and it was found to stabilize within fifteen periods. Accordingly, all
results are based on evaluations after fifteen or more periods.

42l



I

iiity-one widely varied structures were tried rst in an chart to discover
which of the parameters iii the specification most influenced et1icienc Then hiftv
one additional structures were studied to anaiy?e the efiects of extreme values i
the more influential parameters. Finally, a study ofsrxty-four Structures was carried
out tocompare A.l with OLS. again forextreme values ofihe influential paranleters
in these last structures, communal parameter shut variance a2Q1, was set to /ero,
so that the inefficiency ohsered in OLS would he dire solely to nonresponsrvcness
to parameter dispersion.

The most important conclusions based on results in all the structures are
summarized below. Also, detailed results for the last 64 structures are reported by
grouping the results according to the presence or absence of serial correlation in X,
and by eight pairs ofaiues for the two summary statistics and!'. in this way, the
64 structures are segregated into 16 groups. and the results will be sununarized
by the worst value for each group. This simplification hides the systematic effects
of variations other than serial correlation that were made in X, hut since these
effects are small relative to the effect of serial correlation, the summary tables do
give an accurate representation of the performance of the approximation.

B. The Statistical 4t!u!cmY I i/ic rlpprUxiIflatU)fl

Each measure of eflIciency will be reported as a percentage inefilciency, i.e.,
as lOO(z..z - I), where z is a mean square error measure for the method under
analysis, and z is the same measure for the exact method. Perhaps the most in-
teresting single measure of efficiency is the kth root of the determinant of tile mean
square error matrix (the 'geueralized mean square error'') for the population
mean parameter vector. The pattern of inefficiency is summarized in Table 1.

The inefficiency of A.! is far less than the inefficiency of OLS. but inefficiency
does increase as serial correlation in X increases. Detailed analysis of mean square
estimation errors for the separate parameters shows that almost all inefficiency
in A.! arises in estimating the cross-fixed parameters. The maximal inefficiency
of Al. for a cross-fixed parameter is 95 percent, whereas the rnaxlnlal ineffi-
ciency for a cross-varying parameter is only 2.5 percent. (OLS reaches 258 percent
unefficiency for a cross-varying parameter.) in a large salill)lc. the mean square
error in cross-fixed parameters, even when inflated by substantial inefficiency, is
'ery small relative to the mean square error in cross-varying paranieters. For this

TABLE I
MAXIMUM PFRCrN IAc Isr.0 u niu r (iFNIitALuilI) MEAN SQLARI ERROR I OR TiIF POPULATION

MrAN P.RMti1E8 VE 10K
(lb (irouping. iron 64 Diflcrent Specificatton.. wirh.V =: 20. 7 IS)
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S

Serial ------
Stoctiasuic Specilicatioris

Correlation = 06(X) ($33
--- -------- -

(1.6(X) 0.533 0.S(X 0.5!? 0.SOO 0 5i7
In X / - 0.957 0.977 0.935 0972 0963 0.935 1)3)71 (19S0

I; (tO (6 17 itO 14 2
Vi = 0

OLS 232 392 263 375 335 234 536
p, = 0.6

or
A I 10 26 09 25 36 20 3$ 33

= 0.9 OLS 317 546 269 510 363 267 369 644



reason. il (lie Criterion 01 performance is taken as the a rithtnetjc average ol the
ereen aloes of the inca n square error filatrix (rather (ha ii the geometric averac'eimplied by the generali,ed variance), A. 1 pertornis extrertiely well, with a niaxirnIrmiiiejliCieiic ol less Lbui 5 percent versus 0er 2t)() percent for ()LS.

Tiie following influences of (he paiameters in the stochastic specilication
emerge:

As N increases, the neUiciency of A. I tend\ to decrease.
As 4) increases (or any parameter. inelliciency inciei5es for that paran-eter. and as 4) increases for a regression, iflelliciency

increases for that regression.
As/'inereases for a regression, inelliciency increases.
As the communal parameter shift ariance Q increases, inefljciericvdecreases.

The variance of the communal d isturba ace, R, . has little effect.
With regard to the structure of the explanatory ariabk's, the presence of

a consuint has little effect, the rcSence of serial correlation increases inellicjencv
the presence of correlation across variables for the same individual has little elkct,
and correlation oft he ai iahles across iiidi rd uals reduces inefIjcieiic The last is
to he expected, since if the correlation rises to one, the approximation hecuiiics
exact and hence perfectly eflicienl.

Comparison of forecasting ellicienc pro ides another important test of the
approximation. Consider forecast errors for sincle dependent variables- . = I N) and for the POPU Ia (ion aggrcgate Ic r- flTb.T 1. The sources ol error are the unpredictable disturbances
and parameter shifts in period I. and (lie estiniat ion crror for the parameters in
period T - I . DitTerences across methods iii mean sq uare estimation error in
period T - I therefore determine differences in the mean square forecast error.
Moreover, since the explanatory variables are generated by a stationary stochastic
process. the mean square forecast error weighs the eflicicncv of estimating 'arious
dimensions of the parameter vectors by the expected magnitude 01 the con1ponent
of the explanatory variables corresponding to these dimensions,

For Al, two possible forecasting j)roccdures arc available: to forecast each
individual by the estimated parameters for that individual (Method I). or to fore-
cast all individuals by the population mean parameter estimate Method Mt
Method M should be less eulIcient. since it discards the disaggrecated parameter
estimates. For OLS with fixed parameters. these tso imiethods coincide.

The criterion of forecasting performance for the single dependent ariables
is the sum ol the mean square errors in the individual forecasts:

= x,b, TI i

'li = ij
( >.1

= Ej
(

.t,r -
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where the subscripts indicate the use of iiidis idual or population mean parameter
estimates. For the aegregate forecast, the criterion is the mean square error

IY I.

x,
)
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TABLE 2

MAXIMtM [R(iN[ INEIFI(i}N(Y IN SUM O MLAN SQUARI ERRORS 'N INUIVII)t;At. FORI(,ASIs
(16 Groupings from 64 Ditrerent Spcci!icat!ons, with N = 20, 1 = IS)

TABLE 3

MAXIMUM PF.RCNT INEFFICIENCY IN MEAN SQUARE ERROR IN FORECASTINU '11W AGGREGAIF

(16 Groupings from 64 Different Specifications, with N = 20. T = IS)

Using the Individual Using the Forecast
Parameter Forecasts Population Mean

Parameters

Specification A.I A.I OLS
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= 06(X) f = 0.957 I 85 148
0.833 0.977 3 28 170
0.600 (1.938 I 51 153

= 0 0.833 0.972 3 8 183
0800 0.963 4 IS 255
0.517 0938 4 44 278
0.8(8) 0.97! 2 56 234
t5 17 0.980 14 228 326

= 0.600 = 1)957 50 112
0.833 0.977 3 60 182

= 0.6 0.6(8) 0.938 29 lOS
or - 0.533 0.972 2 7! 205

Pi = 0.9 0.8(8) 0.963 139 48
0517 (1.938 5 79
1)800 0.971 10 131
0.517 1)980 0 12 210

Specilicalion

Using the Individual
Paranietcr Forecasts

Si)

A.I

Using the lorecast
Population Mean
I'aranieters lS,)

A.l ()1.S

=

= 0,6
or
= 0.9

=

=

0.600
0.833
0.600
0.833
0.800
0.517
0.800
0.517

0.600
0.833
0.600
0.833
0.800
0.517
0.800
0.51 7

f =

0.957
0.977
0.938
0.972
0.963
0.938
0.971
0.980

0.957
0.977
0.938
0.972
0.963
0.938
0.97!
0.981)

I

I

0
0

I

I

0
1

0
0
I)

(1

0
0
0

39

138

29

156

97
45
75

189

76

155

56
I 66

115

76

14!
335

53

13!
.13

149

117

53

I is
212

71

184

55

I

131

62
30

233



Jn Tables 2 and 3. niaximal percentace inefliciences of A. I and Ol.S are corn-
pared. A. I is almost perkctly ellicient in lorecasting the individual dependent
variables but sulTers a percentae ineiliciencv of up to 14 percent in torecasting the
aggregate. due to relatively greater inefficiency in estimating the cross-lixed
parameters. OLS hasa percentage inelliciency of more than 200 percent in many
cases. Notice that the results are dependent upon the (X,U) specilications chosen.
but that for each specification, the results are the eXaç theoretical values, not the
output of some sampling experiment.

C. Validitt' a/ Approximated Mean Square Error and Good,t'. 01 Iit
Let a2 denote 2(9) from A.l or from OLS. and let â2 denote N2(0) from the

Exact Method. Let /and ldcnote the approximate and exact log likelihoods of the
true structure, and let li,. denote the exact log likelihood of the lIxed-pararneter
structure.

In order to validate the approximated mean square error yielded by A.! or
OLS, the statistics

and

V=n

approximated mean square error matrix for 1,,i
- forn = I Ntrue mean square error matrix for bI

ffdpproximated mean squ ire error in Itrix for

true mean square error matrix for
I

are computed. The generalized mean square error ratios l' are relatively constant
across the population, so their value is summarized by the arithmetic mean
V = l'/N. The effect of estimation error in u2, which is omitted in these
ratios, is introduced by computation of the additional ratios (&2/â2)V. and
((52/o)V). The ratio (ö2/ô2) and the difference in log likelihoods are also com-
puted. lfA.l were exact, all ratios would be equal to their ideal alue of unity, and
the difference in log likelihood would he zero.

The results show a clear pattern. The validity of the approximation increases
with N in more than 95 percent of the cases, an extremely encouraging property
since sample sizes will be much larger in applications. Moreover, as the sample size
doubles from N = 20 to A' = 40. the difference I - / declines in almost all cases.
although the magnitude of I typically doubles. Thus, the proportional error in 1
declines more rapidly than I 'N. If these results persist in large samples, the
approximated log likelihood should be virtually perfect.

The values of the statistics that deviated most from the ideal values are given
in Table 4 for the sixty-four structures already reported. The approximation is
everywhere more valid than OLS. Moreover, the error in the approximated log
likelihood is nowhere more than one-twentieth of the difference between the
approximated log likelihood for the convergent-parameter structure and the
log likelihood of the fixed-parameter structure. hence, the approximated log likeli-
hood reliably rejects the fixed-parameter model despite the small sample size.
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br 01_S. the iltes cottiputed uttder t he erroneous :tssutltptlon ollixed parameters arc compared
to the true properLie of UI_S. The difference III lou IkeIthoodsx au CXCCpttOui : the tiuurc is the )C\act/
log likelihood of f/xed parameters nut flits tile exact Io likelihood of the true structure.

Throughout the results, A.l appears to he entirely valid when the explana-
tory variables are serially independent, hut to understate the estimation error
variance when the explanatory variables are serially correlated. In the most severe
case, one with serial correlation of 0.9. the approximated mean square error falls
to 45 percent of the true value. This is a serious defect. in view of the prevalence of
serial correlation in economic variables. It will have to be taken into account in
applications. Fortunately, the degree of understatement decreases with N and, in
large samples. the downward bias may be small. It is interesting to note that the
approximated sampling properties of OLS are far worse. In fact, the estimated
generalized mean square error of OLS falls below one-twentieth of the true value
for individual parameters and below one-ninth of the true value for the poptilation
mean parameters. These deficiencies highlight the dangers of using the fixed-
parameter assumption where it is inappropriate.

In summary, the approximation is highly efficient in estimating the cross-
varying parameters and satisfactorily efficient in estimating the cross-fixed
parameters, and the approximated likelihood can apparently be used with confi-
dence. The only defect of the approximation that must be taken into account is
understatement of the mean square error in the case of serially correlated explana-
tory variables. Subject to this caution, the approximation may be substituted into
the recursive formulae of Section U. The results also imply that the method is
sharply superior to ordinary least squares-- in terms of efficiency and in terms of
validity of sampling theory--when parameter dispersion is present. These results
are overly favorable to the method, since 9 is presumed known, whereas, in fact, it
must be estimated. However, the very large difference in sample log likelihood
between the true structure and the fixed-parameter structure suggests that. ifO were
estimated by maximum approximated likelihood, then the estimated structure
would be relatively close to the true structure. Hence, much of the gain in efficiency
due to recognition of parameter variation would be achiced. Moreover, the very
large sample sizes in many cross-section. time-series applications promise excel-
lent estimates ofO, and therefore full exploitation of the potentiai efficiency of the
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method ---provided, of course, that the model permits an appropriate description
of the true parameter process.

Finally, notice that the computations involved in the method are kasible : the
calculations required to evaluate a single stochastic specification with

1V = 40
were equivalent to repeating the approximation more than 500 times, enough
iterations for Maximum Likelihood estimation or Bayesian estliflatiOt) with 0 of
reasonable dimension.

V. Coci.usto

There are numerous extensions of the method that need not be added to an
already lengthy paper. "Smoothed" estimates of parameter vectors , for < T
may be computed by modifications of the recursive formulae derived here (see,
e.g., Rosenberg (l973b)). A more complex model, where individual parameters
converge to subgroup norms, which in turn may converge to the population norm,
is relatively easy to implement. An underlying population mean, which serves as
the norm forconvergence in place oft he sample mean in every period, may be added
to the model if variations in the sample mean are not desired to affect the coil-
vergence pattern. Nonconstant variances or convergence rates, which differ across
individuals or over time as functions of known characteristics of the itidjvjdual or
time period may be easily introduced, and the parameters specifying these func-
tions may he adjoined to 0 without changing the estimation approach.

To summarize, a model of parameter variation in a cross section of time
series was presented, in which individual parameters obey random walks sub-
ordinated to a tendency to converge toward the population norm. The model
involves an intuitively plausible dynamic model of the determinants of individual
diversity, and it is consistent with the empirical observation that, in some cross
sections of time series, individual parameters vary relative to one another as if
subjected to sequential random increments, but that cross-sectional parameter
dispersion nevertheless remains roughly constant. Next, a computationally feasible
method for Maximum Likelihood or Bayesian estimation of the parameters
specifying the stochastic structure, as well as of the individual regression param-
eters themselves, was derived. The approximation involved in these computations
was validated, subject to the one defect of understating mean square error when
explanatory variables are serially correlated. The method was shown to be superior
to Ordinary Least Squares in the presence of stochastic parameter variation of
the type conjectured.

Unit'c'rsitv of California. Berkeley
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