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RANDOM COEFFICIENTS MODELS

THE ANALYSIS OF A CROSS SECTION OF TIME SERIES BY
STOCHASTICALLY CONVERGENT PARAMETER REGRESSION!

BY BARR ROSENBERG

This paper develops a “convergent-parameter” regression mudel for a cross section of time series. Cross-
sectional diversity in the regression paramsters results from sequential randon increments (o the indicidual
parameters. Tivse random walks are subordinated 10 a contimaal tendency for individual parameters 1o
converge io the population norm. The mode! impliss siationary cross-sectional paramcter dispersion, with
nonconsiani bui seriaily correlated indivdual parametees. Maximum likelihood and Bayesian estimatien
methods are devived for the model. An approximation that makes the computatins feasible is crafuared
and fownd 1o be satisjaciardy efficient. The extimazors are compared with ordinary least sqeares.

I, THE "CONVERGENT PARAMETER™ MODEL

A. Consider the familiar cross-section. time-scries regression problem. where an
cndogenous variable y and exogenous variables x, ... x, arc observed for each of
Nindividuals.n = 1., . N in each of Tume periods. 1 = ... ., T. The regression
parameters by L hy arc the partial derivatives of the endogenous with respect to
the exogenous variables. The parameter vector by, = (i iby) specific 1o
individual n in period ¢ is determined by the behavior and environment of that
individual at that date. In most cconomic applications. it is unrcasonabl: 1o expect
these parameters to be the same for all individuals in all periods.

A variety of cross scction. time serics regression models have previously
introduced stochastic variation in individual parameters. The most widely known
methods arc extensions of the analysis of covariance : shifts in the intercept term
arc assoctated with each individual (“individual effects™) and with cach time
period (“time effects”). Sometimes these shifts in the intercept arc introduced as
dummy vartables. or equivalently. as stochastic terms witk: difluse prior distribu-
tions (Hildreth (1949, 1950). Hoch (1962). Wilks (19431 195- 20001 In other applica-
tiens. these shifts are treated os stochastic terms with proper prior distributions. or
“error components” (Wallace and Hussain (1969)). Serial correlation in individual
disturbances may be superimposcd upon these models (Parks (1967)). However.
this class of models has the deficiency of postulating that regression parameters
other than the intcreept are identical for all individuals in all periods.

Where regression parameters do vary.in estimator assuming constant param-
eters has two important defects. First. the cstimator is inetticient and the associ-
ated sampling theory is invalid. usually leading to downward-biased estimates of
error vartance. Second. when the pattern of parameter variation is of interest in

* The bulk of this rescarch. reported in “Varying Paramcter Regression in the Analysis of a Cross
Section of Time Series.” IBLR Working Paper No. [P 165. 1969 (revised 1973), was complcted under
NSF Grant GS 2102, aided by subsidized funds of the Computer Center. University of California.
Berkeley. The rescarch was completed under NSF Grant GS 3306, The resourceful ssistance of Daryi
Carlson, and the indomitable work of Mrs. Ellen McGibbon in preparing various stages of the manu-
seripl.are gratefully acknowledyed.
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its own right, a constant parameter model is totally incapabic of shedding light on
this aspect of the cconomic process. o ' ‘

Two models have introduced more general parameter vartation. In Swamy's
work . individual parameters are randomly dispersed across the popul;llx'on. but are
constant over time (1970, 1971). In Hsiao's recent paper (.!‘)7.3‘). regression param-
cters are the sums of “individual effects™ and “thme eﬁccl.s. so that 'thc modcl
extends to the regression parameters the methods prevmusly applicd to the
intercept term aione, These two approaches are appealing. However, they do not
allow the individua! parameters to vary independently of the rest of the popula-
tion. If individual pa-amcters do vary stochastically, these methqu cannot track
the individnal parameter vectors nor model the stochastic variations,

B. What pattern ¢ [ parameter variation can be expected in a cross scection of
economic decision uniis”? There are certainly tendencies for different individnals”
parameters to be alike. Social intcraction within a population tends to preserve
similarity among individnals playing the same role, thnrconformit_\' is highly
valned. or when the role of a deviate is, for any reason, difficnlt, individnals will
tend to converge in behavier and in environment toward gronp norms, or toward
subgronp norms if a deviant subgronp coalesces. Under competition. individuals
will strive for profitable differentiation from the population, but as soon as such
differentiation is achieved, competitive responses by others will tend to offset it
Unifornmity may be enforced by institutional devices, such as trade organizations,
or may result from interdependent individual responses to similar environments,
as, for example, in loosely organized groups such as consumers.

On the other hand, within a gronp of individuals, each being somewhat dif-
ferent in innate characteristics and in environment. freedom of action wili facilitate
continual developments which are in opposition to, or at least independent of, the
converging trends. These independent events will be a source of diversity which,
when balanced against the conforming forces, may preserve a relatively stable
degrec of differentiation in the population, Individual characteristics will be dif-
ferent, but will net remain constant over time. The differsnees may behave as of
snbjected to sequential random increments and as if continually converging
toward zero from the position randomly arrived at. Iudividual differences will
then be scrially correlated but nonconstant.

To fix ideas, it may be helpful to consider an cxample, In analyzing the
returns to stockholders, it is nseful to write for each stock in a universe of A stocks
and for each holding period within a sequence of T holding periods

P = b‘.)ul + hlnlr.\ll + thfll +.o bk l.nl./l.c | + Wy

where r,, is the (excess) return on stock n over holding period ¢, ry,, is the {excess)
return on a stock market index in period ¢. and the f;,. 0= 2,.. .k -~ 1, arc other
major economic or social factors which imfluence the returns on scenritics. The
cqefﬁcienl by, widely known in finance as the stock’s beta.” is a partial derivative
‘wuh respect to return on the index. The “beta™ and the other cocflicients are
important in the theory and practice of investment management, since they deter-
mine the risk of a diversified portiolio (see. for example, Sharpe (1970)). The “'beta,”
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in particular, has been widcly studied empirically. 1t has been shown that “beta,”
for any sccurity. is scrially correlated but nonconstant. A posstble stochastic
model for “beta’ is:

bnr = (l - (f))};n + (bbn.1~l + Ene-

The autoregressive parameter ¢ induces scrial correlation. the term (I — )
implements a tendency to converge toviard a normal value b, and the serially
independent random increments ¢ introduce stochastic variation over time. The
characteristics of this process have been studied by Rosenberg and Ohlson (1973).
The results support the modcl, and. in particular. show significant nonconstancy
in beta and confirm the tendency of beta to converge toward a normal value b,.

This paper is concerned with the case where the normal value is a population
norm common to several individuals. Every individual parameter vector is
regarded as the sum of a population mean parameter vector and an individual
difference. with the latter tending to converge toward zcro.

Each individual difference is assumed to vonverge at the same rate and to b
subject to randont shocks of the samc variance. This is cleariy an oversimplifica-
tion as a model of many economic processcs. For exaniple. in a study of competi-
tion in the computer industry. one would suspect that the tendency of IBM to
converge toward the group norm would differ from other tirms. Also. in many
populations. individuals fall naturally into subgroups. so that a two-level hier-
archy. in which individuals converge toward subgroup norms and subgroups may
or may not converge toward the population norm. may be more appropriate.
Nevertheless, the simple convergence structure is uscd here for several reasons.

One reason is heuristic: although the computational difficulty of the estima-
tion problem does not increase as the convergence patterns become more complex.
the notation becomes more painful. A second reason is onc of operational uscful-
ress. When the stochastic paramcter process is known a priori, as it may be when
the process determining behavioral modifictions is weil understood. it is quite
possible to operate in the fully general framework. However. when the parameter
process is to be estimated from the data. a simple structure niust be postulated.
The simplification that all individual parameters have convergence and stochastic-
shift characteristics which are identical and unchanging over time is analogous to
the traditional regression assumption that all parameters are identical. in that it
asserts a similarity across the population which is necessary to develop an opera-
tionally feasible method. Howcver. while the assumption of fixed parameters was
originally thought to be necded before computations could be carricd out at all.
here the simplifying assumption is imposed. not by computaticnal necessity. but
by the experimenter’s ignorance as to the exact nature of the parameter process.

There may also be events which induce simultaneous shifts in all of the indivi-
dual parameters. It will be assumed that the effects of thuse constitute a scries of
serially independent communal increments occurring in all parameter vectors.

The individual parameter vector may contain both parameters which vary
across the population (‘cross-varying parameters ) and parameters which are the
same for all individuals in any time period ( "cross-fixed parameters ). Accordingly.
each k-element individual parametcr vector is partitioned as b, = (¢;:a,,)’. where
¢, is a (possibly empty) x-clement subvector of cross-fixed parameters and a_, is a
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s-clement subvector of cross-varying parameters, with & = w -+ 2 The explanatory

variables x, .. ... x; are partitioned correspondingly, wath w0 w, . the c..\'p];m;‘l..
tory variables having cross-fixed coctlicients.and z,. ...z, . the explanatory vari-
. . N T TN e .
ables having cross-varving coctlicients. Let b, = (‘_l ) = 3% b, N be the populi-
4

Lion mean parameter vector. '
The convergent parameter regression structure then takes the form:

N -
(1 Yo = % Wauki 2 Sl 4y L= 1o Fon= b \
e i=1
. . C oy
E,) =0 E(u,.u,,) = 0,070, R, + R;)
or in vector notation.
o ’ ¢ ,
Yo = (“ul:""nl) iU, = xnlbnl =My

e

a

Parameter Transition Relutions

(2 C ., =t + Y, t=1.... T -1
and
3 a,.,=2a 4 Aya, —-3)+n, t=1....T—1tn=1. ... \
where Eiy) =0 E(yor) = 0,,0°Q,
Em,) =0 Em,n,) = 8,0°0,,Q, + Q)
and Etu, v =0  Eu,n) =0  Elyn,) = d,6°Q,.

Here. ;; is the Kronecker delta equal 1o 1 if i = j. equal to zero otherwise. The
disturbances are assumed to be serially uncorrelated. and to be composed of a
communal disturbance with variance ¢°R; = 0. and uncorrelated individual
terms with possibly heteroscedastic variances g°R,. n=1.....! N.owith R, > 0
for all n. The cross-fixed parameter vector is subject to serially uncorrelated incre-
ments having mean zero and variance matrix ¢°Q,. The convergence matrix A,
is diagonal with diagonal entries ¢;. 0 < ¢, < . fori=1..... 4. These diagonal
entries are “convergence rates.” in that ¢, is the proportion of the individual
divergence a;,, ~ a;, which survives 16 period t + 1. The cross-varying paramcter
vectors are subject to serially uncerrefated individual paramceter shifts. Fach shift
is the sum of a communal component with zcre mean and variance matrix 5°Q,
and an individual component with zcro mean and variance matrix 0°Q,. The
disturbances are uncorrelated with the parameter process. The contemporancous
covariance between the cross-fixed parameter shift vector and anyv individual
cross-varying parameter shift vector. or. equivaiently. the covariance between the
cross-fixed parameter shift and the communal component of the Cross-varying
parameter shifts. is ¢°Q,,. The variance mairices of paramcter shifts may be
positive semi-definite. permitting some paramcters to remain fixed over time.
All stochastic terms are assumed to be independent of the exogenous variables.
C. Itis important for some purposes to view all individuai paramcter vectors
as components of a single “grand parameter vector”™ B, = (¢ ca) 0. cay),. with
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/-clement subvecior of cross-varymg parameters. wilhl\_' = K + 4 Theexplanatory
variables x,,....: \, are partitioned corrgspcmdmgly. withw, ..., w, . the explana-
wriables having cross-fixed coetlicients. and z,..... z,. the explanatory van-
cl

tory vi
ables having cross-varying cocfticients. leth, = (_

a) = 5% b, N be the popula-

f

tion miean parameter vector. ‘
The convergent paramelcr regression structure then takes the form:

(IJ Y = Z WiniCie + Z :Jnl“mr + Uy r=1... (TR N \

i=1 j=1
E{“n!) = 0 E‘Rm.\“m] = (S_“O'Z{()'"HIRR i R(.'

or in vector notation.

, . ¢
“nl = ‘“‘nl ‘ Z:xl) .

1 . . .
) iUy, = \,”h,,, v “m'

ot

Parameter Transition Relations

(2) ., =¢C +, r=1.... T-1
and
(3)  8,,., =38 +Aya, —a)+n, r=1..... F—1.n=1_ N
where Ety) =0 E(yy) = 0,0°Q,
EM,) =0 EMui) = 8,0°00,,Q, + Q)
and Eu,y) =0  Ea,m) =0 Eym,) = 0,67Q,,.

Here, d;; 1s the Kroncecker delta equal to 1t 7 = j. cqual to zere otherwise. The
disturbances are dssumed to be serially uncorrclated. and to be composed of a
commurnal disturbance with variance o?R,; > 0. and uncorrclated individual
terms with possibly heteroscedastic variances a°R,, n = 1.... N with R, >0
for all n. The cross-fixed parameter vector is subject to serially uncorrelated incre-
ments having mean zero and variance matrix ¢°Q,. The convergence matrix A,
1s diagonal with diagonal entries ¢, 0 < ¢, < | . fori =1... . 7. These diagonal
entries are “convergence rates,” in that ¢; is the proportion of the individual
divergence a;, — &;, which survives to period ¢ + 1. The cross-varving parameter
vectors are subject to serially uncorrelated individual parameter shifts. Fach shift
is the sum of a communal component with zero mean and variance matrix 6°Q,
and an individual component with zero mean and variance matrix ¢°Q,. The
disturbances are uncorrelated with the parameter process. The contemporaneous
covariance between the cross-fixed parameter shift vector and anv individual
cross-varymg parameter shift vector, or, equivalently. the covariance between the
cross-fixed parameter shift and the communal component of the cross-varving
parameter shifts, is ¢”Q,,. The variance matrices of parameter shifts may be
positive semi-definite, permitting some parameters to remain fixed over time.
All stochas.ti.c terms are assumed to be independent of the cxogenous variables.
C. Tt is important for some purposes to view all indinvdual parameter vectors
as components of a single “grand parameter vector” B,o=(eray ) with
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dimension K = N/ 4 «. All the individual regressions m each period make up a
single regression for the grand parameter vector
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& /“'} z) el Ju
¥a W, 20 |fa,
(4) =1 - R
0 - . .
Yaie Wy Z'\/ Aayi, o \uy /
or Yo=XB +u, Eluy] = o°R,
R, + R, R, R
R R, + R, ... R
R = . . .
R; e R .« Ry + R

similarly into a single transition relation

,/C? [/l 0 0
/
L—A,)  (I- Ay
o 0 a4, T
1—A,) -4,
)| | o T A‘.,+(f ¢
N
|
] (- A,) (- Ay)
\34\'/1*1 \0 ,Vﬁ TI_:&

or

where
/’ Qc ch Qru
Q;a Qa + Q(i QG

Q=|Q. Qi Q, + Q¢

‘. o Q.
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where 1 denotes a vector of units. The parameter transition relations coalesce

BHX = (DB + d1~ E[dtdrt} = GZQ

Qru
Qg
Q;

Q,+Qq
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D. One important property of the cenvergent paraineter mwodel s the
stationary cross-sectional parameter dispersion which it generaten 1 the croas
section of the individual parameter vectors is examined i any one period. for

any individual n.

(6) a,,.7 — 51 - = Aw(anl - 51) + Nee — '1'

Sinee parumeter shifts between periods ¢ and ¢ + | are uncorrelated with the
parameters in period t,

(7) E[(an.H-l - ﬁt* 1}(3"1,(] - ﬁf*l)'] =
No-1
ApEl(, — )a, —aYIA, + T (67Q,)

and for m # n

(8) E““m,ml - sn’- l)(an.! [ ﬁl*’ l)I] =
. Lo,
A,E[(a,, - dj(a, —a)]A, - N(”"Qa)-

Since Ay is diagonal, the stationary solutions to these difference equations are
easily found to be:

CET( _ avilt N, - I ,02,;:;_,,.‘!,:,”
|9' t [(an! - al)(‘lnl - z‘l) ])‘ij - IV I — (./)i(/)j
_ — ., —l oznguli'
(10) :m%—mmquh=Nj%gj for e #

where {A}; denotes element (i, /) in the matrix A. Since the cigenvalues of A, are
smaller than one, this is, indeed, the stationary joint distribution of the cross-
varying parameter vectors about their sample miean in any single time period.
Notice that the dispersion about the sample mean is identical to that in a sample
of vectors drawn independently from a multivariate population with variance
matrix 62§ given by
Q.

.= 1Q). . — Xl .
(n W =18, Yy
Thus, in any single cross section. the individual CTOSS-VATying parameter vectors
IN & convergent-parameter structure are distributed as if randomly drawn from a
population with dispersion matrix ¢2Q. Cross-sectional regressions of this kind.,
often calied random or randomly dispersed parameter regressions, have been
studied previously (Rao (1965), Swamy (1970), Rosenberg (1973a)).

The parameter interrelationships in the convergent-parameter model are
diagrammed in two ways in Figure 1. In both diagrams, a link between vectors
denotes a transition relation. Figure 1a exhibits the interrelationships among
individual parameter vectors. At the top of the diagram is a representation of the
stationary joint distribution of the individual parameter vectors in the initial
period. The vector by, is brought in as the mear of the hypothetical multivariate
population from which the initial parameter veclors are drawn.

404

35 e W MR S




9

SN

A\

he

)

pare

are
085-
giod.
1ple

11CC

1078
i
ind.
cen

dre
tors

rong
bi the
hitial
riate

g«.\m»m\ PR

|

b, )
' )
= '
b . Y, -
' \\\'J: SON s b, S by, - B,
~ ~[ i s -7 _4-"
~ L~ b, o7 -
it RN b, A-T-
\\\\\~ {(::’l
PY AN
s NG
- AN §
7/ R
Ll P ~
- / N N
4 1 , \ ~ ~
- 7/ ~ ~
,/ ’ Y \ ~ \\
- 7/
by, <l byl ¥ Moby S D B
~< ~ PN . ' i - - N
\F ~ N b 7 - [ -
I DN ;P ” /",f’
- s -
\‘\\\\,‘f:—
LZ7ANSS
/:// \\\\"
1 77 \ \\\
PR " \ AN
4
//’ s // \ N N
- 4 \ ~ ~
i, -2 b . / b ~Eedh )
L3 \\.\' S e N 7 - — D I’\
= ~EN - S SPN L
ST SN T
P~ N\ ya -{—-
T ez
h . . h,, . . b, . < h, - By
Figure Ia Figure 1b

In the transitions between successive periods in Figure la. the solid lines
denote the contributions of the individual parameter vectors to their own subse-
quent values. and the broken lines denote the contribution of the sample mean to
the subsequent values of the individua! vectors.

Figure 1b shows the elementary structure of the serially independent transi-
tions betwecen successive grand parameter vectors. The grand regression is a
Markovian or sequential parameter regresston problem in that the grand param-
eter vector obeys a first order Markoyv process.

[1. ESTIMATION IN THE CONVERGENT PARAMETER MODEL

Let  denote the veetor of parameters in the stochastic specification. includ-
ing the second moments of the stochastic ierms R,.....R\.R;. Q.. Q..Q..Q,
and the convergence rates ¢, . ... . ¢;. but excluding the scale parameter 62, Let
R, denoie the admissible region of parameter values. which may be constrained
by a priori information as welil as nonnegativity and symmetry conditions on the
second moments. Let ¥° = (v :...:y)) denote the vector of all observations
through period .

In this section, Maximum Likelihood and Bayesian methods for esiimating
0.0 and B arc developed under the assumption that all stochastic terms follow a
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multivariate normal distribution. The central resu
yield: (1) for any 0. the numerical values of the sax
marginal posterior distribution for 8, p"(8]y") m il
tors IAS,-,‘,(()) and 62,,(0). and the conditional posterior distributions p

NS DM T AT 14

Its are recursive formulae which
nple likelihood #(@)y") and the
- (i) the maximum likelihood estima-

p (B8 ¥ conditional on that 8. Repeated application of these formulac, over a
range of 8 values in Ry, allows Muxim}lm Likelihood or Bayesian estimation.
Moreover, if @ be known, the estimator Br (@) 15 a minimum mean square error
linear unbiased estimator, without the requirement ol normality in the stochastic
terms. The formulae in this section follow from theorems in Roseaberg (1973b).
The probability density function (pdl) of the endogenous variables may
always be decomposed as py’) = {17, plyly' ). The Markov process for the
grand paramcter veetor, together with serial independence in the disturbances, are
key simplifying assumptions which permit this decomposition to be exploited by
a reeursive procedure. Two cases will be dealt with in successive subscctions:
(A) a proper prior distribution for by, and {B) a diffuse prior distribution for by,
or cquivalently. b, fixed but unknown. In each case. fully general formulae which
hold for any regression model with sequential or Markov paranicter variation will

be exhibited and then specialized to the convergent parameter model.

A. Proper Prior Distribution for by,
Let by, have a proper multivariate normal prior distribution

“ R é() 2 P“ « P(I.«:u
(12) b, ~ Normal . a
ﬁ(’ Pi)_m l)l).u

independently of all other stochastic terms. Then all regression parameters and
endogenous variables follow a jomt proper multivariate normal pdf. and 1t is

easily shown that

1
«

T
“3) M}"’l”- 0) = l] ‘27[(7%“('\' l)lF,(B” e exXp {"., All“\' - xrptlr - 110)“ Foa i }
=1 -

where

il

aF(0) = var [yja. 0.y '] = o (XM, - ,(0X] + R).

and where, in general.

u,,(0) = E[B,10.y"]. oM, (0) = var [Bl6.0.y"].

rls

['he notation jiell , denotes the norm ¢’ Ae. The subseript r|s denotes an estimator of
distribution for an item in period r, conditional on regression information up toand

including period s.

Therefore, when p(0) and F(0) are computed by the recursive formulae

provided below, the sample likelihood is

26~

T -12 a2

(14) L(6.01yT) = (2ra?) "™ 2( I ;,(9,) exp{ _ TN ,‘9'}_
where o
(8) = iF(0). v(0) = iy, — xrpllr»» 10)iE, 0. 52(0} = Zli‘
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Also, from the joint normal distribution of y* and §, .

(15 R A R S M ¢ PR () TR

_ i v'
X exp {-3 N | P (Y| P ‘
Y '
These formulac provide the basis for Maximum Likelihood and Bayesuni estima-
tion.

4.1, Maximum Likelihood Estimation
The maxintum value of the natusal tog of the likclibood function (14). for any

0, is

(16) oy = max In g, 0ly") = (I N (ln( _‘n’) 4 1)

,
+ TN In(TNS Oy + ) In ;',(9))‘

=i
The maximum likclihood cstimators of 67 and §,. conditional on 9. arc
(17) 631(0) = 57@). B {0) = pgy1(0).

For maximum hikelihood estimation. it is necessary to search R for thai
0. 9\,, which ma\nm/u the log likctihood function (16). The maximum likclihcod
estimators of o7 and B arc then 63,(0,,,) and Briz®y).

A.2. Bayesian Estimation

Let p'(0) be a possibly diffusc prior pdf for 8. and Ict p(e) « e be a diffuse
prior for o, following Zellner (1971 : Ch. 2). Then ihe posterior pdf for By 0. 0. is

(18) P'Br.0.0) = pfslo.0.v")p"(c. 6).

where the conditional pdf for f, is given in (15). and the marginat postcrior pdf
for ¢ and @ is. from (14),

(19 p(6.0) = Llc. 8y )p'lo)p(0)
. T -12 N 0
x a“““’p'(e)( Il ;‘,(0)) exp { -—;;a(—--’}

=1

This may be decomposed into the marginal posterior pdf for 0,

-2
(20) p(0) = J p(a.0)da = p'(8) ( 11 5,(0)) (s2(0)) " "2
Ra 1=1
and the conditionai posterior pdf for o.
([ TNsH0)]
(21) P60 = ¢ “cxp{ - --7; i }

Let 0;3(0) be the conditional posterior mean of ¢°. 2(0) = TNS2O)ATN — 2
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The conditional posterior pdf for B, is multivariate Student ¢
2N i e SRR DAY VI
22 pB,10) % SO () PATN + iBy — 1D, s o) )

Hence. the moments of the marginal posterior pdf are

B T = | sy @) ) do.
Bur = EBV'T = | w00y

(23) { My = var[Brly']
J (F(O)NIHT(O) + (lln'rw) - B‘r;'r)""’rir(e) - B;-i-r')[”'(ﬁ)dl)_
Ra

Thus, the posterior pdfs for B, and o. conditional on 8. are available i
1n-1lytical.form so that Bayesian estimation may be carried out by numerica)
integration, with respect to p"(9). over Ry,

A.3. The Recursive Formulae

The required recursive formulac are well known in the applied physical
sciences, and are often referred to as the Kalman-Bucy filter. (Sec. for example,
Aoki (1967). Ho and Lee (1964). Kalman (1960). and Kalman and Bucy (1961))
For the special case of the convergent parameter regression model, the prednct!vc
pdf for the grand parameter vector in the initial period follows from the prior
pdf{12) for by and the stationary dispersion of the individual parameter vectors ()

a,
(24a) Mo = - | M, p(0) =

ay
Po.c Po.. Po
Poc. Po, + 6 Py, .. P,.
Pors  Po, Py, +Q0) . P,

.a a

. . . . /
Py P,. | o P+ UOY
In a later period ¢, suppose that the regression information through period
t =1 has been exploited to yield the posterior moments p, 10 and
aZM,_,',_,(O). Then the conditional predictive pdf for the parameters in period 1.
has moments given by the
Parameter Extrapolation F ormulae
(24b) R - 1(0) = ‘9‘9st 1r— X(B)
{24c) My 10) = ®OM, _,, i) (0) + Q0)

The predictive pdf for the parameters {24a) or (24b.c) implics a predictive pdf
for the endogenous variables in that period.

408




T

Forecasting Formulae

(24¢) e =y, - Eyiey =y — Xy (0

1
(241) F0) = o vartejo. 0Ly ) = XM, _,(@)X; + R(0)

1
(24g) L(6) = 5 cov(f, — p,,-,0).e@)jc. 0.y ") =M, _,(0)X

o4 -1
(24h) v,(0) = e (@F, '(@)e(0)
241) {(0) = |F(0)].

Finally. the observations on the endogenous variables in period ¢ are incor-
porated into a revised conditional pdf. given by the

Revision Formulae

(24m) K,(0) = L®F, '®)

(24n) 1,(0) = pyp, - ,0) + K(0)e,(0)

(2d0) M, (0) = M,, ,0) — L(O)F, 'O)L(9) = (I — K@)X)M,,_,(0).

B. No Prior Distribution for b,

Where no prior distribution for by, exists (or. equivalently. where by, 15 a fixed
but unknown vector from the classical viewpoint). a “starting problem™ cxists.
This problem proved to be guite troublesome. Indeed. the solution proposed in
Aoki(1967) was erroneous. because it was based on false “identitics™ for generalized
matrix inverses (p. 80). Fortunately. there is a straighiforward solution to the
probiem. It may be shown (Rosenberg (1973b)) that the pdf for B,. conditional on
v'.8,62, and b,,. is of the form

(25) p(Btby. . 0.¥) = Normal (§,,(b,.0), a" M (0).
where the mean value is linear in by
&,(by.0) = E[bjb, . 0.¥'] = n}i0) + =, (O,
It follows that
T

(26) py'ib,.a.0) = [] 2ra®)" IFFi0) 2

=1
X CXp {__]7”‘1 - xl";‘fl— 1(0, - XlElll" 1(9’b()t]‘F,‘|0)' '} .
20
where

| . ..
FX@) = - var [ylb.0.0.¥' '] = X,Mf,_,(0X] + RO).
-

This is formally cquivalent to the pdf in a regression with regressands e¥(0).

regressor matrices Y (0}, and with b, the unknown parameter vector, where

&) = ¥, — Xl ®)  V0) = XZ-1(0)
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ar regression, it may be shown that

7 S1by.a, 0y = (2net) -(ll;?““} NPy, LN Rl

in analogy with the familiar hne

-G

-+ by - BII(OH}“H,(OI‘{‘

l
where . .
N VT !
(28) b0 = (Z H,*(B)) Y B0, W0) = ( ) Hffﬂl) -
(=1 =1 ol
2(0) = Zrll ile;k(‘m - 1’,!0)‘)“(9)'@ Frmy Zf’ L VT(0) — f)u 2’:,’ , hX0)
s O = TN —k TN -k ’

and where, for cach 1.
p¥(0) = eX0)FF H0)eX(0). HXO) = Y 0F 10N
JX0) = [F}O). h*(0) = Y,(F} 1(BlekO).

B.1. Maximum Likelihood Istimation
From (27). the maximum value of the natural fog of the likelihood function.

for any 8. is

ab.

) bt 2n
(29) 19y = max In “1o. 0.b v = - q( H :\'(ln( 'I'\') + !}
;

TN (TN - k)s%0) + 3 In ;,*{())).

=1

The Maximum [ ikchhood estimator of b, conditional on 0. 15 b (8) given in (28).
The Maximum Likclihood estimators for a? and B, conditional on 9. are

(TN — k) ,

(30) 3%11,(03 = ™ 57(9). 3115(0) = u";l'l'(g) + E,H(B)f)u(ﬁ)_

As in A} above, the unconditional Maximum Likelihood estumators are
N PR oA A N o
Oy, bo(0y,). 63,0y, ) and By p(044,). where Oy, maximizes (29) over Ry,
B.2. Bayesian Estimation

Assume the same prior densities for 6 and ¢ as in A.2. above. The posterior
pdf for all parameters s

(31 FiBy.by.a.0) = pif,b,.5.8.v")p(b,. 5. 0).

The conditional pdf for By is given in (25). The marginal posterior pdf for the other
parameters is

(32 p'iby.a.0) = ptb,. a0 p'(a)p'®)

L

T —~1,2 -

TN . " 1 R

xo ! "NO)(H 9?‘(9)) exp %—.;;,-_s(("l‘N ~ KIs0) + b - bn(ﬂ}?lwg«m)}-
1=1 4
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Integrating with respect to b, and 6, the marginai posterior pdf for 0 is found to be

T -12
(33) p'(0) x p’(O)( [ :,*(BP) IWaO)1" (520 1,
=1
The conditional posterior pdf for o is
(34) P”(U|0) « g Wtk exp {__ (_[A’_ 4;1:}8'(0)}
s

The mean is ¢°(0) = [(TN — k)s’@/TN — k — 2)]. The conditional posterior
pdf for §; is again multivariate Student ¢:

35)  p(Bl0) « |sTO)M1(0) " 2

X (TN — k + By — Prp®llcome,ron-) T8 <0
where
(36) Rr(0) = p32(0) + E; 1 (@)by(6).

My(6) = ME,(0) + ;1 (0)W(0)E 7 1(6).

The moments of the marginal posterior pdf of B are again given by formula (23).

B.3. The Recursive Formulae

The recursive formulae are closely related to those in the previous case. The
initial conditions are somewhat changed.

Initial Conditions :

I 0
01
(37a) Hiol0) = 0. E00)=[0 1
0 I
/0 G o ... 0
0 Q6 0 ... 0
M, ,0(8) =.-.‘0 0 QO ... O
o 0 0 .. Q)

All other formulac in the previous list (24b. . . ., 240) carry over to the present case,
with the variables p, M, e, F,v.{, L, K having a superscript *. In addition, the follow-
ing formulae are inserted in the list in alphabetical order:
Parameter Extrapolation:
(57d) Elll— 1(9} = Q(G)En— - ](9)
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Forecasting:

37)) Y(0) = X, (0
: 3y k1 *
(37K) h*0) = Y(OFF (0] 9
.- . 1 >
370 HX@) = Y01 (0 ,0)

Revision :

(37p)

¢ Both Maximum Likelihood and Bayesian estimation require an cflicient
means of scarching Ry. IUis sometimes convenient to transform the parameters to
a vector 0% such that the admissible region for the transformed parameters. R,
coincides with Euclidean space. For instance, the varianee matrices are required
o be positive semi-definite symmetvic. This L‘Ol?i.\'lfilil]l may .be i'mpo.\'cd by
expressing cach matrix as the product ofa |0\\'Cr~lrlilllglllilr mzltnx. with its trans-
pose. for instance. Q. =711 Searching the space of unconstramed lower-tri-
anguiar matrices T is eguivaient o searching the space of positive semi-definite
syr}lmelric matrices Q. and the constraints are removed _from the transformed
problem. Similarly. for the convergence rates ¢;. a con\:cmem transformation is
¢, = d? /(1 + df).since the admissable range 0 < ¢b; < 1is equivaleni to the rauge
— 4 < d, < ».However. note that in both cases — 0% and 0* yield identical values
for 8. and also that ¢0. 6%, = 0. so that attention must be given to avoiding

Z,0) = £, (0) - KKOWO) =~ KHOX )=, ,(0)

the spurious local extremum at 0* = 0.

A good initial estimate of the stochastic specification is also helpful. The
following algorithm provides an initial estimate when the sample size is large:

(i) First. under the temporary simplifying assumption that parameters are
not dispersed across the population. estimates of the mean paameters N every
period. ﬁ, ..... 3,-. are generated. Hf the population mean is assumed to be
essentially unchanging over time. (Q, = Q., = Q,; = 0). this is donc by ordnary
least squares. Otherwise, the population mean changes sequentially over time
according to a Markov process with incremental variance

Q: Q.
g” Q .
LI a
Qn:'Q(i + ‘\T
This variance, together with the realized vatues of the popuiation mean parameters.
may be estimated by an application of the previous formulac to this simpler
sequential model. The communal disturbance vananee o’ R, may also be estimated
at this stage.

(i) If the sample size is large, the residuals about these sample mean param-
eter estimates will approximate the contributions of the parameter dispersion and
the disturbuncees.

€ = Vo — Noby = ¥, — X b =2, (@, —2) + u,.
Therefore,
(7.8) y A i
3 Fle;] ~ - - .
H ru] g()“" z Z«Qij"lnl“]nl " = ll\ =1 T

i=1 o

412

I TR e




[ T

where

g = (Tg(k i I’((’ . l‘Ol’»I. el

2 s
iy =@ ;. and £, = ;([:"(.,;,

{Note that for simplicity. R, is assumed heie to cyiad amity foi all ) Also. for any
ume lag 1.

4 2
(39’ lv‘[{,m['.‘:.l 'E = Z Z 271;:inl:jn.r- 4 n = l cts IV
=14-1

5
where

2 '
g“-j =a “)ij(f’i'

I (38) is treated as a regression equation. with the squared residnals regressed on
the cross producets of the explanatory variables. then estimates of go.g,..... gis-
.g;; and. hence. of 67 and  are obtained. Sinularly. for each time lag 1. a
regression of the lagged products of the residuais on the Ligged products of the
explanatory variables ot form (39) provides estimates of oA, 0.
The various g's are nonlincar functions of the underiying parameters A, aud
Q,. The estimates £.;; may be examined for their tmplications about the pattern
of parameter variation. and initial estimates of the underlying parameters may be
obtained by inspection or. if necessary. by nonlinear regression of the various g,
onto Ay and Q,.

D. Minimum Mean Square Error Linear Estimation

Suppose that 8 is known. Let a minimum mean square lincar unbiased
estimator be detined as follows
(1) An estimator B, is linear unbiased iff it is a lincar function of y! such
that E(fr;710] = E[B,10) A
(1)) The minimum mean square error linear unbiased estimator By r 1s defined
by the condition that for every lincar combination of the parancters.
o'z, and for every linear unbiased estimator Brir E[(a'ﬁ-,.,., - af,18 <
E[(m.ﬂrn‘ - a'ﬂr)zlﬂ}
Then it may be shown (Rosenberg (1973b)) that the estimators ﬁT,T(GD derived in
Sections 1LA2. and ILB.2. are minimum mean square error lincar unbiased
estimators, with mean square error matrices a* My 1(0). Also. s°(0) is an unbiased
estimator of 6%, These properties do not reguire that the stochastic erms be
normally distributed.

ITl. APPROXIMATE FORMULAE

The number of arithmetic operations in the recursive formulae mereases as
N?/? and the number of entries in M increases as N2,2. Conscquently, the exact
method requires excessive computer time and storage when N is large. For-
tunately. a natural simplifying approximation climninates these problems.
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The parameter covariance matrix oM nuty be partitioned as

!V‘ é.\'{t -4 i é.\l! -4 ’ ¢ l)1 l)_w l)"l
B — A Ay — A DyoAy AL ’\1.\'!
- 2y
UZMm =E ' ) =0 1)3 "\Zl :\32 . _.\:.\_
. A | ' .
_‘\a(\'sll - Ayg! \8yge — aNs,’_J _l).\' AN[ A_\'g L Af\',\'_ i

Throughout the recursive procedure, the largest part of the covariance
between the parameters of different individuals ariscs from’thc common influence
of the population mean. As a consequence, the matrices 6°A,,.. m # n. giving the
covariance between the mth and nth individual parameter vectors, arc similar for
all pairs of individuals. as arc the matrices D, for all individuals. Accordingly. the

following approxitnation suggests itself:

C D D . D
D A, +A A, i |
(40) M=|D A, A, +A, A, .
b A, i, A+ A\/
Here
mn=1 A
A T

is the average covariance between cross-fixed parameters and individual cross-
varying parameters, and the matrices a’A, = o%(A,, — A}, n = I... . N are the
excess of intra-individual over average interindividual covariance. The superscript
tilde denotes an approximation to a statistic.

The simplifying approximation reduces the number of distinct entries in M
to order A°N and the number of arithmetic operations to order *N. Estimation
for a given @ then requires the same order of magnitude of storage and computa-
tions as would be required by ordinary regressions for ail individuals in the popula-
tion, in which similarities across individuals would be in no way exploited.

In this section, the recursive formulac resulting fromn this approximation are
given in terms of the individual parameters. These formulac, the exact recursive
formulae, and the formulae for another approximaiion were derived in detail in
(Rosenberg (1973c)), but only the approximation that was found to be preferable
will be reported here. To simplify the presentation. the notation () and the

subscr'!pt 1 on the variables y, e, X. Z. W, F, K. L. Y will be omitted where no
confusion can result.
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A. Approximate Recursive Formulae

The initial conditions (24aj and (37a) both saiisfy the approximation exactly,
and may be used in the forns already given.
Parameter Extrapolation

Suppose that for some ¢, M, _ 1 - 1 satisfies the approximation (40). Then the
parameter extrapolation formulae are

Jél]l"l = él—l!l'—l
by ’ _

By pe-1 = A:pan.l"lh—l + (I - A.p)a; He—t n=1,.. N
Cr[l—l = —‘i'lil-‘l +Qc
Dl[l* 1= Dl‘ He—=1 + Q('(l

A

i R A —AA A
CJAGJIHI =Ag,- -1t Q + —tnAe "‘-“,"b'*’**l"l—'——l“o

N
An.lil-l = A(P‘in.l" - IA(,b + Qu

P AR = A )0 = A + 0= A,y — Ay 4,
A'

& n=1...,N

calt—=1 T - -

Ul

[

dy . - =
IEILIII- 1= A'b:n.r—llrvl + (l - A¢)='r—1ll—l n= lv"'vN

where ji and £ have been partitioned as

v

¢ =
~ a 3 =1
ay \:-\

and where the bar denotes an average overn = 1,... N, eg.,

| N o~
: = _ zm:l am,l‘—l]l—wl

a,_ oy =
t—1e-1 N
Note that if M,_ ., satisties the approximation, then M, -, also exactly satis-
fies it.
Forecasting

The forecast error vector is

ee:y—xﬁlllfl: =
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When M, 1 satisfies the approximation (40). ¥ simphities to

.\\'rl Z'] - _ ' " ’I . ’
F=|. (E D Moo H) + R+ : 0
i D’ A(.’ [HAN I, e Iy ’
wy Ly 0 N

where

and where tis again a vector of units.
When the communal disturbance variance R, is zero. the middle term
vanishes. Otherwise, it may be adjoined to the hirst erm:

w, [V C D] W W 0
flE=]: D A; (0] 1o by .
wy a[lfvo o) (RGN0 D10 Ja

il

YP,, W+ A

Let\, = (w,:z,:{1]y denote the nth column of W', Here the communal disturbance
changes status from a component of the disturbances with variance 67 R, 10 a
cross-fixed parameter. with a coelflicient vector of units, having forecast value of
zero and forecasl error variance of o°R,;. Square brackets enclose terms which
appear only when this artifice is in usc. k for k 4 1] dimensional matrices such as
P wili be partitioned in the self-explanatory notation:

Pf | ’ P\( Pf(l {,)(ll]
P = Pu = pm Pu(l i;!)(lll] .

P AP (PG TP

When M, -, satistics the approximation. L simplifies to

¢ Dy T
L D A, (wl oWy ALz
B _ z, ... I.J * 90 e 0
D ‘K(}'Illvl : ‘;i\.l}:‘ ll.\"
1P" 0 0
P, L, 0 0
= : \v'-{— .
P, 0 by

where 2, = &, 12,
The inversion of F can be simplificd by the matrix inversion idenuty

i41) Fole A7 = WOPAS W P Y,

WA g TN - : . . :
The matrix WA "W = Y ¥ (b, f,). which has the form o a precision matrix.
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will be denoted by H. Let S = (A "W P Y = H AP YL Abo. Lot
h=Y¥A "e=3" e, f) Then the residual sum of squares is

-

>

N2
(h)i b= B e = @A e - €A TWSYA e = Y  hSh,
n- 1 Jn
The determinant of F is given by the determinantal identity
(42) L= 18+ WPW] = |01 PPy ey,

which yiclds

(U{ = ( N ,/,',) APIS

Whether ornot M, |, | satisfies the a pproximation. Y is given by

f

/

[ (“"15(.111 ot BE /\“1
(jJ] Y=XgE, j );_ ;
1S “-..\Er.zlt 1 t ll\‘:_‘.\ir‘: 1 ]‘.C\/
Therefore,
j . Y (e, — ¥Sh
(kj b =1F le= ¥ 1™ )
( n=1 .fll
. )n]n \‘ ]‘n ;l N \‘ ]‘n n
(1)% HE R s (Z *)S(L \J’)
n=} n \n=1 /n n=1 /n i

Revision

The first term of L, when post-multiplicd by F ', assumes the simple form

1

P P,
(P‘)wmj" —AWH P YA = (P‘)u ~HMH + P ') A

a N u

P\ . , QW
- (P‘)(P HH+ P WA, = (L{0]sYa, .

The revision matrix K may therefore be written -

/1 0 [0] 0 0 .0,
0 1 [0 2 0 0 l
miK={ . SWA 4 (A, 1= A, TWSWA ),
01 oy 0 0 ... 3,
Row-by-row evaluation of the revision equation for f viclds
E'tlr = é.]:,,,, + S.h
n ' <
J ﬁn.l“ = ﬁnl,i,il + Suh + )—”( ('"'_ \lln ) n= l“ a N.
k n !
417

)
k]
:

i
&
3
2

L L e i

AP TR IS




\
;
1
H
L

g
g
!

revision equal to Sh is made. Each cross-varying parameter
ctor is further incremented by a multiple of the carresponding vector

Thus. a communal
estimate ve

)».!
For revision of M., it is nccessary to evaluate the term — L 'L, After substi-

tution of the expressions for F~' and L. usc of the cquality P — SHP =
(1—SHP =SP 'P =S partitioned form yields the revision formulae for the

various components of the matrix:
0 { C, =S,

i,
@3) D, =S, SEEIJJ';". n=1,....N
: e }‘nl;‘;rl }'m‘l"r'nS\!’n)"l'l }”m ,;ns:x
(44) Al:m.l[l = Suu + omn Am.rl:—l - 7, + oo - i
- S"qj")—" m=1.... N n=1.... N.

f

Erom these formulae, it is apparent that S gives the variance in an individual
estimate stemming from the communal sources of error after the new regression
information has been incorporated.

The revised interindividual covariances (43). (44) are not identical unless
X,.t = 1.... Tand R, are the same for all individuals. Hence. if the regressers and
disturbance variances are identical for all n. sc that M satisfies (40) without
adjustment, the ““approximate™ formulac in this section comcide with the true
recursive formulae. When this is not the case, in order to preserve the simplifying
conditions of the approximation. it is natural to force the interindividual co-
variances to cqual their averages. This arbitrary adjustment is the sole cause of
inefficiency in the approximation. The average values are:

B — 2 Do =S, - sc‘_Z;J_(_V_n:"i’/;-?)
1

e N
N
Z . Amn.lll
mn= N\ .
0< A = mEn = — Ln=1 (Wi f)
Gl NiN = 1) - Saa Su( ]\f -

mn=
m*n

+

N RN

___(Sa( ___;.: 1 (‘l"n;"n.ln)

"Note that the factor multiplying A is equal to that part of the forecast errer not explained by the
communal parameter revision. divided by the individual increnient to forecast error variance. Thus, one
part of the forecast error. Y, Sh. is attributed to an error in estimating the population mean parameter
vector ; a proportion of the communally unexplained lorecast error. equal to z,A, f,. is atiributed to an
error in esimating the individual cross-varying parameters: and the balance of the communally unex-
plained error. the proportion | — (z,A/f,) = R,/ f,. remains as a residual after revision of the parameter
esumates. The communally unexplained forecast error is therefore divided between error in fore-
casting individual parameters and the individual disturbance in proportion to the centributions of these
sources of error to prediction error variance.
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For computational purposes. the lasi term can be simpliticd :

N
Z [}‘m‘j”r'nswn;‘;l ,n.’n)
“wen o __N ( e L I\ [N 0. 1))
NN — 1) N -1 N A A

N - . P
2 S )
NN - 1) '
The intra-individual variance incremenis are then set to be exact.

0] A = A — -‘-\mu me= oo N.
When N 1s smaldl, an “increment” .3.,,‘,,, may occasionally fail to be positive delinite
in the first few periods of the sample. because the previous data for that individual
have provided more information about an individual parameter than all sampie
data have provided about the sumple mean. In this cvent. the dpproximated matrix
M is not positive definite. and the method can break dow i, During the recursive
algorithm, difficultics arise only when f is nonpositive 10 the following period
t + Linwhich case the negative eigenvatues ol'.iw,c.m e sospuectively adjusted
to equal 0. After completion of the algorithm. the indiviini increments Ay
can be checked for nonpositive eigenvalucs, but this check o probably unncces-
sary, since nonpositive cigenvalucs were never encountercd in more than 130
simulations with N = 10. 20. or 40 at times T = 10. 15. or 0

B. An Approximation to the Distribution of B,

In Maximum Likelihood estimation. the asymplotic approximate distribu-
tion for B 7(0y,; ) is normal (B, 63,,(0,,, M {0y ). I order for this distribution
to be tractable. My, may be approximated by M, ;.50 that the variance matrix
for B will satisfy (40). In Baycsian estimation. where B, has the sccond moment
given in (23). the numerical mtegration is facihitated by the use nfﬂm- and by the
further approximation:

,’61‘i7‘(0) -y )
/

oot

(45) Lt
: B0 — By = : ’ for all 0.
N oL
'a'l'|'r(0) — A
After this simplification. the intcgrand satisfics (40). and iwnce Ny, will savsiy
(40) as well.
Statistical inference in the presence of a distribution with variance matrix ¥
satisfying (40) requircs evaluation of IM|. and of the term

/57(‘()\ ¢ - U
4 ’ i
i, — aj {a, —ay
- 0 ~ o
a, —a) |o 1|3, - al
g =|°: S B s
iy — al’ a, —al’
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By an application of the determinantal identity (42),

i = — 0:(0 i)\(l 0 0.0y
j A, 0 0 1|\D x) 0 1 11/
| 0 :
| <
| Ay 01

C D

An application of the matrix inversion identity (41) yields «@ rank &k formula for
N ', After some matrix manipulations, an expression for the statistic ¢ may be
derived in terms of the matrix

h -
A= ( YA+ A, - D‘C"‘D)“‘):
\n=1
N o
(47) g=18— e+ Y 1a, —a) - DC '@ - My
t .\‘

S A '@, —al - DCE - o)
n=1 |§

IV. THE STATISTICAL EFFICIENCY AND VALIDITY OF THE APPROXIMATION

In this section, the properties of the approximation (hereafter referred to as
A.1), conditional on 8 being correctly specified, will be analyzed. Upon examina-
tion of the recursive formulae that make up AL it may be seen to yield a linear
unbiased estimator that is inefficient as a result of the simplifications i step (o).
Recursive formulae for the true mean square error matrix of BT|T* as opposed to
the approximation M, may be derived. Then, for any 8, and for any set of explana-
tory variables X, the exact properties of A.i may be computed, and two questions
may be answered :

(i) How much larger i1s the mean square error of Al than that of the exact,

fully efficient method?

(i) How valid is the approximated mean square crror matrix My as an
estimate of the trne mean square error matrix for the approximate estima-
tor, and how accurate is the approximated likelihood?

In addition, the propertics of A.l may be compared with ihose of Ordinary Least
Squares(OL.S). These calculations, for a variety of convergent parameter regression
structures (8, X), are reported in detail in Rosenberg (1973¢, Sec. 5). The broad
outlines will be summarized here.
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A. Convergenr Parameter Structures To Be Analyzed

Under the simplifying assumption that the cross-fixed  parameters are
constant over time and that the individyal disturbance variances R, =R are
identical for all n, a convergent parameter structure is specified by:

(1) the explanatory variables, X

(it) the communal disturbance viriance, g°R

(1ii) the communal parameter shift varianee, a2Q,,

(iv) the individual parameter shift variance, ¢2Q,

(v} the convergence rates for parameters, ¢, ... ¢, .

In selecting a set of representative structires among the infinite variety of
oeptions, the first problem is to construct the explanatory variables. The per-
formance of the approximation is casily seen to be Invariant (o a linear transforma-
tton on the explanatory variables and a simultaneous inverse transformation on
the parameter process. Accordingly, the explanatory variables can be normalized
to have mean zero and variance unity, with inclusion of a constant bemg optional,
provided that effects of changing scale are introduced through the parameter
process. The correlation structure of the explanatory variables may be specitied
by four parameters, X(p7. py. v+ Pp), as follows -

Pa F£4 msy
Corr{Xp, X, ) = < po + o for l [ =j. m#n

Po + py L, m=y

. . . — A . . .
corr (-\inv "jm..'*.c) - pT corr {'\im ’ '\_[ml)‘

Thus, p, is the correlation between different variables for different individuals in
the same period, p,, is the increment to this when the same variable 1s observed
for different individuals, 1 18 the increment when two different variables are
observed for the same individual, and Py 1s the attenuating factor for serial correla-
tion. A set of pseudo-random, normally distributed explanatory variables obeying
this correlation is casily constructed. In specifying 0, the covariances between
parameter shifts for different parameters can be assumed to be zero, since varia.
tions in correlation are introduced in X.

For each specification of X, any combination of the remainming options-—
R;. Q. Q,. and A,—may be selected. The stochastic specification can be sum-
marized by two statistics: the average convergence rate. ¢ = Y4 . and the
approximate proportion of variance duc to parameter dispersion, f =
V' + R + R). The first statistic captures the degree of serial memory in
the parameter dispersion. and the second expresses the importance of parameter
dispersion as a source of noise in the system.

In Rosenberg (1973¢), cfticiency and validity measures were computed for 166
structures. Inall of these, x and / were set to 3. Cross-section sizes of N = 10, 20, 40
were tried, with 40 being the largest feasible cross section because efficiency evalua-
tion requires calcalations increasing as N*. The performance of the approxima-
tion was evaluated after each five time periods through to a maximum of thirty
time periods, and it was found to stabilize within fificen periods. Accordingly, all
results are based on cvaluations after fifteen or more periods.
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Fifty-one widely varied structures were tried first in an cffort to discover
which of the parameters in the specitication most mfluenced efliciency. Then fifty-
one additional structures were studied to anatyze the eftects of extreme values in
the more influential parameters. Finally, a study of sixty-four structures was carried
out tocompare A.l with OLS, againforextreme values of the mfluential parameters
I these last structures. communal parameter shift variance a’Q,, was set to zero,
50 that the inefticiency observed in OLS would be due solely to nonresponsiveness

P LIRS

. ; to parameter disperston.
; The most important conclusions based on results in all the structures are

! summarized below. Also, detatled results for the fast 64 structures are reported by
grouping the results according to the presence or absence of serial correlationin X,
and by eight pairs of values for the two summary statistics ¢ and f. In this way, the
64 structures are segregated into 16 groups. and the results will be summarized
by the worst valtue for each group. This simphification hides the systematic effects
of variations other than serial correlation that were made in X, but since these
effects are small relative 1o the effect of serial correlation, the summary tables do
give an accurate represgntation of the performance of the approximation.

B. The Statisiical Efficiency of the Approximation
Each measure of efliciency will be reported as a percentage incthaiency, ie.,
as 100(z,/z, — 1), where =, is a mean square error measure for the method under
‘ analysis, and z, ts the same measure for the exact mcthod. Perhaps the most in-
i teresting single measure of efliciency 1s the kth root of the determinant of the mean
' square error matrix (the “generalized mean square crror™) for the population
mean parameter vector. The pattern of inefhiciency is summarized in Table 1.
The inefliciency of A.L is far less than the inefficiency of OLS, but inefficiency
does increase as serial correlation in X increases. Detailed analysis of mean square
estimation errors for the separate parameters shows that almost all nefliciency
in Al arises in estimating the cross-fixed parameters. The maximal inefficiency
of Al for a cross-fixed parameter is 95 percent, whercas the maximal inefli-
ciency for a cross-varying parameter is only 2.5 percent. (OLS reaches 258 percent
inefficiency for a cross-varying parameter.) In a large sample. the mean square
error in cross-fixed parameters. even when inflated by substantial inefficiency. is
very small relative te the mean square error in cross-varying parameters. For this

TABIE 1

MaxiMusm PERCENTAGE INCIFICIENCY IN GENERALIZED MEAN SQUARE ERROR FOR Tilk POPULATION
MEeaN Paradi1er VECTOR

Serial T
Correlation ¢ = 00600  OXIZ 0600 03I 0800 0517 0800 0517
in X f=08957 0977 0938 0972 0963 093X 0971  09K0
Al j 07 17 06 16 13 6 14 2
pr=0 !
OLs 232 392 269 37y 338 hEK} 368 si6
#r = 0.6 AL 10 2% o 25 36 0 w 34
or |
pr =09 OLS | 317 546 269 510 363 247 369 644
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reason. 1l the eniterion of performanee is taken as the arithmetic average of the
cigemvalues of the mean square crror matriy (rather than the geometric averape
implicd by the gencralized variance). A1 performs extremely well, with a maximum
incilicicitey of fess tian 3 pereent versus over 200 pereent for QLS.

The followimg influcnces of the parameters in the stochastic specification
emerge:

(a) As N mcreases, the metlicieney of A tends 1o deerease,

(b) As ¢ creases for any parameter, incflicieney inereases for that param-
eter.and as ¢ increases for a regression, inefliciency increases for that regression,

(¢} As fincreases for a regression, mefliciency increases, ,

(d) As the communal parameter shift variance Q.. increases, imeflicieney
decreases.

{¢) The varance of the communal disturbance. R has htte effect.

(f} With regard 1o the structure of the explanatory variables, the presence of
a constant has little cffect. the presence of serial correlation increases inefticiency.
the prescnee of correlation across variables for the same individual has little cffect.
and correlation of the variables across individuals reduces mefticieney. The last iy
to be expected, since if the correlation rises (o one, the appro.\inmlbn becomes
exact and hence perfecily cflicient.

Comparison of forecasting cfliciency provides anoticr important test of the
approximation. A(‘onsidcr forceast crrors  for single  dependent variables
€ = Vor — .\'.'.1;b,._-,-,-,- o= N) and for the population aggregate (e =
Z" Yoy — Z"x,',-,b“-”. 13- The sources of ervor are the unpredictable distarbgnees
and parameter shifts in period 7. and the estimation error for the parameters in
period 7 — L. Differences across metheds in mean square estimation error in
period T — 1 thercfore determine differences in the mean square forecast crror.
Moreover. since the explanatory variables are generated by astationary stochastic
process. the mean squarc forecast error weighs the cfiiciency of estimating various
dimensions of the parameter vectors by the expected magnitude of the components
of the explanatory vanables corresponding to these dimensions.

For Al two possible forccasting procedures are available - to forecast cach
individnal by the cstimated parameters for that mdividual (Mcthod 1. or to fore-
cast all individuals by the population mean parameter estimate (Method M),
Method M should be less cfficient. since it discards the disaggregated parameter
estimates. For OLS with fixed parameters. these two methods coincide.

The criterion of forecasting performance for the smgle dependent variables
1s the sum of the mean square errors in the individual forecasts :

N -
5

N A
S = Z E{ty,, - -‘_:xlb::.'l'}'l 0L Sy = ,\: Eily,, ~ \;xll_?lil "

R |

where the subscripts indicate the use of individual or population mean parameter
estimaies. For the aggregate forecast, the criterion is the mean SQUATC CITor:

- Y N 2
‘.ll = ] ( Z .“n.’ N z ‘l‘zl'bnl 17 1 ' .
n=1 n= 1

\ 2

N A N
Ay = 1':[( Z Yar — Z Xop l"r;r x)

n= n=i
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TABLE 2

MaxiMCeM PERCERT INEFFICIERTCY IN SUM OF MEAN SQUARE ERRORS IN INDIVIDUAL FORLCASTS
(16 Groupings from 64 Different Specifications, with N = 20, T = 1)

Using the Indwidual Using the Forecast

Parameter Forecasts Population Mean
(A} Parameters (8,,)
Specification Al Al OLs
¢ = 0.600 0957 | R 53
0.833 0.977 1 138 131
0.600 0938 0 29 43
0.833 0.972 0 156 149
P = 0.00 0.963 | 97 117
0.517 0.938 1 45 53
0.800 0.971 0 78 118
0.517 0.980 1 189 212
¢ =0.600 f=0957 i 76 71
0.833 0977 i 155 184
=06 0.600 0.938 0 56 55
ar 0.833 0972 Q 166 199
pr =08 0.800 0.963 0 115 131
0.517 0918 0 76 62
0.500 0.971 0 141 130
0.517 0.980 0 33 ARR
TABLE 3

MaxiMUM PERCENT INEFFICIENCY IN MEAN SQUARE ERROR IN FORECASTING THE AGGREGATE
(16 Groupings trom 64 Different Specifications. with N = 20, T = 15)

Using the Individual

Using the Forecast

Parameter Forecasts Population Mean
i) Parameters (A)
Specification Al Al OLS
¢ =0600 [ =0957 | 8s 148
0833 0977 3 28 170
0.60¢ 04538 1 51 153
S 0533 0972 K} ¥ 183
Fo=s 0800 0.963 4 15 258
0517 0938 4 44 278
G800 0971 2 56 23
0517 0.980 4 228 RN
G =0600 f=0957 ! 50 12
0533 0977 3 60 182
pp =06 0.600 0938 [ 29 103
or ’ 0333 0972 z 71 205
p; =09 0800 0963 1 139 148
0517 0938 1 5 Ik
0800 0971 1 10 131
0517 H.980 0 12 210
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In Tables 2 and 3, maximal pereentage inefliciences of A | and OLS ure com-
pared. Al is almost perfectly eiticient in forecasting the individnal dependent
variables but sulfers a pereentage incliciency of upto I4 pereentin forecasting the
aggregate, duc to relatively greater ineflicieney in estimating the cross-fixed
parameters. OLS has a percentage ineflicicncy of more than 200 percent in many
cases. Notice that the results are dependent upon the (X, 0} speeifications chosen,
but that for each specification, the results are the exaet theoretical vahies, not the
output of some sampling experiment.

C. Validity of Approximated Mean Square Error and Goodness of Fit

Let 62 denote 5%(0) from ALl or from OLS, and let 62 denote $2(0) from the
Exact Method. Let fand [ denote the approximate and exact log likelihoods of the
trie structure, and let {,,, denote the exact log likelihood of the fixed-paramecter
structure.

In order to validate the approximated mean square error yielded by Al or
OLS, the statistics

V= A T —- " forn =1, N

Jlapproximated mean square error matrix for 5,,{
B ltrne mean square error matrix for 5,,[

and
v ,‘/lapproximatcd mean square error matrix for bj
{true mean square error matrix for b|

are computed. The generalized mean square error ratios ¥, are refatively constant
across the popuiation, so their value is summarized by the arithmetic mean
V=73"%  V/N. The effect of estimation error in ¢2. which is omitted in these
ratios, is introduced by computation of the additional ratios (32/6%)1. and
((6%/6Y)F). The ratio (62/62) and the difference in log likelihoods are also com-
puted. If A.1 were exact, all ratios would be equal to their ideal value of unity, and
the difference in log likclihood would be zero.

The results show a clear pattern, The validity of the approximation increases
with N in more than 95 percent of the cascs, an extremely enconraging property
since sample sizes will be much larger in applications. Moreover, as the sample size
doubles from N = 20 to N = 40, the difference / — / declines in almost all cases.
although the magnitude of [ typically doubles. Thus, the proportional error in |
declines more rapidly than I/N. If thesc results persist in large samples, the
approximated log likelihood should be virtually perfect.

The values of the statisties that deviated most from the ideal values are given
tn Table 4 for the sixty-four structures already reported. The approximation is
everywhere more valid than OLS. Morcover, the crror in the approximated log
likelihood is nowhere more than one-twentieth of the difference between the
approximated log likelihood for the convergent-parameter structure and the
log likelihood of the fixed-parameter structure. Hence, the approximated log likeh-
hood reliably rejects the fixed-parameter model despite the smail sample size.
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TABLT: 4
APPRONXIMATED VERSUS TRUL PROPERESS OF AL axD OLS: Mast Diviang Casts
N o207 - 1S

Qs

r;.l r}l
! i L ) , or
a 7 (e 1;,. |
fdeal Vilues 1.0 1.0 1.0 1.0 1.0 0.0)
PoAl o LO2X 1.043 1039 1032 8.8
=0 | '
" [ OLS f 0.002 0.007 0069 0.2 6466 - 3694
|
pr =06 | AL | 0493 0446 0499 0451 1027 %9
H i
or { |
pr=09 1 OLS | 0001 0.003 0.04% 0117 67.91 - 2696

“For OLS. the values computed under the erroncous assumption of fixed parameters arc compired
to the true properties of OLS. The differcnee in log Ekelihoods is an exception: the figure is the (enact)
log likelhood of fixed parameters minus the exact log tikelihood of the true structure,

Throughout the results, ALl appears (o be entirely valid when the explina-
tory vartables are scrially independent, but to understate the estimation crror
variance when the explanatory variables are serially correlated. In the most severe
case. one with scrial correlation of 0.9. the approximated mean square error falls
to 45 percent of the true value. This is a serious defect. int view of the prevalence of
serial correlation in economic variables. It will have to be taken into account in
applications. Fortunately, the degree of understatement decreases with N and. in
large samples. the downward bias may be small. It is interesting to note that the
approximated sampling properties of OLS are far worse. In fact. the estimated
generalized mean square crror of OLS falls below one-twentieth of the true value
for individual parameters and below one-ninth of the true value for the population
mean parameters. These deficiencies highlight the dangers of using the fixed-
parameter assumption where it is inappropriate.

in summary, the approximation is highly cfficient in estimating the cross-
varying parameters and satisfactorily cfficient in estimating the cross-fixed
parameters, and the approximated likelihood can apparently be used with confi-
dence. The only defect of the approximation that must be taken into account is
understatement of the mean square error in the casc of serially correlated explana-
tory variables. Subject to this caution, the approximation may be substituted into
the recursive formulae of Section 11. The results also imply that the method is
sharply superior to ordinary least squares — in terms of efficiency and in terms of
validity of sampling theory--when parameter dispersion is present. These results
are overly favorable to the method. since 8 is presumed known, whercas. in fact, it
must be estimated. However, the very large difference in sample log likelihood
between the true structure and the fixed-parameter structure suggests that . if @ were
estimated by maximum approximated likelthood then the estimated structure
would be relatively close to the true structure. Hence. much of the gainin efficiency
due to recognition of parameter variation would be achieved. Moreover, the very
large sample sizes in many cross-section. time-series applications promisc excel-
lent estimates of @, and therefore full exploitation of the potentia! cfliciency of the
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method —provided. of course. that the model permits an appropriate description
of the true parameter process.

Finally. notice that the computations involved in the method are feasible : the
calculations required to evalnate a smgie stochastic specification with N = 40
were equivalent to repeating the approximation more than 500 times. enough
iterations for Maximum Likelihood estimation or Bavesian csumation with 8 of
reasonable dimension.

V. CONCLUSION

There are numerous extensions of the method that need not be added to an
already lengthy paper. “Smoothed™ estimates of parameter vectors Blort <T
may be computed by modifications of the recursive formulae derived here (sec.
e.g., Rosenberg (1973b})). A more complex model. where individual parametcers
converge to subgroup norms, which in turn may converge to the population norm.
is relatively easy to implement. An underlying population ncan. which serves as
the norm for convergence in place of the sample mean inevery period. may be added
to the model if variations in the sample mean are not desired to affect the con-
vergence pattern. Nonconstant variances or convergence rates. which differ across
individuals or over time as functions of known characteristics of the individual or
time period may be easily introduced. and the parameters specifying these func-
tions may be adjoined to @ without changing the estimation approach.

To summarize. a model of parameter variation in a cross section of tinie
series was presented. in which individua! parameters obev random waiks sub-
ordinated to a tendency to converge toward the population norm. The model
involves an intuitively plausible dynamic model of the determinants of individual
diversity, and it is consistent with the empirical observation that. in some cross
sections of time series, individual parameters vary relative to one another as if
subjected to sequential random increments. but that cross-sectional parameter
dispersion nevertheless remains roughly constant. Next, a computationally feasible
method for Maximum Likelibood or Bayesian estimation of the parameters
specifying the stochastic structure. as well as of the individual regression param-
eters themselves. was derived. The approximation involved in these computations
was validated, subject to the one defect of understating mean square error when
explanatory variables are serially correlated. The method was shown to besuperior
to Ordinary Least Squares in the presence of stochastic parameter vaniation of
the type conjectured.

University of California. Berkeley

BIBLIOGRAPHY

Aoki. Masanao (1967). Optimization of Stochastic Systems. New York : Academic Press.

Balestra, P. and Nerlove. M. (1966). “"Pooling Cross-Section and Time Series Data in the Estimation
of a Dynamic Model: The Demand for Natura! Gas.”” Econometrica. 34 (July). 585-612.

Chetty, V. K. (1968). “Pooling of Time Series and Cross Section Data.” Econometrica. 36 (Aprii),
279-290.

Hildreth, Clifford (1949). **Preliminary Considerations Regarding Time Series and/or Cross-Seclion
Studies.” Cowles Commission Discussion Paper No. 333.

———.(1950). “Combining Cross Section and Time Series Data.” Cowles Commission Discussion
Paper No. 347.

427

AR S M Y

.




1
i
i

[l R

RTINS AR

Ho. Y. Coand Lee, R COK01963), A Bayesian Approach o Probiems in Stochiastic Estimation: and
Control.” IEEE Dramsactions an Automatic Controi. AC-9. pp. 333 339,
Hoch. Irving (1962), “Estimmation of Productiion Functon Paramicters Combuing Time-Series Luui

R

Cross-Section Dat” Econometyica, 530 (Januaty ). 34

Hsuo, Cheng (1973), Seatistical Iiference for a Model wirth Both Randam Cross-Sectional qad Hime
Fffeets,” Technical Repurt Noo X3, Stanford, Cahit Institnte for Mathematical Studies mthe
Soctal Scivnees, Staunford University

Kalnan, R.E.¢1960). “A New Apptoach o Linear Filterig and Predicoon Problems.” Transactions
of ASME. Serics D. Jowrnal of Busic Engineering . 32, pp. 35 45,

Kalman. R. £ and Bucy. RUS. (19612 "New Results i Lincar Filtering and Predictnon Theory,”
Transactions of ASME. Scrics D, Journal af Basic Engineerisig. 83, pp. 95108,

Kuh. E. (1959). "The Validity of Cross-Sectionadly Estimated Bebavioral Equations in Time Series
Applications.” Econometrica. 27 (April). 197 214,

Kuh. E. and Mcycer. J. R(1957). “How Extrancous Arc Extrancous Estimates?” Review of Econonuey
and Statistics. 39 (November), 380 393,

Mundlak. Yair (1963). "Esttimation of Production and Behavioral Functions from a Combination of
Cross-Section aud Time-Series Data.” Measurement in Economics. Edited by Carl . Christ. ¢ of.
Stanford. Calif”: Stanterd Universiiy Press.

Nerlove, Marc (1965). Estimation and ldenufication of Cobbh-Douglas Production Functions. Chicago:
Rand McNully & Co

(1968). “Further Evidence on the Estimaton ol Dynamic Econoemic Relations from a Tine
Series of Cross-Sections.” Cowles Commission Discession Paper No. 257,

Parks. Richard W. (1967, ~Efticient Estimation of a System of Regression Equations When Dis-
turbances Are Both Serially aud Contemporancousiy Correlated.” JAS A4, 62 (Junc). 300 -509.
Rao. C.R.(1963). "The Theory of Least Squares When the Paramicters Are Stochastic.”” Biomerrika.

52, pp. 447-438.

Rosenberg. Barr (1973a). ~"Lincar Regression with Randomly Dispersed Paramcters.” Biometrika. 60,
pp. 65-72.

-~ (1973b). ~“Estimation in the General Linear Stochastic Parameter Model.” Rescarch Report.
Cambridge. Mass: Nativna! Burean of Economic Rescarch., Computer Rescarch Center.

- - (1973¢). “Varying Parameter Regressien in the Analysis of a Cross Section of Time Serics.”
Working Paper No. IP 165. Berkeley : Institute of Business and Feonomic Research, University of
Cahformia.

Sharpe. William F. (1970). Portfolio Theory and Capital Muarkets. New York: McGraw Hill Book
Company.

Swamy. P. AUV B 1970). “Efficient [nference in a Random Cocflicient Regression Model.” Econo-
metrica. 38, pp. 311 323,

- (X971, Swetistical nfersiice in Random Cocflicient Regression Models. Berlin-Heidelperg-New
York: Springer-Verlug.

Telser. Lester (1964). “lrerative Estimation of a Set of Lincar Regression Equations.” J45.4. 39
(Scptember), 845 -862.

Wallace. T. D. and Hussain. Ashiq (1969). " The Lse of Error Components Models in Combining Cross
Section with Time Scries Data,” Econometrica. 3 Uanuary). 37.1. 55 72,

Wilks. S. S. (1943). Mathematical Statistics. Prinecton. N J.: Princaton University Pross.

Zellner. Arnold (1962). " An Efficient Method of Estimating Scemingly Unrclated Redations and Tests
for Aggregation Bias.” J4SA. 57 (June). 348 -367.

=== U9TN. An dneroduction w0 Bavesian Inference in Econometrics. New York: John Wiley & Sons.

428

T A R




Ho. Y. C. and Lee. RCC. KL (1964), A Bayesian Approach to Problens in Sieehastic Estniation and
.(‘omroi." FEEE Traasactions on Antomatic Comtrel. AC-S pp. 333 3-}*},
Hoch. Irving (1962). " Estinstion of Prodnction Function Paramneters Combining Time-Series anid
(.'r\ ‘.Siclion a7 K poXMIanzary)y 3381
[ERREN TN P TRt H 3 ) ) - '
Hsitto, Cheag (1973), Statizucal Inference for a Moded withi Both Random Cross-Seciionad uni Lime
» .l-‘.ﬂ'ccl.\'.'T Technical Repoart Noo 830 Stnford. Calit Institete for Mathenutical Studies in the
Social Scicnees, Staford University v ' B
Kalman, R.E. (1960). " A New Approach to Lincar Biltering and Predichon Problems.” Transictions
of ASME. Series D, Journa! of Basic Engineering 32, pp. 35 45‘: , -
Kalman, R. L. and Bucy. R. S, ¢1961). "New Resubis wn Lincar Filtering and Prediction Theory.”
Transactions of ASME. Serics D. Journal af Busic Engincering. 83, pp. 95 108.
Kuh. E. (1959). ~“The Validity of Cross-Sectionally Estimated Behavioral Equations in Time Serics
Applications,” Economerrica. 27 (April). 197- 214, o '
Kuh, E. and Meyer. J. R. (1957). "How Extrancous Arc Extrancous Estiniates?” Review of Economicy
end Swatistics. 39 (November). 380- 393, ' , ‘ ' ' ) -
Mundlak. Yair (1963). Estimaticn of Produetion :ind Behavioral Functions from a Conibinaticn of
Cross-Section and Time-Serics Dat. ™ Measurcment in Econvmics. Edited by Carl . Christ. ¢1 ol
Starford. Calit.: Stanford University Press. _ '
Nerlove. Mare {1963). Estimation and Fentification of Cobb-Douglas Production Functions. Chieage:
Rand MeNally & Co. o ‘ o . . )
e (1968). " Further Evidence on the Esumation of Dynamic Economie Relations from a1 Time
Serics of Cross-Seetions.” Cowles Commission Discussion Paper No. 257,

Parks. Richard W. (1967). “Efticient Estimation of ¢ Systenn of Regression Equations When Dis-
turbances Are Both Serially and Contemporanecasly Correlated,” J45A4, 62 (June). 500 -509.
Rao. C. R.(1965), “The Theory of Least Squares When the Parnmeters Are Stochastic.” Biometrika.

52, pp. 447 -458. - )
Rosenberg, Barr (1973a), ~"Lincar Regression with Randomly Dispersed Parameters,” Biomerrika. 60).
pp. 65-72.

L (1973b). “Estimation in the General Linear Stochastic Paruncter Model.” Rescarch Report.

Cambridge. Mass: National Burcan of Seonomic Rescarch, Computer Research Center

——— (1973¢). ""Varying Parnncter Regression in the Analysis of a Cross Section of Time Serics,
Working Papcr No. 1P 165. Berkeley: Institute of Business and Economic Research, University of
California.

Sharpe. William F. (1970). Porifolic Theory and Capital Markers. New York: MeGraw Hiil Book
Company.

Swamy. P. A V. B. (1970). “Efficient Inference in a Random Coefficicnt Regression Model.”™ Econo-
merrice. 38, pp. 311 323

— - U9 Srasisiical Infercince in Rendom Cocfficient Regression Models, Berlin-Heidelberg-New
York: Springer-Verlag.

Telser, Lester (1964), ~lierative Estimation of a Set of Linear Regression Equations,” JASA. 59
(September). 845-862.

Wailaee, T. D. and Hussain. Ashig (1969). ~The Use of Error Componcenis Models in Combining Cross
Section with Time Series Data.”” Economerrica. 3 (January). 37.1. 55-72.

Wilks. S.S. (1943), Mathematical Statistics. Princeton. NoJ. - Princeton University Press.

Zeliner. Arnold (1962). " An Efficient Method of Estiniating Seemingly Unrelated Relations and Tests
for Aggregation Bias." JASA. 57 (June). 348 367.

= (1971). dn troducticn 10 Bayesian Inference in Ecoromerrics. New York : John Wiley & Sois.

428

|
i




