This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Annals of Economic and Social Measurement, Volume 2, number 2

Volume Author/Editor: NBER
Volume Publisher:
Volume URL: http://www.nber.org/books/aesm73-2
Publication Date: April 1973

Chapter Title: Ransacking CPS Tabulations' Applications of The Log Linear Model To Poverty Statistics
Chapter Author: Frederick J. Scheuren
Chapter URL: http://www.nber.org/chapters/c9888
Chapter pages in book: (p. 158-181)

RANSACKING CPS TABULATIONS: APPLICATIONS OF THE LOG LINEAR MODEL TO POVERTY STATISTICS

by Frederick J. Schieurin

The log-linear model as deceloped by Gomdman. Kallback. and others affords researchers a powerfial tool for analyzing tabulations of surrey datu. Presented are some applicatiois of the meded to coments of the poor publisheal b;i the Census Bureau from the annual income supple:nemt to the Curren Population Surcey (CPS).

In keeping with the use of the word "ransacking" it the title. the approath is cxploratory and descriptive. Formal hypothesis testing and other confiantutory tediniques are dealt with omly peripherally. Some attemion is paid. though. to the statistical problems pesed by : in' complex (muti-staga) nuture of the CPS sampli.

1. Introduction

The annual income and poverty reports, published by the Census Bureau, from the Current Population Survey (CPS) are one of the most important sources of information on the economic status of Americans. This paper takes some of the well-known techniques for fitting log-linear models to tabular material. and applies them to the CPS poverty figures. In the cases examined the relationship between a family's poverty status and the demographic characteristics of the family head can be described quite simply and succinctly. Nearly all the information in several long and involved cross-tabulations can be summarized by the models studied.

1.1. Formulating the Model

To introduce the notation we will need, consider the following data taken from the March 1971 CPS
table a
Number of U.S. Famles by Poyerty Status. Age. Sex. and Race of Head

(In Thousands)				
Age and Sex of Head	Poor		Nonpoor	
	White	Nonwhit:	White	Nonwhite
Male-headed:				
Under 65 years old	1.821	495	34.649	2.873
65 years or older	783	181	4.896	300
Female-headed:				
Under 65 years old	959	773	2.552	6.51
65 years or older	138	64	737	76

Source: U.S. Burcau of the Census. Currem Population Reports, Series P-60. No. 81. "Characteristics of the Low-Income Population. 1970" U.S. Government Printing Officc. Washington. D.C.. 1971 (page 67).

Table A has four dimensions: Poverty rate sex. and age. To reler to an individual cell of the table let $N(i j k m$ denote the total number of families having the ith poverty status ($i=1$ if the family is poor. $i=2$ if nonpoor) jth race ($i=1$ nonwhite. $j=2$ white) k th sex $k=1$ if family is headed by a mate. $k=2$ if head is a female) and mhage $(m=1$ if the head is under $65, m=2$ if the head is 65 years or older). The true proportions of families in any cell will be denoted by

$$
\begin{equation*}
P(i j h m)=\frac{N(j h k m)}{N} \tag{1.1}
\end{equation*}
$$

where N is the total number of families in the U.S. noninstitutional population. Estimates ' $\hat{\rho}(i j k m)$ ', are formed from Table A by substituting sample values for both $N(i j \mathrm{~km})$ and N in (1.1).

Depending on the heads age. race and sex. the odds that a given family will be poor vary considerably. For example the odds that a white male-headed fanily will be poor are 34.649 to 1.821 or about 19 to 1 if the head is under 65 but grow to 4.896 to 783 or about 6 to 1 if the head is 65 or more. For nonwhite mate-headed families the odds are net as favorable as for whites: 2.873 to 495 if the head is under 65 and 300 to 18! if the head is 65 or more. An interesting result emerges if one looks at the relative odds' ratios for whites and nonwhites at each age !evel. For male heads under 65 this relative poverty ratio is
(1.2)

$$
\frac{N(2.2 .1 .1) N(1.2,1.1)}{N(2.1 .1 .1) N(1.1 .1 .1)}=\frac{34.6491 .821}{2.873 / 495}=3.28
$$

which is not too different from the ratio for families with malc heads 55 or more i.e..

$$
\begin{equation*}
\frac{\frac{3.1 .2) N(1,2,1.2)}{N(2.1 .1 .2) N(1.1 .1 .2)}}{}=\frac{4896,783}{300 / 181}=3.77 . \tag{1.3}
\end{equation*}
$$

It turns out. in fact. that for any given combination of age and sex of the family head the odds of bcing morpoor are about $3 \frac{1}{3}$ times better for whites than for nonwhites.

1.2. Gieneral Modet Equations

To pursue this type of analysis rigorously for Table A. the natural logorithms of the cell proportions will be fil to a model with coefficients which are functions of the relative odds ratios considered above. In its full generality the model
equation is

$$
\ln p(i j k m)=\beta_{0}+\beta_{i}^{\mathrm{P}}+\beta_{j}^{\mathrm{R}}+\beta_{k}^{\mathrm{S}}+\beta_{m}^{\mathrm{A}}
$$

$$
\begin{align*}
& +\beta_{i j}^{\mathrm{PR}}+\beta_{i k}^{\mathrm{PS}}+\beta_{i m}^{\mathrm{PA}}+\beta_{j k}^{\mathrm{RS}}+\beta_{j m}^{\mathrm{RA}}+\beta_{k m}^{\mathrm{SA}} \\
& +\beta_{i j h}^{\mathrm{PRS}}+\beta_{i j m}^{\mathrm{PRA}}+\beta_{i k m}^{\mathrm{PSA}}+\beta_{j k m}^{\mathrm{RSA}}+\beta_{i j m m}^{\mathrm{PSSA}} .
\end{align*}
$$

The superscripts P. R.S. and A stand for poverty. ratee. sex. and age respectively. The four β s having only one superscript reflect the contribution of each of the laetors taken by itself. There are six β 's ineeded to aecount for the fators aeting in
pairs ; the β 's with three subscripts absorb the interaction of sets of three dimensions simultaneously; $\beta_{i j k m}^{\mathrm{PRS}}$ is the four-way interaction

Expression (1.4) is the usual dummy variable regression model except that the independent variables have been suppressed for the sake of brevity. Readers who find the notation troublesome should consult the footnote. 'To have a defined system some of the coefficients must be dropped. The convention will therefore be adopted of setting to zero all β "s having a " 2 " as any part of their subseript.

From (1.4) it can be shown that the log of the poverty odds ratio for a given age, race or sex group is

$$
\begin{align*}
\Psi_{j k m}= & \ln \{p(1 j k m) / 2 j k m)_{j}^{\mathrm{I}} \\
= & \ln p(1 j k m)-\ln p(2 j k m) \tag{1.5}\\
= & \beta_{1}^{\mathrm{P}}+\beta_{1 j}^{\mathrm{PR}}+\beta_{1 k}^{\mathrm{P}}+\beta_{1 m}^{\mathrm{PA}} \\
& +\beta_{1 / k}^{\mathrm{PRS}}+\beta_{1 j m}^{\mathrm{PRA}}+\rho_{1 k: n}^{\mathrm{PS}}+\beta_{1 / k n}^{\mathrm{PRSA}}
\end{align*}
$$

The coefficients of the logit model (1.5) are factors which taken together give the odds of a familys being poor. The overall odds are a function of β_{1}^{p} while the relative odds by race, sex and age are determined from $\beta_{1 ;}^{\mathrm{PR}} / \beta_{t k}^{\mathrm{PS}}$. and $/ \beta_{1 m}^{\mathrm{PA}}$ respectively. The remaining four terms are corrections to these relative odds made necessary by the fact that sometimes two or more dimensions act jointly. Morc will be said about the interpretation of the model parameters in Section 3 where the actual numerical values for Table A are discussed.

2. Fiting the Log Linear Modia

Models such as (1.4) or (1.5) can be fit in regression by (weighted) least square; [2;26]. We will, however. employ another estimation procedure here [9:18]. one based on the theory of minimum discrimination information. White to some extent the choice between these two possible procedures is a matter of taste. there are often computational ad vantages to the use of information-theoretic techniques. They also can allow one to visualize in an intuitively satisfying way the implications of a particular model for the table being examined. Readers not interested in the mathematical details of the fitting algorithms can safely skip the rest of this section provided they are willing to accept our measure of fit. I^{2}. and use it as one could use R^{2} in ordinary regression.
${ }^{1}$ Let

$$
X_{i}=\left\{\begin{array}{ll}
1 & i=1 \\
0 & i=2 .
\end{array} \quad X_{j}=\left\{\begin{array}{ll}
1 & j=1 \\
0 & j=2,
\end{array} \quad x_{k}=\left\{\begin{array}{ll}
1 & k=1 \\
0 & k=2 .
\end{array} \quad X_{m}= \begin{cases}1 & m=1 \\
0 & m=2\end{cases}\right.\right.\right.
$$

then there is an exact correspondence between (1.4) and the more familiar model

$$
\begin{aligned}
\operatorname{In} p(i j k m)= & \beta_{0}+\beta^{\mathrm{P}} X_{i}+\beta^{\mathrm{R}} X_{j}+\beta^{\mathrm{S}} X_{k}+\beta^{\mathrm{A}} X_{m}+\beta^{\mathrm{PR}} X_{i} X_{j} \\
& +\beta^{\mathrm{PS}} X_{i} X_{k}+\beta^{\mathrm{PA}} X_{i} X_{m}+\beta^{\mathrm{ms}} X_{j} X_{k}+\beta^{\mathrm{RA}} X_{j} X_{m}+\beta^{\mathrm{SA}} X_{k} X_{m} \\
& +\beta^{\mathrm{PRS}} X_{i} X_{j} X_{k}+\beta^{\mathrm{PRA}} X_{i} X_{j} X_{m}+\beta^{\mathrm{PSA}} X_{i} X_{k} X_{m}+\beta^{\mathrm{RSA}} X_{j} X_{k} X_{m} \\
& +\beta^{\mathrm{PSSA}} X_{i} X_{j} X_{k} X_{m} .
\end{aligned}
$$

2.1. Minimam Discrimination Information

As applied to tabulated data the Minimum Discrimination approach involves consideration of the quantit

$$
\begin{equation*}
I(\hat{p}: \tilde{p})=\sum \eta \hat{p}(i j k m) \operatorname{n} \frac{\hat{p}(i j k n)}{\bar{p}(i j k m)} \tag{2.1}
\end{equation*}
$$

where n is the sample size, the $\{\hat{p}(i j h m)\}$ are the survey estimates of the cell proportions and the ' $\dot{p}(i j k m)_{i}^{\prime}$ are selected to minimize $I(\hat{p} ; \dot{p})$ subject to the restrictions imposed by the model chosen, including the requirements that

$$
\begin{equation*}
\sum \tilde{p}(j k m)=1 \quad \text { and } \quad \tilde{p}(i j k m)>0 \quad \text { for all i. } j . k . \text { and } m . \tag{2.2}
\end{equation*}
$$

To see how the $\{\hat{p}(i j k i n)\}$ are used to obtain the model parameters we will write (1.4) in matrix form. Let y be the column vector of natural logarithms of the estimated cell proportions. e.g. in Table A

$$
\begin{equation*}
\mathbf{y}=(\ln \hat{p}(1.1 .1 .1) . \ln \hat{p}(1.1 .1 .2), \ldots, \ln \hat{p}(2.2 .2 .2))^{\prime} \tag{2.3}
\end{equation*}
$$

then the mathematical models to be studied can be expressed succinctly in the form (2.4)

$$
y=x \beta+e
$$

where X is a matrix of exogenous variables lassumed to be of full rankl. β is a vector of unknown parameters and \mathbf{e} is a random variable with zero mean and variance-covariance matrix V.

Using the Minimum Discrimination approach. the estimated value of $\boldsymbol{\beta}$ is obtained from

$$
\begin{equation*}
\tilde{\boldsymbol{\beta}}=(X X)^{-1} X^{\prime} \tilde{y} \tag{2.5}
\end{equation*}
$$

where in Table A

$$
\begin{equation*}
\overline{\mathbf{y}}=(\ln \tilde{p}(1.1 .1 .1) \cdot \ln \tilde{p}(1.1 .1 .2) \ldots \ln \tilde{p}(2.2 .2,2))^{\circ} \tag{2.6}
\end{equation*}
$$

This way of proceeding is just backwards from that in ordinary regression (with $\left.V=\sigma^{2} I\right)$. In regression one first gets $\tilde{\beta}$ from

$$
\tilde{\beta}=\left(X^{\prime} X\right)^{\prime} X^{\prime} y
$$

and then the "predicted" values $\overline{\mathbf{y}}$ are given by

$$
\begin{equation*}
\tilde{\mathbf{y}}=X \tilde{\boldsymbol{\beta}} \tag{2.8}
\end{equation*}
$$

2.2. Iteratice Scaling Procedare

For the types of models we will mainly consider in this paper. a direct relationship exists between the equation one assumes and the marginal totals of the table. Broadly speaking. once one has specified what rim totals the table is to have. the model has also been determined.

The marginais needed to fit a particular model are found by examining the parameters assumed to be nonzero. For instance if

$$
\begin{equation*}
\ln p(i j k m)=\beta_{0}+\beta_{i}^{\mathrm{P}}+\beta_{j}^{\mathrm{R}}+\beta_{k}^{\mathrm{S}}+\beta_{m}^{\mathrm{A}}+\beta_{i j}^{\mathrm{PR}} \tag{2.9}
\end{equation*}
$$

then the Poverty-Race marginal is needed since $\beta_{i j}^{\mathrm{PR}}$ is hypothesized to be nonzero.

Because this two-way marginal determines the one-way Ponerty and Race marginals, estimating β_{j}^{p} or β_{j}^{4} ereates no new prohlems. But to obtain β_{k} and $\beta_{m}{ }^{4}$ the one-way sex and age marginats mus also be nised. ${ }^{\text {. }}$

The estimated eell entries mplied by the model are fome by an iteratioc process. Commonly the initial step in a computer progam is to chter "ls" in atl the cells. These values are then seated so that the table will agree with the first marginal one has specified. The resulting array is used as input to the next step where the entries are fitted to a second specified marginal. In subsequent steps the other marginals are introduced in turn. The iterative cyele may need to bo repeated a number of times, each stage begiming with the well sahes taken from the previons stage nutil the desired degree of aceuraty has been achieved. Convergence is generally quite rapid

One can atso use the iterative scaling proeedure to "standardioc" at tabic"s values by fitting it to a marginal or marginals taken from another table. When engaged in standardization the iteration does not begin with "1s" in all the cells. but with the originat entres. For an illustation of this technique, see Table D.

2.3. Fitting Criterion

Considerations of parsimony make it desirable to reduce the number of estimated β 's as far as possible without leaving out something "ensential." To do this. relance will be placed on a criterion [9:246] similar to R^{2}. Expressed in the notation of Table A. the relative information statistic I^{\prime} is obtained as finlows:

Let ' \tilde{p}; be the set of eell proportions estimated when tititng the model

$$
\begin{equation*}
\Psi_{j k m}=\operatorname{in} \frac{n(1 j k m)}{n(2 i k m)}=\beta_{\mathrm{i}}^{\mathrm{P}} . \tag{2.10}
\end{equation*}
$$

Further, let $\{p$ \} be the set of eeli proportions estimated for some other variant of (1.5), inchuding the parameter β_{1}^{r}, such is

$$
\begin{equation*}
\Psi_{j k+1}=\beta_{1}^{\mathrm{P}}+\beta_{1 ;}^{\mathrm{PR}}+\beta_{1 k}^{\mathrm{PS}} . \tag{2.1i}
\end{equation*}
$$

It can then be shown [17] that

$$
\begin{equation*}
l(\hat{p}: \bar{p})=l(\bar{p}: \bar{p})+l(\hat{p}: \dot{p}) \tag{2.12}
\end{equation*}
$$

where the $\{\hat{p}$ ' are the original estimated eell proportions. $\mid \vec{p}: \hat{p})$ is the tom amont of variation in the eell frequencies which remains mexplained when we assume that the odds of being poor are constant for all groups. If: \bar{p}) is a measure of the variation explained by aliowing for the association (regression) between porerts. race and sex. $l(\hat{p}: \bar{p})$ is the variation whel continues to remain unexplamed under model (2.11). Thus (2.12) is of the form

$$
\text { Total variation }=\text { Explained }+ \text { Uncxplaned. }
$$

2 It should be noted for future reference (page 16.3 that in fitting (3.4i by ansumption the race poverty effect was laken to be independent of age and sex : hence ath the information atomi the anowation between them is found in the rare poverty marginal totals. Similarly the information about the age-sex-poverty effect is contained entirely in the age-sex-poverty marginal. Since from th.ti we musi also deal with relationships between age, race and sex which do not in solse poverts. the atge race sex marginal totals must be preserved. Thus to fit (3.4) a table was constructed whieh conformed to the marginals: poverty erosed with rate. poserty erosied with age sex, and rate erosed with age sex.

Dividing both sides of (2.12) by $\mu\left(\hat{p} \cdot \hat{p}\right.$ and rearranging terms we define I^{2} as

$$
I^{\prime}-\begin{array}{ll}
I(\bar{p}: \dot{p}) \tag{2.13}\\
I(\hat{p}: \dot{p}) & l(\hat{p} \cdot \dot{p}) \\
(\hat{p}: \dot{p})
\end{array}
$$

Since [17]

$$
\begin{equation*}
I(\hat{p} \cdot \bar{p}) \geq l \mid \hat{p}: p) \geq 0 \tag{2.14}
\end{equation*}
$$

then. except for the trivial case when $I(\hat{p} \cdot \tilde{p})=0$

$$
0 \leq I^{2} \leq 1
$$

This definition allows us to interpret I^{2} in mich the same wat as the R^{2} of standard regression. Of course. R^{2} itself could have been used in assessing relative fit. However. to do so would be to introduce an extrameons element. We prefer t^{2} because it is directly linked to the estimation process.

2.7. Descriptive Cse of Log Linear Mode!

The approach taken to the CPS data in this paper is framkly exploratory and descriptive [e.g.. 5: 23]. The !se of the word "Ransacking" in the tite was meant to imply this. We have not resorted to formal hypothesis testing as such. As a matter of fact. givein a belief in the inherent granularity of large finite populations (like the universe of all U.S. families). one would not expect that any of the β 's in a model such as (1.5) could actually be left out and still have an exact fit to data collected in a complete census. Often enough though. some of the higher-order interations. whose meaning can be hard to get hold of intutuvely, may be so close to zero that to assume that they are does not seriously impair the model's descriptive power.

With large-seale surveys. like the CPS, a subjective measure of fit such as I^{2} may be a better guide for the researcher than considerations of statistical significance. For one thing when the sample size is large relative to the number of cells then substantively insignificam effects can become statistically significamt. It also turns ont to be quite difficult to make even approximate significatice statements when the data come from complex multi-stage samples. designs which seem to be so common in practical work.

3. The odds of beng Poor Given Age: Race, ind Sex

One of the problems inherent in using the relative information. I^{2}, as a guide in choosing a model is deciding how large it must be for the fit to be "satisfactory." Considerations such as descriptive simplicity, the size of the table. and still other concerns all play a part in addressing what is inherenty a subjective question. For situations like Table A where only a small number of cells are involved we propose to use a rather stringent criterion requiring that $I^{2} \geq 95$ percent. Since poverty is relatively greater among nonwhites among families headed by a woman or by someone 65 years or older it is natural to begin with a model which brings in all of these factors in some waty. The simplest form for doing this is

$$
\Psi_{j k i}=\beta_{1}^{\mathrm{P}}+\beta_{1 j}^{\mathrm{PR}}+\beta_{1 k}^{\mathrm{PS}}+\beta_{1 m}^{\mathrm{PA}} .
$$

In (3.1) we posit that there is only a pairwise association between porets and eath of the other three dimensions, i.e. that the retationship between porert! and any one "independent" rariable is the same wo matter what valus are :aken eat by the other two variables. To see what is mant. consider again the relative odds ratio for whites and nonwhites. as was done in (1.2) and (1.3). From (1.4) with soine algebra the ratio

$$
\begin{align*}
N(2,2 k . m) N(1.2 . k . m) & =p(1.1 . k, m) p(2.1 . k . m) \\
N(2.1 . k . m) N(1.1 . k . m) & p(1.2 k . m) p(2.2 k . m) \tag{3.2}\\
& =\operatorname{cxp}\left(\beta_{11}^{P \mathrm{R}}+\beta_{11 k}^{\mathrm{PRS}}+\beta_{11 m}^{\mathrm{PR}}+\beta_{1 k m i}^{\mathrm{RRS}}\right.
\end{align*}
$$

In the special casc of parwise association this ratio becomes

$$
\begin{equation*}
\exp \left\{\beta_{11}^{\mathrm{PR}}\right\} \tag{3.3}
\end{equation*}
$$

that is a constamt which does not vary from one age sex combination to another.
When the pairwise associative model (3.1) was fit to Table A the relative information accounted for was 91.3 percent. At the cost of inchading just one more coefficient (the poverty age sex interation. fipstim) al very good fit ($I^{2}=99.9$ percent) was obtained. In what follows we will discass the latter model in some detail.

First. the fact that the porerty age-sex interaction is nomero indiates that it might be better to treat age and sex as just one dimension in looking at poverty since they do not act separately but jointly. Thinking of age and sex as one factor the model can be rewritten as

$$
\begin{equation*}
\Psi_{j r}=\beta_{1}^{\mathrm{P}}+\beta_{1 j}^{1 \mathrm{R}}+\beta_{i r}^{\mathrm{PS}} \tag{3.4}
\end{equation*}
$$

where the $: \beta_{1}^{\mathrm{PS} A} \mid r=1 \ldots .4$ are the quantities required to account for the impatt of sex and age on poverty. The actual numerical values of the β s were:
$\hat{\beta}_{1}^{\text {E }}=-2.950 \quad$ (Overall powerty coefficient)
$\bar{\beta}_{11}^{\mathrm{PR}}=+1.206 \quad$ (Poverty coeflicient for nonwhites)
$\hat{\beta}_{1 i}^{\text {r. }}=+1.952 \quad$ (Poverty codficient for female licads under (6.5)
$\hat{\beta}_{12}^{\text {Ps.A }}=+1.341 \quad$ (Poverty coefficient for female heads 65 or older)
$\hat{\beta}_{1+}^{\text {PEA }}=+1.134 \quad$ (Poverty eoeflicient for mate heads 65 or older)
where we set $\beta_{12}^{\mathrm{PR}}=\beta_{13}^{\mathrm{PS} .4}=0$ (because of the restrictions required when using dummy variables).

The sign and size of the parameters are of course indiative of the direction and strength of the interrelationships we are studying. For example the poterty coefficient for nonwhites is +1.206 . The positive sign means that poverty is more likely to be found among nonwhites than whites-infatt exp $\{1.206\}=3.34 \mathrm{more}$ likely.

The age-sex coefficients show that the incidenec of porerty is greatest among families headed by a female under 65 with families headed by a fentale 65 or older in second place. Not only are male-headed families less poor than female-headed ones but the pattern is also different with poverty being at its lowest for families
with a mad: head under 65. This difference in patiern incidentally is why the effeets or age and sex could not be treated addtitiely but had to be combined.

To reader familaer with the literature of posery none of the relationships we hate been disenssing are at ail new. The example was in fact chosen with this in nind. It allowed us to put the emplasis on the methodology rather than on the findings.

3.1. Imerrelationships Oter Time

An example in which the results are less obvieus can be constracted by looking at how stable the relationships between porenty and rate age and sex hate been oner the period 1959 1970. To do this the logit model

$$
\begin{equation*}
\Psi_{j n}=\beta_{1 t}^{P}+\beta_{1 j t}^{\mathrm{P}}+\beta_{1 n}^{\mathrm{PSA}} \tag{3.5}
\end{equation*}
$$

can be fit using cach sear's figures $t=1959 \ldots$. 1970. All that is required for the andatys is to introduce "tine" as an adtitional dimension of the table.

The fits obtained using (3.5) were remarkably good in cath year (the at crage value of I " was 99.7 percent). Howerer there have been considerable changes in the coeflicients ats can be seen from Table B. Poverty itself. of course, has declined tairly steadily from 1959 to 1969 with only a small increase in !970.

The impact of race on poverty has also been substantially reduced as the table shows. Most of the decline in the relative incidence of poverty between whites and nonwhites occurred between 1965 and 1968 a period of quite low uncmployment. Exen so. except for the 1964 figure (which appears to be an anomaly) there has been some improvement from year to year in reducing the disproportionate burden of poverty borne by nonwhites.

The relative incidence of poterty by age and sex of head changed over the period we are examining but the paltern was not nearly as regular as for race. The most important movenent seems to be in the growing disparity between familics headed by a male under 65 and all other familics. This is made crident by the fact that the coeflicients for femalc-headed families and familics headed by a made 05 or older tend to get larger and larger as time goes on. The high uncmployment in 1970 reversed this trend somewhat but there are reatsons to suspect it will continue over the long run due in part at least to the poverty detinition itself. This definition is based on a set minimum standard. updated annually using the Consumer Price Index. Thus. as has been pointed out elsewhere [25 (81)]. those dependent on fixed incomes (stuch as the aged) or in jobs with limited upward mobility (eften women) necessarily will become a proportionately larger share of the poverty population all other things being equal.

To summarize then. three trends hate been isolated in Table B: An overall deciine in the incidence of poverty, and tendencies for the declines to be relatively graater among nonwhite families and families headed by a mate under 65 . We will now try to assess the relative importance of each of these phenomenon. As part of this assessment the model

$$
\begin{equation*}
\Psi_{j r t}=\beta_{1,}^{P}+\beta_{1 j}^{\mathrm{PR}}+\beta_{1 r}^{\mathrm{PA}} \tag{3.6}
\end{equation*}
$$

wat estimated. The difficence between the minimum discrimination information for (3.5) and that obtained for (3.6) is. of course a measure of the loss of fit incurred

TABLE B
Ract and Agi: Sfx Comfichents for Poverty Mobel. (39)

l'car	Overall Poverty Cocflicient	Race and Poverty	Age, Sex and Poverty		
			Male $65+$	Femate Under 65	Fenale 6.5
1970	-2.950	1.206	1.134	1.952	$1.3+1$
1964	- 3.028	1.243	1.287	2.018	1.625
$1968{ }^{\prime}$	-2.922	1.256	1.142	1.900	1.457
$195{ }^{\circ}$	-2.798	1.385	1.320	1.766	1.506
1966^{\prime}	-2.738	1.487	1.262	1.771	1.156
1966	-2.650	1.448	1.298	1.810	1.167
1965	-2.473	1.550	1.027	1.686	1.416
1964	- 2.302	1.461	0.925	1.466	1.079
1963	- 2.272	1.591	0.953	1.579	1.299
1962	--2.150)	1.637	0.891	1.593	1.064
1961	-2.070	1.638	0.963	1.42\%	1.214
1960	-2.060	1.658	0.915	1.525	1.016
1959	-2060	1.689	1.073	1.514	1.051

'Based on revised methodology for processing income data as explained in Series P-60: No. 81. pa. 23.25

Source Data for Coeflicients: U.S. Burcau of the Census. Currem Population Reports. Series P-60: No. 81. p. 67; No. 76. p. 52. No. 68. pp. 3337.
by assuming that the relative incidence of poverty was not changing by age. race of sex. Similarly comparing the minimum discrimination information for (36) and

$$
\begin{equation*}
\Psi_{j r r}=\beta_{1}^{\mathrm{P}}+\beta_{1 j}^{\mathrm{PR}}+\beta_{1 r}^{\mathrm{PSA}} \tag{3.7}
\end{equation*}
$$

provides an indication of the importance over time of the change in the incidence of poverty. The difference between the minimum discrimination information for (3.5) and (3.7) provides an overall measure of the total lack of fit from all causes. When one examines this total. 90.1 percent is due to uniform shifts in the general incidence of poverty in the population. Only 9.9 percent is the result of changes in the relative incidence of poverty among age-race-sex groups. Of this remainder about one-t hird of the lack of fit is due to changes in the race effect and two-thirds to changes by age and sex of head. ${ }^{3}$

At first glance there would seem to be some problem in squaring the above analysis with the figures in Table C which show that all of the decline in the number of poor farnilies has occurred among those with male heads : in fact the number of poor female-headed families has actuatly increased slightly.

The logit model and its corresponding coefficient estimates depend on the relative number of poor families within each age. race and sex class. They are only indirectly affected by the counts in the individual cells being examined. On the other hand. Table C summarizes the net result of both an altered pattern in the incidence of poverty and also changes in the relative sizes of various demographic groups and of the overall total number of families.
${ }^{3}$ It should be mentioned that the relative importance of each of these causes is mot independent of the order in which they are examined. The sequence followed makes a difference as it does in regression.

TABLE (

(In Thousands)

Scx of Head	1970	1989	Change 1959101970
Total	5,214	8.320	-3.106
Mile	3.280	6.404	3.124
Fenmate	1.934	1.916	$+18$

Sonree: U.S. Burean of the Census. Current Population
Reports. Serie's P-60. No. 81. p. 29.

Table D below was created in an attempt to sort out all the factors acting on the poverty totals. ${ }^{+}$Howe ver, the partialing out of the importance of :uny one change cannot be done independently of the others. Thus the adjustments shown in Table Dare conditional in nature. Each represents the net additional change made by a fatior given the other factors whose eflects have already been taken account of. Despite this limitation it may be useful to compare the differential impact of

TABLE D
Elfmexis of the 1959 to 1970 Shet in the Nomber of Poor Fanhers
(In Thousinds)

Iteso	Total	Mite-He:ided Families	Female-Hented Families
Poor Famitics in 1950	8.320	6,404	1.916
Population Composition Changes			
Grouth overail	$+1.282$	$+987$	$+295$
Race	$+186$	$+11 . i$	$+73$
Scx	$+181$	-198	+379
Age	$+85$	+ 55	+ +30
Poverty Incidence Changes:			
Detiline overall	-4.874	-3.832	-1,042
Race	$--485$	-293	-187
Agt and sex	+519	$+19$	+470
Poer fimilies in 1970	5.214	3.280	1.934
Net Changes. 1959 to 1970	-3.106	-3.124	+18

Note: The adjustments are not independent of the order in wheth they were made. Rather eate line represents the net change obtained by altering an additionat factor. The population composition changes were derived by it sequential standardization process. First the overall 1950 tithe's total was increased to agree with that for 1970 then the marginal totats by rite were made to agree with those for 1970. The inerease in the number of poor families cansed by this ehonge was then derived. The next step was to foree the 1959 tible 10 agree with the 1970 rate sex marginals and finally with the 1970 age-race sex marginal table
${ }^{4}$ Methodological improvements in the colleetion and processing of the CPS also hat an effeet on the poierty totals. Adjustments for this have not been made separitely.
population composition and poverty incidence changes on male and femaleheaded families.

Sinee 1959 there has been an overall 15 pereent growth in the nimber of U.S. families. The increase has been somewhat faster for nonwhites than for whites The most important change though is the quite rapid growth of female-headed families relative to those headed by a male. There were also changes in the proportion of male and female-headed families by age of head with male heads being older and female heads younger in 1970 than 1959. If one does not allow for the lowering in the incidence of poverty over the period then these changes have the cumulative effect of increasing the number of poor male-headed families by 15 percent and the number of poor female-headed families by 41 percent.

However there has been, as the table shows, an overall decline in the incidence of poveriy for both male and female-headed families. This is not apparent in the overall 1959-1970 differences because population composition ehanges swamp the relative decline for female-headed families.

4. The Odds of Being Poor Givin Education and Work Experienct:

In this section we will examine the relationship between family poverty and the educational attainment of the head. Two 5 -way tables will be looked at: The classifiers for the first are race (Blaek, Nonblack). Poverty, Sex. Age (25 to 34 years. 35 to 44.45 to 54.55 to 64.65 or more) and highest grade completed (Less than 8 grades, 8 grades. 9 to 11. High school graduate. some college). The second table is exactly the same as the first except that in place of race the family head's work experience (Year-round full-time, other) is used as a classifier. (These tabulations. like Table A, are from the 1970 CPS Poverty Report, Series P-60. No. 81.)

Several purposes are served by introducing these additional examples. Both are tables of moderate size (200 cells) and differ in other ways from the small (16 cells) table just studied, For one thing. two of the dimensions (age and education) can be treated as quantitative rather than strictly qualitative variables if so desired. Perhaps the most important topic we will take up is how one can combine the results of the separate analyses into one overall model.

4.1. Model Notation

The two tables to be studied can be dealt with in a unified way. Each is a (5-way) marginal of the 6 -way table formed by the factors; age. sex. race, education, work experience and poverty status. Even though the more detailed tabulation is not available to us it is convenient to set up our definitions as if it were. Therefore let $\hat{p}(i j k m r)$ be the estimated cell proportions of the overall table where $i=1.2$ is used to designate a family's poverty status, $j=1, \ldots, 10$ is a combined index identifying the family head's age and sex:5 $k=1 \ldots .5$ denotes the educational attainment of the head : and $m=1,2$ and $r=1.2$ are used to identify the head's race and work experience respectively.

5 In effect. combining age and sex reduces the 6 -way table we started with to simpiy 5 distinc dimensions. Age and sex are ireated as one dimension since, as we saw in Table A. they act jointly in determining a fanily's poverty status

The cell proportions in the published tables can be defined as

$$
\begin{align*}
& \hat{p}(i j k m \cdot)=\sum_{r=1}^{2} \hat{p}(i j k m r) \tag{4.1}\\
& \hat{p}(i j k \cdot r)=\sum_{m=1}^{2} \hat{p}(i j k m r)
\end{align*}
$$

Let us now consider two dummy variable logit models with the odds of being poor as the "dependent" variable -one based on the table having race as a elassifier the other based on the table separating families by the work experience of the head Adhering to the notation established earlier in this paper these models can be expressed by
(4.2)

$$
\begin{aligned}
\Psi_{j k m i} & =\ln : p(1 j k m \cdot) p(2 j k m \cdot)! \\
& =\beta_{1}^{\mathrm{P}}+\beta_{1 j}^{\mathrm{PS}}+\beta_{1 k}^{\mathrm{PE}}+\beta_{1 m}^{\mathrm{PR}}
\end{aligned}
$$

and
(4.3)

$$
\begin{aligned}
\Psi_{j k r} & =\ln \{p(j k \cdot r) p(2 j k \cdot 1)! \\
& =\beta_{1}^{\mathrm{P}}+\beta_{1 j}^{\mathrm{PB}}+\beta_{1 k}^{\mathrm{PE}}+\beta_{1 r}^{\mathrm{PW}}
\end{aligned}
$$

(The dimensions not in our first example are identified by the super-scripts "E." educallion. and "W." work experience.)

4.2. Goodress of Fil

Despite the fact that the above equations do not include any high-order interation terms. they seem to represent an adequate summary of the retationship between poverty incidence and the other variables. The relative amounts of explained variation were $I^{2}=96.2$ percent for (4.2) and $I^{2}=95.8$ percent for (4.3).

The reader might find the t^{2} value for (4.2) ineonsistent with the much beller fil (99.9 percent) obtained earlier in (3.4). After all both models include age, race and sex and (4.2) also includes education. Arguing from the similarity we said exists between R^{2} and I^{2} one's expectation would be that the fil for (4.2) would be beller, nol worse.

The apparent amomaly is explainable chiefly by taking account of the differences in the sizes of the tables being used. ${ }^{6}$ In fitting (3.4) to Table A there are only 16 cells involved and five (poverty) parameters were needed for the model. With (4.2) we have a 200 cell table to describe and do so quite well with just 15 parameters. To properly compare models (3.4) and (4.2) the filting should be done using the same table for both. When this was tried age. sex and race taken together had an I^{2} value of 68.7 percent as compared to the 96.2 percent fit obtained with education added.

The situation we are ciscussing is an instance of what happens when one goes from one ievel of aggregation to another. Commonly the amount of "noise" in our figures grows relatively faster as we disaggregate than does the amount of

[^0]additional information obtained. A well-known example of this phenomenral can arise with R^{2} itself when one looks at the same relationship in :over time. The R^{2} valuc is typically smatler with the cross-scetion data. Disag gregation tends to raise the importance of "atccidental" factors and thus lower $R^{2}\left(\right.$ or $\left.I^{2}\right)$.

4.3. Coefficient Estimates

Rather than display all the coeflieients for models (4.2) and (4.3) we will look only at education and age to see to what extent these dimensions can be treated as quantitative.

The education coefficients are shown in Table E below. Both sets of coefficients are in reasonably close agreement and exhibit the expected pattern of getting

TABLE E
Edecation Cofhecienis fer Model. (4.2) asd (4.3)

Notation	Equation		Interpretation
	(4.2)	(4.3)	
P^{P}	$+1.026$	$+1.028$	Poverty coeffi:ient for heads with less than 8 th grade education.
$\bar{\beta}_{1}^{\text {Pr }}$	$+0.327$	+0.274	Poverty coefficient for heads who completed the Sth grade.
fip	0	0	Coefficient for those with some high school (set to zero by definition).
$\hat{\beta}_{1}^{\mathrm{P}}$	-0.706	-0.634	Coefficient for High School Graduates.
$\bar{\beta}_{1}{ }_{1}^{\text {Pes }}$	$-1.12 .3$	-1.018	Coefficient for heads who completed one or more years of college.

smaller (algebraically) as the head seducation increases. What is not clear is how we can incorporate the actual values for highest grade completed in explaining the relationship to poverty. However. if attention is confined to the rank order of the classifications then a fairly satisfactory model for the poverty-education interaction is given by

$$
\begin{equation*}
\beta_{1 k}^{\mathrm{PE}}=\beta(k-3) \quad \text { for } k=1 \ldots \ldots 5 . \tag{4.4}
\end{equation*}
$$

Whether one would actually resort to (4.4) as a summarization device is open to question but it does point up the fact that education is an ordinal rather than an interval-scaled variable. (After all it is simply not true that the difference between an eleventh ar.d twelfth grade education is the same as the difference between completing the tenth and eleventh grades.)

Chart A displays the age-sex-poverty coefficients graphed against the middle of the age bracket to which they apply. In every case the coefficients for femaleheaded families are larger than those for families headed by a male. The (log) odds of being poor seem to decline with age in a regular (almost linear) fashion for female-headed families. This pattern is strikingly similar for (4.2) and (4.3). perhaps due to the infrequency with which female heads work year-round full-time.

AGE OE HEAD

For male-headed families, the age-poverty coefficients are affected not only by the head's labor force participation and earnings which tend to grow until middle life but also by contributions to the family income of working wives.

4.4. Combining Tables

In order to incorporate race and work experience together in a logit model with poverty, age-sex and education, all six dimensions must be cross-classified. As we have already mentioned, such a 6 -way table is not available. However there is an option short of rerunning the survey data tapes which can be employed to create
the needed tabulation. What will be done is to use the published marginals to obtain a fitted version of the table sought. Obviously such a procedure will be satisfactory only under certain assumptions.

For the particular example at hand three 5 -way marginals were available the two we have been diseussing and a table crossing age. sex. rate. and work experience of the head with the family's poverty status [25(81)]. These three tables were then incorporated as marginals in the ustal iterative fitting process to produce the needed overall table.

The model

$$
\begin{align*}
\Psi_{j h m r} & =\ln \{p(j k m r) p(2 j k m r) \tag{4.5}\\
& =\beta_{1}^{\mathrm{P}}+\beta_{1 j}^{\mathrm{PS}}+\beta_{1 k}^{\mathrm{PK}}+\beta_{1 m}^{\mathrm{PR}}+\beta_{1 r}^{\mathrm{P}}
\end{align*}
$$

was then derived from the constructed table with the value of the relative information being $I^{2}=94.3$ percent.

Implicit in the way we created the overall table is the assumption that the relationship between poverty and the other factors is simple enough to be adequately mirrored in the three marginals we possess when taken together. While the estimates of (4.5) are not themselves affected by the validity of this assumption. we may be mislead as to how good a summary the model represents. After all in the overall fitting process some smoothing takes place which necessarily reduces the amount of residual error. Thus I^{2} as computed above should be considered only an upper bound. although in this case one may guess that it does not overestimate the true value by very much.

A second assumption is made by the procedure just outlined. Not only are some poverty relationships disregarded but there are also interrelationships among the other factors which are ignored. In particular, the race-work exper-ience-education interaction is treated as if it were zero. Table F illustrates the effect on the poverty coefficients of different assumptions about how the nonpoverty factors vary. The first column provides the greatest possible interaction given the way the overall table was constructed. Celumn two was derived by letting the nonpoverty factors interact in sets of three (with the exception already noted). The third column allows the nonpoverty factors to interact only in pairs and the last column treats the nonpoverty factors as if they were conditionally independent.

The agreentent between the first two methods (columns one and two) is extremely good. Even when the fit is confined just to two-way relationships the coefficients are not badly off. In this instance. there does not seem to be much sensitivity in our estimates to relationships of order higher than two. As the last column of the table demonstrates, however, we cannot ignore interrelationships among the nonpoverty factors altogether.

It might be noted in passing that the coefficients obtained under the assumption of conditional independence are the same values one would obtain if look ing at each dimension's contribution to poverty without regard to how much of the association is explained by the joint action of several factors. ${ }^{7}$ To be specific. consider the poverty parameter for blacks in the tabies we have examined. The net

[^1]TABIE: 1

Codficients	1yme offitharyinal Employal			
	$\begin{aligned} & \text { Threc 5-Maly } \\ & \text { Marginals } \end{aligned}$	All Possible 3-W:y Marginah*	All Powibls 2-Way Margmant	Two-Was Powert Marginah Oniv
Oxcrall Povert!				
	- 1.518	-1.517	-1446	
Mate Heads: 0.8 mt				
25 to 34 yems	-10.189	--0.190		
35 6) 44 yems	- 0.129	-0.190 -0.129	-0.266	-1.432
45 to $5+$ yam	-0.574	-0.1576	-0184 -0.088	-1.300
55 to 64 yars	-0.741		-0.608 -0551	- 1.600
65 years or older	-0.441	-0.491	-0.551	-1.114
Fomak Heads: -0.400 -09215				
25 to it yeans	$+2.168$			
35 to 44 y ars	+1.253	+2.067	+ 2.121	-1.57?
+5 to 54 y yars	+0.665	+1.252	-1.215	+0.774
55 to 64 years	0000	+0.667 $0.06(\%)$	$+0.64$	+0.303
65 years or older	--0.380	(1)	0.000	0.009
Education completed -0.100				
Less than 8 grades	+0.939			
8 th grade	+0.314	+0.9 .88 +0.319	+0.911	40933
9 to 11 grades	0.000	+0.319	+0.295	+0.109
12thgrade	-0.54.5	0.00 -0.54	0.0000 -0.692	0.0001
Some college	-0.879	-0.54t	-0.062	-0.567
Poverty Coifficient for Negroes			-1.903	-1.392
	10.855	+1185		
Powerty Cuefliciem for yatr-round workers		+ 0.8 .5	$+0.856$	$\div 1.397$
	-1.638	-1.638		
			-1.646	-2.034

* Except the work caperience Edacation Race marginal
\% Age :nd sex are
\mp Age and sex are treated as one dimension.
overall disadvantage of being black is summarized by the value $\beta_{11}^{\mathrm{PR}}=+1.397$. when the contributions to this differential due to age sex. education and work experience are taken out. the poverty race relationship dectines to $\beta_{11}^{\mathrm{PR}}=+0.855$.

4.5. Some Analyici Issmes

The subject of combining tables is an important one especially when consideration is given to the nature of the CPS figures we have been using. In govern-ment-conducted surveys. like the CPS traditionally results have been displayed only in tabular form with the information on individual schedules not being tribution of personal examination. For example, published CPS data on the disyears. beginning with 1964. han Series P-60) exists from 1947 on but only in recent complete survey files. ${ }^{8}$ Thus there been any release by the Census Burcau of the
*Computer files with some information on faterested in looking at relatively longvear on. For both families some persons identifying items hatue becn individuals) exist from 1959 income of the intervich.
term shifis in income patterns must employ techniques like those in this paper for dealing with grouped data.

For the carlier years the published tabulations are not extensive enongh to look at more than wo or three variables at at time taen usang the $19 / 0$ (P , poverty tabutations. which were quite voluminons. one cammot sudy relationships of order higher than that already dealt with above. Without at least two-ivat tables relating all the variables it would seem that the onijy course open to us is to prepare at number of separate (incomplete) analyses. An allernative exists howewer whict we can only just mention for reasons of space. This is to standardize the publisted historical material with data taken from more recent surveys. There are interpretative issues which must be faced in adopting such a procedure but usefini results can emerge. In biological and medical settings and in demography. standardization techniques are widely acepted; perhaps they have a role to play with CPS income data as well. A paper on this subject with some empirical finding, is in preparation.

5. Bias and Mlan Square Error of Model Cofeficific:

Fitting log linear models. as we have tried to show throngh some examples. provides the researcher with a powerful data allatysis tool for deseribing a surveyed popatation. What have not been dealt with are the statistical properties of the figures obtained. This section will investigate such properties in particular. the bias and variance or more precisely mean square error of the logit model coefficients.

5.1. Bias in Coefficient Estimates

In regression analysis. bias in the coefficient estimates is often disensed in terms of errors made in specifying the model. Such a context is inapprepriate here because we are just using the logit fitting process as a device for summarizing interrelationships among factors in the tinite population from which the observations were drawn. Ignoring some of the more complieated interactions. ase we have said. does not necessanily imply aceeptance of the hypothesis that they do not exist but rather that a "satisfactory" parsimonious deseription (as measured by l') can be achieved without them.

However, even with misspecification error ruled ont ithe coeflicient estimates $\left\{\tilde{\beta}^{\prime}\right\}$ are biased. Nonetheless under quite general conditions it can be shown that the expeeted value of $\bar{\beta}$. denoted $E \tilde{\beta}$. is

$$
\begin{equation*}
E \bar{\beta}=\beta+0\left(\frac{1}{11}\right) \tag{5.1}
\end{equation*}
$$

where the term $0(1 / n)$ goes to zero as the sample size "n" gets large.
Some situations for which (5.1) does not hold may be worth mentioning. If the sample elements were not selected with equal probability. then preparing the cell proportions using the umweighed counts will lead to a bias which may not disappear with increasing sample size. In a stratified cluster desigis, like the CPS,
(5.1) may not apply to smatl subpoputations concentrated in parts of the country (c.g. outside the big cities) which are not included with certainty. The difliculty is that the number of sampled ateas or PSUs must be large. "not just the mumber of families or mdividuats in the surver. A final note of camtion should be sounded in cases where the marginats being used to obtain the model coeflicients contain one or more cell entrics which are close to zero. Two methods for afle viating this last type of biess. Which is of Of 1 m . will be discu: Sed below:

Bias Reduction

One method of bias reduction which is often advocated [c.g.9:229 230] involves adding a small amount. ustaally $12 n$. to the originat cell proportions before fitting the table. Only in one very speciat casc can such a lechnique be shown to be bencficiat, namety when all the $\beta \mathrm{s}$ ate assumed nonzero. (The assmomtion of simple random sampling is atso required.) In point of fact. adding a fixed amount to every cell can actually be harmfut when fitting modets in which some of the cocflicients are set to zero."

A far more general bias reducing procedure is a method called the "Jack knife. by Tukey [19:134]. "to suggest the broad usefulatess of the technigue as a substitute for speciatized tools.... just as the Boy Scout's trusty toot serves so varicdly." To sec how the Jack knife can be applied to survey data let us assume that the overall sample can be divided into ${ }^{\prime} r *$ independent subsarmples or replicates eath identicai in design and of size " n.

The lackknifed coeflicients are defined by

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}=l_{r}^{r} \sum_{h=1}^{r} \hat{\boldsymbol{\beta}}_{h} \tag{5.2}
\end{equation*}
$$

with

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}_{k}=r \tilde{\boldsymbol{\beta}}-\left(r-1 \tilde{\tilde{\boldsymbol{\beta}}}_{k}\right. \tag{5.3}
\end{equation*}
$$

where $\bar{\beta}$ is the estinator we have been discussing atl along and the $\left\{\tilde{\tilde{B}}_{k} ;\right.$ are constructed just like $\tilde{\beta}$ except instead of adding together all "r" replicates the fit is obtaincd with onty $r-1$ of them. i.e. by leaving out the k th. $k=1 \ldots \ldots$. Now if the

$$
\operatorname{Bias} ;\left(\tilde { \beta } ; = \frac { r - 1 } { r } \text { Bias } \left(\tilde{\tilde{\beta}}_{k} ;+0\binom{1}{n^{2}}\right.\right.
$$

"Adding small amounts to cells is also suggested in the literatare on contingency tables for dealing
 a few eroes in the 5 -waty mor example in creating the 6 waty table of the previous section there were
 that will not alwats be true. particularly when ease the ferocs made very litte difference: however. when the marginal call proportions are wery small the are agreat manys. It should be recognized that very large sample: will be necded to obtain satisfactorn fesults.
then

$$
\begin{aligned}
E \hat{\boldsymbol{\beta}}= & \sum_{r=1}^{r} \sum_{i=1}^{r} \hat{\boldsymbol{\beta}}_{k} \\
= & r\left[\beta+\operatorname{Bias} ; \tilde{\beta}_{i}\right] \\
& -\left(r-11\left[\beta+\frac{r}{r-1} \text { Bias } i^{i} \tilde{\beta}^{\prime}\right]+0\binom{i}{n^{2}}\right. \\
= & \beta+0\binom{1}{n^{2}} .
\end{aligned}
$$

The CPS is not made up of independent identically-designed subsamples [24]. so if the Jack knife is to be applicd at all certain practical compromises are necessary. One way of Jackknifing in the CPS is to divide the overall sample into "replicates" on the same lines that are used to create the eight rotation groups which make up each month's survey. Such subsamples. while identical in design. Would not he independent.

Dependence among the replicates makes it impossibie for (5.4) to be satistied: nonetheless. given the nature of the CPS it can be shown that appreciable reduttions in the absolute value of the expected bias may still be achicved by Jackknifing. making the extra tronble taken worthwhilc (particularly for large table: where the average cell size is small).

A numerical illustration of the Jackknife appears in Table G below. For purposes of the exampic the CPS rotation panels for March. 1971. Were considered

TABLE ;
Illustrame lackrnifed Race and Age Sex Coemecients for Poverty Modi (3.4) Usivg F.gifi "Rep.icates"

Item	Overall Poverts Coefficient	$\begin{gathered} \text { Race } \\ \text { and } \\ \text { Poserty } \end{gathered}$	Age. Sex and Powerts		
			Male: $65:$	Fimates Ender 65	Femaics $65+$
Originat cocflicients. $\hat{\boldsymbol{\beta}}$	$-29+96$	1.2062	1.13,37	1.9521	$1.3+07$
Jackknife Average. $\hat{\boldsymbol{\beta}}$	-2.9488	1.2077	1.1333	1.9504	1.335k
Individual salues:					
$\hat{\boldsymbol{\beta}}_{i}$	- 3.1135	1.4468	1.2519	1.97 .31	1.2×26
B:	-2.8936	1.0256	1.1639	1.9491	$1.73+6$
仿	-2.9454	1.1881	0.9913	2.10197	1.3157
B	-2.9314	1.2061	10792	2.03 .39	1.4311
B;	-2.9554	i. 2116	$0.9+12$	1.9378	$1+389$
B	-2.9054	1.0705	1.1705	1.4235	1.3611
R	- 2.8881	1.2555	12168	1.8703	1.0255
$\hat{\beta}_{6}$	- 2.9579	1.2574	1.2524	1.9965	1.0968

Note: For the sake of consenience the coefficients : $\hat{\mathbf{B}}_{h}$ ' were consirteted using the CPS rotation panels rather than subsamples selected to be identical. Although all the panels start out the same in terms of the way they are drawn at any one survey point eath rotation group will hate been inters iewed a different number of times. Sinee re-intervicwing has sone effect on response patterns, using the pancls as "replicates" would not be desirable in general. Technically (see, for example [22]. eateh replicate should be weighted using the same seheme that is applied to the orerail sample. This refiatement was also skipped since the figures are only mivant to be illustrative. Instead the estimates were prepared simply using the already cxisting weights.

To be identiatlly designed (dependent) replieates and fack knifed porerty coctlicents for T:ble A were derised. Athough some of the fine points have been ignored fan the note to Table G makes clear) the figures shown may be of interest.

There ate oniy sight differcaces between our orginal estimates and the Jack nife arerage. something one conld almost have predicted ahead of time given the smathess of the table and the sice or the sample The differences also exhibit the expected pattem of being larger for eesflicients based on marginals which are smaller.

S.. Caridnce of Cocflcient Estimates

A convenient wey of dealing with any study's varimecs $\left\{_{i}^{2}\right\}$ is to relate them to the varances ; σ_{i}^{2}; one woud hat obtanced from a sample random sampie (with replacement) of exactly the same sice. This can be done using the expression 15.64

$$
\imath_{i}^{2}=\delta_{i} \sigma_{i}^{2}
$$

where. following K ish [15:258j, the ' ω_{i} : are called "design effects."
Typially in a chaster sample the $\left.b_{i}\right\}$ are larger than one. For example in the CPS when look ing at froportions the cetimated simpie ratiom sampling standard errors sometimes anderstate the actual standard errors by as much as 50 percent or more. The varances of logit coelficients are relited to the variances of the table's cell proportions. Thus, unless some adjusiment is made to the sample random sampling estimates normally computed. confidence intervat statemems will be off. for the 1970 poserty labulations malyed in this paper the square root of the design cffec: for proportions averaged about $\delta=1.23$.)

5.4. Celcutaing lariances

Thes andard sterey approach to the variance of a nonlinear function. like $\bar{\beta}$ involies the use of a Taylor expansion. One ether implicitly or cxplicitly depends on being abie to express the statistic. to a close approximation as a linear combination of sample meams and totals. Variance calculations based on replication or jackknifing are comparatively easy since they only implicitly rely on the Taylor Series results. Procclures which require that the expansion be exhibited explicit! will not be discussed in this paper since they are too dificult to apply rontinely as part of the amalysis of a contingoncy table. Instead we will briefly daal with threc "short-cm" : tecliniques which. ats applied to the CPS. yictd approximations good cnough for most purposes.

The first and best known "short-cin" method of cstimating variances involes replieation. If the owerall sample is made up of "r"independent identically designed subsamples one can obtain an cstimate of the varance covariance matrix of $\bar{\beta}$ by deriving the coellicionts $\bar{\beta}_{k}$ for each replicate and using
15.71

$$
\tilde{\Gamma}(\tilde{\beta})=\frac{1}{r(r-1)_{k} \sum_{!}^{r}\left(\bar{\beta}_{k}-\bar{\beta}\right)\left(\tilde{\beta}_{k}-\tilde{\beta} \cdot\right)^{\prime}, ~}
$$

Where $\bar{\beta}$ is the aterage of the repleate wathes. i.c.

$$
\overline{\boldsymbol{\beta}}={ }_{r}^{1} \sum_{k=1}^{r} \tilde{\beta}_{k} .
$$

A related method which also produces an asymptotically unbiased variance estimator of $V(\hat{\boldsymbol{\beta}})$ is to use the lackkaife values $\tilde{\beta}_{k}$ in the calculating formula

$$
\begin{equation*}
\tilde{V}(\tilde{\beta})=\frac{r-1}{r}\left[\sum_{k=1}^{r} \overline{\tilde{\beta}}_{k} \tilde{\tilde{\beta}}_{h}^{\prime}-r \tilde{\tilde{\beta}} \tilde{\bar{\beta}}^{\prime}\right] . \tag{5.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{\overline{\boldsymbol{\beta}}}=\frac{1}{r} \sum_{k=1}^{r} \tilde{\tilde{\boldsymbol{\beta}}}_{k} . \tag{5.10}
\end{equation*}
$$

Both of these methods suffer from the disadvantage that the variance of the variance estimator can be large. This. of course. is the price one pays for ease of computation. Of the two the Jackknife is to be preferred because it will be less sensitive to the problem of zero cells which can arise when looking at the sample replicate by replicate.

As we have scen. since the CPS cannot be divided into independent identically designed subsamples the replicate and Jackknife variance estimators are not strictly appropriate. However. if the eight rotation panels are treated as independent. the resulting standard errors calculated are underestimates. For most statistics. except those based heavily on persons living outside metropolitan areas. an upward adjustment in the standard deviation on the order of 6 percent is required. For nonmetropolitan area statistics somewhat larger correction factors should be used. ${ }^{10}$

For researchers using only the published CPS tables. perhaps the best that can be done is to calculate the simple random sampling variance $\dot{\sum}$ and then correct it with an adjustment factor derived from the standard error tables which accompany all CPS reports. \mathcal{T}^{τ} is obtained [18] by first calculating the quantity $\left(X^{\prime} T X\right)^{-1}$ where T is a diagonal matrix of the table's weighted cell counts as fitted under the model and X is the array of independent factors in equation (2.4). Dropping the first row and column of $\left(X^{\prime} T X\right)^{-1}$. one then obtains W times where ${ }^{*} U^{\prime *}$ is the average sampling weight.

For proportions. the published CPS standard error tables are calculated using the expression

$$
\begin{equation*}
\text { Standard Error of } \hat{p}=\left\{\frac{b}{Y} \hat{p}(1-\hat{p})\right\}^{12} \tag{5.11}
\end{equation*}
$$

where Y is the estimated total number of persons or families in the subpopulation (e.g. black malesi to which the proportion applies. " b " plays a role similar to the design effect and in fact

$$
\begin{equation*}
\frac{b}{Y}=\frac{(b W)}{(Y W)}=\frac{\dot{\delta}}{n} \tag{5.12}
\end{equation*}
$$

${ }^{10}$ CPS tapes can be bought from the Census Burcau that allow one to calculate variances based on the collapsed stratum technique. Collapsing strata, however. often leads to an orerestimute of the variance. See [1]. [11] and [21] for details and a discussion of still other methods.

For example, the value of $b=2,074$ was used to create generaliyed standard error estmates for proportions of families in the 1970 (PS report [25 (81)]. Since the average weight for families was 1.372, the overall design effeet for proportions is $\dot{j}=1.5$.

The work of Kish and Frankel [16] suggests that it would be unwise to simply apply the " δ " appropriate for proportions to \dot{d}. For the usual regression parameters. Kish found that, on the average, the increase in the standarde error for a complex design was 6 percent or about one-third of that for sample means (17 percent). Using this result as a guide. the effect for proportions (, $\delta=1.23$) in the 1970 CPS report was redued to $1.00+(0.23)\left(\frac{0}{17}\right)=1.08$ when calculating the standard errors of the β 's in Table H .

Table H compares standard error estimates for the CPS poverty coeflicients obtained as part of our analysis of Table A. All three approaches are in quite close agreement. considering the rough nature of the approximations employed. Further work on the validity of these methods is needed however. and the reader is cantioned to take the results in Table H only as illustrative.

TABLE H
Ihlustrative Standard Error Estimates: 1970 Race and Age-Sex Coefficienis for Poverty Model (3.4)

Type of Standard Error Estinate	Overall Poverty Coeflicient	$\begin{gathered} \text { Raci } \\ \text { and } \\ \text { Poserty } \end{gathered}$	Age. Sex, and Poverty		
			Males $65+$	Fensales Under 65	$\begin{gathered} \text { Femates } \\ 65_{T} \end{gathered}$
Replicate	0.0285	0.0490	0.0488		
Jackknife	0.0269	0.0509	0.0449	0.0501	0.080 ?
Adjusting Simple Riandom Sampling	0.0288	0.0478	0.0526	0.0501 0.048	0.080?

Note: Replicate and Jackknife estimators were calculated by treating the 8 CPS rotation panels as independent. A correction factor was then applied as is explained in the text. The simple randonn sampling errors were adjusted by 1.08 before berng shown. Sce the note to Table G for furtherlmitations on these results.

6. Computer Programs and Bibliographicai. Notes

The models fit in this paper have a simple dummy variable structure. However the computer programs employed are applicable to more complicated parameterizations [4]. There is also no necessity, for instance. to look only at logit models where the "dependent" dimension (in our case poverty) is dichotomons: polychotomous dependent variables present no new problems [9:238].

6.1. Computer Programs

At the Office of Economic Opportunity (OEO) three contingency table programs for filting log linear models are in use. Two of these are for batch processing on an IBM 360; 50 and the third is an APL program. All were developed at the George Washiugton University Statistics Department. C. Terence Ireland wrote
the first of these programs -CONTAB II [12]. A main feature of this algorithm is that there is practically no limit (except CORE) as to the size of the table which can be analyzed. Marian Fisher modified CONTAB II to increase its llexibility still further. Her program CONTAB MOD $[7]$ allows the researcher to fit general models, not just dunmy variable ones. Also marginal totals can be introduced from outside the sample. In addition to these. Ireland prepared an APL contingency table package which has since been augmented at the Office of Fconomic Opportunity by H. Lock Oh. As yet the APL program is restricted to tables of less than 500 cells

Future refinements in sonie or all of these programs are anticipated. In particular. we are looking at the possibility of modifying the iteration scheme so that it can deal efficiently with stratified designs where the probabilities of selection vary considerably from stratum to stratum. So long as the sampling weights are used. the present iterative procedure gives asymptotically unbiased coefficients; but. if the weights differ widely from cell to cell. competitive teclniques exist which can yield estimates having smaller variances [14]. Since the CPS begins as a "self-weighting" sample no modification of the standard fitting procedure was deenied necessary for the work presented in this paper.

6.2. Bibliographical Notes and Acknowledgements

Lack of space has lead us to slight many aspects of log-linear model fitting. For example much more could be said about methods for hypothesis testing with survey data. e.g. [20]. and their implications. We have only dealt with this indirectly by looking at the variances of a model's coefficients. The implicit assumption has been made that approximate normal theory confidence intervals for the coefficients can be constructed using the estimated standard errors (once corrected for design effects). Another important part of the theory which needs to be considered is the examination of residuals and the suppression of outliers [13].

The title of this paper comes in part from a 1969 article by Goodman [8]. "How to ransack social mobility tables and other kinds of cross-classification tables." Ransacking seemed just too good a word not to use again. especially since it so aptly conjures up the kind of hunting for relationships that researchers must engage in if they hope to tap the riches of data like that obtained from the Current Population Survey. There are of course. elements of subjectivity in such a search. It was because of this subjectivity that the statistic I^{2} was used. Unlike R^{2}. it is linked closely with the fitting process and for this reason to be preferred. A full discussion of the development and properties of the class of measures of which I^{2} is a member can be found in Goodman [e.g.. 9:246; 10:42-44].

The nature of an applied paper is to take many results for granted. Such is the case here. Heavy reliance has been placed on ideas to be found in Goodman [9] and Kullback [18]. The writer has also profited at various points from conversations with Dr. Ireland and Dr. Kullback. Editorial and other assistance were provided by Wray Smith. Gary Liberson and Lock Oh of OEO and Easley Hoy of the Census Bureau.

Policy Research Division.
Office of Economic Opportunity

Bhamocirarity

 withon and betwect-PSO components and the effee of the differeat sages of eatimation. Pror Sob. Shat Ser. to ty
 J Amer. Stat. Assn 50. 130162.
 (ammemarr: 8: 7480
 Math. Stat 43. 1470 1480
5. Dempster. A. P. (1971). An overview of multivariate data atmensis. J. Muht Anthois. 1 : 316 346
6. Fumberg. S. F. and Holland. P. W. (1970). Methods for clamitating dero counts m contangery

 published.
8. Goodman. L. A. (1969). How to ramack social mobility tables and other binds of erowselasificalion tables. American Journal of Siociologi. 75: 1 40
9. Goodman. I. A. (1970). The multivarate analysis of qualitatise datar: interactions amome mutiphe clasifications. J. Amer. Siat. Asw. 65: 226 256
10. Goodman, L. A. 11972). A modified multiple regressiou approath to the analysis of dichotomous variables. fmer. Soc. Ref. $37: 2846$
 published).
 Washington University. Washington.
1.3. Irdand. (. T. (1972), Scquential cell deletion in contingenty tables s lupublished

14 Johuson. W. D. and Koch. (; G. (1970), Aualysis of qualitative data : linear fumetions. Appro:d hes amd erchucumes. 358369
15. Kish. L. (1965). Surver sampling. Wilcy. New York
16. Kish, L. and frankel, M. R. (1970). Balanced repeated replications for standard errors. i. Amer. Stut. Assn.. 65: 1071 1094.
17. Kullhack. S. (1959). Intormaion thary and sumimas. Wiley. New York. Moe ed. Dover. New
York.
18. Kulback. S. (1970). Minimmm discrimination information estimation and appliation. Invited paper presented to Sixteentle Conterence on the Design of Experiments in Army Research Development and Testing. US.A. Logisties Management Conter. Fort Lec. Va., 21 October 1970. ARO-D.
19. Mosteller. F. and Tukey. J. W. (1968). Data analysis, iuchading statisties. The Funulheok of Sociat Pswhelogy (2nd cdition). Addeori.Wesloy. New York.
 Dctclopmems in Surrey Sampheg. Wiley. New York
2. Scheuren, F. J. (1972i. Uabiased replieate varamee estinates for differatiable funcrions of CPS totals (Unpublished)
 Amer. Stat. Ason. Soce. Sutt. Sac.. 1930.
23. Tukey. J. W. and Wilk. M. B. (1965). Data analvsis and statistics: Iechaiques and approaches Proc, stmposimm on intormateon frocessing in sugh senomy antems, Culitorniat lastitute of Tech. nology: Pasadena.
24. U.S. Burcata of the Census (1967). Concepts and methods used in manpower statistics from the currem population surves. (iurrem popmlation reports. Scrice P-23. No. I2

6. Zeliner. A. and tee. T. H. \{1965). Joint catimation of relationships iuvolving discrite random Variables. Ecomometrica. 3.3: 382 394

[^0]: "Differences between the two tables in the classifications used for the race and age variables also

[^1]: - The distinction being made here is the same as that between the coefficient of an independent variable in a simple or a multiple regression.

