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Anna/s of Leonontie anti .'oeiaI Mea.iurente,u, 2 4, 973

ON THE DETERMINATION OF SYSTEMA'I'IC' I'ARAMEI'ER
VARIATION IN THE LINEAR REGRESSION MODEL

BY DAVID A. BItsuv*

This paper examines i/ic general prohh',n f unit' rurting pariiiflt'(ers iii (lie Iittt'ar re'gression model.
Si'su'ozaik, pion-stochastic varia (ion of fi, linear/v dependent upon 'outside'' variates, is highlighted. A

moting-windon regression technique is examined Its a inewis of deterinw ug re/ti ant outiclt' varwics.
Computationallc efficient algorithms are given for the liltit' The procedure is seen ta he biased, bitt
not badly so for outside uariates that mote s/owli' tiler time.

I NTROI)UC'TION

A model of increasing interest to economeiricians is of the form

v(t) = x'(t)/J(l) ± ;r) t = I . . . T

where
x(t) is a K-vector ol anates

/1(t) is a K-vector of time-vat iant parameters

and
t;(t) is distributed wit Ii zero mean and I (at =

Let us further assume that

/1(1) = Fz(t) + u(t)

where

F is a K x R matrix of constants

2(t) is an R-vcctor of variates (which might include some x's)

u(f) is distributed with zero mean. V(u) = independently of :(t).

Various cases of this model have been treated elsewhere. Brown Durbin [21
consider tests on the residuals of such a model in pyramidal regressions against
H0:/1(t)= I Vt. Rao [10] considers the case F:(i) = /1 Vt, and unknown, and
shows the OLS estimator is both a ininilnuni-variance estimator of /1 and a
minimum-variance predictor oI/1(r)--although with diflrent variances. Theil [Ill
working with the same model with K = 1, = 1. unknown, produces estimators
of all parameters with an ingenious multi-step regression technique. Quandt has
dealt with the cases (i) R = 2, var u(t) 0.

f(l 0) 1 <1
z(t)

(1 I) T
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(4)

in [7, 8] and (ii) R = 2, var u(t) 0,

Iii
:(t) =

0) vth prob ,.

I) WIth prob (1 -. i.)
in [9]. Variants ofthe above occur in Fancy and 1-linch [5]. Burnett and Guthric [3],Duncan and Jones [4]. Holland [6] has considered maximum likelihood estimatesin the case K = R = 2, = i and has suggested an iterative procedurefor producing a solution. This approach has, no doubt, similar asymptotic proper-ties to Theil's method. In what follows we shall always assume = 'I and thatEu(t)u'(s) = 0, s t.

II THE C'S ARE KNOWN

When the z's are known, few real problems are encountered. I) and (2) give
t3) v(1) = x'(()I:() + .v(r)u(() + t

= [x'() ® :(t)]i\ + ?j(i) it'(i)A + ,j(r)
where

= x'(t)u(() - :(f)

E1(r) = 0. \ar(q(()) = + rx'(t)cx(t)
C)V (i(t), = 1) i

'I

= ith column of I-.

Iwo cases arise: when V(u(t)) 0 and not.
In the case J'(u(t)) 0. the u(l) = 0 with Prob I and (3) is

y(1) = w'(i)A -f- (t)

an equation amenable to OLS. producing
(5) A = (W'Wr 'u"v,
where the cap letters are the obvious summary matrices of the data.

When V(u(t)) 0 it is clear that the disturbance term j(t) in (3) is hetero-skedastic and OLS is unbiased but inefficient, If L is known, but r. and u are not.a generalization of Theil's two-step OLS-GLS technique [II] seems possible---although it would appear to involve a great deal of computation When is notknown, there seems to be no solution in the literature, but a generaljzato ofHolland's maximum-likelihood approach seems indicated.
For many econometric models, the assumption that V(u(tfl 0 may not betoo bad, at least as an approximation. This argues simply that the f coefficients
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are changing over time, perhaps with great complexity. but systematically with
respect to outside variates. Such a generalization of the standard linear model is
worthwhile in itself. In the next section, then we assume the fis vary systematically
and without random component. As we have seen, this case is easily handled when
the 's are known.

Wnm THE z's ARm NOT KNOWN

When the z's are not known, things become more complicated as a practical
matter. Clearly, alternative matrices could be subjected to usual equation-
testing techniques by direct substitution into (4). While this technique has much to

y for it for small K and R, (5) involves the computation of an inverse of a
KR x KR matrix, and even moderate K and R produce costly and time-consum-
ing computation.

For moderate K and R, then, a more efficient search technique is required.
An intuitively appealing approach that is often suggested regresses the }' 's on the
x's, ignoring parameter variation, and then compares the resulting residuals with
potentially proper z variates, either graphically or with subsidiary regressions, to
see if any sharp, systematic relationship can be discerned. This approach has much
to offer in the event that the "missing z variates" are additive (i.e., the true equa-
tion is of the form y(t) = x'(t) + z'(t)y + (t))* but can be misleading in a model
such as (1). Indeed, one can see that

= y(t) -. Wit)A

= 1(t) - x'(t)Fz(t)

= x'(t)(F - [')z(t) + E(1),

and hence, the e, generally depend iii a complicated and non-linear way on the z's.
A two-step approach is suggested from the following. We suppose V(u(t)) 0

and (2) becomes

fl(t) Fz(t).

If one had an independent unbiased estimator b(i) of /3(t) (t = 1 .....) we could
write

b(t) = 11(t) -f 1(t)

Er(t) = 0

En"

Eu(t)u'(s) = 0 s 1.

And (7) becomes

b(t) = F:(t) + t(t)

a block-equation in F amenable to OLS block regression. Such a model is readily
applicable to testing alternative z's and, thus, affords an efficient search technique

* See Beisley note on Additive Misspecification [I].
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p

small relative to z.

will be ma!l when the ;' iiio Thlowj3" from period to period, i.e. when A: is

unbiased tinieindependent estiIi)atrs: hut OL.S itself can produce estimatorswhose time dependence wears off completely in at most K periods and whose bias

the estimators h(,) of fl(t). At the moment I know of no ii1eas of producing

when the appropriate :'s are unknown The problem, of course, is in determining

Consider the following procedure-
Using the first K + r observations only, regress I on X to obtain b IIwhere b(I) is associitcd with sonic period in the interval [1. K + ri - this is to hediscussed further below. Then add the next period, drop the first and obtain h(2),etc. This moving rcgressjoii window can actually he made compulational1, quiteefficiet involving inversions of only 2 2 matrices at each step --using theiterative algorithns shown in Appendix A giving

(10) h(T) hIT - 1) + (XX 'x(T)1;(T) - v'(T)/T - 1)]x(T K - y 1)1 t'(T K - I) - .v'(T - K - - l)IT -and

(")(XX1'(X' X, )1J[D1+B(X; V LB -It-iwhere

and

B _ EX(T) (T -. K - r - 1)3 a K x 2 matrix

[1 0

[0 -
The aboe results in a T - K - t + I time series on the h(i). There areseveral problems with these series which limit their use in a regression on the :'s.but in some common cases these problems may not cause much harm. Let us lookat the b(r) in greater detail. (See Appendix A for definitions of symbols.)

h(T*) (X'TXTr 'XYT
where we let T* be in the interval [T K .. Tj.Then

13(t) fl(7.* + I(z(i) -

+ F/:(t)

Hence
/3(T*) + F±-)(1 - T*).

v(t) x(z)[fl(T*) + FAZfr)] + (t)

- x'(t)fJ(T*j ± x'(t)r(1) + r(t)
= x'(t)fl( T*) + [x'(t) ® Az'(tflA + i;(t)

+ n(t)A + (t)
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and

= X113(T*) + N1i +

Putting (15) into (12) fort = Tgives

h(T*) = fl(T*) + (X'TXT) 'XNTA +(XXT[ LX.

and

Eh(T*1 = fl(T*) + (XX1) 'XINTA.

b(T*) is thus biased, but we pote the bias depends on

N={x(t)®Az'(1)] t = T...T Ki
F
[x'(t) ® (1 T*)

The elements of this matrix will he small (and the bias in b(T*) likewise) as

z'(t) is small (on a relative basis). The approximation in the last term reminds us

Az'(t) will be small if z moves "slowly" over time and if the periods included in

the regression window are close to T*. the base period of the Tih regression (see

12)). This last statement argues strongly that r should be picked smallindeed
= 0 is reasonableand T* should be chosen in the middle of the period. The

former argues the method may cause trouble with abrupt. strong movements in

the z's.
From (16) we see that

V(b(T*)) = X'TXTr'

and
cov(b(T*)b(T* - n)) C(X'XTY 'X 1flXTfl(X'rflXTn) I

where M is a matrix with l's in the n'th super diagonal and zeros elsewhere, and

hence M = 0 for n > K -I- r.

Therefore, b(T*) and b(T* - n) are uncorrelated after K + t periods but are

correlated with the surrounding K + r values.
I.et B = [b(T*)] a (T - K - r) x K matrix of the iteratively calculated

b(T)'s. Using B in (9) with OLS produces

t = (Z'Z) 1Z'B. a block regression.

Clearly this regression is inefficient because of the autocorrelation mentioned
above. Also the error term does not have zero mean. But, for slowly moving z,

and r small, this latter problem is minimized. The inefficiency due to autocorrela-

tion may be tolerable in many instances, for our purpose in using (19) and its
associated tests is principally to identify the appropriate z's. Once this is done, we

can return to the z-known case above for efficient estimates of the l's.
The advantage of(19) is that each successive test on the z's can be obtained

with only an R x R inversion during its regression on Bwhich need be calcul-

lated only once on the basis of the X data alone. Further, because of (10) and (11),

the B matrix may be determined with only one K x K regression inversion and a
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so

sequence of 'I' -- K - r 2 2 inversions. This technique is, for moderate K and
R, computationally much more efficient. It also allows the investigator to see
directly and test directly the intluence the possible z's have on the fl's.

Niw DIRECTIONS

The above procedure looks promising. Its fornial properties should he
further investigated. In addition, other means of estimating the fl(t)'s should heconsidered (or devised). Clearly an unbiased estimator would help, and one lesssensitive to abrupt changes in = would make Quandt-like jumps (as opposed toquantum jumps) more easily analyzed.

Another like of attack is to generalize the maximum-likelihood approachala Holland. Unfortunately, these estimators do not allow for a sequence of steps
(list using the A' data, and then the z data. Searching for excluded z's is thereby
made less direct and the computation will be great for each trial z matrix.

Monte Carlo experiments with the proposed procedure are warranted toobtain experience with its behavior under likely situations. Such experiments willbe the subject of a future report.

Boston College, and
National Bureau of Economic Research

APPENDIX A
RECURSIVE INVERSION ALGORITHM DROP ONE--ADD Owr

Consider a recursive algorithm for generating the inverse Grammjan matrixwhen one observation is added and another deleted. We assume the next obser'a-tion is added and the oldest is deleted.
Let

[v'(R - r)
XR=f

[ x'(R)

where r + 1 is the number of periods upon which any regression is based.

[x'(R - r)1
Define XJ

- 1)

S

x'(R - I
XR_I =

v'(R J

LxI
Lx'(R)j

I and X,_1 =
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Then

where

D=

X'RXR = XX -4- x(R)x(R)

XX #-xR - r - 1 x'(R -- r - 14 - x4Rx'(R)

x(R - r - l)x'(R - r - I)

= X,X,, + [x(R) x(R -- r - 1)]!)

[1 01
A + BDB where D

= - J
=

Using Rao [p. 29, Ex. 2.9]

(X'RXRY' = A' - A'B[D + BII 'B] 'B.-1

where A (X X,_, ) ' -- assumed already computed -- and B =

[x'(R) x(R - r - I)], a K x 2 matrix. Hence D - -F BA 1B is 2 x 2and th
is all that requires inversion to gain (XXR)

APPENDIX B

ITERATIVE PROCEDURE FOR hR: ADD ONE-DROP ONE

Let XR be x data for the r ± I periods ending in period R. Likewise for .

[
x

]LetXbethexdatafOrtherPeri0R_l.R,s0XR
r - 1)1

and XR -' = I
. Likewise for Y

L X

Let bR be the OLS estimate based on the r ± I periods through R. i.e..

bR = (XXR) - XRYR

[ y
=

= (X'RXR)'[X'Y + x(R)v(R)]

= (X'RX)[X'Y + x(R - r - l)v(R -, 1) -F x(R)(R)

- x(R -- r -- I )V(R - r - 1)]

= (X',XR) '(X_, -4- BDIV

B = fx(R)

ri 01
I I. and
[0

x(R - r - I)],

tlR)

- LR - r - Ill

[ x'(R)

Lx(R - r - 1)

x'( R)

Thus
bR = (XRXR) [(\ Xi )R + BDIV].

but
X'liXRI = XRXR - BDB.
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Thus

= (XXR) '[X,.VRhR Bi)J3h1 + BI.)U']

= 1Ri + (X',Yk BD[W - B/ j

= I)- 1 (VXR) x(R)[i(R) - .v'(R)b,

- r - 1)[y(R - r I) - x'(R - r - l)hR. ]},
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