This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Annals of Economic and Social Measurement, Volume 2, number 4
Volume Author/Editor: Sanford V. Berg, editor
Volume Publisher:

Volume URL: http://www.nber.org/books/aesm73-4
Publication Date: October 1973

Chapter Title: The Estimation Of Structural Shifts By Switching Regressions
Chapter Author: Stephen Godfeld, Richard Quandt
Chapter URL: http://www.nber.org/chapters/c9938
Chapter pages in book: (p. 473-483)

THE ESTIMATION OF STRUCTURAL SHIFTS BY switching regressions

by Stephen M. Goldffld and Richard E. Quandt

This paper stirveys several econometric techniques for dealing with switching regressions. More general formulations. designed to produce maximum likelihood estimates. are introduced. and the problems of numtrical opimization discusised. Also examined are extensions to Markor models, simultaneous éfuitions, and switching of causal directions.

1. Introduction

In recent years. increasing attention has been devoted to problems of parameter variation in regression models. This variation has been modeled in two principal ways. The first of the approaches typically allows for an infinite number of possible parameter values and for random parameter variations. In this case the appropriate econometric technique is the random coefficients regression model or one of its particular varieties, such as the error-components model or the linear dynamic recursive model ([8], [12], [22], [32], [37]).

Alternatively, the number of possible parameter changes may be finite (usually small) where we may call each possible state of the parameter vector a regime. In time series applications these regimes may be associated with such things as the state of the business cycle or other more fundamental structural changes. In cross section work different regimes may be posited to hold for behavioral units with different characteristics (e.g., asset size, income, and whether or not rationing is imposed on the unit in a particular market). In either event the appropriate econometric technique is the switching regression model.

The switching regressions model can be formulated as follows. Assume that n observations are available on a dependent variable y and on p independent variables x_{1}, \ldots, x_{p}. Denote the i th observation on the x 's by the vector x_{i}. There may be reason to believe that the observations on y were generated by two distinct regression equations or regimes : i.e.,

$$
\begin{equation*}
y_{i}=x_{i}^{\prime} \beta_{1}+u_{1 i} \quad i \in I_{1} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{i}=x_{i}^{\prime} \beta_{2}+u_{2 i} \quad i \in I_{2} \tag{1.2}
\end{equation*}
$$

where i indexes observations, I_{1} and I_{2} are the sets of indices for which the iwo different regression equations hold, $u_{1 i}$ and $u_{2 i}$ are error terms (customarily but not necessarily assumed to be distributed as $N\left(0, \sigma_{1}^{2}\right)$ and $N\left(0, \sigma_{2}^{2}\right)$) and finally where the β_{1}, β_{2} are the vectors of regression coefficients. In the most general case one would assume that $\left(\beta_{1}, \sigma_{1}^{2}\right) \neq\left(\beta_{2}, \sigma_{2}^{2}\right)$, although in particular instances one or
more of the parameters may be thought to have identical values in the two regimes.'

The circumstance which makes the estimation of (1. I and (1.2) nontrivial and which makes testing the null hypothesis that no switch occurred (i.c. that there is only one regime also nontrivial is that the investigator is assumed to have no exact prior knowledge about how to classify data ponts with respect to the two regimes (1) and (2). ${ }^{2}$ In the absence of such knowledge clearty one mast impose some further structure on the problem if it is to be tratable. As we shall sce below this may be accompleshed in a varicty of ways both detcministically and in the spirit of the random cocflicients model. However, before describing these methods we shall indicate some substantice applications of the switching model.

Some applications. Several recent coonometric models have posited the cxistence of a swith in a regression cquation. The manner in which the sample of obscrations was separated into subsamples corresponding to the two regimes varies from case to casc. We describe three such models. ${ }^{3}$

Hamermesh [21] is concerned with estimating a wage cquation according to which the negotiated anmal wage change for the th firm in the the period. Wit. is a lincar function of the inverse of the uncmployment rate l, and the anmal percontage change in the consmer price index c_{f}. He assume: that at theshold effect is present and manifests itself at $c=2$. (). Hence lic posits two regimes given by

$$
\begin{array}{ll}
H_{i t}=\beta_{1}+\beta_{2} C_{1}{ }^{1}+\beta_{3} c_{1}+u_{1} & \text { if } c_{1} \leq 2 \\
H_{i t}=\ddot{i}_{1}+\ddot{y}_{2} C_{1}^{1}+\ddot{3}_{1} c_{1}+c_{1} & \text { if } c_{1}>2 .
\end{array}
$$

The mechanism by which the two regimes are separated is given here a priori: in principle it wond be desirable to estimate an unknown c^{*} such that the first regime holds whon $c, \leq c^{*}$ and the second in the converse case

Davis. Dempster and Wildassky [9]. [10] allempt to explain the badgetary process of U.S. government agencies. Letting $x_{\text {, }}$ represent the appropriation requested by the Burean of the Budget and $y_{\text {; }}$ the appropriation passed by Congress. the simplest of their models takes the form

$$
\begin{aligned}
& x_{i}=\beta y_{i-i}+u_{t} \\
& y_{1}=\ddot{x_{t}+r_{i}}
\end{aligned}
$$

where u and $r_{\text {a }}$ are normally distributed errors. Because of the change in administriations over time and other possible causes of changes in decision structures they posit the possibility of two regimes. ic.

$$
\begin{aligned}
& (\beta \cdot \because)=\left(\beta_{1} \ddot{\sigma}_{1}\right) \text { if } t \leq t^{*} \\
& (\beta \cdot \ddot{i})=\left(\beta_{2}, \ddot{\beta}_{2}\right) \text { if } t>t^{*} .
\end{aligned}
$$

${ }^{1}$ Spectial constaints are imposed on the problem if it is assumed that the equations representing the 1 wo iegmes intersect at some particular point. See Ando [1]. Hudson [25]. Hinkley 233. 24], and Gallant and Filler : 16.

Whit auch knowledge, hypotiesis lesting can be accomplished at least under certain circumstances. by the Chow test [ti]. The corresponding estimation probicin is solved by obtaining the least quares regression from the pooled data if the (how test produces insignificant resalts and by oblaining separate least squares regressions in the opposite case.
${ }^{3}$ Also sec models by Senguptatand Tintner [33]. [34], Gordon [? 2]. and Fair and Jaffec [13]

They identify the unknown t^{*} by an examination of the residuals from the curations and the Chow F-statistic for varying t^{*}.

Silber [35] is eoncerned with explaining the spread betucen the interest rate on federal agency securitios and comparable maturity Trasury securitios as a function of the size of the agency issue. He posits a model of the form

$$
\begin{array}{ll}
y_{1}=u_{1}+b_{1} s_{1}+x_{1}+u_{1} & s_{1} \leq s^{*} \\
y_{1}=a_{2}+b_{2} s_{1}+x_{1}+v_{1} & s_{1}>s^{*}
\end{array}
$$

where y is the spread, x is a set of other variables (whose cocificients remain constant), s is the size of the issue and s^{*} is the critical size. Silber cestimated this model by use of a variant of a technique to be described beiow and found strong supponf for the switching hypothesis. ${ }^{4}$

2. Theoretical Results

Several econometric approaches have been introduced to deal with switching regressions under a variety of conditions. The principal difference among conditions is whether natire's choice between the wo regimes is assumed to be stochastic, i.e. depend on unknown probabilities $\%$ and $1-i$ respectively or deterministic in the sense that it depends on the compatison of an observable variable z with an unknown threshhold or cutoff value z_{0}. where z may cither be one of the regressors or an entirely extraneous variable. A spectial cast of this latter mechanism is one in which the variable z is the time index of the observations.

Deterministic switching based on time index. Assume that (1.i) holds for $i \leq i^{*}$ and (1.2) holds $i>i^{*}$. Quandt has proposed ([28]. [31]) that the two regimes. be estimated by first maximizing the likelihood conditional on i^{*}

$$
\begin{align*}
L\left(y \mid i^{*}\right)= & \left(\frac{1}{2 \pi}\right)^{n: 2} \sigma_{1}^{n} \sigma_{2}^{*} \sigma_{2}^{\left(n-i^{*}\right)} \exp \left\{-\frac{1}{2 \sigma_{1}^{2}} \sum_{i=1}^{i}\left(y_{i}-x_{i}^{\prime} \beta_{1}\right)^{2}\right. \tag{2.1}\\
& \left.-\frac{1}{2 \sigma_{2}^{\overline{2}}} \sum_{i=i+1}^{n}\left(y_{i}-x_{i}^{\prime} \beta_{2}\right)^{2}\right\}
\end{align*}
$$

and then choosing as the estimate for i^{*} that value which maximizes the maximal likelihoods $L\left(y / i^{*}\right)$. For testing the null hypothesis that no switch took place a likelihood ratio test is suggested with the likelihood ratio being given by $\mu=$ $\hat{\sigma}_{1}^{i+\hat{\sigma}_{2}^{\left(n-i^{(t)}\right.} \hat{\sigma}^{n}}$ where $\hat{\sigma}$ is the estimated standard deviation of the residuals from a single regression over the entire sample. ${ }^{5}$

The previcus technique provides a method for both estimation and testing. There are several other techniques which just address the testing problem. Brown and Durbin [6] have introduced a test based on recursive residuals defincd in the

[^0]following way. Let $\hat{\beta}_{i}$ be the least squares estimate of β based on the first i observaldons and let X_{i} be the matrix having as its rows the vectors $x_{1}^{\prime}, x_{2}^{\prime} \ldots, x_{i}^{\prime}$. Then, defining
$$
w_{i}^{\prime}=\frac{y_{i}-x_{i}^{\prime} \hat{\beta}_{i-1}}{\left[1+x_{i}^{\prime}\left(X_{i-1}^{\prime} \bar{X}_{i-1}\right)^{-i} x_{i}\right]^{T-2}} \quad i=p+1, \ldots n
$$
it can be shown that under the null hypothesis of no switch, $w_{i} \sim N\left(0 . \sigma^{2}\right)$. The test for shifting β is based on departures from zero of the cumulative sums
$$
C_{i}=\frac{1}{s} \sum_{j=p+i}^{i} w_{j} \quad i=p+1, \ldots, n
$$
where $s^{2}=\sum_{j=p+1}^{n} w_{j}^{2} /(n-p)$. At the 0.05 level of significance the null hypothesis is rejected if the sequence of C_{i} 's crosses either the line connecting $(p, 0.948 \sqrt{ } n-p)$ and $(n .2 .844 \sqrt{n-p})$ or the line connecting $(p,-0.0948 \sqrt{n-p})$ and (n

Farley and Hinich [14] and Farley, Hinich and McGuire [15] devise an alternative specification based on the assumption that the unknown switching point is equally likely to have occurred at each value of the index i. If i^{*} were known, the null hypothesis that the regression coefficients before and after i^{*} are the same could be tested by estimating the regression

$$
y_{i}=x_{i}^{\prime} \beta+z_{i}^{\prime} \delta+u_{i}
$$

where $z_{i}=x_{i}$ if $i>i^{*}$ and $z_{i}=0$ otherwise and testing the hypothesis $\delta=0$ Since i^{*} is unknown, they propose replacing z_{i} by the sum of all possible z_{i} 's: hence z_{i} becomes $i x_{i}$. The null hypothesis then is that $\delta=0$ in the regression

$$
y_{i}=x_{i}^{\prime}(\beta+i \delta)+u_{i} .
$$

Some finite sample comparisons of this test with the likelihood ratio test proposed by Quandt and with the Chow test based on the assumption that $i^{*}=i / 2$ are reported in [15].

Deterministic switching based on other variables. Each of the previous three procedures can be adapted to the situation in which the switching mechanism is controlled by a single variable with observations z_{i}, provided that there is no serial correlation of the disturbances and there are no lags present. One simply rearranges the observations in increasing (or decreasing) order of z_{i} and applies the previous techniques with no essential change

A recent and more general formulation, due to Goldfeld and Quandt [19] assumes that there exist variables with observations $z_{i 1}, \ldots, z_{i s}(i=1, \ldots, n)$ and that nature selects between regimes 1 and 2 according to whether $\sum_{l=1}^{s} \pi_{l z_{i l}} \leq 0$ or >0 where the π_{t} are unknown coefficients. (The simplest possible case of this type is when $s=2, z_{i 2}=-1$ and $\pi_{1}=1$ a priori. In that case the classification depends on the comparison of a single z-variable, $z_{i 1}$, with an (unknown) cutoff point π_{2} and is formally the same as the problems of Hamermesh or Silber). Letting $D_{i}=0$ if $\Sigma_{i=1}^{s} \pi_{1} z_{11} \leq 0$ and $D_{i}=\mathrm{j}$ otherwise, the two regimes may be

$$
\begin{equation*}
y_{i}=x_{i}^{\prime}\left[\left(1-D_{i}\right) \beta_{1}+D_{i} \beta_{2}\right]+\left(1-D_{i}\right) u_{1 i}+D_{i} u_{2 i} \tag{2.2}
\end{equation*}
$$

in which the β 's, σ 's and D 's must be estimated. In order to render this problem tractable, D_{i} may be approximated by a continuous function. One approximation that has been successful is given by ${ }^{6}$

$$
\begin{equation*}
D_{i}=\int_{-\infty}^{i} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{\xi^{2}}{2 \sigma^{2}}\right\} d \xi . \tag{2,3}
\end{equation*}
$$

The loglikelihood function is

$$
\begin{align*}
\log L= & -\frac{n}{2} \log 2 \pi-\frac{1}{2} \sum_{i=1}^{n} \log \left[\sigma_{1}^{2}\left(1-D_{i}\right)^{2}+\sigma_{2}^{2} D_{i}^{2}\right] \tag{2.4}\\
& -\frac{1}{2} \sum_{i=1}^{n} \frac{\left(y_{i}-x_{i}^{\prime}\left[\beta_{1}\left(1-D_{i}\right)+\beta_{2} D_{j}\right]\right)^{2}}{\sigma_{1}^{2}\left(1-D_{i}\right)^{2}+\sigma_{2}^{2} D_{i}^{2}} .
\end{align*}
$$

Replacing D_{i} by (2.3) in(2.4), the likelihood function may be maximized with respect to the β 's, π 's and the σ introduced in (2.3) which has been interpreted to measure the goodness of the discrimination between the regimes. Unless discrimination is perfect. some of the estimated \hat{D}_{i} will not be exactly 0 or 1 . One variant of the above D-method which handles this problem is to estimate in a second stage separate regressions as in (1.1) and (1.2) where the sets I_{1} and I_{2} are defined by'

$$
\begin{aligned}
& I_{1}=\left\{i \mid \sum \hat{\pi}_{l} z_{i l} \leq 0\right\} \\
& I_{2}=\left\{i| | \hat{n}_{l} z_{i l}>0\right\} .
\end{aligned}
$$

Let the maximum of the likelihood function (the logarithm of which is (2.4)) be denoted by $L\left(\hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\sigma}_{1}, \hat{\sigma}_{2}, \hat{\pi}\right)$, and the maximum under the null hypothesis by $L(\hat{\beta}, \hat{\sigma})$. The natural likelihood ratio test statistic is

$$
\mu=\frac{L(\hat{\beta}, \hat{\sigma})}{L\left(\hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\sigma}_{1}, \hat{\sigma}_{2}, \hat{\pi}\right)}
$$

and $-2 \log \mu$ appears in finite samples to be well approximated by the χ^{2} distribution with $p+s+2$ degrees of freedom.

Stochastic choice of regimes. On the assumption of normality of error terms the dependent variable y has the following probability density function (pdf) in the two regimes: ${ }^{8}$

$$
\begin{align*}
& f_{1 i}=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(y_{i}-x_{i}^{\prime} \beta_{1}\right)^{2}\right\} \tag{2.5}\\
& f_{2 i}=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(y_{i}-x_{i}^{\prime} \beta_{2}\right)^{2}\right\} . \tag{2.6}
\end{align*}
$$

${ }^{6}$ Alternatives are the Cauchy integral $D_{i}=1 / 2+1 / \pi \tan ^{-1}\left(\sum_{i=1}^{j} \pi_{i} z_{i}\right)$ or the logistic $D_{i}=$ $\left(1+\exp \left(-\sum_{i=1}^{s} \pi_{l} z_{i j}\right)^{-1}\right.$ where the scale parameter corresponding to σ in (2.3) has been suppressed. See Bacon and Watts [2]. In some cases it is possible to dispense with the approximation of D_{i}. See, for exampie, Gallant and Fuller [16].
' An alternative in eitner case is not to estimate σ in the approximation (2.3) but to fix it is some small value.
${ }^{8}$ The reader will observe that we have replaced the variances $\sigma_{1}^{2}, \sigma_{2}^{2}$ by a common variance σ^{2}. As was pointed out to us by P. A. V. B. Swamy, this will insure the consistency of the maximum likelihood estimator. Actually, all that is necessary is that $\sigma_{1}^{2}=k \sigma_{2}^{2}$ where k is known. For simplicity, here and in what follows, we have assumed $k=1$.

It has been suggested by Quandt ([29], [30]) that one may think of nature choosing regimes 1 and 2 with unknown probabilities $\%$ and $1-$ - The pulf of y_{i} then is" (2.7)

$$
h(y)=i f_{1 i}+(1-i) f_{2 i}
$$

and the appropriate fogtikctiluod function is

$$
\begin{equation*}
\log L=\sum_{i=1}^{n} \log \left[i f_{1 i}+(1-i) f_{2 i}\right] \tag{2.8}
\end{equation*}
$$

which is to be maximized with respeet to the parameters of (2.5). (2.6) and $\%$ Tests of the null hypothesis again may employ the natural likelihood ratio.

3. Extensions of the Analisis

Simple cxtensions. Both the D-method and the i-method may be extended to the case of more than two regimes. If r regimes are postulated the pdf corresponding to (2.7) in the i-method becomes

$$
h\left(y_{i}\right)=\sum_{j=1}^{\prime} i_{j} f_{j i}
$$

with $\sum_{j=1}^{r} i_{j}=1$. For the D-method we define $r-1$ sets of variables D_{i}^{i} $(j=1 \ldots, r-1)$ similarly to (23). For convenience also define $D_{i}^{\prime \prime}=1$ and $D_{i}^{r}=0$. The equation representing the k th regime is then multiplied by $\prod_{j=1}^{k} D_{i}^{i} \prod_{j-k}^{r}$ (($-D_{i}^{i}$) and the resulting equations are alded together to form a composite equation.

Another straightforward generalization is to assume that the probability; in the \dot{z}-method is itself a function of some variable z. The resulting procedure is a hybrid between the D-method and the i-method. The likelihood function is as before. ${ }^{1 /}$

A Markor model. It is an essential feature of the i-method that the probability that nature selects regime 1 or 2 at the i th trial is independent of what state the system was in on the previous trial. Goldfeld and Quandt [19] recently relaxed this assumption by positing that the transitions of the system between the two states is governed by the constant transition matrix T. If $\lambda_{i}=\left(\lambda_{1 i}\left|-\lambda_{1 i}\right|\right.$ denotes the vector of probabilities that regimes 1 or 2 will be chosen at the ith trial. we have
and

$$
\ddot{i}_{1}={\ddot{u_{i-1}}} T
$$

$$
\ddot{u}_{i}=\ddot{i}_{1} T^{i}
$$

It is straightforward to express the elements of $\%$ in terms of the elements of 7 : The loglikelihood function (2.8) is then written as

$$
\begin{equation*}
\log L=\sum_{i=1}^{n} \log \left[i_{1 i} f_{1 i}+\left(1-i_{1 i}\right) f_{2 i}\right] \tag{3.1}
\end{equation*}
$$

which needs to be maximized with respeet to $\beta_{1}, \beta_{2}, \sigma^{2}$ and the elements of $T .^{11}$

[^1]A further extension is possible if one assumes that the elements of T are themselves functions of some extrincous variable $z .^{1 ?}$

Serial correlation of disturbences. None of the methods disenssed so far has treated the case of error structures involving autucorrelation. In ordinary regression models it is customary to introduce autoeorrelation by assuming a lirst-order (more rarely a second-order) Markov process for the error term as in (3.2)

$$
u_{t}=\rho u_{t-1}+z_{t}
$$

In the present case more alternatives arise, partly because of the regine-switehing mechanism and partly hecause one may wish io approach the problem either with the D-method or the λ-method.

The first possibility is to assume that

$$
\begin{align*}
& u_{1 t}=\rho_{1}\left[\left(1-D_{t-1}\right) u_{1 t-1}+D_{t-1} u_{2 t, 1}\right]+i_{1 t} \tag{3.3}\\
& u_{2 t}=\rho_{2}\left[\left(1-D_{t-1}\right) u_{1,-1}+D_{t, 1} u_{2 t-1}\right]+i_{21}
\end{align*}
$$

if the D-method is employed. where $\varepsilon_{1 t} \sim N\left(0, \sigma_{1}^{2}\right)$ and $\varepsilon_{21} \sim N\left(0, \sigma_{2}^{2}\right)$ and inde pendent of each other.

The equivalent issumption for the i-method (with $\sigma_{1}^{2}=\sigma_{2}^{2}$) is
(3.4)

$$
\begin{array}{ll}
u_{1 t}=\rho_{1} u_{1 t-1}+\varepsilon_{1 t} & \text { with probability } \lambda^{2} \\
u_{1 i}=\rho_{1} u_{2 t-1}+\varepsilon_{1 t} & \text { with probability } \lambda(1-i) \\
u_{2 t}=\rho_{2} u_{1 t-1}+\varepsilon_{2 t} & \text { with probability } \lambda(1-i) \\
u_{2 t}=\rho_{2} u_{2 t-1}+\varepsilon_{2 t} & \text { with probability }(1-i)^{2} .
\end{array}
$$

The essence of the assumption is that there are two autocorrelation cocfficients each associated with one of the regimes. which are applied to the error term of the previous period. irrespective of which regime that error term came from. The appropriate likelihood functions can be derived but are not presented here because of their relative complexity.

An alternative specification. originally suggested to the authors by J. D. Sargan, posits that if in period t regime 1 operates and in $t-1$ regime : operated as well, the error term follows the ustal Markov process: if in period,-1 regime 2 operated (i.e., a switch took place) then a nonautocorrelated error term is generated. Accordingly. for the D-method

$$
\text { (3.5) } \begin{aligned}
u_{1 t} & =\left(1-D_{t-1}\right)\left(\rho_{1} u_{1 t-1}+\varepsilon_{1 t}\right)+D_{t-1} \varepsilon_{1 t} \\
u_{2 t} & =\left(1-D_{t-1}\right) p_{1-1} u_{1 t}\left(\rho_{2} u_{2 t-1}+\varepsilon_{1 t}+\varepsilon_{2 t}\right)+\left(1-D_{t-1}\right) \varepsilon_{2 t}=D_{t-!} p_{2} t_{2 t-1}+\varepsilon_{2 t}
\end{aligned}
$$

and for the i-method

$$
\begin{array}{ll}
u_{1 t}=\rho_{1 i_{1+1}}+\varepsilon_{1!} & \text { with probability } i^{2} \tag{3.6}\\
u_{1 t}=\varepsilon_{1 t} & \text { with probability }\langle(1-i) \\
u_{2 t}=\varepsilon_{2 t} & \text { with probability }\langle 1-i) \\
u_{2 t}=\rho_{2} u_{2 t-1}+\varepsilon_{2 r} & \text { with probability }(1-i)^{2} .
\end{array}
$$

${ }^{12}$ [18] also contains several other switching models. One model ailous the choice of a regime to depend on the temporal pattern of regime choices. Another allows for a hybrid transtion regime between the two pure regimes. Wilton [39] has also considered a special case of this last problene.

The corresponding likelihood functions can again be derived but are also omitted here. In eit her formulation estimates of all parameters can be obtained by maximizing the likelihood function. ${ }^{13}$

Switching in simultaneous equations. A two-regime problem may be said to exist in a system of simultaneous equations if
and

$$
\begin{equation*}
B_{1} y_{i}+\Gamma_{1} z_{i}=u_{1 i}, \quad u_{1 i}-N\left(0 . \Sigma_{1}\right) . \quad i \in I_{1} \tag{3.7}
\end{equation*}
$$

$$
\begin{equation*}
B_{2} y_{i}+\Gamma_{2} z_{i}=u_{2 i}, \quad u_{2 i} \sim N\left(0, \Sigma_{2}\right), \quad i \in I_{2} \tag{3.8}
\end{equation*}
$$

where $B_{1}, B_{2}, \Gamma_{1}, \Gamma_{2}$ are the usual coefficient matrices. y_{i} and z_{i} the i th observation on the vectors of G endogenous and K exogenous variables respectively and I_{1} and I_{2} the index sets defined in (1.1) and (1.2). The formulation of (3.7) and (3.8) allows for various special cases such as the case in which only one equation in the system is subject to switching: in that event B_{1} and B_{2} are the same except for the row corresponding to the switching equation and similarly for Γ_{1} and Γ_{2}.

Either the D-method or the λ-method (with $\Sigma_{1}=\Sigma_{2}$) may be applied to the problem, depending on the specification of the switching mechanism as described in Section 2. In the case of the D-method we define

$$
\begin{aligned}
& B_{i}=\left(1-D_{i}\right) B_{1}+D_{i} B_{2} \\
& \Gamma_{i}=\left(1-D_{i}\right) \Gamma_{1}+D_{i} \Gamma_{2} \\
& \Sigma_{i}=\left(1-D_{i}\right)^{2} \Sigma_{1}+D_{i}^{2} \Sigma_{2} .
\end{aligned}
$$

The joint pdf for the vector y_{i} then is
(3.9) $\left.h\left(y_{i}\right)=(2 \pi)^{-6 / 2}\left(\operatorname{det} \Sigma_{i}\right)^{-1 / 2} \mid \operatorname{det} B_{i}\right\} \exp \left\{\left(-\frac{1}{2}\left(B_{i} y_{i}+\Gamma_{i} z_{i}\right) \Sigma_{i}^{-1}\left(B_{i} y_{i}+\Gamma_{i} z_{i}\right)\right\}\right.$ from which the \log likelihood function is obtained as $\log L=\Sigma \log h\left(y_{i}\right)$. In the
case of the i-method we have

$$
\begin{equation*}
h\left(y_{i}\right)=\lambda h_{1}\left(y_{i}\right)+(1-\lambda) h_{2}\left(y_{i}\right) \tag{3.10}
\end{equation*}
$$

Where $h_{1}\left(y_{i}\right)$ and $h_{2}\left(y_{i}\right)$ are the joint pdf's for y_{i} under (3.7) and (3.8) respectively. The loglikelihood is again straightforward. ${ }^{14}$

In the case of simultaneous equations, it is necessary to verify that in an econometric model incorporating switching between regimes the parameters are identified. It is plausible to assume that all parameters are identified separately in (3.7) identified. It can atso be shown that the $\hat{\lambda}$-combination leaves the composite system D-metiod if (a) all D_{i} equal 0 or 1 the composite system is identified under the the same a priori restrictions as the corresponding equation in in (3.7) satisfies Switching of cuusal directions. It is interesting to consider (he posis). the difference between two regimes may consist only in which variable is denility that

[^2](endogenous) and which is independent (exogenons). For simplicity we shall consider the single eywation case.

Let the two regimes be given by

$$
\begin{array}{ll}
y_{i}=a_{1}+b_{1} x_{i}+u_{1 i} & i \in I_{1} \\
x_{i}=a_{2}+b_{2} y_{i}+u_{2 i} & i \in I_{2} \tag{3.12}
\end{array}
$$

where, in the first regine x_{i} and in the second regime y_{i} is (reated as nonstochastic and identical in repeated samples. and where $u_{1 i} \sim N\left(0 . \sigma_{1}^{2}\right), u_{2 i} \sim N\left(0 . \sigma_{2}^{2}\right)$. A calse in point might be where either x or y but not both could be chosen as an exogenous policy instrument and the policy maker shifts between instruments at unknown points of time. More realistically such a problem is likely to be found in the context of a macrocconometric model of the simultaneous equations variety.

It is obvious that if either (3.11) or (3.12) were estimated on the assumption that all observations were generated by it. the estimates would not be consistent. We have explored the possibility of estimating such a model by both the D and i techniques but we have encountered conceptual problems in each instance. Therefore. the proper method for estimating this rather interesting model remains an open question.

4. Concluding; Remarks

Numerous approaches exist to the several specifications of switching regression equations. Some of these such as Quandt ([28]. [31]). Brown and Durbin [6]. and Farley and Hinich [14] can easily be incorporated in standard regression packages for computation. Others namely the D - and i-methods and their variants, are designed to produce maximum likelihood estimates and invariably involve problems of numerical optimization. These problems have been found soluble both in sampling experiments and in realistic contexts. On the basis of fairly extensive Monte Carlo experiments in single-equation models and somewhat more restricted experiments in simultancous equation models both the D - and \dot{A}-method appear to have acceptable small sample properties. The Fair and Jaffee model of the housing market [12] was reestimated using both methods as well as the Markoy generalization of the λ-method and yielded reasonable conclusions in each instance.

Princeton Unicersity

Riferences

[1] Ando. A.. "On a Problem of Aggregation." Internatiznal Ecomomic Rerie'w. 12 (1971). 306 3li.
[2] Bacon. D. W. and D. G. Watls. "Estimating the Transition Between Two Intersecting Straight Lines." Biometrika. 58 (1971). 525-534.
[3] Barten. A. P. and L. S. Bronsard, "Two-Stage Least-Squares Estimation with Shifts in the Structural Form.: Econometrica, 38 (1970). 938941.
[4] Behboodian. J., "On the Distribution of a Symmetric Statistic From a Mixed Population." Technometrics. 14 (1972), 919-923.
[5] Bhattracharyya. G. K. and R. A. Johnson. "Non-parametric Tests for Shift at an Unknown Time Point." Annals of Math. Stat. 39 (1968). 1731-43.
[6] Brown. R. L. and J. Durbin. *Methods of Investigating Whether a Regression Relationship is Constant Over Time." Paper presentedat the European Statistical Meeling. Amsterdam. 1968.
[7] Chow. G.. "Tests of the Equahity Reiweon Two Sots of Cocthements in Two Linear Regressions. Econometrica, 28 (1960). $561 \cdot 605$.
8] Cooley. I. F. and I: (. Presiont. "An Adaptive Regresian Model." Intornational ficomami
(1) Davir Oto a M A

[io] Davis Ott A Merne LX (1900). 529547
Empirical Study of Congressional Appropriations... Ansy. 'On the Process of Budgeting II: An "al. North Holland Pablishing. 1971.
[11] Day. N. E. . Fstimating the Comiponen
Day. N. E, \because Fstimating the Components of a Mixture of Norrmal Distributions." Biemerrika. So
(1969). 463474 .
[12] Dancan. D. B.
Regression Analysas." Journal of ' ${ }^{\text {D }}$ Ancar Dynamic: Recarsise Estimatien from Vicwpoint of
[13] Fair, R. C.. and D). M. Jaflee of Methods aican Sunavieal Assuciaiom. 67 (1972). 815 S2!.

14] Farley, J. U. and M. J. Hin

[15] Farley. J. U.. M. J. Hinich and T Ws MeG. 65 (1970). 13201.329.
variate Lincar Time Scries Model." Carneguire "Testing for a Shift in The Slopes of a Multi1973.
[16] Gallant. A. R. and W. A. Fuller. "Fitting Segnented Polynomial Regression Models Wheose Join Points Have to be Estimated, Journal of the Americom Sialisitad Ansociaiono 68 (1973 ;
144-147.
[17] Goldfeld. S. M.. H. H. Kelejian, and R. E. Quandt. 'Least Squares and Maximam Likeliheod Estimation of Switehing Regressions." Eccnometrie Research Prograin. Reseanch Memorandmun
No. 130. Princeton University. Nosenter $197!$
[18] Goldfeld. S. M. and R E Quersity. Nosember 1971.
[18] Eoldeld. S. M. and R. E. Quandt. "A Markov Model for Switching Regressions." Jriurnal of
[19] Goldfeld 5 (1973). 3-!6.
Goldfeld. S. M. and R. E. Quandt. Nomlinear Methods in Econometrics. North Hoiland Press.
1972, ch. 9.
201 Gordon. R
Gordon. R.J., "Wage Price Controls and the Shifting Phillips Curve." Brooking. Papers on
Economic Actieili (1972. \#2). pp. 385430 .
[21] Hancermesh \dot{S} (1972. \#2). pp. 385430
of Eco:omics. LXXXIV (1970), 50!-517.
[22] Hildreth C and J D Houck Su 1 ?
Journal of the American Siduishicul Associations for a Lincar Model with Random Coefticients."
[23] Hinkley. D. V.. -Inference About Thsoctation. 63 (1968). 584.595. (1969), 495-504.
[24] Hinkley. D. V., ${ }^{-}$
tion. 66 (1971), 736-743.
[25] Hudson. D. J.. "Fitting
Hudson. D. J.. "Fitting Segmented Curves Whose Join Points Have to be Estimated." Journal
of the Antericun Shatisical Association. 61 (1966) 1097 (120
[26j Maddala. G. S and F. D Nelson - I 61 (1966). 1097-1129
Markets in Disequilibrium," Department of Economics Variable Methods for the Estimation of Paper 73-7. 1973.

Gee V F
Association. 65 (1970). 1109-1124. "Piecesise Regression." Johrnal of ahe American Staishical
28] Quandt, R. E.. 'The Estimation.
Separate Regimes.* Journal of the the Parameters of a Linear Regression System Obeying Two
29] Quandt. R. E.. ${ }^{2}$ A Further Approath to the Estintical. Assuctation. 53 (1958). 873.880
Research Program Research Memorandum No. 122, Prineton Unitching Regressions." Econometric
[30; Quandt. R. E.. ${ }^{\text {A }}$ A New Approach to Estinmiting Switehine Ren University, Mareh 1971.
Sıatisucal Assocation. 67 (1972). 306-3i0.
[31] Quandt, R. E. : Tests of the Hypothes
Regimes." Journal of the American Staristical Associauour 551960 System Obeys Two Separate
[32] Rosenberg. B.. "Estimation of Stationary Stochastion. 55 (1960). 324 330.
Journal of the Americam Stulisucal Associatom. 67 (1972) Regression Parancters Reexamined..
[33] Sengupta. J. K. and G. Tintner, *An Approich. 67 (1972). 650-654.
with Applications." Problems of Economic Dinamics and Plamicory of Economic Des clopment
Kalecki. FWN Polish Seientific Publishers. 1966.
[34] Sengupta, J. K. and G. Tintner. ${ }^{\circ}$ On Some A
Eeonomic Growth," Kiklos. $16(1963) .47-61$. Aspeets oi Trend in the Aggregative Models of
[35] Silber, W. L.., "The Marker for Federall Agency Sceurities: Is There an Optimum Size of Issue?". mimeo.
[36] Sprent. P.. "Some Hypotheses Concerning Two-Phase Regression Liacs." Biemutries. i7 (1961). 634-45
[37] Swamy. P. A. V. B.. EEticien Inference in a Random Cocficients Regression Modet,. Econometrica. 38 (1970). $311-323$.
[38] Thomas, E. A. C.. "Distribution Frec Tests for Mixed Probability Distributions," Biometrika. 56 (1969). 475 484.
[39] Wilton. D. A., "Structural Shift with an Inter-siructural Transition Function." Instutute for Fconomic Research. Queens University. Discussion Paper \#92. Oct. 1972

[^0]: ${ }^{4}$ This example is one in which it seems desirable to impose a "mecting condition." ic.. that at $s_{t}=s^{*}$ he two regimes stould give the same y_{t}. Sither did not do this but his unconsraned estimates nearly satisfied the condition. See also footnole 1 .
 ${ }^{5}$ The evidence in [3i] suggested some problems with this test but more recently it has been found to be of use for certain ranges of the true value of $i^{*}[15]$. We have found. and in is atso reported in [S] that a Chow-lest. used with caution and as if i^{*} were known a priori is also satisfactory

[^1]: "The formulaton ss chesely retated to the quevion uf mixture deribus see is obviousi) abso spiritualis close to the randonn coefticiet mixture dentributions See [4]. [11]. [3\%]. It the coefficient vector
 ${ }^{11}$ For mere detail sec [17].
 ${ }^{11}$ See footnote 8

[^2]: ${ }^{13}$ For a related contribution the
 ${ }^{12}$ Barten and Bronsard [3] have considered shift points are known a priori. It is possible to combine a multivariat two stage least squares when the described at the beginning of Section 2 with the Barten-Bronstivariate generalization of the technique with unknown shift points. This will be the subject of a forthcoming to yield a two stage procedure

