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Tabu search for the single row facility layout problem
in FMS using a 3-opt neighborhood

Ravi Kothari
Diptesh Ghosh

Abstract

Since material handling agents in a FMS are most efficient when moving in straight lines,
a common layout of machines in a FMS is a single row layout. This allows a floor designer to
model the problem of generating an optimal machine layout in a FMS as a single row facility
layout problem (SRFLP). Due to the computational complexity involved in solving the SRFLP,
researchers have developed several heuristics to solve large instances of the problem. In this
paper, we present a tabu search implementation based on a 3-opt neighborhood search scheme.
We also present a technique to speed up the exhaustive 3-opt neighborhood search process
significantly. Our computational experiments show that speed up of the 3-opt search is effective,
and our tabu search implementation is competitive. The results we present here are better
than the currently known best layouts for several large sized benchmark SRFLP instances, and
competitive for other benchmark instances.
Keywords: Flexible manufacturing system; Single Row Facility Layout; Facility layout; Tabu
Search

1 Introduction

A flexible manufacturing system (FMS) is a production system composed of three major compo-
nents; a set of machines, a flexible material handling system like a robot or an automated guided
vehicle (AGV) and a computer system that controls the overall functioning of the system. FMS
is different from a classical systems because of its higher degree of automation, comparably fewer
number of machines, frequent set-ups and higher volume and flow of information (Solimanpur et al.
2005). Machines in any FMS are an important resource and it is critical to ensure that they do
not unnecessarily remain idle because of a badly designed material handling system. Therefore, an
important problem in a FMS is to obtain a layout of machines such that material handling is the
most efficient. The literature (see, e.g. Heragu and Kusiak 1988, Solimanpur et al. 2005) points out
that the most efficient material handling occurs when robots or AGVs move in a straight line, and
hence the problem of laying out machines is one of laying them out in a single row. This constraint
motivates the designer in a FMS to model the machine layout problem using the well-known single
row facility layout problem (SRFLP). This constraint forces the designer of a FMS to model it using
a single row facility layout problem (SRFLP). The objective in this problem is to minimize the total
material handling expense by using an optimal layout of machines.

The SRFLP is the NP-hard problem of arranging n facilities of given lengths on a line so as to
minimize the weighted sum of the distances between pairs of facilities. The size of a SRFLP instance
is the number of facilities in the problem. Formally stated the problem is defined as follows:

Given: A set F = {1, 2, . . . , n} of n > 2 facilities, where facility j has length lj , and weight cij for
each pair (i, j) of facilities, i, j ∈ F , i 6= j.
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Figure 1: Single row machine layout with AGV

Objective: To find a permutation Π = (π1, π2, . . . , πn) of facilities in F that minimizes the expres-
sion ∑

1≤i<j≤n

cπiπjdπiπj

where dπiπj
= lπi

/2 +
∑
i<k<j lπk

+ lπj
/2 is the distance between the centroids of facilities πi

and πj when the facilities in F are ordered as per the permutation Π.

This problem was first proposed in Simmons (1969) and was shown to be NP-Hard in Beghin-Picavet
and Hansen (1982).

In the context of a FMS, the facilities are the machines and the weights cij between a machine pair
(i, j) is the material handling expense between the machines. The distance between the machines is
usually the distance between their centroids. The designer of a FMS needs to solve the SRFLP to
come up with a optimal layout of the machines.

In this paper our objective is to present a technique to obtain good quality layouts of machines
for large sized FMSs. The next section provides an overview of the literature and points out an
important aspect of neighborhood search which this study addresses in order to come up with good
quality layouts for large sized FMSs.

2 Review of the literature

The SRFLP has been used to model numerous practical situations. It has been a model for arrange-
ment of rooms in hospitals, departments in office buildings or in supermarkets (Simmons 1969),
arrangement of machines in flexible manufacturing systems (Heragu and Kusiak 1988, Braglia 1997,
Solimanpur et al. 2005), assignment of files to disk cylinders in computer storage, and design of
warehouse layouts (Picard and Queyranne 1981).

Various exact and approximate solution approaches to the problem have been proposed since
1969. Kothari and Ghosh (2011) provides a current and comprehensive review of the literature
on the SRFLP. Several exact methods have been applied to solve the SRFLP to optimality in the
literature. These methods include branch and bound (Simmons 1969), mathematical programming
(Love and Wong 1976, Heragu and Kusiak 1991, Amaral 2006; 2008), cutting planes (Amaral 2009),
dynamic programming (Picard and Queyranne 1981, Kouvelis and Chiang 1996), branch and cut
(Amaral and Letchford 2011), and semidefinite programming (Anjos et al. 2005, Anjos and Vannelli
2008, Anjos and Yen 2009). These methods have been able to obtain optimal solutions to SRFLP
instances with up to 42 facilities. This means that single row machine layout problems in FMSs
with up to 42 machines can be solved optimally using these techniques.

For solving larger sized SRFLP instances, researchers have focused on heuristics. These heuristics
are of two types; construction and improvement. Heragu and Kusiak (1988) presented two construc-
tion heuristics to solve the machine layout problem in FMS. In both heuristics, in each iteration, an
adjusted flow matrix was computed based on the weight matrix and the solution built before the
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iteration. Then a pair of facilities was selected and connected to form a part of the solution. Another
construction heuristic was presented in Kumar et al. (1995). This heuristic ignored the lengths of
the facilities, and tried to assign facilities with the largest inter-facility weight to adjacent locations
in the solution. It differed from other heuristics in the literature since it allowed the assignment
of more than one facilities to an existing sequence of facilities at any iteration in the heuristic. A
third greedy heuristic was presented in Braglia (1997). It derived ideas from another heuristic for a
scheduling problem. Other than these, an insertion based two step heuristic was proposed in Djellab
and Gourgand (2001) to solve the SRFLP.

However construction heuristics have since been superseded by improvement heuristics in the
literature. Improvement heuristics based on simulated annealing (Romero and Sánchez-Flores 1990,
Kouvelis and Chiang 1992, Heragu and Alfa 1992) were used to obtain single row machine layouts
for FMSs. Later, ant colony optimization (Solimanpur et al. 2005), and scatter search (Kumar et al.
2008) have been used to solve the machine layout problems in FMSs. Tabu search (Samarghandi
and Eshghi 2010), particle swarm optimization (Samarghandi et al. 2010), and genetic algorithms
(Datta et al. 2011) have also been used to solve the SRFLP. Among improvement heuristics, the tabu
search implementation in Samarghandi and Eshghi (2010) and the genetic algorithm implementation
in Datta et al. (2011) yield best results for benchmark SRFLP instances of large sizes. The recency
of these studies clearly demonstrate continuing interest of researchers to solve the single row machine
layout problem in FMS.

In this paper, we present a tabu search algorithm to obtain the layout of machines in large sized
FMSs. The 3-opt neighborhood search was presented by Heragu and Alfa (1992) and since then it
has never been used in the literature. So we use it with our tabu search algorithm for the SRFLP.
The only tabu search implementation for the SRFLP was presented in Samarghandi and Eshghi
(2010). The implementation embeds a 2-opt neighborhood search in the tabu search implementa-
tion. Apart from using a different neighborhood search technique, our tabu search implementation
differs from the one in Samarghandi and Eshghi (2010) in several places. It is interesting to note that
Samarghandi and Eshghi (2010) remark in their paper that examining the complete 2-opt neighbor-
hood of a permutation “can be very time consuming or even impossible” (see p.101 in Samarghandi
and Eshghi 2010). They therefore sample the 2-opt neighborhood of permutations to obtain the
2-opt neighbors. Drawing from the above statement, examining the 3-opt neighborhood would be
highly time consuming or may be impossible as the complexity of a 3-opt neighborhood search is
O(n5) while the same for a 2-opt neighborhood search is O(n4). In this paper we present techniques
to speed up the search significantly. We reduce the complexity of search from O(n5) to O(n4) which
also helps in a time reduction of more than 90% in the neighborhood search process.

The remainder of the paper is organized as follows. In Section 3 we present techniques to speed
up searching the 3-opt neighborhood of a solution to a SRFLP instance. We then describe our
tabu search implementations using these speed up techniques in Section 4 and present results of our
computational experiments in Section 5. We conclude the paper in Section 6 with a summary of the
work and directions for future research.

3 Speeding up 3-opt neighborhood search

The 3-opt neighborhood search has been used only in an experimental analysis in Heragu and Alfa
(1992). It has never been used in local search based approaches to the solve the SRFLP. In the
3-opt neighborhood, a neighbor of a permutation is obtained by interchanging the locations of at
most three of the facilities in the permutation. There are five possibilities of such an interchange,
three of which corresponds to permutations in which the locations of exactly two of the facilities
have been interchanged and another two in which the locations of exactly three of the facilities
have been interchanged. Clearly, for a SRFLP instance of size n, there are O(n3) neighbors of each
permutation in the 3-opt neighborhood, and since computing the cost of a permutation requires
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O(n2) time, a näıve implementation of the 3-opt neighborhood requires O(n5) time to search the
neighborhood exhaustively for the best 3-opt neighbor. This makes exhaustive neighborhood search
for large SRFLP instances a very slow process. In this section, we reduce the search time for an
exhaustive search of the 3-opt neighborhood of a permutation to O(n4) .

The pseudocode for a program to search the 3-opt neighborhood of a given permutation is given
below.

ALGORITHM 3-OPT-NBD-SEARCH

Input: A SRFLP instance of size n, a permutation Π.
Output: A 3-opt neighbor of Π which has the minimum cost among all of Π’s 3-opt neighbors.
Code

1. begin
2. set nbr← UNDEFINED; nbrcost←∞;
3. for p from 1 to n− 2 do begin (* p-loop *)
4. for q from p+ 1 to n− 1 do begin (* q-loop *)
5. for r from q + 1 to n do begin (* r-loop *)
6. generate all five 3-opt neighbors of Π by interchaning the facilities

in positions p, q and, r in Π and set the neighbor with the minimum
cost among the five neighbors as Π′;

7. set cost← cost of Π′;
8. if (cost < nbrcost) then begin
9. set nbr← Π′;

10. set nbrcost← cost;
11. end;
12. end; (* end of r-loop *)
13. end; (* end of q-loop *)
14. end; (* end of p-loop *)
15. output nbr and nbrcost;
16. end.

Note that in the first iteration of the above algorithm the facilities that need to be interchanged
are adjacent to each other i.e., they are the first three facilities in the permutation Π. Also note
that in successive iterations of the r-loop inside any p-loop and q loop, the position p and q remains
fixed, and the position r shifts one place to the right at a time. Also when p remains fixed, the
successive iterations of the q-loop inside any p-loop observes a shift in the position of q one place at
a time to the right. We will use these observations to present book-keeping techniques that reduce
the complexity of searching for the best 3-opt neighbor of a permutation Π in O(n4) time.

Consider a permutation Π = (π1, π2, . . . , πn) of facilities, in which πi denotes the facility at the
i-th position in Π. The generation of the 3-opt neighborhood of a solution can be considered to be
an outcome of a two-stage process. In the first stage of the process, we generate the set of all triads,
i.e., sets of three facilities from the set of facilities defining the instance. In the second stage, for each
of the triads generated, we generate the five 3-opt neighbors of the permutation Π by interchanging
the facilities whose locations are given by the triad generated. The set of all permutations generated
in the second stage forms the required 3-opt neighborhood of Π.

Consider three positions p, q and r between 1 and n and without the loss of generality let
p < q < r, i.e., generate a triad (p, q, r). Let S1 be the permutation of facilities to the left of πp in Π,
S2 be the permutation of facilities between πp and πq (both excluded) in Π, S3 be the permutation
of facilities between πq and πr (both excluded) and, S4 be the permutation of facilities to the right of
πr in Π. Let Li denote the sum of lengths of all the facilities in the permutation Si ∀i = 1, 2, 3 and, 4.
The permutation Π is thus of the form S1 πp S2 πq S3 πr S4. For notational convenience we will use
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cpq and dpq to represent cπpπq and dπpπq throughout this paper. The cost z(Π) of the permutation
Π can thus be written as

z(Π) =
∑
i∈S1

∑
j∈S1

cijdij +
∑
i∈S1

cipdip +
∑
i∈S1

∑
j∈S2

cijdij +
∑
i∈S1

ciqdiq +
∑
i∈S1

∑
j∈S3

cijdij +
∑
i∈S1

cirdir

+
∑
i∈S1

∑
j∈S4

cijdij +
∑
j∈S2

cpjdpj + cpqdpq +
∑
j∈S3

cpjdpj + cprdpr +
∑
j∈S4

cpjdpj +
∑
i∈S2

∑
j∈S2

cijdij

+
∑
i∈S2

ciqdiq +
∑
i∈S2

∑
j∈S3

cijdij +
∑
i∈S2

cirdir +
∑
i∈S2

∑
j∈S4

cijdij +
∑
j∈S3

cqjdqj + cqrdqr

+
∑
j∈S4

cqjdqj +
∑
i∈S3

∑
j∈S3

cijdij +
∑
i∈S3

cirdir +
∑
i∈S3

∑
j∈S4

cijdij +
∑
j∈S4

crjdrj +
∑
i∈S4

∑
j∈S4

cijdij

(1)

Five 3-opt neighbors are generated when the locations of the facilities at positions p, q and, r,
given by the triad (p, q, r), are interchanged. We denote the five 3-opt neighbors of Π as neighbors
of type 1, 2, 3, 4 and 5 respectively. All these neighbors of Π are shown in Figure 2. In the type
1 neighbor of Π the locations of all facilities except at positions p, q, and r are identical in the
neighbor and the original permutation Π. The facilities at positions p, q, and r in the neighbor of
type 1 correspond respectively to the facilities at positions q, r, and p in the original permutation.
In type 2 neighbor of Π, the locations of all facilities except at positions p, q, and r are identical in
the neighbor and the original permutation Π. The facilities at positions p, q, and r in the neighbor
of type 2 correspond respectively to the facilities at positions r, p, and q in the original permutation.
The neighbors of type 3, type 4 and type 5 are same as Π with the facilities at positions p & q, q
& r and, p & r interchanged in the original permutation Π. So, the neighbors of type 3, 4 and, 5
are essentially 2-opt neighbors of Π. Thus the 2-opt neighborhood of a permutation Π is a proper
subset of the 3-opt neighborhood of Π. Hence if Π = S1 πp S2 πq S3 πr S4 then its 3-opt neighbors
generated using the triad (p, q, r) are type 1: S1 πq S2 πr S3 πp S4, type 2: S1 πr S2 πp S3 πq S4, type
3: S1 πq S2 πp S3 πr S4, type 4: S1 πp S2 πr S3 πq S4, and type 5: S1 πr S2 πq S3 πp S4.

Given the triad (p, q, r), let us consider a 3-opt neighbor Π1 (of type 1) of Π, then the permutation
Π1 is Π1 = (π1, . . . , πp−1, πq, πp+1, . . . , πq−1, πr, πq+1, . . . , πr−1, πp, πr+1, . . . πn). Comparing with Π
the positions of all facilities in S1 and S4 remain unchanged, while the positions of all facilities in
S2 and S3 undergo a change. Denoting the sum of the lengths of all facilities between πi and πj
in Π as bij and using the fact that cij = cji and bij = bji for every pair πi and πj of facilities, the
difference ∆qrp in costs of Π and Π1 i.e., z(Π)− z(Π1) can be written as
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Figure 2: 3-opt neighbors of a triad (p, q, r) in Π

∆qrp = L2

{∑
i∈S1

(ciq − cip) +
∑

i∈S3∪S4

(cip − ciq) + (cpr − cqr)

}

+ L3

{ ∑
i∈S1∪S2

(cir − cip) +
∑
i∈S4

(cip − cir) + (cqr − cpq)

}

+ lq

{∑
i∈S2

( ∑
j∈S3

cij +
∑
j∈S4

cij −
∑
j∈S1

cij + cir

)
+

∑
j∈S3∪S4

cpj −
∑
i∈S1

cip + cpr

}

+ lr

{∑
i∈S3

( ∑
j∈S4

cij −
∑
j∈S2

cij −
∑
j∈S1

cij − ciq

)
−

∑
j∈S1∪S2

cpj +
∑
j∈S4

cpj − cpq

}

+ lp

{∑
i∈S1

( ∑
j∈S2

cij +
∑
j∈S3

cij

)
−
∑
j∈S4

(∑
i∈S2

cij +
∑
i∈S3

cij

)
+
∑
i∈S1

(ciq + cir)

−
∑
j∈S4

(cqj + crj)

}
+
∑
i∈S2

(bip − biq)(cip − ciq) +
∑
i∈S3

(bir − biq)(cir − cip) (2)
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Note that if πp, πq, and πr are the first three facilities in that order in Π1, i.e., the triad is (1, 2, 3),
then S1 = S2 = S3 = ∅. Then using equation (2)

∆qrp = lq(
∑
j∈S4

cpj + cpr) + lr(
∑
j∈S4

cpj − cpq)− lp
∑
j∈S4

(cqj + crj). (3)

Which can be computed in O(n) time, i.e., ∆231 can be computed in O(n) time. A similar exercise
can be done to obtain the expressions for the difference ∆rpq in costs of Π and a type 2 neighbor Π2

i.e., z(Π)− z(Π2), the difference ∆pq in costs of Π and a type 3 neighbor Π3 i.e., z(Π)− z(Π3), the
difference ∆qr in costs of Π and a type 4 neighbor Π4 i.e., z(Π)− z(Π4) and, the difference ∆pr in
costs of Π and a type 5 neighbor Π5 i.e., z(Π) − z(Π5). For a type 2 neighbor generated using the
triad (1, 2, 3), S1 = S2 = S3 = ∅ and the value of ∆rpq is

∆rpq = −lp(
∑
j∈S4

crj + crq)− lq(
∑
j∈S4

crj − cpr) + lr

{ ∑
j∈S4

(cpj + cqj)

}
(4)

In this special case ∆rpq can be computed in O(n) time, i.e., ∆312 can be computed in O(n) time.
Again for the neighbors of type 3, 4 and, 5 only two of the facilities are swapped and the third
facility is in the same location as in Π and a special case for such a scenario is when the facilities
being swapped are adjacent to each other i.e., S2 = ∅ when πp and πq are adjacent. In that case the
expression for ∆pq is given by

∆pq = lp

{∑
i∈S1

ciq −
∑
i∈S3∪
πr∪S4

ciq

}
+ lq

{ ∑
i∈S3∪
πr∪S4

cpj −
∑
j∈S1

cpj

}
, (5)

which can be computed in O(n) time. Similar expressions can be obtained for ∆pr and ∆qr which
can be computed in O(n) time. Next we define the concept of a 1-step neighbor of a triad (p, q, r).

Definition 1 (1-step neighbor of a triad (p, q, r))
Let v, u, and t respectively be the locations of facilities immediately to the right of facilities located
at positions p, q, and r in a permutation Π. Then the triads (v, q, r), (p, u, r), and (p, q, t) are called
1-step neighbors of triad (p, q, r).

Now we show that the costs of the 3-opt neighbors (of types 1, 2, 3, 4 and, 5) generated using the
1-step neighbors of the triad (p, q, r), can be obtained in O(n) time when the components of the
expression of ∆ values corresponding to the 3-opt neighbors (of types 1, 2, 3, 4 and, 5) generated
using the triad (p, q, r) are known.

Cost of a type 1 neighbor Π6 generated from the triad (v, q, r)

Let πv be the facility immediately to the right of πp in Π and πv 6= πq. If the facilities at the
positions given by the triad (v, q, r) in Π are interchanged to obtain a 3-opt neighbor Π6 of type 1
(Figure 5), then the permutation of facilities S′1 to the left of πv is S1 with the facility πp appended,
the permutation S′2 of facilities between πv and πq is S2 with facility πv removed from the extreme
left, the permutation of facilities S′3 between πq and πr is identical to S3 and, the permutation of
facilities S′4 to the right of facility πr is identical to S4. The sum L′2 of lengths of facilities in S′2 is
given by L2 − lv. Hence Π6 = S′1 πq S

′
2 πr S3 πv S4 as shown in Figure 5.

We now show that if the component expressions in ∆qrp (equation (2)) are known then ∆qrv

can be computed in O(n) time, The expression for ∆qrv = z(Π) − z(Π6) (with a form similar to
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Figure 3: 3-opt neighbor of type 1 of the triad (v, q, r)

equation (2)) can be rearranged to yield

∆qrv = L
′

2

{∑
i∈S′

1

(ciq − civ) +
∑

i∈S3∪S4

(civ − ciq) + (cvr − cqr)

}

+ L3

{ ∑
i∈S′

1∪S
′
2

(cir − civ) +
∑
i∈S4

(civ − cir) + (cqr − cvq)

}

+ lq

{∑
i∈S′

2

( ∑
j∈S3

cij +
∑
j∈S4

cij −
∑
j∈S′

1

cij + cir

)
+

∑
j∈S3∪S4

cvj −
∑
i∈S′

1

civ + cvr

}

+ lr

{∑
i∈S3

( ∑
j∈S4

cij −
∑
j∈S′

2

cij −
∑
j∈S′

1

cij − ciq

)
−

∑
j∈S′

1∪S
′
2

cvj +
∑
j∈S4

cvj − cvq

}

+ lv

{∑
i∈S′

1

( ∑
j∈S′

2

cij +
∑
j∈S3

cij

)
−
∑
j∈S4

(∑
i∈S′

2

cij +
∑
i∈S3

cij

)
+
∑
i∈S′

1

(ciq + cir)

−
∑
j∈S4

(cqj + crj)

}
+
∑
i∈S′

2

(biv − biq)(civ − ciq) +
∑
i∈S3

(bir − biq)(cir − civ). (6)

The expression in equation (6) can be computed in O(n) time since∑
i∈S′

1

∑
j∈S′

2

cij =
∑
i∈S1

(
∑
j∈S2

cij − civ) + (
∑
j∈S2

cpj − cpv), (7)

∑
i∈S′

1

∑
j∈S3

cij =
∑
j∈S3

(
∑
i∈S1

cij + cpj), (8)

∑
i∈S′

2

∑
j∈S3

cij =
∑
j∈S3

(
∑
i∈S2

cij − cvj) and, (9)

∑
i∈S′

2

∑
j∈S4

cij =
∑
j∈S4

(
∑
i∈S2

cij − cvj); (10)

and since the terms under double summation signs in equations (7) through (10) are already known
from equation (2) and the remaining terms on the right hand side of equation (2) can be computed
in O(n) time. Hence the value of ∆qrv can be computed on O(n) time. So the objective function
value of the neighbor Π6 which is z(Π)−∆qrv can be computed in O(n) time.

Cost of a type 1 neighbor Π7 generated from the triad (p, u, r)
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Let πu be the facility immediately to the right of πq in Π and πu 6= πr. If the facilities at the
positions (p, u, r) in Π are interchanged to obtain a 3-opt neighbor Π7 of type 1, then the permutation
of facilities S′1 to the left of πp is identical to S1, the permutation S′2 of facilities between πp and πu
is S2 with the facility πu appended, the permutation of facilities S′3 between πu and πr is S3 with
the facility πu removed from the extreme left and, the permutation of facilities S′4 to the right of
facility πr is identical to S4. The sum L′2 and L′3 of lengths of facilities in S′2 and S′3 are given by
L2 + lq and L3 − lu respectively. Hence Π7 = S1 πu S

′
2 πr S

′
3 πp S4 as shown in Figure ??.

Figure 4: 3-opt neighbor of type 1 of the triad (p, u, r)

We now show that if the component expressions in ∆qrp (equation (2)) are known then ∆urp

can be computed in O(n) time, The expression for ∆urp = z(Π) − z(Π7) (with a form similar to
equation (2)) can be rearranged to yield

∆urp = L
′

2

{∑
i∈S1

(ciu − cip) +
∑

i∈S′
3∪S4

(cip − ciu) + (cpr − cur)

}

+ L
′

3

{ ∑
i∈S1∪S

′
2

(cir − cip) +
∑
i∈S4

(cip − cir) + (cur − cpu)

}

+ lu

{∑
i∈S′

2

( ∑
j∈S′

3

cij +
∑
j∈S4

cij −
∑
j∈S1

cij + cir

)
+

∑
j∈S′

3∪S4

cpj −
∑
i∈S1

cip + cpr

}

+ lr

{∑
i∈S′

3

( ∑
j∈S4

cij −
∑
j∈S′

2

cij −
∑
j∈S1

cij − ciu

)
−

∑
j∈S1∪S

′
2

cpj +
∑
j∈S4

cpj − cpu

}

+ lp

{∑
i∈S1

( ∑
j∈S′

2

cij +
∑
j∈S′

3

cij

)
−
∑
j∈S4

(∑
i∈S′

2

cij +
∑
i∈S′

3

cij

)
+
∑
i∈S1

(ciu + cir)

−
∑
j∈S4

(cuj + crj)

}
+
∑
i∈S′

2

(bip − biu)(cip − ciu) +
∑
i∈S′

3

(bir − biu)(cir − cip) (11)
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The expression in equation (11) can be computed in O(n) time since∑
i∈S1

∑
j∈S′

2

cij =
∑
i∈S1

(
∑
j∈S2

cij + ciq), (12)

∑
i∈S1

∑
j∈S′

3

cij =
∑
i∈S1

(
∑
j∈S3

cij − ciu), (13)

∑
i∈S′

2

∑
j∈S′

3

cij =
∑
i∈S2

(
∑
j∈S3

cij − ciu) + (
∑
j∈S3

cqj − cqu), (14)

∑
i∈S′

2

∑
j∈S4

cij =
∑
j∈S4

(
∑
i∈S2

cij + cqj) and, (15)

∑
i∈S′

3

∑
j∈S4

cij =
∑
j∈S4

(
∑
i∈S3

cij − cuj); (16)

and since the terms under double summation signs in equations (12) through (16) are already known
from equation (2) and the remaining terms on the right hand side of equation (2) can be computed
in O(n) time. Hence the value of ∆urp can be computed on O(n) time. So the objective function
value of the neighbor Π7 which is z(Π)−∆urp can be computed in O(n) time.

Cost of a type 1 neighbor Π8 generated from the triad (p, q, t)

Let πt be the facility immediately to the right of πr in Π and πr 6= πn. If the facilities at the
positions (p, q, t) in Π are interchanged to obtain a 3-opt neighbor Π8 of type1 (Figure ??), then
the permutation of facilities S′1 to the left of πp is identical to S1, the permutation S′2 of facilities
between πp and πq is identical to S2 , the permutation of facilities S′3 between πq and πt is S3 with
the facility πr appended and, the permutation of facilities S′4 to the right of facility πt is S4 with
the facility πt removed from the extreme left. The sum L′3 of lengths of facilities in S′3 is given by
L3 + lr respectively. Hence Π8 = S1 πq S2 πt S

′
3 πp S

′
4.

Figure 5: 3-opt neighbor of type 1 of the triad (p, q, t)

We now show that if the component expressions in ∆qrp (equation (2)) are known then ∆qtp

can be computed in O(n) time, The expression for ∆qtp = z(Π) − z(Π8) (with a form similar to
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equation (2)) can be rearranged to yield

∆qtp = L2

{∑
i∈S1

(ciq − cip) +
∑

i∈S′
3∪S

′
4

(cip − ciq) + (cpt − cqt)

}

+ L
′

3

{ ∑
i∈S1∪S2

(cit − cip) +
∑
i∈S′

4

(cip − cit) + (cqt − cpq)

}

+ lq

{∑
i∈S2

( ∑
j∈S′

3

cij +
∑
j∈S′

4

cij −
∑
j∈S1

cij + cit

)
+

∑
j∈S′

3∪S
′
4

cpj −
∑
i∈S1

cip + cpt

}

+ lt

{∑
i∈S′

3

( ∑
j∈S′

4

cij −
∑
j∈S2

cij −
∑
j∈S1

cij − ciq

)
−

∑
j∈S1∪S2

cpj +
∑
j∈S′

4

cpj − cpq

}

+ lp

{∑
i∈S1

( ∑
j∈S2

cij +
∑
j∈S′

3

cij

)
−
∑
j∈S′

4

(∑
i∈S2

cij +
∑
i∈S′

3

cij

)
+
∑
i∈S1

(ciq + cit)

−
∑
j∈S′

4

(cqj + ctj)

}
+
∑
i∈S2

(bip − biq)(cip − ciq) +
∑
i∈S′

3

(bit − biq)(cit − cip) (17)

The expression in equation (17) can be computed in O(n) time since∑
i∈S1

∑
j∈S′

3

cij =
∑
i∈S1

(
∑
j∈S3

cij + cir), (18)

∑
i∈S2

∑
j∈S′

3

cij =
∑
i∈S2

(
∑
j∈S3

cij + cir), (19)

∑
i∈S2

∑
j∈S′

4

cij =
∑
i∈S2

(
∑
j∈S4

cij − cit) and, (20)

∑
i∈S′

3

∑
j∈S′

4

cij =
∑
i∈S3

(
∑
j∈S4

cij − cit) +
∑
j∈S4

crj − crt; (21)

and since the terms under double summation signs in equations (18) through (21) are already known
from equation (2) and the remaining terms on the right hand side of equation (2) can be computed
in O(n) time. Hence the value of ∆qtp can be computed on O(n) time. So the objective function
value of the neighbor Π8 which is z(Π)−∆qtp can be computed in O(n) time.

Hence we have shown that if the component expressions for the difference in cost of the original
permutation Π and the type 1 neighbor Π1 generated using the triad of positions (p, q, r) is known,
i.e., ∆qrp is known (equation (2)), then all the costs of 3-opt neighbors(of type 1) of Π generated using
the 1-step neighbors of the triad (p, q, r) can be computed in O(n) time. Similarly, if the component
expressions for the difference in cost of the original permutation Π and the type i neighbor Πi are
known, i.e., ∆rpq,∆pq,∆qr and, ∆pr are known, then all the costs of 3-opt neighbors(of type i) of
Π generated using the 1-step neighbors of the triad (p, q, r) can be computed in O(n) time.

At the start of the program 3-OPT-NBD-SEARCH, p = 1, q = 2 and, r = 3 i.e., the triad
generated is (1, 2, 3) and the ∆ values corresponding to the neighbors of type 1, 2, 3, 4 and, 5
(equations 3, 4 and 5) can be used to compute the cost of all the five 3-opt neighbors of Π in
O(n) time. Once these ∆ values are known, then repetitively using the equations (6),(11) and, (17)
and similar other equations for the remaining type i neighbors, i = 2, 3, 4 and 5, and repetitively
generating the 1-step neighbors of the previously generated triads, the cost of all the 3-opt neighbors
generated using the triads, which are 1-step neighbors of earlier generated triads starting from the
triad (1, 2, 3), can be computed in O(n) time. Thus the r-loop in 3-OPT-NBD-SEARCH (steps 5
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through 11) requires O(n2) time, and so 3-OPT-NBD-SEARCH runs in O(n4) time when the above
presented techniques are used. Hence searching the 3-opt neighborhood of a permutation to obtain
the best 3-opt neighbor requires O(n4) time.

In order to test the performance of the speeded up neighborhood search processes, we imple-
mented the 3-OPT-NBD-SEARCH once using the näıve approach and once using the techniques
presented in this section. Table 1 shows the time required by the implementations to perform neigh-
borhood searches on problem instances with sizes varying from 60 to 160. The first column in the
table specifies the sizes of the problems considered. The second and third columns report the times
required by a näıve implementation and our implementation using the speed up techniques to search
the 3-opt neighborhoods of 100 permutations of different problem sizes. The last column reports the
speed ups achieved by using our techniques. The speed up is calculated as the ratio of the difference
in time required by the näıve implementation and the implementation using our speed up techniques
to the time required by the näıve implementation and is expressed as a percentage.

Table 1: CPU times (in seconds) required to perform 100 neighborhood searches

Neighborhood Size Näıve Enhanced Speed up

3-Opt 60 109.1 11.7 89.3%
110 2040.8 131.7 93.5%
160 13683.2 608.3 95.5%

The table clearly demonstrates the effectiveness of the speed-up techniques presented in this
section. It also shows that the speed ups become more effective as problem sizes increase. In the
next section, we embed the neighborhood search techniques developed in this section with tabu
search algorithm.

4 3-opt neighborhood search based tabu search for the SR-
FLP

Our implementation, called TS-3OPT, uses the speeded up 3-opt neighborhood search procedure
described in the previous section in a tabu search framework. It is a parallel multi-start tabu search
approach which has a structure similar to the one suggested in Samarghandi and Eshghi (2010).
Individual runs starting from different initial solutions are called starts, and a start is allowed to
execute a number of tabu search iterations that depends on the costs of the permutations that the
start encounters in its search.

TS-3OPT starts by generating a user-specified number L of starting permutations. The first
permutation is generated using Theorem 1 in Samarghandi and Eshghi (2010) as follows. The
facilities are sorted in non-decreasing order of their lengths. The first two facilities in this ordering
are placed next to each other. The j-th facility, j = 3, . . . , n, in the ordering is placed on the
unoccupied side of the (j − 2)-th facility. The other L − 1 starting permutations are generated as
follows. For each of the other permutations, the first permutation is copied to the permutation.
Then the facility in position i, 1 ≤ i ≤ n/2, is interchanged with the facility in position (n− i) with
a probability 0.5.

Each start is associated with a tabu list that stores the last few interchanges made by TS-3OPT
iterations using that start. In any iteration, if the interchange made by TS-3OPT involves the
reversal of any interchange in the list, the corresponding neighbor generated is marked tabu. The
number θ of interchanges stored in the tabu list is specified by the user.
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In each iteration, TS-3OPT chooses one of the starts and performs one tabu search iteration. The
start is chosen in a probabilistic manner. To do this, the costs of the latest permutation obtained for
each of the starts are considered. These costs are arranged in non-increasing order. The probability
that start i in this order is picked up for the iteration is given by 2i/(L × (L + 1)). Thus a start
which has yielded a higher cost permutation until this iteration has a lower rank in the list and
has a lower chance of being chosen in the next iteration. Once a start has been chosen, TS-3OPT
performs a 3-opt tabu search iteration with the latest permutation in that start as the incumbent
solution. The neighborhood chosen is a restricted 3-opt neighborhood. This neighborhood is a 3-opt
neighborhood with the restriction that in the incumbent permutation, the positions of the three
facilities being repositioned are not too far away. We use a user-specified parameter called SPAN,
and consider switching positions of facilities which are not separated by more than SPAN positions
in the incumbent solution. This restriction is implemented so that the execution time for a 3-opt
neighborhood search is further reduced. TS-3OPT searches the neighborhood of the incumbent
permutation and accepts its best non-tabu neighbor, unless a tabu neighbor satisfies an aspiration
criterion, i.e., is the best permutation encountered by the algorithm up to that stage. In that case
TS-3OPT accepts the tabu neighbor as the best neighboring permutation. The tabu list for the
chosen start is then updated and the iteration is complete.

Once tabu search completes a user specified number k of iterations, the best among the latest
permutations for all starts is chosen for a final intensification step. In this step TS-3OPT performs
a local search starting from the chosen permutation using a 3-opt neighborhood. It then terminates
after it outputs the better among the best permutation that it has encountered during the k tabu
search iterations and the locally optimal solution obtained at the end of the final intensification step.

We end this section with a pseudocode for our tabu search implementation.

ALGORITHM TS-3OPT (need to go through)

Input: A SRFLP instance of size n, the number of starts L, the Tabu tenure θ, the SPAN and
total number of tabu search iterations k.

Output: The best neighbor of Π which has the minimum cost among all of Π’s 3-opt neighbors
encountered by the algorithm.

Code

1. begin
2. set nbr← UNDEFINED; nbrcost←∞;
3. sort the facilities in non-decreasing order of their lengths to obtain

a permutation Π using Theorem 1 in Samarghandi and Eshghi (2010);
4. use Π to obtain L initial permutations for the L starts;
5. sort the permutations in a non-decreasing order based on the costs of

the permutations generated in Step 4;
6. for iter from 1 to k do begin
7. select a start based on the costs of the permutations obtained from that start

and choose the latest permutation Π1 for that start;
8. obtain the best tabu and non-tabu neighbor of Π1 by searching the 3-opt

neighborhood such that the positions of the facilities are separated at most
by SPAN

9. select the best neighbor Πnbr
1 keeping a check on the aspiration criterion and

update the Tabu list using Tabu Tenure θ;
10. replace Π1 by Πnbr

1 as the latest permutation for the selected start;
11. end;
12. perform a neighborhood search on the best permutation among the latest

permutations; (* Final intensification *)
13. obtain the best permutation Π∗ encountered during the search;
14. set nbr← Π∗; set nbrcost← cost of Π∗;
15. output nbr and nbrcost;
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16. end.

In the next section we describe our computational experience with the tabu search implementa-
tion.

5 Computational experience

We implemented the TS-3OPT algorithm in C and compiled it using the gcc4 compiler. We ran
our experiments on a personal computer with Intel i-5 2500 3.30 GHz processor with 4GB RAM
running Ubuntu Linux version 11.10.

We ran preliminary experiments to fix the values of the four parameters k, L, θ and SPAN
required to be specified by the user for the TS-3OPT algorithm. We saw that the cost of the best
permutation obtained by TS-3OPT improved as the maximum number k of tabu search iterations
increased. The rate of improvement however tapered off when k increased to very high values.
The time required by TS-3OPT was approximately linear in the values of k. For a fixed value
of k the number of starts L had a more complicated effect on the costs of permutations output.
As L increased from a low value the costs of permutations output improved. This was probably
because with increasing values of L, the initial solutions were more widely dispersed in the solution
space, and hence better solutions were being obtained. However the costs of the best permutations
obtained by TS-3OPT worsened when the value of L was set too high. This is possibly because
when the value of L was too high keeping the value of k fixed, individual starts were not allowed
sufficient number of iterations to obtain low cost permutations. The lengths of tabu tenure had
no consistent effect on the cost of permutations output, unless they were set to values that were
too low to make them effective or too high to make them exceedingly restrictive. The effect of
the value of SPAN on the costs of permutations was also interesting. At very low values of SPAN,
TS-3OPT was quite fast but generated high cost permutations since only a very small part of the
3-opt neighborhood was being explored by tabu search. As the value of SPAN increased the time
required by TS-3OPT increased exponentially, but surprisingly, at high values of SPAN, the cost of
solutions being output also increased. We believe that this is because a large value of SPAN causes
the algorithm to generate better permutations at each iteration, but forces it in a path that does
not lead to low cost permutations in the long run. Hence the balance these two effects the value of
SPAN needs to be chosen at an intermediate value. After our preliminary experiments, we chose the
maximum number of tabu search iterations k = 50n, the number of starts L as b2n/3c, the length
of tabu tenure θ as b2n/3c, and the value of SPAN as bn/3c. We observed that these parameters
yielded low cost permutations in reasonable time.

We use large sized SRFLP instances available in the literature to benchmark the performance of
our implementations against other implementations available in the literature. The instances that
we use are randomly generated instances due to Anjos. The sizes of these SRFLP instances vary
from 60 to 80. The Anjos instances consist of five instances each of sizes 60, 70, 75, and 80. Since
TS-3OPT has some randomness built into it, for each instance considered we ran the implementation
50 times and report the best results from these runs.

Table 2 compares the performance of our implementations on these problem instances against
the results published in the literature. Competitive results on these instances have been reported
in the literature in Samarghandi and Eshghi (2010) and Datta et al. (2011). In Table 2 the first
and second columns show the name of the instance and its size. The costs of the best permutations
reported in the published literature are presented in the third and fourth columns respectively. The
last column reports the costs of the best permutations for these problem instances obtained by our
TS-3OPT algorithm.
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Table 2: Costs of best permutations for large sized Anjos instances

Instance Size S&Ea DA&Fb TS-3OPT

Anjos-60-01 60 1477834.0 1477834.0 1477834.0
Anjos-60-02 60 841792.0 841792.0 841776.0
Anjos-60-03 60 648337.5 648337.5 648337.5
Anjos-60-04 60 398511.0 398468.0 398468.0
Anjos-60-05 60 318805.0 318805.0 318805.0

Anjos-70-01 70 1529197.0 1528621.0 1528537.0
Anjos-70-02 70 1441028.0 1441028.0 1441028.0
Anjos-70-03 70 1518993.5 1518993.5 1518993.5
Anjos-70-04 70 969130.0 968796.0 968796.0
Anjos-70-05 70 4218230.0 4218017.5 4218002.5

Anjos-75-01 75 2393483.5 2393456.5 2393456.5
Anjos-75-02 75 4321190.0 4321190.0 4321190.0
Anjos-75-03 75 1248551.0 1248537.0 1248607.0
Anjos-75-04 75 3942013.0 3941981.5 3941816.5
Anjos-75-05 75 1791408.0 1791408.0 1791408.0

Anjos-80-01 80 2069097.5 2069097.5 2069097.5
Anjos-80-02 80 1921177.0 1921177.0 1921177.0
Anjos-80-03 80 3251413.0 3251368.0 3253168.0
Anjos-80-04 80 3746515.0 3746515.0 3746675.0
Anjos-80-05 80 1589061.0 1588901.0 1588885.0

a: results reported in Samarghandi and Eshghi (2010)
b: results reported in Datta et al. (2011)

From the table we see that the TS-3OPT algorithm is competitive with the other implementations
in almost all the instances. In 5 of the 20 instances, it outputs permutations that are better than the
ones reported in the literature. The costs of these permutations are depicted in boldface in Table 2.

6 Summary and discussion

The single row facility layout problem has been widely used to model the machine layout problem
in a flexible manufacturing system. The problem is computationally difficult and researchers have
focused on improvement heuristics to obtain good quality layouts in reasonable time. The machine
layout problem becomes more challenging in large sized FMSs.

In this paper we present a multi-start tabu search algorithm TS-3OPT which uses a 3-opt neigh-
borhood structure to obtain machine layouts for large sized FMSs. Searching the 3-opt neighborhood
for a SRFLP is very expensive and we present techniques in Section 3 to speed up the search process.
Our technique reduces the complexity of searching a 3-opt neighborhood from O(n5) to O(n4) thus
allowing us to search the 3-opt neighborhood exhaustively, as opposed to existing algorithms which
sample permutations from neighborhoods, even when such neighborhoods are of smaller size like
the 2-opt neighborhood. In our algorithm we use a parameter called SPAN to reduce the search
time further while still generating good layouts. The techniques in Section 3 help us implement the
TS-3OPT tabu search algorithm more effectively for large sized instances of the problem.

After setting the parameters of our algorithm through preliminary experiments, we test the
performance of TS-3OPT on several large sized SRFLP instances selected from the literature and
compare its performance with the best algorithms available for SRFLP. Our tabu algorithm TS-
3OPT improves on 5 out of 20 large sized instances and is competitive for the remaining 15. instances.
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The experiments conclude that the proposed tabu algorithm is effective and efficient for the single
row machine layout problems.
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