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Abstract 

We propose a new test for a multivariate parametric conditional distribution of a vector of 
variables yt given a conditional vector xt. The proposed test is shown to have an 
asymptotic normal distribution under the null hypothesis, while being consistent for all 
fixed alternatives, and having non-trivial power against a sequence of local alternatives. 
Monte Carlo simulations show that our test has reasonable size and good power for both 
univariate and multivariate models, even for highly persistent dependent data with sample 
sizes often encountered in empirical finance. 

JEL classification: C12, C22 
Bank classification: Econometric and statistical methods 

Résumé 

Les auteurs proposent un nouveau test en vue de vérifier la validité de la distribution 
conditionnelle paramétrique multivariée d’un vecteur de variables yt étant donné un 
vecteur conditionnel xt. Ils montrent que la statistique du test suit asymptotiquement une 
loi normale sous l’hypothèse nulle et que le test est convergent pour toutes les hypothèses 
alternatives spécifiées et relativement puissant sous une suite d’alternatives locales. 
D’après les résultats de simulations de Monte-Carlo, le niveau et la puissance du test sont 
raisonnables, que les modèles considérés soient univariés ou multivariés, même en cas de 
forte persistance des données dépendantes et d’échantillons de taille usuelle en finance 
empirique. 

Classification JEL : C12, C22 
Classification de la Banque : Méthodes économétriques et statistiques 

 

 



1. Introduction

The forecast of a probability distribution and its associated aspects, such as value-at-risk

and expected shortfall probabilities, have been widely used in economics and finance. For instance,

in the explosively growing field of financial risk management, much effort has been put into

providing forecasts of probability distributions of credit loss, asset and portfolio returns, etc., to

capture a complete characterization of the uncertainty associated with these financial variables

(Okhrin and Schmid 2006; Berkowitz 2001; Duffie and Pan 1997). In macroeconomics, monetary

authorities in the United States (the Federal Reserve Bank of Philadelphia) and United Kingdom

(the Bank of England) have been conducting quarterly surveys on the distribution forecasts for

inflation and output growth to help set their policy instruments (e.g., inflation target, Tay and Wallis

2000). The validity of the forecast of a probability distribution, and its resulting inferences,

however, are conditional on the hypothesis that the model used to produce the probability

distribution is correctly specified. Obviously, a possible serious problem with the forecast of a

probability distribution is model misspecification. A misspecified model can yield large errors in

pricing, hedging, and risk management. A test is thus required to determine whether the forecast

of a probability distribution implied by the model corresponds to the one implied by the data.

The work on testing whether a random variable originates from a stipulated unconditional

distribution dates from as early as Pearson’s chi-square test, the Kolmogorov-Smirnov test, and the

Cramér-von Mises test (Darling 1957). Since then, many consistent specification tests have been

developed for unconditional distribution functions (Fan, Li, and Min, 2006, and the references

therein). Andrews (1997) extended the three tests (Pearson, Kolmogorov-Smirnov, and Cramér-

von Mises) to the conditional distribution case. Stinchcombe and White (1998) provided consistent
1



nonparametric tests for conditional distributions. Zheng (2000) then provided a consistent test of

conditional density functions based on the first-order linear expansion of the Kullback-Leibler

information criterion. More recently, Fan, Li and Min (2006) proposed a bootstrap test for

conditional distributions, in which the conditional variables can be both discrete and continuous.

A limitation of all these tests of conditional distributions is that the data must be independently and

identically distributed (i.i.d.); clearly, this rules out time-series applications.

In a time-series context, Diebold, Gunther and Tay (1998) developed a variety of graphical

approaches for evaluating conditional distribution functions based on a probability integral

transform of the conditional density function. The rationale behind their approach is an early result

of Rosenblatt (1952), who showed that the probability integral transform would be distributed as

an independent and identical uniform distribution under the correct specification of a distribution

function. Recently, standard statistical techniques have been used to carry out the test of the

independent and identical uniformity of the transformed data. For instance, Berkowitz (2001)

developed a test based on an extension of the Rosenblatt transformation in which the data can be

transformed to independent and identical standard normal distribution under the correct

specification of a distribution function. Berkowitz applied the likelihood ratio test to test the

independence and normality of the transformed data in a linear first-order autoregressive model.

Since the model used in Berkowitz’s test captures only a specific sort of serial dependence in the

data, he showed how to expand the model and associated tests to higher-order autoregressive

models. However, this results in an increasing number of model parameters and reduces the power

of the test.
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Bai (2003) and Corradi and Swanson (2006) considered tests for the parametric conditional

distribution in a dynamic model using an empirical distribution function. Bai’s test can be

applicable for various dynamic models, where the conditioning event allows for an infinite past

history of information. The Corradi and Swanson (2006) test allows for dynamic misspecification

under null hypothesis. Both the Bai and Corradi and Swanson tests have power against violations

of uniformity but not against violations of independence of the transformed data.

Hong and Li (2005) developed an omnibus nonparametric specification test for independent

and identical uniformity of the transformed data by comparing unity with a nonparametric kernel

estimator for the joint density of the transformed data. Their test can be used for a wide variety of

continuous-time and discrete-time dynamic models. However, like all above-mentioned tests based

on the probability integral transform of the conditional density function, the Hong and Li test

cannot be extended to a multivariate conditional density function because it is well-known that the

probability integral transform of data with respect to a multivariate conditional density function is

no longer i.i.d. uniformity even if the model is correctly specified.

Alternative tests for conditional density (distribution) functions have recently been

suggested. Li and Tkacz (2006) built a consistent bootstrap test for conditional density functions

with time-series. Aït-Sahalia et al. (2009) developed a nonparametric specification test for the

conditional density function of a Markovian process. Both the Li and Tkacz and Aït-Sahalia et al.

tests can only be used to test the conditional density (distribution) function with compact support

(Assumption A.4 in Li and Tkacz 2006, Condition 2 in Aït-Sahalia et al. 2009). Consequently, their

tests cannot be used to test the whole conditional density (distribution) functions with an unlimited

domain.
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In this paper we propose a consistent specification test for a parametric model which

specifies a multivariate joint conditional distribution of a vector of variables given a conditional

vector , where the conditional vector may contain lags of and (or) lags of some other

variables1. Many models used in economics and finance are of this type; for instance, a (possibly

multivariate) regression model with a given conditional distribution function of a ARCH process

for the error terms, and a (possibly multivariate) continuous-time diffusion model with a given

specification of its transitional distribution function. These models are popular analytic tools to

model the stochastic dynamics of economic and financial variables, such as asset prices, interest

rates, exchange rates, and macroeconomic factors, etc. It is shown that our test statistic follows an

asymptotic normal distribution under the null hypothesis, while being consistent for all fixed

alternatives and powerful against a sequence of local alternatives to the null hypothesis.

The rest of this paper is organized as follows. In the next section we introduce the test

statistic for the conditional distributions in time-series models. The asymptotic null distribution,

the consistency, and local power properties of the test statistic are then established. Section 3

presents a Monte Carlo simulation study to investigate the performance of the test in finite samples.

Section 4 concludes, and the proofs are in the Appendix.

2. A Consistent Test For Parametric Conditional Distributions

Let the observations consist of , where , with unknown conditional

distribution function of given and distribution function of , with

and being vectors of dimension and respectively.

1. We note that, based on the Khmaladze martingale transformation, Bai and Chen (2008) propose a test for

multivariate distributions with a focus on the multivariate unconditional normal and unconditional t-distributions.

yt

xt xt yt

Z t{ } t 1=
n

Zt xt yt,( )=

F y x( ) yt xt x= F y y( ) yt

xt xt
1

xt
2 … xt

p, , ,( )≡ yt yt
1

yt
2 … yt

q, , ,( )≡ p q
4



is a parametric family of conditional distribution functions with being a subset

of . For notational simplicity, throughout the rest of this paper, we use the following notation:

, , and all the limits are taken as .

We assume the sample comes from a random sequence that is a strictly stationary

and absolutely regular process with coefficient , which is defined as

, where denotes the Borel

-algebra of events generated by  for .

The null hypothesis to be tested is that the conditional distribution function is correctly

specified:

; (1)

the alternative hypothesis  of interest is the negation of .

For any , denote as the indicator function of the event

. Let . Then holds if and only

if there exists such that for almost

everywhere in  with probability one.
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Under the null hypothesis, we have for some , and under the alternative,

we have for all . Hence, , as a measure of departure from the null hypothesis,

can be used as an indicator for constructing a consistent test for parametric conditional

distributions. Our test will be based on the estimator of . As in Li (1999) and Powell, Stock,

and Stoker (1989), the density weighting function in (2) is introduced to avoid the random

denominator problem associated with kernel estimation.

Let be an estimator of , and and the leave-one-out kernel

estimators of and , respectively. Then, the parametric conditional

distribution function , and  can be respectively estimated by

 and  which is,

, (3)

where K(⋅) is a product kernel function , and we assume that each of

the window widths in the product kernel function is equal to 2.

2. In general, the left-hand-side in equation (3) can be estimated by ,

where is a non-singular window-width matrix and K(⋅) is the multivariate kernel function. The right-hand -

side in equation (3) is obtained by assuming that each of the window widths is equal to ( is scalar and

) and K(⋅) is a product kernel function.
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Let be the empirical cumulative distribution estimator of . Inserting these

estimators above into the definition of , given by (2), yields the following estimator of

:

.  (4)

Based on , a feasible test statistic for  is obtained:

, (5)

where will be defined in Theorem 1. The test statistic does not contain an asymptotic bias

term, because the asymptotic bias term is removed by using the "leave-one-out" estimator of

.

In order to establish the asymptotic validity of this test statistic, we require the following

assumptions.

Assumption 1. K(⋅) is bounded and symmetric with and .

Assumption 2. The process is strictly stationary absolutely regular with

mixing coefficient  for some .

Assumption 3. The parametric space is compact and convex subset of . Let

denote the Euclidean norm, , ,
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F̂ y y( ) F y y( )

J θ0( )

J θ0( )

J n n
3–
h

p–
K

xt xs–

h
--------------- 

  εt yl θ̂n,( )εs yl θ̂n,( )
l s, t≠
∑≡

J n H 0

T n nh
p 2⁄

J n σ̂n⁄≡

σ̂n T n

E εt y θ0,( ) xt[ ]π xt( )

K u( ) ud∫ 1= u
2
K u( ) u ∞<d∫

Zt xt yt,( )={ }
βs O λ s( )= 0 λ 1< <

Θ R
d ⋅

∂F y x θ,( ) ∂y⁄( ) 1– ∂ ∂F y x θ,( ) ∂y⁄( ) ∂θ⁄

∂2 ∂F y x θ,( ) ∂y⁄( ) ∂θ∂θ′⁄ ∂ ∂F y x θ,( ) ∂y⁄( ) ∂θ ∂ ∂F y x θ,( ) ∂y⁄( ) ∂θ′⁄×⁄

M x y,( ) θ

θ0 Θ F y x θ,( ) ∂F y x θ,( ) ∂θ⁄ ∂2
F y x θ,( ) ∂θ∂θ′⁄

M x y,( )
7



Assumption 4. There exists an estimator of such that under

the null, whereas under the alternative,  in probability where .

Assumption 1 is a standard regularity condition imposed on a kernel function. Assumption

2 requires that the process be stationary and absolutely regular with geometric decay rate.

The stationary absolutely regular property of process is to ensure that a central limit theorem

for second order degenerate U-statistics of absolutely regular processes can be used. The geometric

decay rate is needed to derive some inequalities for asymptotic results. Absolutely regular

processes with geometric decay rate have been used in different contexts by various authors,

including Aït-Sahalia, Bickel, and Stocker (2001), Li (1999), and Fan and Li (1999), to make

possible a satisfactory asymptotic theory of inference and estimation. Assumption 3 ensures the

consistency and asymptotic normality of the Quasi-maximum likelihood estimator of White

(1982). Assumption 4 is known to hold for many economic and finance models including some

general regression models involving time series (Fuller 1996 and White 1994), conditional

heteroskedasticity models (Newey and Steigerwald 1997), and continuous-time parametric

models.

The asymptotic null distribution and consistency of is provided in the following

theorem.

Theorem 1. Given Assumptions 1-4, if  and , we have

(a) Under ,  in distribution, where

, (6)
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which is a consistent estimator of

. (7)

(b) Under , , for any non-stochastic sequence .

Proof: See Appendix.

Because our test is a centered statistic (by the leave-one-out estimation approach), it has a

zero-mean limiting distribution. We next determine the power of our test against continuous local

alternatives to the null hypothesis.

We define the following sequence of local alternative conditional distribution functions of

 given :

, (8)

where is a sequence of positive real numbers tending to zero, and both and

are conditional distribution functions. The null hypothesis states that the conditional distribution of

given is , whereas under the alternative hypothesis the conditional distribution is

. The asymptotic distribution of our test under the local alternative (8) is given in the

following theorem.

Theorem 2: Given Assumptions 1-4, if , , and , then

under the local alternative (8), we have  in distribution, where

.

Proof: See Appendix.
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Let express the quantile at level of the standard normal distribution, then the

asymptotic local power of our test is . Hence, our test has nontrivial

power against the local alternatives in (8) because of .

In practice, the smoothing parameter can be selected by several commonly used

procedures, including the cross-validation method, the plug-in method, and some ad hoc methods.

For the cross-validation method, we select the bandwidth to minimize the integrated squared

error function:

,  (9)

where is the distribution of . A discrete approximation to is the average squared

error function:

,

where is the estimator of the regression function

for every , that is:

.

Minimizing will yield an asymptotically optimal bandwidth that is proportional to

. Hence we can choose the bandwidth to be , where is a constant. Following

Hardle3 (1990), we can use the grid search method to find the optimal that minimizes

, where .
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2

s t, 1=

n

∑=
10



3. Monte Carlo Study

In this section we present some Monte Carlo simulation results to investigate the

performance of our test for both univariate and multivariate models. In general, the data-generating

processes will be simulated from the continuous-time model represented by a stochastic

differential equation. For univariate models, we simulate data from four popular one-factor term

structural models examined in Aït-Sahalia (1999). For multivariate models we focus on affine

diffusion models, given their importance in the existing financial literature (Duffie, Pedersen, and

Singleton (2003)).

3.1   Univariate continuous-time models

To examine the test’s size performance, we simulate data from the Vasicek (1977) model:

, (10)

where is long-run mean of , and is the speed at which the process returns to the long-run

mean. The determines the dependent persistence of the process, i.e., the smaller is, the

stronger the serial dependence of , and consequently, the slower the convergence to the long-run

mean. As with Pritsker (1998), to examine the impact of dependent persistence of on the size of

our test, we consider both low and high levels of persistent dependence and adopt the same

parameter values as Pritsker (1998). The parameter values for low and high levels of persistent

dependence are, respectively,

3. Let and , then in probability

(Theorem 7.1.1, Hardle, 1990).

hcv min CV h( )arg= hASE min ASE h( )arg= ASE hcv( ) hASE⁄ 1→

d xt β α xt–( )dt σdwt+=

α xt β

β β

xt

xt
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, and . The null

hypothesis  is:

, (11)

where , and  is the sample interval.

Since Vasicek’s model has a closed-form transition density and marginal density functions

(Pritsker, 1998), the simulated sample path can be constructed by its transition density. The initial

values are drawn from its marginal density.

To study the test’s power performance, we simulate data from three diffusion processes and

test the null hypothesis that the data is generated from the Vasicek model. The three diffusion

processes are:

• Cox, Ingersoll and Ross (1985) model, henceforth CIR:

,  (12)

where .

• Chan et al. (1992) model, henceforth CKLS:

,                  (13)

where .

• Aït-Sahalia (1996) nonlinear drift model:

,                  (14)

where .
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The parameter values for the CIR model are taken from Pritsker (1998). For the CKLS and

Aït-Sahalia models the parameter values are taken from Aït-Sahalia (1999). For the CIR model we

simulate data from the model transition and marginal density functions. For the CKLS and Aït-

Sahalia models, whose transition densities have no closed form, we simulate data using the

Milstein scheme. We simulate data sets of a random sample with the same

sampling interval , that is, we sample the data at daily frequency. The sample sizes are

, which correspond to 1 year, 2 years, 4 years and 10 years of daily data,

respectively. The kernel function is chosen to be the standard normal density function. The

smoothing parameter is selected to minimize . This yields an asymptotically optimal

smoothing parameter, , where is a positive constant. We use the grid search method

to find the optimal that minimizes the . We let , and the grid points start

from  to  with an increment of .

The simulation results are reported in Table 1. We find that the test has satisfactory size

performance at all three levels for sample sizes as small as . The impact of the level of the

persistent dependence on the size of our test is minimal, which suggests that our test achieves

robustness to the persistent dependence. This can be explained by the fact that to test the null

hypothesis at the level , our test would use the following critical region: reject when

, where is the estimator of . Equations (6) and (7) indicate that the value

of will change with respect to the different value of the persistence parameter . Therefore, the

critical values of our test statistic can be automatically adjusted for different values of the

persistence parameter 4. From Table 1 it is also observed that our test has good power in detecting

misspecification of the Vasicek model against its three alternatives. For a given alternative, the

1000 xt∆n
{ }

t 1=
n

∆ 1 250⁄=

n 250 500 1000 2500, , ,=

h ASE h( )
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1 5⁄–

= c

c CV ch
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σ̂n β

β
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test’s power always increases rapidly with respect to the sample size, in line with the test’s

consistency property.

3.2   Multivariate Continuous-Time Models

To examine the size of our test for multivariate diffusion processes, we simulate data from

the affine two-factor Brennan-Schwartz model (Hsin, 1995):

,                  (15)

where we set the parameter values as:

,

which are from Hsin (1995). The null hypothesis is that the data is generated from the

process  with the two-dimension transitional distribution function as follows:

,   (16)

where

and

4. As pointed out by Pritsker (1998), the critical values in Aït-Sahalia’s test (1996) are invariant to proportional changes

in the variance and the persistent parameter .β
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.

To investigate the power of our test, we simulate data from two other affine term structure

models and test the null hypothesis that the data is generated from the two-factor Brennan-

Schwartz model in (15). We set the parameter values as in Aït-Sahalia and Kimmel (2010) in the

following two affine models:

,         (17)

where .

,                  (18)

where .

We simulate data sets of a random sample with the same sampling interval

, that is, we sample the data at daily frequency. The sample sizes are

. The kernel function is chosen to be the bivariate standard normal density

function. The smoothing parameter is selected to minimize . This yields an

asymptotically optimal smoothing parameter, , where is a positive constant. We use
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2
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2b22∆–( )exp 1–( ) 2b(⁄[+=

2 b11 b22+( )∆( )exp 1–( ) b11 b22+( ) 2b11∆–( )exp 1–( ) 2b11( ) ]⁄+⁄–

v12 σ11
2
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2
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0
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d
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a1 b11 b21 b22 β21 σ, 11 σ22, , , , ,( ) 0.0075 0.1 0 3 0 0.01 0.01, , ,–, ,–,( )=
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{ }

t 1=
n

∆ 1 250⁄=

n 250 500 1000, ,=

h ASE h( )

h cn
1 6⁄–

= c
15



the grid search method to find the optimal that minimizes the . We let ,

and the grid points start from  to  with an increment of .

Table 2 reports the simulation results. We observe that the estimated sizes are close to their

nominal sizes, and can powerfully detect the bivariate Brennan-Schwartz model from the two

alternative models with the misspecification of diffusion terms. It is noted that the test has higher

power against than . This is apparently due to the fact that the transition distribution

of , which is a two-dimension non-central Chi-square, deviates more significantly from the

two-dimension Guassian distribution and non-central Chi-square distribution. Overall, our

simulation results reveal that our test performs rather well in finite samples for multivariate models,

which suggests that the good finite-sample performance of our test in the univariate continuous

time models can carry over to the multivariate models as well.

4. Conclusion

In this paper we propose a new test for a multivariate parametric conditional distribution of

a vector of variables given a conditional vector . Under appropriate conditions, the proposed

test statistic has been shown to follow a standard normal distribution under the null hypothesis and

to be consistent against all possible fixed alternatives and local alternatives. Simulation

studies have shown that the test has reasonable size and good power in finite samples.

The test can be applied to evaluate a variety of univariate spot rate models and multivariate

term structure models. We are currently investigating these issues.

c CV ch
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T n
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A2 2( )
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APPENDIX: Proofs

Lemma 1. Under assumptions 1-4 and the null hypothesis, we have:

, where .

Proof of Lemma 1: Denoting , , and , we need to

prove that: .

Denoting  by , we can write  as follows:

We shall show that for . We define , where

is a large positive constant. By Assumption 2, we have , where

. We first show that . It is sufficient to show that

. Let .

Then we have .

We consider four different cases. (a): For any two summation indices from

, we have for all ; (b): There exist exactly four different

summation indices such that any index from these four indices, we have for all .
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(c): There exist exactly three different summation indices such that any index , from these three

indices, we have for all . (d) All the other remaining cases. We will use to

denote these cases . Let  be a Borel measurable function. We denote:

, ,

where, and are the marginal distribution function for and joint distribution

function for , respectively.

For case (a), using Lemma 1 in Yoshihara (1976), or

, and choosing  in , we have:

,

where we used the fact that . For case (b), we only need to consider the case

, since otherwise we will have or is at least period away from any other indices

and by Lemma 1 in Yoshihara (1976), we know it is bounded by . With ,

we must have one index at least periods away from any other indices for .

Hence, repeating application of Lemma 1 in Yoshihara (1976), we have:

,

because , and
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.

Similarly, .

For case (c), we only need to consider , for exactly

one index since otherwise it will be bounded by . By symmetry

we only need to consider , repeating application of lemma 1 in Yoshihara (1976), we have:

,

because .

For case (d), for any three different indices, we has at most terms. Hence, we have

.

To prove , we expand  around  to obtain

.                    (A.1)

where  is equal to some convex combination of  and . Using (A.1), we have:
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.

Using the same approach to prove that , we can prove that

. By Assumption 3 and , we have .

Hence, we have . By the mean value theorem and Assumption (3), we have

. Hence,

because and

.

Proof of (a) of Theorem 1: We decompose  into the following three terms,

.

From Lemma 1, we will complete the proof of Theorem 1 by showing:
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(i)  in distribution, (ii) , (iii) ,

(iv) .

Proof of (i): .

let , ,  and

. Because under null hypothesis, is

degenerate. Let  and , where  is a positive constant.

We will use a central limit theorem for degenerate U-statistics from Fan and Li (1999) to

prove (i). We now verify that Assumptions (1)-(4) in Fan and Li (1999) are satisfied under

Assumptions 1-4. We express  by . We have:

. Changing variables to , , and , we obtain:

.                                                                                                                  (A.2)
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Similarly we have:

.                                                                   (A.3)

For , we have:

.            (A.4)
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                                                                                                                                 (A.5)

.                                                     (A.6)

From equations (A.2)-(A.6), we have shown , ,

, , . These
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. (A.7)

Noting that given in (A.7) already has a factor, then changing variables, it is

straightforward to show that , and

. Thus (A2) in Fan and Li (1999) is satisfied.

Finally, , which implies

provided we choose sufficiently large. Also it is easy to check that

 is bounded by some positive constant. Hence (A3) in Fan and Li (1999) is satisfied.

Proof of (ii): . Using (A.1), we have:

,

where ,

.

We consider two different cases for : (a) and (b)

. We use and to denote these two cases. Let

, we have:

.                                                                 (A.8)

Using Lemma 1 in Yoshihara (1976) and Buniakowsky-Schwarz inequality, we have:

,                               (A.9)
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,                                                                     (A.10)

where . (A.9) and (A.10) lead to  and

 respectively.

Proof of (iii): .

,

because  by Assumption 3.

Proof of (iv): .

The proof for (iv) is similar to that (iii). Hence, we will provide a sketch proof here.

.

By Lemma 1 we have:

.                              (A.11)
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we can prove:

.

Under , , and , these two results

complete the proof for (b) of Theorem 1.

Proof of Theorem 2:

Following the same approach to prove Lemma 2 and (a) of Theorem 1, we can show

that . Let . We can decompose

 as follows:

.

Noting under the local alternative, from Theorem 1 we have

proved that in distribution. converges to

, and by using Lemma 1 we can prove that .

Hence, by the Chebychev inequality, we have converges to in

probability. Hence, if we choose , then , where

.
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Table 1: Percentage of Rejections of the  for Univariate Diffusions

n % % %

Vasicek (1977) Model with Low Level of Dependent Persistence

250 0.006 0.033 0.041

500 0.005 0.023 0.064

1000 0.006 0.042 0.077

2500 0.008 0.047 0.085

Vasicek (1977) Model with High Level of Dependent Persistence

250 0.002 0.020 0.039

500 0.007 0.031 0.063

1000 0.005 0.043 0.076

2500 0.009 0.048 0.086

Cox, Ingersoll, and Ross (1985) Model

250 0.512 0.544 0.615

500 0.627 0.746 0.882

1000 0.923 0.945 0.961

2500 1.000 1.000 1.000

Chan et al. (1992) Model

250 0.705 0.759 0.814

500 0.873 0.938 0.982

1000 1.000 1.000 1.000

2500 1.000 1.000 1.000

Aït-Sahalia (1996) Nonlinear Drift Model

250 0.814 0.827 0.841

500 0.905 0.943 0.983

1000 1.000 1.000 1.000

2500 1.000 1.000 1.000

H 0

T n

1 5 10
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Table 2: Percentage of Rejections of the For Multivariate Diffusions

Multivariate Affine Diffusion Process

n % % %

Two-Factor Brennan-Schwartz Model

250 0.004 0.040 0.063

500 0.002 0.045 0.081

1000 0.007 0.051 0.087

2500 0.008 0.049 0.091

Two-Factor Affine Model

250 0.537 0.645 0.689

500 0.745 0.798 0.898

1000 0.934 0.985 0.991

2500 1.000 1.000 1.000

Two-Factor Affine Model

250 0.713 0.788 0.823

500 0.890 0.922 0.975

1000 0.993 1.000 1.000

2500 1.000 1.000 1.000

H 0

T n

1 5 10

A2 1( )

A2 2( )
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