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1 Introduction
Positive mathematical programming (PMP) has been widely used for policy analysis, before and
after its formalisation by Howitt (1995b). The methodology allows the exact calibration of agricul-
tural production models against observed economic behavior—typically a single observation or av-
erage of observations on the allocation of inputs across activities—without the use of artificial flexi-
bility constraints, while requiring minimal data (Howitt, 1995b; Heckelei and Wolff, 2003). PMP is
often preferred to linear programming as it avoids overspecialisation and yields smooth responses
to policy changes. Existing agricultural policy models that rely on PMP principles include, among
others, the US Regional Environment and Agriculture Programming (REAP, formerly USMP)
model (Johansson et al., 2007), the European Common Agricultural Policy Regionalised Im-
pact (CAPRI) modelling system (capri-model.org), the Canadian Regionalized Agricultural Model
(CRAM) (Horner et al., 1992), the Dutch Regionalised Agricultural Model (DRAM) (Helming,
2005), or the California StateWide Agricultural Production (SWAP) model (swap.ucdavis.edu).
PMP models can accommodate various types of constraints such as resource limitations (e.g.,
land, water), nutrient balance constraints, and policy constraints (e.g., set-aside). They can also
easily accommodate exogenous information on yields and soil processes from biophysical mod-
els such as DAYCENT (De Gryze et al., 2010), a critical advantage for the ex ante evaluation of
agro-environmental policies. In this respect, calibrated PMP models represent a valuable tool for
the analysis of climate change-related policies, such as the inclusion of agriculture in greenhouse
gas emission trading schemes (Pérez Dominguez et al., 2009).

The “standard” PMP calibration procedure as outlined in Howitt (1995b) or Howitt (1995a)
did not control for the model’s implied supply response. In fact, the first-order calibration prob-
lem is typically underdetermined, in the sense that infinitely many sets of model parameters have
the ability to exactly reproduce the observed cropping pattern, each resulting in a different sup-
ply response pattern. Over time, the literature has advocated the use of exogenous information,
mostly related to costs and supply elasticities, to mitigate the underdeterminacy issue; a good
survey is to be found in Heckelei and Britz (2005). More recent literature has argued in favor
of incorporating available exogenous information on supply elasticities into PMP models (Heck-
elei and Wolff, 2003; Heckelei and Britz, 2005; Mérel and Bucaram, 2010; Mérel et al., 2011a),
and the present article builds upon this strand. While some earlier models have resorted to my-
opic calibration—implicitly ignoring the change in the shadow price of the linear constraints—the
focus here is on exact calibration. The second-order calibration problem consists of choosing a—
hopefully unique—set of model parameters such that the implied own-price supply elasticities for
each activity coincide with a set of exogenous values. Because exogenous information on supply
elasticities typically comes from econometric studies that implicitly reflect the limitations faced by
farmers, in particular the land constraint, it is important to account for the change in the shadow
values of constraints in the calibration phase. Otherwise, as pointed out by Buysse et al. (2007),
the model would reflect the constraints twice: once in the econometric values used for myopically
calibrating model parameters, and once in the explicit constraint set. An attendant implication of
this remark is that only those constraints that are reflected in the econometric estimates available
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to the analyst should be incorporated into the calibration phase. Other constraints should be ig-
nored for calibration purposes, and reintroduced ex post for policy analysis. Hence, the number of
constraints to be considered for calibration against supply elasticities need not be very large.1

Even with a few constraints, calibration against elasticity priors is not a trivial exercise. Be-
cause exact calibration takes full account of the change in the shadow prices of constraints, no crop
can be calibrated independently of the others, making the calibration problem more difficult than
with myopic calibration. The first hurdle was to derive a closed-form expression for the model’s
implied elasticities: this issue was resolved by Heckelei (2002) for the simple Leontief-quadratic
model; Mérel and Bucaram (2010) provide a technique to derive model elasticities in all other
cases, and here we build upon their findings.

The second hurdle arises from the form of these implied model elasticities: they are typically
non-linear in the calibrating parameters. One issue germane to the exact calibration problem is thus
the delineation of the set of exogenous elasticities that, conditional on the model specification and
the observed reference allocation, can be reproduced by an appropriate choice of model parame-
ters. As noted by Mérel et al. (2011a), though a single observation does not, in principle, provide
information on the second-order properties of the objective function, it does put restrictions on
the set of supply elasticities that can be reproduced—in a way, it set identifies the reproducible
elasticity vector. Mérel et al. (2011a) delineate the reproducible set of supply elasticities for the
fixed-proportions model with land constraint. Our purpose here is to extend their results to the
more realistic case of multiple constraints.

Many existing PMP models, including the USDA REAP model, the European Commission’s
CAPRI model and the California SWAP model, introduce the nonlinearity in the objective function
through quadratic cost adjustment terms, while the production function displays constant returns
to scale. In contrast, standard microeconomic theory implies that well-specified production func-
tions should display decreasing returns to scale for a solution function to the profit maximisation
problem to exist, while cost terms should be expressed as linear functions of input use. Mérel et al.
(2011a) suggest that the generalised CES model and its fixed-proportions variant, in addition to
satisfying these requirements, are more flexible than their quadratic counterparts, in the sense that
the set of elasticities they can reproduce is larger than—contains—that reproducible by quadratic
models. Therefore, here we focus on the fixed-proportions model with decreasing returns to scale
and linear cost. We leave the treatment of models with input substitution, such as the generalised
CES model, to further work.

The article is organised as follows. In the following section, we derive the elasticity calibration
system for the fixed-proportions model subject to any number of constraints. Section 3 contains
the main contribution of the article: the calibration criterion for the two-constraint case. Because
of space limitations, we relegate the derivation of the calibration criterion for the three-constraint
model to our website.2 Section 4 provides an empirical application. Section 5 concludes.

The calibration criteria we derive consist of a set of necessary and sufficient conditions, the

1Kanellopoulos et al. (2010) argue that PMP models typically include a small number of constraints.
2See home page.
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number of which is directly related to the number of binding constraints. This suggests a tradeoff
between the range of elasticity priors compatible with the reference allocation and the number
of binding constraints in the model. In addition, calibration conditions are nested across models,
in the sense that calibration conditions for the 3-constraint model include calibration conditions
for a virtual model with two constraints, which in turn include calibration conditions for a virtual
model with one constraint; hence the “matryoshka doll” conditions. The nesting structure of the
calibration criteria across models implies that criteria can easily be derived for models with a larger
number of constraints.

2 The calibration system
Throughout the article, the letter I denotes the number of non-zero activities in the base year, L
denotes the number of inputs, and K the number of binding linear constraints, with K < N . For
convenience, we also adopt the notation I ≡ {1, ..., I}. The constraints can reflect resource and/or
policy constraints and typically include a land constraint. The input l allocated to activity i is
denoted xil, with the first input denoting acreage. Total output in activity i is denoted qi. The price
of crop i is pi, and the price of input l, assumed to be the same for all activities, is denoted cl.3

Outputs and inputs in the reference allocation are denoted with bars. It is assumed that stage 1 of
PMP, or any alternative technique deemed appropriate to recover the shadow prices of constraints,
has been conducted. The resulting vector of shadow values is denoted λ̄ = (λ̄1, . . . , λ̄K).

As in Mérel et al. (2011a), the production function for activity i is assumed to exhibit decreasing
returns to scale, and here we assume that inputs contribute to each activity in fixed proportions,
that is

qi = αi

[
min

(
xi1,

xi2
µi2

, ...,
xiL
µiL

)]δi
for positive input coefficients µil = x̄il

x̄i1
and technological parameters αi > 0 and δi ∈ (0, 1). For

notational convenience, we write xi ≡ xi1, and denote x the I × 1 vector of acreages.
Given fixed proportions, the per-acre cost is Ci =

∑
l∈L clµil. We assume that the constraints

are linear in the input levels xil, which ensures, given fixed proportions, that the constraint set can
be written Ax = v, where A = (ak,i) is the matrix of constraint coefficients and v a K × 1 vector
of real numbers.4

The optimisation program can then be written as

max
x≥0

∑
i

piαix
δi
i − (Ci + λ2i)xi subject to Ax = v [λ]. (1)

3This assumption is not crucial to the model.
4This assumption somewhat restricts the nature of the constraints that can be imposed. For instance, an output

quota cannot be easily modeled in this framework, because it would require qi ≤ Qi for some quota level Qi, an
expression that is nonlinear in xi due to decreasing returns to scale.
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The set of exogenous supply elasticities is denoted η̄ = (η̄1, . . . , η̄I).5

It can be shown that the calibration problem is recursive, so that the model can be calibrated
in two steps. First, the analyst chooses the vector of returns to scale parameters δ = (δ1, ..., δI)
that replicates the set of prior elasticities η̄ at the reference allocation. Second, the analyst chooses
the parameters α = (α1, ..., αI) and the calibrating parameters λ2 = (λ21, . . . , λ2I) to replicate
the reference allocation (q̄, x̄, λ̄).6 Hence, the calibrating parameters δ are independent from the
values of α and λ2.

By applying the implicit function theorem, one can derive the set of calibrating equations for
the supply elasticities (evaluated at the reference allocation) as7

η̄ = VecDiag
[
D(II −AT (A∆AT )−1A∆)

]
(2)

where the operator VecDiag creates an I-vector out of the I diagonal elements of an I × I matrix,
∆ is the I × I diagonal matrix with typical element bi

δi(1−δi) with bi ≡ x̄2
i

piq̄i
, D is the I × I diagonal

matrix with typical element δi
1−δi and II is the I × I identity matrix.

Using Lemma 1 and Lemma 2 in Mérel and Bucaram (2010), we can rewrite the calibration
system (2) as

∀i ∈ I η̄i =
δi

1− δi

1−

∑
{j1,...,jI−K}∈PI−K(I−i)

det(A−j1,...,jI−K
∆−j1,...,jI−K

AT
−j1,...,jI−K

)∑
{j1,...,jI−K}∈PI−K(I)

det(A−j1,...,jI−K
∆−j1,...,jI−K

AT
−j1,...,jI−K

)

 (3)

where I−i denotes the set {1, . . . , i − 1, i + 1, . . . , I}, PI−K(I) denotes the set of (I − K)-
combinations (without repetition) of elements of set I , A−j1,...,jI−K

denotes the K × K matrix
obtained from deleting the columns j1, . . . , jI−K from matrix A, and similarly for ∆−j1,...,jI−K

.
Note that since these matrices are square, all determinants in (3) can be written as products of
determinants.

The elasticity calibration system (3) is nonlinear in the unknown parameters δ. It does not
depend on α or λ2, meaning that calibration against supply elasticities can be conducted separately
from calibration against the reference allocation. This is not to say that the calibrated parameters δ

will be independent from the reference allocation: in fact, the quantities bi =
x̄2

i

piq̄i
, which represent

the ratio of observed acreage to per acre gross revenue, appear in the matrices ∆−j1,...,jI−K
.

Because it is nonlinear, system (3) typically has more than one solution for the unrestricted
set of parameters δ. (It is equivalent to a polynomial system in the parameters δi.) However, we
show in the following section that at most one solution lies within the restricted set (0, 1)I , hereafter
referred to as the acceptable range. The solution to (3) that lies in the acceptable range is called the

5Throughout the article, the notation (x1, ..., xI) (with commas separating elements) always denotes a column
vector.

6The calibrating parameter λ2 is typical of PMP models and is necessary to replicate the reference allocation. It is
heuristically justified as a unobserved cost component.

7See home page for the derivation.
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acceptable solution. We derive the necessary and sufficient conditions under which an acceptable
solution exists. That is, we delineate the set of supply elasticities η̄ that are “compatible” with the
reference allocation, in the sense that at this reference allocation, the model can exactly reproduce
the supply elasticities. We explicitly do so for the case K = 2, and refer the reader to the online
material for the case K = 3.

Our main results take the form of two propositions and one corollary. The first proposition is
entirely proven analytically in the working paper by Mérel et al. (2011a). For the other proposition
and the corollary, we provide analytical proofs whenever possible, and numerical evidence based
on an extremely large number of simulations otherwise.8 The reason why analytical proofs are
not always available is that most of the calibration conditions involve mathematical objects that
are defined as implicit functions of the data. When these objects cannot be expressed explicitly
as functions of the data, it becomes extremely difficult—if not impossible—to show the results
analytically. The fact that the calibration conditions involve implicit functions of the data does not
affect their practical usefulness, as these functions can be solved by any nonlinear solver.

3 The calibration conditions

3.1 The case K = 0

When there are no constraints, the elasticity calibration system is degenerate and has the form

∀i ∈ I η̄i =
δi

1− δi
. (4)

We will denote this system S0(I, η̄). The first argument denotes the size of the system, and the
remaining vector the parameters that enter the system. S0(I, η̄) is trivially solved by choosing,
for all i ∈ I , δi = η̄i

1+η̄i
, a value that automatically lies within the acceptable range. There are no

restrictions on the set of elasticities that can be reproduced, and the solution is unique. Therefore,
as long as I ≥ 1 and η̄ >> 0, the system S0(I, η̄) always has a unique acceptable solution.

3.2 The case K = 1

With one constraint written
∑

i∈I a1,ixi = v1, the calibration system (3) specialises to

∀i ∈ I η̄i =
δi

1− δi

1−
a2
1,ibi

δi(1−δi)∑
j∈I

a2
1,jbj

δj(1−δj)

 .
8Due to page limitations, we relegate all analytical proofs and numerical simulation results to our website, home

page. All simulations were run in MATLAB.
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Defining Bi ≡ a2
1,ibi, this system can be rewritten as

∀i ∈ I η̄i =
δi

1− δi

1−
Bi

δi(1−δi)∑
j∈I

Bj

δj(1−δj)

 . (5)

Since system (5) depends on the parameters (Bi)i∈I in addition to the vector of elasticities η̄, we
denote it S1 (I, (Bi)i∈I , η̄). (The superscript “1” indicates that there is one constraint.)

For i ∈ I , we denote η̄−i ≡ (η̄1, . . . , η̄i−1, η̄i+1, . . . , η̄I). Throughout the article, the notation
d−i ≡ (d1, . . . , di−1, di+1, . . .) denotes an (I − 1)-vector for which the components dj are indexed
in increasing order but skipping the component di. Given the set I and the family of coefficients
(Bi)i∈I , for each element i ∈ I we introduce the following function of the vector d−i ∈ (0, 1)I−1:

R1
i (d−i; I, (Bi)i∈I) =

∑
j∈I−i

Bj

dj(1−dj)

Bi

.

Proposition 1 (Mérel et al., 2011a). Suppose that I ≥ 2. For i ∈ I , denote δ̂−i the unique
acceptable solution to the system S0(I − 1, η̄−i). The calibration system S1 (I, (Bi)i∈I , η̄) has an
acceptable solution if and only if, for all i ∈ I

η̄i < R1
i

(
δ̂−i; I, (Bi)i∈I

)
.

When this condition, to be denoted C1
i (I, (Bi)i∈I , η̄), is satisfied for all i ∈ I , the acceptable

solution δ is unique and satisfies δi ≥ η̄i

1+η̄i
for all i ∈ I .

Corollary 1 The condition C1
i (I, (Bi)i∈I , η̄) is either satisfied for all i ∈ I (which is equivalent to

saying that S1 (I, (Bi)i∈I , η̄) has a unique acceptable solution) or violated by at most one i ∈ I .9

3.3 The case K = 2

When K = 2, the calibration system (3) specialises to

∀i ∈ I η̄i =
δi

1− δi

1−

∑
j∈I−i

Bij

δi(1−δi)δj(1−δj)∑
{j,k}∈P2(I)

Bjk

δj(1−δj)δk(1−δk)

 (6)

where Bij = bibj det(Ai,j)
2, with Ai,j denoting the 2× 2 matrix obtained by keeping the columns

of matrix A with indices i and j. (Note that the order of i and j in the submatrix Ai,j does not
matter here since the determinant is squared. We have Bii = 0 and Bij = Bji.)

9The analytical proof of Corollary 1 is trivial given that δ̂−i =
(

η̄1
1+η̄1

, . . . , η̄i−1
1+η̄i−1

, η̄i+1
1+η̄i+1

, . . . , η̄I

1+η̄I

)
.
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Since system (6) depends on the family of parameters (Bij)(i,j)∈I2 and the elasticities η̄, we
denote it S2

(
I, (Bij)(i,j)∈I2 , η̄

)
, where the superscript “2” indicates a calibration system for a 2-

constraint model.
Given the set I and the family of coefficients (Bij)(i,j)∈I2 , for each element i ∈ I we introduce

the following function of the vector d−i ∈ (0, 1)I−1:

R2
i

(
d−i; I, (Bij)(i,j)∈I2

)
=

∑
{j,k}∈P2(I−i)

Bjk

dj(1−dj)dk(1−dk)∑
j∈I−i

Bij

dj(1−dj)

.

For (i, j) ∈ I2, i < j, we denote η̄−i,j ≡ (η̄1, . . . , η̄i−1, η̄i+1, . . . , η̄j−1, η̄j+1, . . . , η̄I). We also
denote by d−i,j an (I − 2)-vector for which the components dk are indexed in increasing order but
skipping the components di and dj .

We now derive the main proposition of this article, which establishes the conditions under
which system S2

(
I, (Bij)(i,j)∈I2 , η̄

)
has a (unique) acceptable solution.

Proposition 2 Suppose that I ≥ 3. For {i, j} ∈ P2(I), denote δ̂−i,j the unique acceptable solu-
tion to S0(I − 2, η̄−i,j). The calibration system S2

(
I, (Bij)(i,j)∈I2 , η̄

)
has an acceptable solution

if and only if, for all i ∈ I
(i) if C1

j

(
I − 1, (Bij)j∈I−i

, η̄−i
)

is violated for some (necessarily unique, see Corollary 1) j ∈
I−i, then η̄i < R1

i

(
δ̂−i,j; I − 1, (Bij)i∈I−j

)
(ii) if S1

(
I − 1, (Bij)j∈I−i

, η̄−i
)

has a (necessarily unique, see Proposition 1) acceptable so-

lution, denoted ˆ̂δ−i, then η̄i < R2
i

(
ˆ̂δ−i; I, (Bij)(i,j)∈I2

)
.

When this condition, to be denoted C2
i

(
I, (Bij)(i,j)∈I2 , η̄

)
, is satisfied for all i ∈ I , the accept-

able solution δ is unique and satisfies δi ≥ η̄i

1+η̄i
for all i ∈ I .10

3.4 Interpretation
Let us first try to visualise the calibration region. For the case I = 2 and K = 1, Figure 1 depicts
the calibration region when B1 = B2. The shape of the calibration region is that delineated by the
outer portions of two cones. Calibration is feasible below the bottoms of the cones (both elasticities
are small enough), close enough to one of the axes (one elasticity is small enough, the other being
large) and in the tunnel delineated by the two cones (both elasticities can be large but one cannot
be too large compared to the other). The infeasible region may thus be characterised by the fact
that one of the elasticities is neither small enough, nor large enough, compared to the other one.
When B1 6= B2 the calibration region becomes dissymmetric but is still delineated by the outer
portions of two cones.

10We proved analytically the sufficiency of conditions C2
i

(
I, (Bij)(i,j)∈I2 , η̄

)
, i = 1, . . . , I . Using MATLAB, we

showed numerically the necessity of conditions C2
i

(
I, (Bij)(i,j)∈I2 , η̄

)
, as well as the uniqueness result.
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Figure 1: Calibration region for I = 2 and K = 1

Now consider the case I = 3 and K = 2, with parameters B12 = 329, B13 = 337, B23 = 353.
(These parameters were generated from an initial matrix A and a set of values for b1, b2 and b3.)
Figure 2 depicts the feasible region determined by the calibration criterion of Proposition 2. A
unique solution to the calibration system exists when the elasticities lie below the cones in the
bottom right corner of panel (a), close enough to one of the axes, or in the tunnel delineated by the
three cones in panel (b). This calibration region is the natural 3-dimensional extension of the one
for I = 2 crops and K = 1 constraints depicted in Figure 1.

The existence of restrictions on the set of reproducible elasticities, conditional on the reference
allocation, as well as the uniqueness property—when calibration is feasible,—have fundamental
implications for the calibration of programming models of agricultural supply. Unlike first-order
calibration against the reference allocation, which, as shown for instance in Howitt (1995b), is
always feasible (a desirable property) and can be achieved in many ways (an undesirable property),
second-order calibration against exogenous supply responses is only sometimes feasible, yet when
it is it can only be achieved in one way.

Besides the obviously useful uniqueness result, being able, ex ante, to determine whether a
given set of elasticity priors lies in the calibration region is far from being a luxury. Imagine for
instance that the analyst wishes to replicate the set of supply elasticities η̄, and finds out that it
lies outside of the calibration region. Being able to delineate the calibration region will allow
the analyst to (i) identify precisely the source of the infeasibility and (ii) modify the prior in the
least costly way in order to fall back into the calibration region. Here, “least costly” should be
understood in two ways: first, the analyst will know where to search, as opposed to proceeding
by trial and error until he finds a feasible elasticity vector. Second, and perhaps more importantly,
the analyst will not “overshoot”: he will be able to reach the calibration region while minimising
the departure from the elasticity prior. This could be done, for instance, by solving a simple
generalised maximum entropy problem. In the next section we present a concrete example.
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Figure 2: Calibration region for I = 3 and K = 2

4 Empirical implementation
Consider the simple three-crop, two-constraint model of California agriculture used in Howitt
(1995a).11 The three crops are cotton (C), wheat (W) and rice (R) and the four inputs are land
(1), water (2), capital (3) and chemical inputs (4). In Howitt (1995a), California faces two binding
resource constraints: land and water. The elasticity prior is η̄ = (η̄C , η̄W , η̄R) = (0.47, 0.40, 0.80).
(These elasticities are the ones used in the California SWAP model.) The parameters Bij are easily
constructed using the information provided in Howitt (1995a).

Using the calibration criterion of Proposition 2, we find that part (ii) of condition C2
i (3, (Bij), η̄)

is violated for rice, because η̄R > R2
R

(
ˆ̂
δ−R; 3, (Bij)

)
= 0.54. Therefore, given the reference al-

location, it is not possible to exactly calibrate the model’s implied supply elasticities against the
prior η̄. Figure 3 shows that the elasticity prior (represented by the red dot) indeed lies outside the
calibration region.

Solving a simple generalised maximum entropy (GME) program with equidistant support
points for each crop, such that ηGME

i is restricted to lie in an interval [η̄i − γ, η̄i + γ], we obtain
the elasticity vector ηGME = (0.43, 0.42, 0.55) that now falls in the calibration region. Because
the support intervals of all elasticities have the same width and are centered on the prior, the GME
solution in this case yields the feasible elasticity vector that lies closest to the prior η̄ in the sense
of the Euclidian distance. If the analyst had more confidence in one of the elasticities, departure
from that particular elasticity could be reduced by narrowing its support interval. Figure 3 shows

11The program written in GAMS is available upon request.
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the GME projection of the prior onto the calibration region (the green dot). The associated unique
parameter vector can then be found by solving system (6) numerically, with η̄ replaced by ηGME .
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0.8ΗC
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0.6

0.8
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Figure 3: GME projection of the prior onto the calibration region

5 Conclusion
Recent literature has advocated the use of exogenous information on supply responses to calibrate
agricultural production models. However, unlike first-order calibration against a reference alloca-
tion, second-order calibration is not always feasible. In this paper, we extended the results of Mérel
et al. (2011a) to fixed-proportions models with decreasing returns to scale and linear cost subject
to multiple constraints. We first generalised the elasticity calibration system to models with any
number of constraints K ≥ 1. Then, we explicitly derived the calibration criterion under which
a unique acceptable solution to the calibration system exists in the case K = 2. (The calibration
criterion for K = 3 is available at home page.)

As illustrated in the previous section, the availability of a calibration criterion allows for a
systematic rationalisation of the second-order calibration of agricultural supply models.

Another potentially important application of these criteria is to permit the disaggregation of
econometric estimates of supply elasticities down to the regional level. Often, econometric esti-
mates of supply responses are only available at an aggregate level, typically state- or nation-wide.
Yet, there is growing interest in modelling regional production patterns, in particular to better
account for local environmental conditions through the coupling of programming models with
biophysical models and soil process models (Godard et al., 2008; Mérel et al., 2011b). Wher-
ever a second-order calibration criterion is violated, the analyst will need to depart from the initial,
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statewide prior in order to fall into the calibration region. Because the calibration criterion involves
region-specific parameters (the “B” parameters), it is different for each region and will thus lead
to different elasticity vectors in each region where it is violated. The existence of restrictions on
the set of reproducible supply elasticities can thus be exploited to generate regional variation in
agricultural supply responses.
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