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1 INTRODUCTION 
Enterprises in all sectors of the economy including agriculture are faced with changing 
economic, legal, and political conditions. The competitiveness of a firm and even the long 
term survival depend not only on its efficiency or productivity, but also on its ability to 
respond to these changes with adjustments in their production programs. However, output 
adjustment is often associated with an increase in average costs of production at firm level. A 
flexible and adaptable production technology is required to meet this challenge. In this 
context, flexibility can be considered as a crucial factor of competitive advantage. 

The aim of this paper is to develop a primal and a dual flexibility measure for multi-product 
firms, which can be obtained by estimating both cost and input distance functions. Our 
measure is formulated for both short and long run functions and can be decomposed into three 
effects, which appears useful in investigating possible sources of flexibility of a firm.  In our 
empirical implementation, we show how this decomposition can be used for flexibility 
analysis drawing on individual data of Polish farms. 

Researchers have been interested in firms’ flexibility since the topic was introduced in 
literature by STIGLER (1939). He defined flexibility as those attributes of cost curves that 
determine how responsive output decisions are to demand fluctuations. He discussed 
flexibility in terms of the relative convexity (the second derivative) of the average cost curve. 
Thus, the flatter the average curve the greater the flexibility. Therefore, in line with Stigler, 
we consider flexibility as an extent of average cost changes in response to output variations. 
Since firms are not likely to be single-output-producers and in most cases and especially in 
agriculture produce more than one output, we use a flexibility measure for the multi-output 
case which was recently proposed by CREMIEUX ET AL. (2004) in their comparison study of 
hospital services. Based on a procedure similar to that of CHAVAS AND KIM (2010) we 
decompose flexibility into three components. In doing so, we distinguish between cost 
response associated with changing the production level of individual products (scale effect), 
cost response associated with the product-line diversification (scope effect or 
complementarity effect), and cost response associated with the growth of the marginal costs 
(concavity effect). The proposed measure allows analyzing both the interdependence between 
scope, scale and concavity effects as well as their contribution to the overall flexibility of the 
firm. Further we distinguish between a short-run and long-run flexibility measure. In the short 
run, the flexibility index is based on the elasticities of the variable cost function conditional 
on a given level of fixed factors, while in the long run all inputs are variable. Using a dual 
production technology we present two alternative indices given as elasticities of the cost and 
the dual input distance function, both for the short and the long run. To obtain the dual 
flexibility measure we make use of the dual scale and scope measures proposed in economic 
literature (FÄRE ET AL. (1986), HAJARGASHT ET AL. (2008)). The advantage of the dual 
flexibility measure is that flexibility can be derived when an econometric estimation of the 
cost function is not possible due to data availability or other problems which we discuss 
further.  

The structure of this paper is as follows. Next section introduces and discusses the flexibility 
measure based on the average cost function. This measure is formulated for the single-output 
and multi-product case. The economic interpretation of the flexibility measure and its 
components is discussed in section 3. Using relationships between variable and long run total 
cost functions we derive a long run flexibility measure in section 4. In section 5 we develop a 
dual flexibility measure for both the short and the long run, which can be empirically 
estimated using elasticities of the short run input distance function. Empirical implementation 
and econometric issues are discussed in section 6. In section 7 we introduce the data set used 
for our study, discuss estimated results and present conclusions. 
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2 DEFINITION AND MEASURE OF FLEXIBLITY 

Following STIGLER (1939), we consider flexibility as an attribute of production technology to 
accommodate output variations at lower costs. According to Stigler’s definition, flexibility 
varies inversely with the curvature of the average cost curve. Assuming U-shaped average 
cost curves this means that the steeper average costs rise around their minimum point, the less 
flexible is the production technology of the firm. In contrast to more flexible technologies 
with flatter average cost curves, such a technology will lead to larger changes in the average 
costs caused by changes in output levels. Because the curvature of a curve is measured by the 
second derivative, the firm is considered to be more flexible the smaller the second derivative 
of its average cost function with respect to the output. Thus, the measure for the single-output 
case can be formally expressed as follows:  
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where C is a cost function, satisfying the usual homogeneity, monotonicity and curvature 
properties (see CHAMBERS, 1997). Further, Cyy is the second order derivative of the cost 
function with respect to the output y, and εC

y is the cost elasticity with respect to the output1.  

The existing flexibility literature is mainly focused on the single-output case, which is 
insufficient when production is highly diversified. For this reason, the definition and measure 
of flexibility have to be extended for the multi-product case. One possibility is provided by 
CREMIEUX ET AL. (2005). Their measure is based on the concept of ray average cost by 
BAUMOL ET AL. (1998). Ray average cost is characterized by the cost change induced by 
proportional changes in all outputs along a particular output ray. These proportional changes 
in the output set are determined by the positive scalar t.2  In analogy to the single-output case, 
flexibility is measured by the second derivative of the ray average cost with respect to the 
scalar t: 
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where Cyy is the Hessian matrix of second order derivatives of the cost function with respect 
to output yj and εC

yj  is the partial cost elasticity with respect to output yj. 

Smaller values of the second derivative of the average cost function with respect to output 
correspond to flatter average cost curves. Thus, lower values of Flex imply more flexible 
technologies.  

3 ECONOMIC INTERPRETATION 

The multi-product flexibility index (2) measures the ease with which a firm can respond to a 
change in demand for one or more of its outputs. The more technology allows it to reallocate 
inputs in order to reduce unit costs by changes in the production program, the more the firm 
benefits from flexibility. Using the Flex-Index we can distinguish between different sources 
of these flexibility benefits. As follows from equation (2a), the degree of flexibility depends 
on the first and second order derivative of the initial cost function with respect to different 

                                                 
1 Cost elasticity is defined as the percentage change in costs caused by a 1percent increase of output: .
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2 The change in the outputs has not to be proportional for all products. Indeed, the positive scalar t could be 
replaced by the function reflecting the reaction of a certain output to relative price changes on the product 
market. 
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outputs. For the purpose of a more detailed analysis of the sources of flexibility we divide the 
matrix of second order derivatives of the cost function with respect to outputs into two 
matrices: D

yy
D
yyyy CCC −+=  where D

yyC  is the diagonal matrix containing only the diagonal 

elements of Cyy and, correspondingly, matrix D
yyC −  containing off diagonal elements of Cyy and 

zero values on the main diagonal. 
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Thus, the multiproduct flexibility measure in (2b) can be decomposed into three additive 
terms: scope (or complementarity) effect, concavity effect and scale effect. Considering the 
role of scope and scale economies, as well as concavity properties of the production 
technology, this decomposition provides useful insights on possible sources of flexibility for 
the multiproduct firm. 

1. Scope effect 

The first component on the right hand side of the measure (2b) reflects the scope effect (or 
complementarity effect). It can be obtained through the multiplication of the off diagonal 
elements of the Hessian matrix by the corresponding output vectors.  

F_scope = yCy D
yy
−' .          (3) 

The scope effect measures cost savings which can be achieved by using economies of scope 
which result in lower unit costs due to diversification. The term economies of scope refers to 
cost reductions through the production of a variety of products rather than specializing in the 
production of single output. Positive economies of scope may arise from the sharing or joint 
utilization of input resources by diversified production technologies and lead to reductions in 
unit costs. On the other hand, if the joint production of two outputs is more costly than 
independent production by two independent firms, there exist diseconomies of scope. 
According to BAUMOL ET AL (1998), economies of scope depend on the signs of the second 
order derivatives of the multiproduct cost function with respect to outputs. Negative values 
denote weak cost complementarities among two outputs, which is a sufficient condition for 
the existence of economies of scope. Indeed, complementarity in outputs implies a reduction 
of the marginal cost of a particular output when the production of another output is increased.3 
Thus, the scope effect indicates how the utilization of economies of scope contributes to the 
ability of a firm to meet changes in demand fluctuations through the adjustment of its output 
levels. Lower values of F_scope correspond to flatter average cost curves and imply more 
flexible production technologies. 

2. Concavity effect 

The second term can be interpreted as concavity effect. It considers diagonal elements of the 
Hessian matrix, which can take on negative as well as positive values. 

F_concave = yCy D
yy' .         (4) 

                                                 
3 Examples of cost complementarity are the allocation of land, labor and management resources across farm 
activities and enterprises within a given period, so that these inputs can be utilized more efficiently. Further 
example is the production technology where products form one enterprise can be used as inputs to another. The 
use of manure as an organic fertilizer in crop production or the utilization of crop residues and products in 
animal feeding are the examples from agriculture. 
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The concavity effect is based on the curvature concept since the sign of  F_concave depends 
on the concavity or convexity property of the cost function in y.4 Decreasing marginal costs 
with respect to output j generate a negative sign for F_concave, leading to a concave cost 
function in yj, that contributes to higher flexibility, and vice versa. Therefore, the lower the 
growth rate in the cost increase, the more flexible the production technology. 

3. Scale effect 

Finally, the third component corresponds to the concept of economies of scale associated with 
the relationship between total (variable) cost and output changes, hereinafter referred to as 
scale effect: 
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Scale elasticity measures the proportional increase in cost resulting from a proportional 
increase in the level of output. According to some definitions in the literature (cf. BROWN ET 
AL. (1979), CHRISTENSEN AND GREENE (1976)), scale elasticity may be expressed as unity 
minus the sum of cost elasticities with respect to outputs, which results in positive values for 
economies of scale and negative values for diseconomies of scale: 
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Thereby, the scale effect in (5) measures the cost responsibility associated with intensification 
of production (increase in the output level of individual products) due to economies of scale. 
Firms which show higher economies of scale in the sum of all outputs possess steeper ray 
average cost curves, associated with inflexible production technology. 

4 LONG-RUN FLEXIBILITY MEASURE 

Further one can distinguish between short-run and the long-run flexibility measures. In the 
short run, some of the inputs are considered as quasi-fixed factors. Thus, the short-run 
flexibility measure is based on the variable cost function, derived from the cost minimization 
problem for the given values of quasi-fixed factors: 

{ }),(min),,(
0

kyVxxwkywVC
x

s ∈⋅=
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with x – vector of variable inputs, y – vector of outputs, w – vector of input prices, k – vector 
of quasi-fixed factors.  

For the long run analysis, we derive the flexibility measure from the long-run total cost 
function which corresponds to minimizing long-run total costs considering fixed costs as 
follows: 

krkywVCkwyTC sl

k
'),,(),,(min +=  with r - vector of the quasi-fixed factor prices. 

In the long run equilibrium, a firm minimizes its long-run total cost by choosing the optimal 
value for the quasi-fixed factor k where market prices of the quasi-fixed factors equal their 
shadow prices, which are defined as the derivative of the variable cost functions with respect 
to the quasi-fixed factor rm = -∂VCs/∂km. Thus, in terms of elasticities the long-run total cost 
function can be rewritten as: 

                                                 
4 Färe and Lehmijoki (1987) argue, that  necessary and sufficient condition for cost function to be quasi-convex 
in output is the homotheticity of the input correspondence. 
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Based on this relationship we can derive both a flexibility measure and its decomposed 
components – concavity, scope and scale effect in the long run. 
Inserting the optimal solution of the cost minimization problem – optimal quasi-fixed factor 
demand functions k*(y,w,r) - into the long-run cost function and applying the envelope 
theorem by deriving TC with respect to y will yield the following relationship5: 
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where ky is the matrix of partial derivatives of the fixed factors with respect to different 
outputs. In the long-run equilibrium holds: r = -VCs

k, thus the expression in (8) leads to: 
s
y

l
y VCTC = .           (8a) 

After differentiating both sides with respect to y, rearranging and considering the envelope 
theorem, we obtain the following expression for the matrix of the second order derivatives of 
the long-run cost function with respect to y in terms of the variable cost function6: 
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Using (9) we can now calculate the second order derivative of the long-run total cost function 
using second order own and cross-partial derivatives of the short-run variable cost function 
with respect to y and k. Similar to the short-run case, the diagonal elements of the matrix  
TCl

yy can be used for investigating long-run convexity effects, while the elements offside the 
main diagonal indicate the existence of economies or diseconomies of scope on the long-run. 

Further, we can derive a long-run measure for economies of scale utilizing the following 
relationship (7)7:  
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Long-run scale effect then can be expressed as: 
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And finally, using (9) and (11), we derive the long-run flexibility measure using elasticities 
and derivatives of the short-run variable cost function as follows: 
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5 Hereinafter we use the following notation: VCz is the vector of first-order partial derivatives and VCzz is the 
matrix of second-order or cross-term derivatives of the short-run variable cost function VC(w,y,k) with respect to 
z = (k,y). 
6 Differentiating s

kVCr −= with respect to y leads to: y
s
kk

s
ky kVCVC −−=0 , from which we can now derive  
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of yk we get the expression in (9). 
7 For the discussion of the measure of long run scale elasticity based on the variable cost function see Braetigam 
and Daughety (1983). 
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with second derivatives of the long-run cost function l
yyTC derived from the variable cost 

function given by (9). 

5 DUAL MEASURE OF FLEXIBILITY BASED ON THE DISTANCE FUNCTION 

For an empirical analysis of flexibility the measures in (2) and (11) may be directly derived 
from the elasticities of the econometrically estimated short run multi-output-cost function. 
However, the estimation of the cost function may be problematic in some instances. A first 
problem might arise from data availability as the input price data required for estimating cost 
functions are not always available. Second, due to the unpriced nature of many inputs in 
family farm agriculture (for example family work, owned land) it may be difficult to estimate 
overall cost. Finally, even if one is able to find an approximation for some input price data, a 
third kind of problems can occur if estimated parameters of the cost function are not 
consistent with the theoretical assumptions due to inappropriate calculation of price data (for 
example, when quasi-concavity in input prices is not fulfilled). In order to avoid these 
problems, we propose a dual flexibility measure which can be derived by estimating 
parameters of the input distance function. Both cost and input distance function are valid 
representations of a multiple production technology. Though the input distance function is 
less restricted compared to the cost function, it does not require any behavioral assumptions 
and only input and output quantity data are needed to estimate the parameters of this function.  

Using duality theory we define the short-run input distance function dual to the cost function 
as follows: 

{ }1),,(:inf),( ≥= kwyVCwxyxD
x

s
i    

The standard properties of the input distance function are: (i) decreasing in each output level, 
(ii) increasing in each input level, (iii) homogeneous of degree one and (iv) concave in all 
inputs (SHEPHARD (1970), FÄRE AND PRIMONT (1995)). 

Applying functional relationships between the cost and input distance function we can obtain 
the dual flexibility measure. In doing so we make use of dual measures of economies of scale 
and scope as proposed in the economic literature. Following FÄRE ET AL. (1986), the multi-
output measure of economies of scale computed from the input distance function and 
formulated in terms of cost elasticities can be written as:8 

111 −⋅′+=−= ∑ DDyεScale y
j
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According TO HAJARGASHT ET AL. (2008) we derive the matrix of the second order derivatives 
of the short-run variable cost function with respect to the output vector in terms of the 
derivatives of the input distance function as follows:9  

( )[ ]xyxxxxyxyyyy
s

yy
s DDDDDDDDVCVC 1−′++−′⋅= .     (14) 

Note, that the elements on the main diagonal of the s
yyVC  matrix are part of the concavity 

effect while the elements outside the main diagonal are considered by measuring the scope 
effect.  

Further, using the solution of the first order condition of the multi-product cost minimization 
problem with production constraints expressed by the input distance function and the optimal 

                                                 
8 The equality of the primal and dual measures of economies of scale holds by convex input sets, see Färe et al. 
9 Hereinafter we use the following notation: Dz is the vector of first derivatives and Dzz is the matrix of second-
order derivatives of the input distance function Di

s(x,y) with respect to z = (x,y). 
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value of the Lagrangian multiplier ),(* wyλ  which is equal to the cost function ),( wyC , we 
derive following relationship between the cost and the distance function10:  

i
s

x
s wDVC

i
/= .          (15) 

With iw - price of one of the variable inputs i and 
ixD - first derivative of the input distance 

function with respect to a particular input i. 

After replacing the correspondent parts of the formula (2a) with (13), (14) and (15) we derive 
the dual measure of short run flexibility of a multi-product firm based on the parameters of 
the input distance function: 
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For the long run flexibility analysis we use dual relationships between the shadow price of the 
quasi-fixed factor based and the short run input distance function:11 
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The dual long-run measure of economies of scale is derived by substituting relationships from 
(13) and (17) into formula (10): 
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The scale effect on the long run can be expressed in terms of distance function as: 
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In order to obtain the Hessian matrix of the long run total cost function from the derivatives of 
the short-run distance function, we have to replace the parts of formula (9) with their 
corresponding dual vectors and matrices. In analogy to the derivation of (14), we can derive 
the corresponding matrices VCyk, VCkk and VCky of the long-run measure based on the 
derivative matrices of the short-run input distance function as follows: 

[ ] )''( 1
xyxxxxkxkyyk

s
ky

s DDDDDDDDVCVC −++−= .     (20) 

[ ] )''( 1
xkxxxxkxkkkk

s
kk

s DDDDDDDDVCVC −++−= .     (21) 

[ ] )''( 1
xkxxxxyxykky

s
yk

s DDDDDDDDVCVC −++−= .     (22) 

After substituting relationships (20) - (22) and (14) into formula (9) we can now derive dual 
long-run measures for scope and concavity effects:  
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10 For derivative properties and dual relationships between cost and distance functions see Färe and Primont 
(1995), p.51ff. 
11 This relationship is based on the envelope theorem applied to the cost minimization problem 
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6 ECONOMETRIC SPECIFICATION 

For the econometric estimation of the short-run multiproduct input distance function we 
specify a translog functional form. We differentiate between various technologies by adding 
dummy variables which capture specialization in different production processes, namely crop 
production, grazing livestock or granivores. Thus, a parametric specification of the short-run 
multiproduct input distance function can be expressed as: 
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where yjf represents the quantity of the jth output, xif is the quantity of the ith variable input, 
kmf is the quantity of the mth quasi-fixed factor, and f = 1, …,F denotes an agriculture firm. 
The time dummy t accounts for technological change and D_Sp are the dummies accounting 
for specialization in crop production, grazing livestock or granivores.12  

Following the standard practice in the stochastic frontier literature we set 0 = lnDft + vft - uft, 
where the random disturbance term vft is assumed to be normally distributed with a zero 
mean, and uft  as one-sided random variable according to a half normal distribution. The term 
uft is usually interpreted as technical inefficiency. Input homogeneity is imposed by 
normalizing  the distance function with one of the variable inputs x0 so that the regression 
model takes the form: ln x0ft  = ln D*

ft + vft + yft  with D* - short run distance function with 
variable inputs normalized by x0.13 Parameters of the stochastic input distance function were 
estimated using the maximum likelihood procedure by running the Limdep 9.0. 

7 DATA AND EMPIRICAL RESULTS 

In the empirical application we utilized a data set including eight years of observations, from 
1994 to 2001, on 580 Polish agricultural farms; the total number of observations was 4,640. 
The data set was provided by the Polish Institute of Agricultural and Food Economics - 
National Research Institute (IERiGZ-PIB). Variables contain both farm-specific accountancy 
information and socio-demographic characteristics. 

Variables used for the estimation of the input distance function include following variables. 
Outputs are total output values of crops and crop products (y1), output from grazing including 
milk production, cattle, sheep and goats (y2), and granivores (y3) including pigs, poultry and 
                                                 
12 Firms that produce more than 50% of the overall production in one of the three output groups - crop 
production (D_sp=1), grazing livestock (D_sp=2)or granivores (D_sp=3) - considered as specialized. 
Remaining firms are considered as not specialized or diversified (D_sp=0). 
13 Some authors (Krumbhakar et al (2008)) argue that normalized distance functions could lead to endogeneity 
problems, since one of the arbitrary chosen input variables is considered as exogenous while all other inputs are 
assumed to be endogenous. However, Coelli (2000) proves that under typically accepted behavioral assumptions 
OLS yields consistent functional estimates for a Translog functional form, and, thus, the endogeneity problem is 
less important than expected. 
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other animal production. These indicators were estimated taking into account sales, home 
consumption and stock changes. Since the individual figures for outputs were in current 
values, the variables were deflated by the corresponding price indices provided by the 
Statistical Office in Poland (GUS var. issues, a, b). As variable inputs we used the implicit 
quantity index for specific inputs of crop (x1) and animal production (x2) respectively, and 
other variable costs (x3). The first two variables were obtained by deflating components of the 
variable costs going into crop or animal production by their corresponding price indexes 
calculated in 1994 price levels. Other variable costs were deflated by the national price index 
for fuel, oils and technical lubricants since these categories of costs result in 80% of other 
variable inputs. This variable was used as a normalizing variable, i.e. all input variables were 
divided by other variable costs. The vector of quasi-fixed factors contains the following 
variables: labour (k1), land (k2), and capital (k3). Labor was given by agricultural working 
units for both family and hired labor. Land input was approximated by the sum of arable land 
and grassland in use. Capital input was approximated by the sum of expenditure on capital 
services and depreciation of building, machinery and equipments, deflated by the price index 
of agricultural investment. Definitions and descriptive statistics of the data used in our 
econometric model are summarized Table A 1 in Appendix. 

We normalized all variables by their geometric means so that the coefficients of the first-order 
effects can be interpreted as the corresponding elasticities at the point of approximation. 
Results of the maximum likelihood estimation of the stochastic short-run input distance 
function model are presented in Table A 1 in Appendix. 

The monotonicity requirements for inputs and outputs were fulfilled for about 85% of the 
observations. The distance function is quasi-concave as (n-1) eigenvalues of the Hessian 
Matrix were negative while one eigenvalue was positive for all observations. This was valid 
for 97% of the observations. In order to avoid a wrong interpretation, we excluded all 
improper values that were inconsistent with the theoretical properties of the distance function, 
leading to remaining 4056 observations. Further we excluded all extreme values for flexibility 
indicators. After the elimination we ended up with a total of 3895 observations. 
Using estimated parameters of the short-run input distance function, we calculated indicators 
for scale and scope economies as well as flexibility values for each firm according to the 
suggested dual measures in (2) – (6). Figures for descriptive statistics of the flexibility 
components are represented by different types of farms in Table 1.  

Table 1: Short-run flexibility 

Mixed farms 0.632 (3.729) 1.132 (2.062) -3.845 (2.927) 3.344 (3.009)
Specialist crops 1.743 (2.747) 1.332 (1.249) -2.492 (1.970) 2.904 (3.305)
Specialist grazing livestock 2.428 (3.903) 1.596 (3.742) -3.348 (3.381) 4.181 (4.162)
Specialist granivores 2.821 (4.499) 2.460 (2.115) -5.163 (3.337) 5.525 (4.288)

Total 1.438 1.382 (2.347) -3.511 (2.940) 3.568 (3.518)

Number of observations: 3895

Type of farming Overall flexibility Scope effect Scale effectConvexity effect
Mean/(Std.Dev.)Mean/(Std.Dev.) Mean/(Std.Dev.) Mean/(Std.Dev.)

 

According to these figures, the average value of overall flexibility was lowest for mixed farms 
which indicates that this type of farming is more flexible compared to other types of farming 
(0.632 compared to total average of 1.438). Being more diversified, farms of this category 
gain some advantages of scope economies as evident from the lowest value of the scope 
effect. The main source of flexibility for farms specializing in crop production comes from 
the scale effect. The relative low level of the average convexity effect on the other hand 
reduces the overall flexibility of the crop specializing farms. Although crop production farms 
possess less concave cost functions and thus cannot benefit from the significant decline in the 
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growth rate of marginal cost, they perform at production levels closer to constant economies 
of scale than farms of other categories. Generally, farms specializing in livestock production 
(grazing, granivores) are less flexible in the short run (average overall flexibility is 2.428 and 
2.821 respectively). In particular this concerns specialists in granivores which benefit less 
than other farms from scope and scale economies. In fact these farms have the highest scope 
effect values, and thus are affected by diseconomies of scope. Farms specializing in the 
production of pigs, poultry and other granivores show economies of scope only in 3 from 327 
cases. In all other cases there are no complementarities with grazing or crop production.  

This high share of diseconomies of scope is characteristically not only for livestock farms. In 
93% of observations marginal costs of the considered outputs raise when the production of 
another output is increased, which indicates diseconomies of scale. This result is likely to be 
overestimated due to aggregation of the input and output variables. Using these variables we 
can only observe the cost complementarities between crop and grazing livestock production, 
crop and granivores and grazing production and granivores considering aggregated inputs of 
crop and animal production and other inputs. We would probably get much more observations 
with positive economies of scope by using more disaggregated data, thus considering for 
example complementarities between different crops that utilize the same input. However, 
more disaggregated variables would increase the number of parameters of the production 
function and make the estimation of a stochastic frontier model impossible. 

Table 2: Long-run flexibility 

Mixed farms -3.130 (8.106) 0.267 (4.480) -2.825 (3.925) -0.573 (0.822)
Specialist crops -0.311 (5.235) 1.169 (2.984) -1.457 (2.671) -0.023 (0.576)
Specialist grazing livestock -1.203 (8.693) 1.506 (5.719) -2.126 (3.732) -0.584 (0.925)
Specialist granivores -4.006 (12.014) 1.496 (6.928) -2.836 (5.213) -2.667 (2.030)

Total -2.112 (8.117) 0.835 (4.704) -2.340 (3.781) -0.607 (1.163)
Number of observations: 3895

Type of farming Overall flexibility Scope effect Scale effectConvexity effect
Mean/(Std.Dev.)Mean/(Std.Dev.) Mean/(Std.Dev.) Mean/(Std.Dev.)

 

Further we also calculated the corresponding indicators in the long run where quasi-fixed 
factors were assumed to be utilized at their optimal long run equilibrium levels. Average 
values and standard deviations of the long run indicators are presented in Table 2. Generally, 
farms are more flexible on the long run. This also holds for all components of flexibility. 
Following the Samuelson’s Le Chatelier Principle (SAMUELSON, 1947), according to which a 
firm’s response to market changes is the bigger the fewer inputs are held fixed, this is not a 
surprising result. In the long run, farms were more able to use cost complementarities between 
outputs than in the short run. This can be explained by the utilization of common production 
factors such as capital, land and labor, which are considered to be variable in the long-run. In 
more than a one-third of the cases we could observe negative values for the scope effect, 
indicating positive effects of diversification compared to only 7% of observations with 
economies of scope in the short-run. As in the short-run, mixed farms benefit more from scope 
economies than specialized farms which showed the lowest average scope effect of 0.267. 
More than 50% of these farms possess positive economies of scope. Specializing granivores 
have the lowest negative value of overall flexibility (-4.006), resulting from the lowest value 
of the scale effect (-2.667). Almost all of these farms operate in the area of diseconomies of 
scale, which positively influences flexibility. Having less convex cost functions, specialists in 
crop production benefit neither from the scale economies nor from the decline in the growth 
rate of marginal cost, which makes them less flexible on the long run compared to farms from 
other categories.  
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8 CONCUSSION 

In this paper we provide a flexibility measure for multi-product firms which can be obtained 
by estimation both cost and input distance functions, formulated on the short and on the long 
run. We decompose the primal and the dual flexibility measure in order to distinguish 
between three effects, which affect firm’s flexibility in different ways: scope (or 
complementarity) effect, concavity effect and scale effect. In our empirical application we 
analyze the role of scope and scale economies, as well as concavity properties of the 
production technology on the flexibility of different types of farming using data on Polish 
farms. Mixed farms, being more diversified, are more flexible on the short run due to gains 
form economies of scope, while farms specializing in the production of pigs, poultry and 
other granivores are more flexible on the long run due to scale and convexity effects. 

Our flexibility analysis has some limitations because it is formulated using a static 
neoclassical theory and does not consider dynamic effects. All flexibility measures are 
derived from cost or distance functions which assume static optimization and do not consider 
intertemporal interdependencies. Further studies considering such dynamic effects are needed. 
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APPENDIX 

Table A 1: Descriptive Statistics by farm type 

Definition Total*
Mixed 
farms

Specialist 
crops

Specialist 
grazing 

livestock

Specialist 
granivores

Outputs:
12450.2 9835.0 19556.1 8658.6 13642.7

(12281.4) (8041.8) (17545.5) (6953.6) (12360.8)
9344.9 8208.4 5764.8 19348.3 4841.6

(11751.1) (6944.8) (6380.9) (20649.4) (5128.1)
8302.8 7954.0 5388.0 2574.4 31575.7

(13354.8) (7748.4) (7450.8) (3815.7) (30519.9)
Quasi-fixed Faxtors:

14.2 12.6 16.1 15.1 15.1
(11.8) (9.3) (15.1) (11.4) (12.5)

3996.6 4016.6 3858.0 3991.7 4317.7
(1728.2) (1599.9) (1816.9) (1684.1) (2145.9)

3956.0 3491.7 4478.9 4068.0 4709.8
(2512.2) (2085.8) (2766.5) (2796.8) (2702.8)

Variable Inputs:
2683.2 2084.2 4077.5 2072.3 19986.8

(3071.2) (2054.8) (4510.8) (1950.6) (2942.1)
8924.3 8303.1 6384.2 8986.9 3455.6

(10216.0) (6135.6) (5427.2) (14056.9) (18956.6)
2602.0 2255.7 2983.3 2563.9 3106.6

(2129.8) (1728.8) (2460.9) (2140.1) (2577.5)
*Standard deviations are given in parenthesis

Total output crops & crop 
production in Zloty
Total output grazing livestock (milk 
products, cattle, sheep etc.) in Zl
Total output granivores (pigs, 
poultry and other granivores) in Zl

Crop

Grazing

Granivores

Specific costs of animal production 
in Zloty
Other variable costs in Zloty

Total arable land and grassland in 
use in ha
Total labour input in annual work 
unit (AWU)
Depreciation of farm assets plus 
expenditure on services in Zloty

Specific costs of crop production in 
Zloty

k1

Other var. 
inputs

Input 
animal

Input crop

x3

x2

Variable

k2

k3

x1

Capital

Labour

Land

y1

y2

y3

 
 
Table A 2: Estimated parameters of the stochastic short run input distance function 
First order effects and dummies:

Crops Grazing Granivores
Time 0.026*** -0.005***
Crops -0.439*** 0.001      .24E-4*** .95E-4*** .60E-4***
Grazing -0.104*** -0.001      -.64E-4*** -.86E-4*** .44E-4*    
Granivors -0.200*** 0.001      -.54E-4*** .12E-3*** .41E-4***
Input Cops 0.250*** -0.004*    -0.023      -0.019      0.062**  
Input Anim 0.586*** -0.001      -0.116*** 0.017      -0.069***  
Labour -0.123*** -0.001      -0.086*** 0.044*    -0.045*    
Land -0.050*** 0.006      0.134*** 0.021      -0.011      
Capital -0.113*** -0.009**  -0.009      -0.041      -0.038      
Constant 0.553*** 0.167*** -0.113*** -0.134***
Second order effects:
Variable Crops Grazing Granivors Input Cops Input Anim Labour Land Capital
Crops -0.068*** -0.003*** -0.005**  0.020      0.011*** 0.089*** -0.051**  0.116***
Grazing -0.006*** 0.007*** 0.004*** -0.003*** -0.002**  0.000      0.000      
Granivors -0.009*** 0.011*** -0.006*** 0.003      0.007*** 0.000      
Input Cops 0.094*** -0.021*** -0.131*** -0.012      0.025      
Input Anim 0.026*** -0.001      -0.003      0.011***
Labour -0.107*** -0.003      0.015      
Land 0.119*** -0.097***
Capital -0.112***
Number of observations: 4634 Lambda: 0.80533
Log likelihood value: 1326.43 Sigma: 0.21005
Note: ***, **, * =Significance at 1%, 5%, 10% level

Variable Coeff. Time Specialisation-dummies for

 
 


