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Abstract

In this paper we study the optimal forest conservation policy by a hyperbolically discounting society.
Society comprises a series of non-overlapping imperfectly altruistic generations each represented by its own
government. Under uncertainty about future pay-offs we determine, as solution of an intergenerational
dynamic game, the optimal timing of irreversible harvest. Earlier harvest occurs and the option value
attached to the forest clearing decision is eroded under both the assumptions of naïve and sophisticated
belief about future time-preferences. This results in a bias toward the current generation gratification which
affects the intergenerational allocation of benefits and costs from harvesting and conserving a natural forest.
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1 Introduction

Land use has become increasingly important for public policy since several environmental policy goals,
such as habitat conservation or carbon sequestration, crucially depends on land conversion decisions. In
a meeting held in Copenaghen on December 2009 the United Nations Framework Convention on Climate
Change (UNFCCC) has assigned a prominent role to forest conservation/avoided deforestation as a tool
for balancing CO2 emissions.3 At a society level, the decision to conserve natural forests by a must be
framed accounting for several aspects. First, clearing may be an irreversible decision, second, pay-offs
attached to such decision are often uncertain and, third, their weight in the decision objective depends on
intergenerational time preferences.4

There is a vast literature dealing with optimal conservation policy and forest management under un-
certainty and irreversibility.5 An unifying aspect in this literature is the so called real option approach.
This approach postulates that when an irreversible decision must be taken and payoffs attached to such
decision are uncertain then the decision maker must account for the option value arising from the col-
lection of additional information about future prospects (see Dixit and Pindyck, 1994). However, up to
our knowledge, in the previous contributions the time preferences of the decision maker have always been
considered constant and future pay-offs are consistently discounted exponentially. In a multigenerational
frame, this assumption holds only if each generation is perfectly altruistic or equivalently if "each genera-
tion’s preference for its own consumption relative to the next generation’s consumption is no different from

1This paper extends results contained in a chapter of my PhD thesis. I wish to thank Michele Moretto for helpful
discussions. The usual disclaimer applies.

2Corresponding address: Department of Economics, SLU, Box 7013 (J. Brauners väg 3), Uppsala, SE-75007, Sweden.
Email: luca.di.corato@slu.se. Telephone: +46(0)18671758. Fax: +46(0)18673502.

3The proposal is mainly based on the implementation of the Reducing Emissions from Deforestation and Degradation
(REDD) program. The program proposes to consider forest conservation/avoided deforestation efforts under the Clean
Development Mechanism (CDM) introduced by the Kyoto Protocol (Phelps et al., 2010). See also Fargione et al. (2008) on
land clearing and biofuel carbon debt.

4The influence of intergenerational altruism on decisions regarding natural resource allocation and the solution of long-
lived environmental problems has recently animated an interesting debate. See among others Li and Lofgren, 2000; Haurie,
2005; Karp, 2005; Saez-Marti and Weibull, 2005; Nowak, 2006.

5See among others Clarke and Reed (1989), Reed (1993), Conrad (1997), Bulte et al. (2002), Saphores (2003), Leroux et
al. (2009), Di Corato et al. (2011).
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their preference for any future generation’s consumption relative to the succeeding generation" (Phelps
and Pollack, 1968, p. 185).6

Unlike previous contributions, we study the optimal conservation policy set by a society composed by
a sequence of non-overlapping imperfectly altruistic generations. We show that this is equivalent to view
society as a sequence of hyperbolically discounting agents whose utility depends also on future agents’
felicity. Harvest and conservation are evaluated by each generation in terms of welfare and a critical
threshold triggering harvest is fixed on the basis of each generation time perspective. Once the forest is
cleared, harvest revenues accrue to the generation alive while the harvest cost opportunity is beared by the
future generations. Such cost includes the "sold" natural asset and the missing "dividend" represented by
the flow of amenity services provided by the natural forest.7 Under hyperbolic discounting future pay-offs
are discounted at time-declining rates and decisions are consequently biased toward short-run gratification.
In addition, another aspect characterizing these time-preferences is, as noted by Strotz (1956), the time-
inconsistency of the planning. In other words, hyperbolic agents may wish to reconsider at a later date
optimal plans previously defined. Depending on the awareness of her time-preferences, the decision maker
may or may not anticipate such inconsistency (see Strotz, 1956 and Pollak, 1968). For instance, naive
agents do not recognize it and set plans which they will disobey and revise according to the changed time
perspective. On the contrary, sophisticated agents which anticipate the time-inconsistency set their plans
strategically. They may follow a "strategy of precommitment" which consists in committing to a certain
plan of action or a "strategy of consistent planning" which consists in not choosing the plans that are going
to be disobeyed (Strotz, 1956).

In this frame, we set up a three-generation society model and determine for each generation the opti-
mal conservation policy under both naive and sophisticated beliefs.8 The optimal sequence of policies is
obtained by solving a non-cooperative intergenerational dynamic game.9 Each generation’s life is random
and regulated by a Poisson death process. Harvest returns are known and constant while amenity value
is uncertain and follows a Geometric Brownian motion. We assume also that any commitment device
is available since the presence of commitment would eliminate flexibility in the option exercise which is
crucial in our analysis.

To have a benchmark and a measure for intergenerational Pareto optimality we first solve for the
optimal conservation policy under perfect altruism.10 Then, we show that under imperfect altruism harvest
occurs earlier in expected terms with respect to the benchmark. This result holds under both naive
and sophisticated beliefs and the intuition behind it is straightforward. Under both beliefs, the bias
for current generation’s gratification relative to the future generations’ gratification erodes the option
value attached to the decision to conserve and lowers the cost opportunity of harvesting. Interestingly,
comparing optimal harvest strategies, we show that under sophistication harvest occurs earlier than under
naiveté. Under sophistication, the time-inconsistency is perfectly anticipated by the current generation
and the optimal conservation policy is set accounting for the cost of sub-optimal (from the current time
perspective) future conservation plans. Finally, we show that the optimal policy under perfect altruism
is a Pareto superior equilibrium which, however, imperfectly altruistic generations cannot achieve in the
absence of a commitment mechanism.

6Ramsey (1928) defines discounting at a constant rate of time-preference "a practice which is ethically indefensible and
arises merely from the weakness of the imagination". Despite this statement, Ramsey (1928) assumes perfect altruism. This
assumption is later discussed by Phelps and Pollak (1968) studying optimal saving policies in a setting where the government
acts on behalf of an imperfectly altruistic current generation.

7The value of a conserved forest may include the value attached to the provision of services such as flood control, carbon
sequestration, erosion control, wildlife habitat, biodiversity conservation, recreation and tourism. See for instance Reed
(1993).

8The solution to the more general problem with a finite number I and an infinite number of generations is provided in Di
Corato (2008).

9The same solution concept is applied by Grenadier andWang (2007) to determine investment timing under the assumption
of a hyperbolic discounting entrepreneur.
10This is equivalent to the standard solution under exponential discounting. See Reed (1993) and Conrad (1997).
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The paper is structured as follows. In section 2, the set-up of the model is presented. In section 3 we
determine the optimal conservation policy under perfect altruism. In section 4, we account for imperfect
altruism and solve the problem under naive and sophisticated beliefs. In this section we also discuss our
results. In Section 5 we conclude presenting some remarks. All the proofs are available in the appendix.

2 The basic set-up

Consider an area of primary forest which can be totally conserved or irreversibly harvested.11 If conserved,
at each time period t a flow of amenity value, At, accrues to Society. We assume that such flow randomly
fluctuates according to the following geometric Brownian motion

dAt = µAtdt+ σAtdzt (1)

where µ and σ2 are expected growth rate and variance and {zt} is a standard Wiener process with E [dzt] =
0 and E [(dzt)

2] = dt.12

We denote by R the net revenue realized if the forest is harvested. This includes the timber value net
of harvest costs plus the value of the cleared land under some alternative possible destinations. For the
sake of simplicity, we set R = 1 and use harvest revenue as numeraire.13

The forest can be seen as an asset paying a dividend represented by the flow At and Society as holding
an option to harvest. Benefits and costs of forest conservation must be considered to determine an optimal
harvesting strategy maximizing the social welfare. In this respect, harvesting is irreversible and an option
value is attached to the decision to conserve since harvest postponement allows the collection of information
about the uncertain future flow of amenity value. Clearly, harvesting at a later date has a cost represented
by the foregone harvest revenues.

Let’s now present a model of Society. As in Winkler (2006), Society is composed of three generations
which live at times i = 0 (the present), i = 1 (near future), and i = 2 (distant future). Even if composed by
different generations Society behaves as a single intertemporal entity and decisions are taken considering
not only the welfare of the present generation but also the discounted welfare of future generations. In this
respect, note that when harvest occurs only the generation living at that time benefits from it. On the
contrary, the cost opportunity of harvesting, i.e. harvest revenue plus the flow of amenity value, is faced by
the successive generations. We assume that each generation, Gi, is risk neutral and that, unlike Winkler
(2006), lives for a random time period, ti+1 − ti, where ti and ti+1 are the birth dates of the current and
the subsequent generation and intergenerational transition is regulated by a Poisson death process with
intensity λ ∈ (0,∞). Each generation discounts exponentially at a constant time preference rate ρ and
gives weight β to future generations’ welfare relative to its own. By β = 1 and β ∈ (0, 1) we characterize
a perfectly altruistic and imperfectly altruistic generation, respectively. Note that this is equivalent to
assume that

11Irreversibility makes sense considering that the recovery the forest could require a substantially long time period. See for
instance Hilbert and Wiensczyk (2007). We do not consider the possibility of partial and incremental irreversible harvesting.
Such problem is treated by Bulte et al. (2002). See also Di Corato et al., (2010) for an equilibrium model of habitat
conservation.
12The assumption of a geometric Brownian motion is quite common in the literature. Conrad (1997, p. 98) uses a

geometric Brownian motion to capture uncertainty over preferences for habitat conservation. Up to Bulte et al. (2002, p.152)
the expected trend µ "can be positive (e.g., reflecting an increasingly important carbon sink function as atmospheric CO2
concentration rises), but it may also be negative (say, due to improvements in combinatorial chemistry that lead to a reduced
need for primary genetic material)".
13Using R as numeraire we may, by invoking the homogeneity of option value, also allow for stochastic harvest revenues.

See Dixit and Pindyck (1994, pp. 207-211).
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Definition 1 For any β ∈ (0, 1] and λ ∈ (0,∞) the generation i discount function is given by

Di(t, s) =

{
e−ρ(s−t) if s ∈ [ti, ti+1]
βe−ρ(s−t) if s ∈ [ti+1, ∞]

(2)

for s > t and ti ≤ t ≤ ti+1.

The stochastic discount functional form in (2) is equivalent to the one introduced by Harris and Laibson
(2004) to model a hyperbolic discounting agent.14 Generation i discounts exponentially at rate ρ pay-offs
occurring over its lifespan while it additionally discounts by the factor β pay-offs occurring once dead.
This implies, as one can easily note,15 that pay-offs are discounted at a rate declining with time and that
consequently a higher weight is put on outcomes occuring over the short run. In addition, as noted by Strotz
(1956), this class of time-preferences leads to time inconsistent planning. That is, since each generation
has its own time preferences then the optimal conservation policy fixed by the previous generation may
be disobeyed and revised according to its own time perspective. Finally, we assume that each generation
is not able to commit future generations to any plan. This implies that each generation is free to define
its optimal conservation plan on the basis of its expectations about future generations’ behavior. In this
respect, we will allow for two different types of beliefs: sophisticated or naive (see Strotz, 1956 and Pollak,
1968). A generation is sophisticated or naive on the basis of its ability to anticipate or not that future
generations will stick to their plans.

3 Optimal conservation policy under intergenerational altruism

Let’s start by determining the optimal policy under perfect altruism (β = 1). This is equivalent to solve a
standard optimal stopping problem in continuous time. At each t the value of harvesting (stopping) must
be compared with the expected value of conserving over the next dt (continuation) given the information
available at that point in time and the knowledge of the process in (1). Note that with β = 1 the discount
function Di(t, s) reduces to the standard exponential form. This implies that the optimal harvest policy
is time-consistent and that each Gi must solve the same problem.

We denote by V (A) the value function and solve for Gi the following maximization problem:
16

V (A) = max
A

{
1, Adt+ e−ρdtE [V (A+ dA)]

}
(3)

By using Ito’s lemma it follows that
Definition 2 In the continuation region, A ≥ A∗, the value function, V (A), solves the following

second-order non-homogenous differential equation

∆V (A) + A = 0, for A ≥ A∗ (4)

where ρ > µ,17 and ∆ = 1
2
σ2A2 ∂2

∂A2
+ µA ∂

∂A
− ρ and A∗ are a differential operator and the level of amenity

value delimiting the continuation region, respectively. At A∗ conserving or harvesting is indifferent and
as soon as this level is hit the option is exercised. Note that for A → ∞ the option to harvest is never
exercised. Then, the solution of the differential equation (4) requires the boundary condition:

lim
A→∞

V (A) = 0 (4.1)

14Grenadier and Wang (2007) uses the same functional form to model investment choices undertaken by an hyperbolic
agent.
15As 1−e

−ρ

e−ρ
< 1−δe−ρ

δe−ρ
, the discount rate between two consecutive periods t and t+ 1 increases as date t comes close.

16We drop the time subscript for notational convenience.
17Note that if ρ ≤ µ conserving forever is the optimal plan. To account for an appropriate adjustment for risk, we should

have taken the expectation with respect to a distribution of A adjusted for risk neutrality. See Cox and Ross (1976) for
further details.
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and must meet the following value-matching and smooth-pasting conditions:18

V (A∗) = 1, V ′(A∗) = 0 (4.2-4.3)

Solving for A∗ and V (A) yields the following proposition

Proposition 1 Under constant time-preference the solution to the optimal stopping problem in (3) is given
by

A∗ =
θ

θ − 1
(ρ− µ) (5)

V (A) =

{ (
1− A∗

ρ−µ

)
( A
A∗
)θ + A

ρ−µ
for A > A∗

1 for A ≤ A∗
(6)

where θ is the negative root of the characteristic equation Q(θ) = 1
2
σ2θ(θ − 1) + µθ − ρ = 0.

Proof. See appendix A.1.
The first term on the RHS of (7) represents the value of the option to harvest. As one can easily check

it vanishes as A→∞. The second term is the expected present value of the flow of amenity value accruing
intertemporally to society if the forest is conserved. Harvest occurs if A ≤ A∗ and the generation living at
that time benefits from net revenue 1. The relevant comparative statics are dA∗

dρ
> 0, dA

∗

dµ
< 0 and dA∗

dσ
< 0.

That is, harvest occurs earlier if the decision maker adopts a higher discount rate since future pay-offs
from conservation have less weight for the current decision. On the contrary, as standard in the real option
literature, a higher expected growth and volatility in the amenity value delay the harvest.

4 Optimal conservation policy under imperfect intergenerational

altruism

4.1 Optimal conservation policy under naiveté

Let’s relax the assumption of perfect altruism (0 < β < 1) and assume naive beliefs. The generation, Gi,
when alive, may exercise the option to harvest and obtain 1 as net return or, by conserving the forest,
benefit from the flow of amenity value during its life and from the value attached to the forest if managed
by future generations. If harvest does not occur during its life, the forest is left as a legacy to the succeeding
Gi+1 which in turn may or may not harvest. Here, unlike the optimal stopping problem in the previous
section, the optimal harvest policy results from the game played over an infinite horizon by G0, G1 and
G2 for the definition, under their own time perspective, of the optimal conservation strategies.

The present generation, G0, is naive and believes that G1 and G2 will set their policies according to
its time preferences, i.e. D0(t, s). This implies that G1 and G2 are considered by G0 as perfect altruistic
generations discounting future pay-offs exponentially at the rate ρ. By D0(t, s), G0 discounts by e−ρ(s−t)

the pay-offs occurring at t0 < s < t1 and by βe
−ρ(s−t) the pay-offs occurring at s ≥ t1. The optimal harvest

strategy for G0 is completely characterized by a critical threshold, An, at which harvesting is triggered.
If the next generation, G1, is born before An is met then G0 enjoys the flow of amenity value, A, for the
period [t0, t1) and the continuation value, V

n
c (A), which is given by the expected present value of the

pay-offs attached to future Governments’ conservation strategies. Otherwise, G0 exercises the option to
harvest and earns 1. Note that if, as incorrectly believed by G0, all future Governments discounts at rate
ρ then their optimal stopping problem is equivalent to the one solved in the previous section. Hence, their
critical threshold and value function are given by A∗ and V (A), respectively. Finally, since G0 lowers by β
all pay-offs occurring at s ≥ t1 then V

n
c (A) = βV (A).

18On optimality conditions see Dixit and Pindyck (1994).
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Denoting by V n (A) the value function for G0, we solve the following maximization problem

V n (A) = max
A

{
1, Adt+ e−ρdt

[
e−λdtE[V n(A+ dA)] +

(
1− e−λdt

)
E[V n

c (A+ dA)]
]}

(7)

By following the usual steps, we can state that
Definition 3 In the continuation region, A ≥ An, the value function, V n (A) , solves the following

second-order non-homogenous differential equation

∆V n(A) + A+ λ(V n
c (A)− V n(A)) = 0, for A ≥ An (8)

Solving (9) by imposing (4.1) and the following value-matching and smooth-pasting conditions

V n(An) = 1, V
n ′(An) = 0 (8.1-8.2)

yields

Proposition 2 Under imperfect altruism and naïve belief the solution to the optimal stopping problem in
(7) is given by

An =
γ − β θ−γ

θ−1
(An
A∗
)θ

γ − 1
(
ρ− µ

η
) (9)

V n(A) =

{
[1 + β

θ−1
(An
A∗
)θ − η An

ρ−µ
]( A
An
)γ − β

θ−1
( A
A∗
)θ + η A

ρ−µ
for A > An

1 for A ≤ An
(10)

where η = ρ+λβ−µ
ρ+λ−µ

≤ 1 and γ ≤ θ is the negative root of the characteristic equation Q(γ) = 1
2
σ2γ(γ − 1) +

µγ − (ρ+ λ) = 0.

Proof. See appendix A.2.
In the appendix we show also that

Proposition 3 Under imperfect altruism and naïve belief An > A∗.

Proof. See appendix A.3.
The intuition behind Proposition (3) is that the value of keeping open the option to harvest is lower

under imperfect altruism since the expected present value of the utility from the decisions of the future
generations is lower (0 < β < 1, η < 1). Due to its short-run biased time preferences G0 rushes in order to
anticipate the exercise of the option to harvest by future Gi. Note that the less altruistic is G0 the higher is
the threshold triggering an earlier harvest (∂An

∂β
< 0). In addition, also a faster intergenerational transition

rate may induce rush since the present generation a shorter expected life (∂An
∂λ

> 0). Clearly, G0’s plan is
irrational in that it is based on the false belief of having the subsequent Gi defining their optimal policy
according to D0(t, s). On the contrary, as soon as G1 will be born the harvest threshold adopted will
not be A∗ but higher and fixed according to the discount function D1(s, t). This does not happen when
G2 steps in but note that this is independent from G0’s false beliefs. In fact, G2 discounts exponentially
only because it is the last generation potentially managing the forest. The remaining comparative statics
confirms the effects discussed in section 3 (dAn

dρ
> 0, dAn

dµ
< 0 and dAn

dσ
< 0). Finally, considering G2’s plan

we will show in the next section that independently from its belief G1 harvest at An > A∗.
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4.2 Optimal conservation policy under sophistication

In this section we assume imperfect altruism and sophisticated beliefs. Under sophistication, each genera-
tion anticipates future time inconsistency, recognizes the sub-optimality of future generations’ conservation
policy with respect to its time perspective and accounts for it in the welfare maximization problem. Let’s
start at the generic time period t with G0. On the next time interval dt G1 will be born with probability
λdt . Once G1 has replaced G0 then G2 will take control according to the same process. Once in charge G2

will rule forever. Given the structure of the problem we determine by playing backward a subgame-perfect
equilibrium sequence of harvest time thresholds.

Now, consider G2 and denote by As,2 and V s
2 (A) the critical threshold and its value function. G2 is

the last generation managing the forest and then its maximization problem is equivalent to the one solved
in section 3. Thus, As,2 = A∗ and V s

2 (A) = V (A). Let’s skip to G1. Its plan must be defined considering
that G2 exercises the option to harvest at As,2. Due to its present-biased preferences G2’s value function
is worth for G1 only β times its value. The problem for G1 is then equivalent to the one solved in section
4.1 and then As,1 = An and V s

1 (A) = V n(A). However, note that in this case the underlying beliefs are
rationally formed. Finally, it is time for G0 to formulate its optimal harvest plan. Denote respectively
by As,0 and V s

0 (A) its value function and harvest threshold and let V
s
c,1(A) represent its valuation of the

exercise decisions that could be taken by G1 and G2 (As,1, As,2). The continuation value, V
S
c,1(A), must be

determined recursively as follows. If G1 is alive when the threshold As,1 is hit then the option is exercised
and the payoff for G0 is equal to β. Instead if G2 replaces G1 before As,1 is met, then the G0 continuation
value is equal to G1’s continuation value V

s
c,2(A) = βV s

2 (A).
The optimal stopping problem for G0’s is then represented by the following Bellman equation

V s
0 (A) = max

A

{
1, Adt+ e−ρdt

[
e−λdtE[V s

0 (A+ dA)] +
(
1− e−λdt

)
E[V s

c,1(A+ dA)]
]}

(11)

Definition 5 In the continuation region, A ≥ As,1, the value function, V
s
0 (A), solves the following second-

order non-homogenous differential equation

∆V s
0 (A) + A+ λ(V s

c,1(A)− V s
0 (A)) = 0, for A ≥ As,0 (12)

where V s
c,1(A) = β[(1− V s

2 (As,1))(
A
As,1
)γ + V s

2 (A)].
19

We can now solve (12) by requiring that at As,0 the following standard optimality conditions hold:

V s
0 (As,0) = 1, V

s ′
0 (As,0) = 0 (12.1-12.2)

Once solved, we can state that

Proposition 4 Under imperfect altruism and sophisticated belief the solution to the optimal stopping prob-
lem in (11) is given by

As,0 =
γ − β θ−γ

θ−1
(As,0
As,2
)θ − Z1A

γ
s,0

γ − 1
(
ρ− µ

η
) (13)

V s
0 (A) =

{
( Z0
A
γ
s,0
− Z1

A
γ
s,1
lnA)Aγ − β

θ−1
( A
As,2
)θ + η A

ρ−µ
for A > As,0

1 for A ≤ As,0
(14)

where Z0 = [1− η
As,0
ρ−µ

+ β

θ−1
(As,0
As,2
)θ + Z1(

As,0
As,1
)γ lnAs,0] and Z1 = λβ

1−V s
2 (As,1)

σ2γ−(σ
2

2
−µ)

.

Proof. See appendix A.4

19See appendix A.4.
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Proposition 5 Under imperfect altruism and sophisticated belief
1) As,0 > As,1 > As,2,
and
2) V s

2 (A) > V s
1 (A) > V s

0 (A).

Proof. See appendix A.5
By Proposition 5 an additional effect emerges under sophistication. Harvest timing and the value

functions are affected by the anticipation of conservation policies set by the following generations. Note
in fact that G2 which is not followed by any generation does not anticipate the harvest with respect to
the benchmark (As,2 = A∗). On the contrary, both G1 and G0 rush on harvesting since as explained
above their time preference are "present-biased" and lowers the cost opportunity of their drastic choices.
In addition, comparing G1 and G0, we note that G0 fixes a higher threshold for harvesting. With respect
to a naive generation, the current sophisticated generation accounts for the "burden" represented by the
sub-optimality (from its time perspective) of future policies and a clear "sophistication" effect emerges. As
discussed by Winkler (2006), without commitment each generation could indirectly influence the choices of
the successive ones by limiting the set of available choices. Similarly, in our model the present sophisticated
generation rushes on harvesting to reduce the probability of the future "sub-optimal" forest management.
Finally, in the second part of Proposition 5, we show that for both G1 and G0 the optimal policy under
perfect altruism, As,2, is a Pareto superior equilibrium. However, without commitment this outcome cannot
be achieved by imperfectly altruistic generations.20 Finally the effect of changes in the relevant parameters
is confirmed (dAs

dβ
< 0, dAs

dλ
> 0, dAs

dρ
> 0, dAs

dµ
< 0 and dAs

dσ
< 0).

5 Conclusions

Before concluding, some considerations are in order. In our analysis, we study the allocation of a nat-
ural resource from an intergenerational welfare maximizing perspective modeling Society as an hyperbolic
decision maker. However, we note that the discount function in (2) may also be used to represent:

1. a Society composed by two individuals, a utilitarian and a conservationist, discounting at a positive
rate and at a rate tending to zero, respectively. In fact, it suffices to assign to their utilities weight
β and 1− β in the welfare function and rates ρ+ λ and ρ with ρ→ 0;21

2. an individual having a taste for immediate gratification as firstly proposed by Harris and Laibson
(2004);22

3. a Government accounting for political turnover as suggested by Amador (2004). That is, consider a
risk-neutral party,23 say X, and assume that it is currently governing the country at the generic time
t. Suppose that it discounts exponentially at rate ρ the pay-offs occurring over all future periods but
that undervalues pay-offs occurring in the future periods to account for the probability of being in
charge in those future periods.24 Hence, let β = p ·1+(1−p)ω ≤ 1 where 0 ≤ p ≤ 1 is the exogenous
probability of winning an electoral round and ω ≤ 1 is the weight given to social welfare when

20Commitment mechanisms set by the present generation to overcome the time-inconsistency issue are problematic in the
context of intergenerational decisions. First, they would denote the dictatorship of the present generation on the future
ones; second, even taking apart these ethical considerations, the present generation would have limited control on future
generations’ decisions (see Winkler, 2006, p. 580).
21See Li and Lofgren (2000, p.238).
22Discussing the use of exponential discounting, Strotz argues that there is “no reason why an individual should have such

a special discount function”(Strotz, 1956, p.172). Experimental evidence in psychology has later supported his conjecture
(Loewenstein and Prelec, 1992). See Frederick et al., 2002 for a review.
23Assume that also rival parties not at the government have the same time preferences.
24Note that Brocas and Carrillo (1998) justifies imperfect intergenerational altruism on this basis.
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party X is not at the government.25 Finally, suppose that due to populist or rival parties pressure
and/or other unexpected events the government may suddenly fall over the next time period dt with
probability λdt where λ ∈ [0,∞) is the intensity of a Poisson process.

Based on these considerations we believe that our contribution may be useful not only to give a ratio-
nale for governments fostering natural resource depletion and for the time inconsistency of environmental
policies26 but also in that it provides a frame for addressing other economic problems where the decision
maker may hold a real option on technological innovation, land development, etc.

A Appendix

A.1 Proposition 1

By the linearity of (4) and the boundary condition (4.1), the solution takes the following functional form:27

V (A) = KAθ +
A

ρ− µ
(A.1.1)

where θ is the negative root of the characteristic equation Q(θ) = 1
2
σ2θ(θ − 1) + µθ − ρ = 0 and K a

constant to be determined.
By plugging (A.1.1) into (4.1) and (4.2) and solving for A∗ and K we obtain (5) and (6).

A.2 Proposition 2

By substituting (6) into (8) and rearranging we obtain

ΓV n(A) = −[A(1 +
λβ

ρ− µ
) + λβ(1−

A∗

ρ− µ
)(
A

A∗
)θ], for A ≥ An (A.2.1)

where Γ is the differential operator Γ = 1
2
σ2A2 ∂

2

∂A2
+ µA ∂

∂A
− (ρ+ λ) .

The solution takes the form28

V n(A) = NAγ + β(1−
A∗

ρ− µ
)(
A

A∗
)θ + η

A

ρ− µ
(A.2.2)

where γ is the negative root of the characteristic equation Q(γ) = 1
2
σ2γ(γ − 1) + µγ − (ρ + λ) = 0,

η = ρ+λβ−µ
ρ+λ−µ

≤ 1 and N is a constant to be determined.

Conditions (8.1) and (8.2) must hold at An. Using (A.2.2) we obtain the following system

{
NAγn + β(1− A∗

ρ−µ
)(An
A∗
)θ + η An

ρ−µ
= 1

NγAγ−1n + βθ(1− A∗

ρ−µ
)(An
A∗
)θ−1 1

A∗
+ η 1

ρ−µ
= 0

By solving it we determine (9) and (10).

25This could be due for instance to the fact that political parties are aware that people when voting takes into account
only their conduct when in charge.
26See for instance Brocas and Carrillo (1998) suggesting that "slash and burn" agricultural practices may be justified

on the basis of hyperbolic time preferences or Hepburn (2003) showing how under naive hyperbolic planning a renewable
resource may be poorly managed and an unintended collapse may occur. A striking example of hyperbolic time preferences
induced by political turnover is given by the management of publicly owned natural forests in Indonesia where despite
targeting a sustainable exploitation of these natural assets there is evidence of a faster depletion rate and of time-inconsistent
environmental policy (Atje and Roesad, 2004). For other examples see Winkler (2006).
27The solution for the homogeneous part of (4) is V (A) = K1A

θ1 + K2A
θ2 where θ1 > 0 and θ2 < 0 are the roots of

Q(θ) = 0 and K1 and K2 are two constants to determined. However, since limA→∞ V (A) = 0 then we must drop the first
term by setting K1 = 0. The same discussion will apply also in the next sections. The particular solution

A
ρ−µ

is found using
the method of undetermined coefficients.
28The general solution is given by the homogeneous solution for the complementary function in (A.2.1), V n

h (A) = NA
γ ,

plus the particular solution V n
p (A) =M1A

θ +M2A where the undetermined coefficients c1 and c2 are set to satisfy (A.2.1).
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A.3 Proposition 3

Define g(x) =
γ−β θ−γ

θ−1
( x
A∗
)θ

η(γ−1)
ρ−µ

and f(x) = g(x)− x. Note that g′ (x) > 0 and g′ (x) < 0. Since f(An) = 0 and

f(A∗) =
γ(1−η)−(β−η) θ−γ

θ−1
η(γ−1)
ρ−µ

> 0 then it follows that An > A∗.29

A.4 Proposition 4

Continuation Value Function - In the A ≥ As,1, the continuation value function, V
s
c,1(A), solves the

following second-order non-homogenous differential equation

ΓV s
c,1(A) = −β(A+ λV s

2 (A)), for A ≥ As,1 (A.4.1)

By the continuity of V s
c,1(A) it follows that V

s
c,1(As,1) = β. Note that we take As,1 as optimally determined

by maximizing V S
1 (A) and then we do not need to impose smooth-pasting at this point. Using standard

arguments, the general solution is given by

V s
c,1(A) = HAγ + β[(1−

A∗

ρ− µ
)(

A

As,2
)θ +

A

ρ− µ
] = HAγ + βV s

2 (A) (A.4.2)

Solving (A.4.2) subject to the value-matching condition V s
c,1(As,1) = β we obtain

V s
c,1(A) = β[(1− V s

2 (As,1))(
A

As,1
)γ + V s

2 (A)] (A.4.3)

Value Function - Equation (12) can be restated as follows:

ΓV s
0 (A) = −{A+ λβ[(1− V s

2 (As,1))(
A

As,1
)γ + V s

2 (A)]}, for A ≥ As,0 (A.4.4)

The solution to the homogenous part is standard. On the contrary, we must be more careful on the guess
candidate functional form for the particular solution since it contains a term in Aγ which is present also
in the homogenous solution.30 We choose for our guess the following functional form:

V s
0, p (A) = J1A+ J2A

θ + J3A
γ lnA+ J4A

γ (A.4.5)

We substitute (A.4.5) and its first two derivatives into (A.4.4). Solving for the coefficients of each power
of A yields

J1 =
η

ρ− µ
, J2 = −

β

θ − 1
A−θs,2, J3 = −λβ

1− V s
2 (As,1)

σ2γ − (σ
2

2
− µ)

A
−γ
s,1 , J4 = 0

The general solution is then given by

V s
0 (A) = SAγ + η

A

ρ− µ
−

β

θ − 1
(
A

As,2
)θ − λβ

1− V s
2 (As,1)

σ2γ − (σ
2

2
− µ)

(
A

As,1
)γ lnA (A.4.6)

Solving (A.4.4) subject to conditions (12.1-12.2) we obtain S = (1 − J1As,0 − J2A
θ
s,0 − J3A

γ
s,0 lnAs,0)A

−γ
s,0

and then (13-14).

29Note that f(An) = 0 may have two roots, An,1 and An,2 with An,1 < A
∗ < An,2. However, as one can easily check, at

An,1 the second order optimality condition do not hold.
30The method of undetermined coefficients must be modified when dealing with a system in resonance. See Simon and

Blume (1994, pp. 654-656).
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A.5 Proposition 5

We remind that As,2 = A∗, V s
2 (A) = V (A), As,1 = An and V s

1 (A) = V n(A). To prove this result we
exploit the similarity between the option to harvest and an American put option. Note in fact that G1

may be seen as holding a put option paying a dividend equal to A + λβV s
2 (A) if kept and a strike price

equal to 1 if exercised. Similarly, G0 holds a put option paying A+λβ[(1−V s
2 (As,1))(

A
As,1
)γ +V s

2 (A)] as a

dividend and 1 as strike price. Note from (A.2.1) and (A.4.4) that both G0 and G1 are discounting at the
same rate, i.e. ρ + λ. Then, comparing the two assets, we note that they differ only in the dividend. In
particular, G0 receives a lower dividend in that 1− V s

2 (As,1) < 0 for As,2 < As,1. Since an option paying
a lower dividend is exercised earlier it follows that As,0 > As,1. In addition, if V

s
0 (A) and V

s
1 (A) are seen

as the function expressing the value of the assets characterized above then it must be V s
0 (A) < V s

1 (A).
Finally, we rearrange (4) as follows

ΓV s
2 (A) + A+ λV s

2 (A) = 0, for A ≥ As,2 (A.5.1)

That is, G2 holds a put option paying A + λV s
2 (A) as a dividend and 1 as strike price. Using the same

arguments, it follows that as proved in section (A.3) As,1 > As,2 and V
s
1 (A) < V s

2 (A).
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