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In this paper, we assess the output-oriented technical efficiency of agricultural production 

functions in order to compare, over time, economic and environmental production processes in 

the different regions of the Spanish Ebro basin, in a climate change context. The measurement of 

technical efficiency in agriculture can provide useful information about the competitiveness of 

farms and their potential to increase its productivity moreover can help in the crops adaptation to 

water pressure by improving the management of scarce resources. Here, we generate an 

agricultural water efficiency index to evaluate the adaptation of some Mediterranean crops to the 

water pressures in this area. We estimate frontier production functions and technical efficiency 

measures, using panel data models. This will allow us to observe changes in production due to 

individual specific effects and those that are time specific. To characterize our model, we use 

historical data, about crop yields, water requirements and climate as well as socio-economic and 

geographical aspects of the most representative crops in the provinces of the Ebro basin during 

1976-2007. Then we generate a ranking of the most efficient crops across geographical areas, 

given their water use and other inputs, to evaluate policy scenarios with adjustments in water 

supply.  
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1 Introduction 

Agriculture is the main user of water and other environmental and natural resources and therefore 

it plays an important in global ecosystem sustainability. According to the OECD, agriculture 

accounts about 70% of total available water which is mainly used for irrigation. Given that, a 

small change in agricultural water use, can have important economic and hydrological impacts. In 

this context, agricultural research and public policy have been prioritized the adaptation of crop 

yields to water pressures.  

There is a lot of literature to study this problem in diverse areas of the knowledge. Econometric 

stochastic frontier analysis (SFA) of technical efficiency is an adaptable technique to help in the 

analysis of problem. The term of the stochastic frontier production function was proposed by 

Aigner, Lovell and Schmidt (1977) and Meeusen and van den Broeck (1977), and it has been 

highly used in the econometric modeling of production and the estimation of technical efficiency 

of economic agents. The frontier have two random components, the first one is associated with 

the presence of technical inefficiency and the other being a traditional random error (Battese and 

Coelli, 1992). Nowadays, literature in this tool is large and it is growing quickly.  

It is well known that the measurement of technical efficiency in agriculture can provide useful 

information about the competitiveness of farms and their potential to increase its productivity 

(Hallam and Machado, 1996). Moreover this technique can help in the crops adaptation to water 

pressure by improving the management of scarce resources. This methodology could be used in 

two directions input-output or output-input estimates the maximum possible production given a 

set of inputs (Alvarez-Pinilla, 2001;  Battese and Coelli, 1992).  In other words, deterministic and 

stochastic frontier functions estimate maxima or minima of a dependent variable given 

explanatory variables, usually to estimate production or cost functions. 

Using this tool, we propose a water efficiency index to measure the degree of use of this input in 

the crop production in each province and later to rank the most efficient crops by province.This 

paper focuses on the Ebro basin in Spain, where agriculture can reach up to 90% or more of water 

consumption. The Ebro Basin is located in the Northeast of the Iberian Peninsula with a total area 

of 85,362 km2. This watershed is the largest in Spain, accounting for 17.3% of the total national 

area. It is made up of 347 major rivers, including the Ebro River, which drains the basin. It rises 

in the Cantabrian Mountains and ends in the Mediterranean and has a total length of 910 km and 

12,000 km of main river network (CHEBRO, 2009). The climate in this basin is primarily 

Continental Mediterranean, with hot, dry summers, cold, wet winters and short, unstable autumns 

and springs. In the middle of the basin, the climate is semi-arid and in the northwest corner it is 

oceanic. Consequently, there is a wide heterogeneity in temperature. 

The article is organized as follows:  The second section provides general and detailed information 

on the methodology (variables, panel data, stochastic frontier functions and water index 

descriptions).  The third section describes the main results of the estimates crop-water production 

functions for 8 main crops in the basin and water efficiency index.  Finally, the fourth section 

presents the conclusions of the paper. 

 

 



2 Methodology 

Econometric stochastic frontier analysis has a lot of applications in many areas of the knowledge. 

In this study, it is applied to selected important crops in Ebro basin. We consider the most 

significant crops according their importance in the total agricultural area in the Ebro basin. 

Alfalfa, wheat, grapevine, olive, potato, maize and barley account for almost 60% of the total 

agricultural area in this region (MARM, 2007). However, we also include rice, which does not 

represent a large amount of the total cultivated area in the overall basin, but it is the main crop in 

the Ebro delta area and it is an intensively irrigated crop. It is important to keep in mind that 

alfalfa, maize, potato and rice are mainly irrigated while wheat, barley, grapevine and olive are 

primarily rainfed crops. 

Currently, it is well known that natural resources, i.e. water, are very important to economic 

growth and environmental sustainability. An extended production function, well known as the 

Solow-Stiglitz model (Solow, 1974; Stiglitz, 1979), includes natural resources (R); it has proven 

useful to estimate the water requirements at different locations for selected crops. Also there is a 

lot of literature that these kinds of functions are useful to evaluate the effects of extreme 

contingencies among other biophysics and socioeconomic variables. The general form of this 

function is the next: 

(1)                        0  y  1        with          i321
321  

RKLY  

Where L is labor; K is capital; R is the natural resources and 321  , ,  are the parameters which 

represents the elasticity of substitution among factors. We use Cobb-Douglas specification, as it 

allows a simple estimation and the coefficients  obtained  have  a  very  intuitive  interpretation  

in  terms  of  elasticities.  This function is not unique and varies among crops and zones and each 

approach to estimate production functions presents criticisms; however everyone has its strengths 

and limitations. The chapter is divided in 3 sections: (1) variable description and source of data, 

(2) Estimation of technical efficiency with panel data, and (3) The generation of the water 

efficiency index: 

 

2.1. Variable description and sources of data 

The variables, used here, are from regional, national and international sources of historical data 

for each crop in the 18 provinces of the Ebro river basin from 1976 to 2002. The dependent 

variable is the natural logarithm of the crop yield in a site i in the year t ( tYln ). Crop yield (Y) is 

defined as the ratio between production (in tones) and agricultural total area (in hectares). The 

source of data of these variables is the Statistical Division of the Spanish Ministry of Agriculture 

(MARM - Ministerio de Medio Ambiente y Medio Rural y Marino). As inputs, we used 4 

categories of explanatory variables: management, water, climatic and socioeconomic variables. 

Management variables were created to consider the effect of technology indicators, in this case 

we have incorporated the natural logarithm of irrigated area (Irrig_areait) and a linear 

combination of the diverse types of fertilizers and machinery like tractors and combines 

(Comp1_Techit) (See Quiroga and Iglesias 2009; Iglesias and Quiroga 2007). Irrig_areait is 



defined as the ratio between irrigated area and total crop land, by crop type. Data were obtained 

from the Spanish Ministry of Environment (MARM). In the other hand, fertilizers and machinery 

variables came from FAOSTAT of Food and Agriculture Organization of the United Nations 

(FAO). However, all these variables are highly correlated (see Table 1) and lead to problems of 

multicollinearity in the regression analysis. We used principal components analysis to solve this 

problem and we generated a new variable called Comp1_Techit. The idea of using principal 

components in regression is not new. We can find literature since 1950s like Kendall, 1957; 

Hotelling, 1957; Jeffers, 1967.  This technique consists in combine a large number of variables 

into a smaller number of related variables, retaining as much information as possible of the 

original variables (Blattberg, R., et al., 2008). Assuming an (n x k) matrix of X of n observations 

on k variables with ∑ variance-covariance matrix, the objective of principal components analysis 

involves an orthogonal transformation of a set of variables (k1, k2, …, kn)  into a set of 

components denoted by P, where P is (n x p) and p ≤ k.  These components are uncorrelated with 

each other, even though the original variables are quite highly correlated.  It is good to say that 

after the analysis we will obtain the same number of components as original variables, and the 

total variance of the variables is preserved exactly in the total variance of the new components. 

The first  principal  component  (p1) accounts  for  the  highest  proportion  of  the total  variance,  

the  second  principal  component  (p2)  reports  for  the  largest  share  of  the  remaining  

variance,  and  so on (Blattberg, R., et al., 2008; Brook, G., et al., 1986; Jolliffe, I.; Jolliffe, I., 

1982). In this case we only considered, in the regressions, components with an eigenvalue greater 

than 1; this value was selected  given that a component with an eigenvalue less than 1 reports  for  

less  of  the  total  variance  than  any  single  original  variable. According to Table 2 only the 

first component has an eigenvalue greater than 1 (Var(Comp1) = 4.24939), which explains 85% 

of the variability of data. Complementarily, Figure 1 (screeplot) confirms the previous analysis. 

However, Jolliffe (1982) shows that there is a misconception about the principal components 

with small eigenvalues in a regression, and demonstrated that these components can be as 

important as those with large variance. The alternative approach to determine the number of 

components to use, is by using AIC, the Akaike’s information criterion. This verifies the 

importance of the first component.  

 

Table  1.  Correlation matrix for technological variables 

  

Machinery Fertilizers 

Tractors Combines Nitrogen Phosphate Potash 

Machinery 
Tractors 1 

    
Combines 0.9462 1 

   

Fertilizers 

Nitrogen 0.7045 0.7758 1 
  

Phosphate  0.6888 0.7232 0.8405 1 
 

Potash 0.8958 0.8897 0.7587 0.89 1 

 

 

 

 

 

 



Table  2. Principal components analysis: total variance explained 

 

Component Eigenvalue Difference Proportion Cumulative 

Comp1 4.25 3.8 0.85 0.85 

Comp2 0.45 0.22 0.09 0.94 

Comp3 0.23 0.18 0.05 0.99 

Comp4 0.05 0.02 0.01 1 

Comp5 0.02  0 1 
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Figure 1 Significance of components using principal components analysis for technology 

variables 

 

In the category of water variables, we consider precipitation (Precit) and water for irrigation 

(Irrigit). Precit is the total precipitation in mm in the ith site in a year t. It was taken from the 

Spanish Meteorological Agency (AEMET). To build a proxy variable for irrigation (Irrigit), we 

used data on net crop water requirements from the Ebro basin management authority (CHEBRO, 

2004). It is a good approximation given that currently there are no explicit restrictions on the 

irrigated area in the Ebro basin. We assume that water requirements of crops are being met. 

Climate variables were taken from the Spanish Meteorological Agency (AEMET). In this case 

we used mean temperatures in degree Celsius (°C) per year in a i site (T_Meanit). Finally, to 

characterize socioeconomic variables, we included the total employment of agricultural sector at 

a site i in year t in thousands of people (Laborit). It was taken from the Labour Force Survey 

(LFS) of the Spanish National Institute of Statistics (INE). In Table 3, we summarize these 

variables. 

 



Table 3. Summarized description of the variables 

Type of 

variable 
Name Unit Source of Data 

Managment 

Comp1_Techt 
Standarized 

units 

Own elaboration 

from FAO data 

Irrig_areat 
Per unit of 

crop land 
MARM 

Water 
Irrigit m  / month CHEBRO 

Precit mm / month AEMET 

Climate T_Meanit ° Celsius AEMET 

Socioeconomic Laborit 
Thousands of 

people 
INE 

 

 

2.2. Estimating technical efficiency with panel data 

Stochastic frontiers are an important step in estimating the technical efficiency with cross-

sectional data, since they are able to incorporate stochastic modelling elements associated with 

any production process and also allow to decompose the random disturbance affecting production 

a symmetric component which includes factors beyond the control of the manager and an 

asymmetric component which includes systematic biases with respect to the frontier 

(inefficiency). However, the stochastic frontier has some limitations as: (1) the estimation of 

technical efficiency for each individual is not consistent, (2) the estimation of the model requires 

assumptions about the distribution of both components (symmetric and asymmetric) in the 

disturbance random, and these assumptions are often arbitrary, and (3) there is the assumption 

that technical efficiency is independent of the inputs, which has no microeconomic sense (Arias-

Sampedro, 2001). 

Given these problems, Schmidt and Sickles (1984) proposed the use of panel data as an option to 

solve some problems in the estimation of individual technical efficiency indexes with cross-

sectional data. Also, Greene (1999) mention 2 reasons for the proliferation of studies using panel 

data: (1) panel data provide a rich environment for the development of estimation techniques and 

theoretical results; (2) from a practical standpoint, these data allow the estimation problems that 

cannot be studied in the context of time series or cross section, in example, the case for the 

unbiased estimation of technical efficiency. 

The starting point for this analysis is a production model that can be represented by the following 

equation: 

(3)                                             

(2)                                 '

iitit

ititit

uv

XY







  

 

Where itY  is the amount of output obtained, itX  is a vector of inputs, α and β are the parameters 



of the model is a random disturbance itv  independent and identically distributed with zero mean 

and constant variance 2
v , which represents the random factors beyond the control of producer, 

and iu  is a random disturbance with constant variance 2
u , which represents the individual 

inefficiency remains constant over time. The random variables itv  and iu  are considered 

independent. 

According to Greene (2005), conventional panel data estimators (fixed and random effects 

estimators) suppose that technical inefficiency is time invariant and also they force any time 

invariant cross unit heterogeneity into the same term that is being employed to capture the 

inefficiency, given that, this inefficiency measures may have a heterogeneity problem. The 

Battese-Coelli maximum likelihood estimator (Battese and Coelli, 1988) extend the approach that 

Jondrow et al. (1982) did for cross section to panel data. They consider the maximum  likelihood  

estimator  (BC)  of (2) and (3) which  involves  specification  of  the  distributions  of  v  and  u. 

This formulation is frequently used in recent researches.  

 

2.3. Water efficiency index 

To aim this, we use a Cobb-Douglas production function as this, which include 3 input-variables 

to charaterize water use: 

ititittitititt MeanTecIrrigareaIrrigLaborY   _Prlnln_lnComp1_Techlnln 654321
 

To construct the water efficiency index, is better that the input-output are expressed in 

logarithms, then the technical efficiency of the ith  farm  is given by: 

Using random effects: 

)exp()exp(   ii
GLS
t uTE  

One disadvantage  is  that  GLS  is  biased  if  X  is  not independent  of u.  

Using Battese and Coelli estimator: 

)exp( i
BC
i uTE   

this  measures  the  ratio  of the  ith  province's  production  to what  it would  be if ui = 0. Battese 

and Coelli’s predictor for ui conditional on estimates of εit is consistent as T→ . 

 

 

 

 



3 Results 

Here we present the summarized results. According to Hallam and Machado (1996), the problem of 

multicollinearity - which generates a combination of insignificance and unexpected signs in the 

estimation of the coefficients although there is a good overall explanatory power - is not an 

important concern in the measurement of efficiency. Efficiency measure does not depends of the 

individual influence of the explanatory variables, it depends of the joint because it is based on the 

estimates of residuals 
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Figure 2  Technical efficiency using random effects estimator 

 

Battesse and Coelli estimator the maximum efficiency is almost 0.94 for Alfalfa while in the GLS 

estimator, the same crop raise the maximum efficiency (in this case 1) for almost all the 

provinces of the study. Analyzing the results in both estimators, we can observe that there very 

similar and alfalfa and potato are the most efficient crops in almost all areas.  

 

Table 4 Technical efficiency using Battese and Coelly estimator 

Crop 
Water 
index 

Alfalfa 0.89310581 

Rice 0.05591807 

Barley 0.04529622 

Maize 0.14791077 

Olive 0.00880517 

Potato 0.43135603 

Wheat 0.04984862 

Grapevine 0.03801933 

Period: 1976-2002 
Provinces: 
10   



 

4 Conclusions 

Although here we do not use all the panel data estimators, we did the necessary test to the use of 

every one. It is well known the advantages of these estimators in the measurement of the 

technical efficiency. Analyzing the results in both estimators, we can observe that there very 

similar. In Battesse and Coelli estimator the maximum efficiency is almost 0.94 for Alfalfa while 

in the GLS estimator, the same crop raise the maximum efficiency (in this case 1) for almost all 

the provinces of the study. Then the choice of estimator does appear to influence the estimate of 

average technical efficiency and it proves some past studies. Finally, we can observe that given 

water inputs potato and alfalfa tend to be more efficient. 
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