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Formal Relationships 10

Reproductive value, the stable stage distribution, and the sensitivity
of the population growth rate to changes in vital rates

Hal Caswell1

Abstract

The population growth rate, or intrinsic rate of increase, is the rate of growth that will be
achieved by a population with fixed vital rates. The sensitivity of population growth rate
to changes in the vital rates can be written in terms of the stable stage or age distribution
and the reproductive value distribution. If the vital rate measures the rate of production
of one type of individual by another, then the sensitivity of growth rate is proportional
to the reproductive value of the destination type and the abundance in the stable stage
distribution of the source type. This formal relationship exists in three forms: one for
age-classified populations, a second that applies to stage- or age-classified populations,
and a third that uses matrix calculus. Each uses a different set of formal demographic
techniques; together they provide a relationship that beautifully spans different types of
demographic models.

1 Biology Department MS-34, Woods Hole Oceanographic Institution, Woods Hole MA 02543 USA and
Distinguished Research Scholar, Max Planck Institute for Demographic Research Rostock, Germany.
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1. Introduction

A population subject to time-invariant vital rates will (with a few exceptions not of
interest here) converge to a stable structure and grow exponentially at a constant rate (the
population growth rate, or intrinsic rate of increase). The calculation of the population
growth rate from the vital rates is one of the most important accomplishments of formal
demography (Sharpe and Lotka 1911: Euler’s anticipation of the result in 1760 was not
rediscovered until 1970).

If the vital rates change, so will the population growth rate. Perturbation analysis
calculates the sensitivity of the growth rate to such changes, and may be useful for several
reasons:

(i) To predict the effects of future changes, or to understand the effect of past changes,
in the vital rates.

(ii) To determine the fitness consequences of genetic variation in demographic
characteristics, and predict the evolutionary outcome of natural selection.

(iii) To compare the results of population policies or, in ecological contexts, of
conservation or management strategies.

(iv) To quantify the effect of uncertainty in statistical estimates of the vital rates.

The sensitivities of population growth rate depend on the stable stage (or age)
distribution and the reproductive value. In this paper, I present three versions of this
formal relationship, each more general than the last. The first (Hamilton 1966), is specific
to age-classified models. The second (Caswell 1978) applies to stage-classified as well as
age-classified models. The third (Caswell 2007; 2008) is based on matrix calculus and is
more flexible than its predecessors. Each approach uses its own mathematical techniques.
Since one of the benefits of formal demography is that techniques that arise in one context
can later be applied to new problems, I will derive each of these three relationships in turn,
discuss their history, and describe some demographic and biodemographic hypotheses
that might lead to each kind of calculation. For easier reference, I have collected
definitions and relationships needed for the derivation into Section A–C.

532 http://www.demographic-research.org
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A Background: Stable age theory

The following relationships from age-classified stable population theory are used in
deriving the relationships (1) and (2).

µ(x) mortality rate(A-1)

`(x) = exp
(
−

∫ x

0

µ(a)da

)
survivorship(A-2)

m(x) maternity function(A-3)

1 =
∫ ∞

0

e−ra`(a)m(a)da Euler-Lotka equation for r(A-4)

c(x) =
e−rx`(x)∫ ∞

0

e−ra`(a)da

stable age distribution(A-5)

v(x) =
erx

`(x)

∫ ∞

x

e−ra`(a)m(a)da reproductive value(A-6)

b =
[∫ ∞

0

e−ra`(a)da

]−1

birth rate(A-7)

Ā =
∫ ∞

0

ae−ra`(a)m(a)da mean age of reproduction(A-8)

B Background: Matrix population models

The relationship (24) for stage-classified models is based on a matrix population model, using
the following results regarding eigenvalues, eigenvectors, and stable population theory.

n(t) population vector at time t(B-1)
n(t + 1) = An(t) projection equation(B-2)

A =
(

aij

)
population projection matrix(B-3)

λ = max eig(A) population growth rate(B-4)
Aw = λw stable stage distribution w(B-5)
vTA = λvT reproductive value vector v(B-6)
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C Background: Matrix calculus

This section collects results from matrix calculus (Magnus and Neudecker 1988), used in
deriving the formal relationship (37).

dy
dxT

=
(

dyi

dxj

)
derivative of vector y w.r.t. vector x(C-1)

vec
(

a b
c d

)
=

(
a c b d

)T
vec operator: stacks columns into a vector

(C-2)

dvec Y
dvec TX

derivative of matrix Y w.r.t. matrix X(C-3)

dy = Qx =⇒ dy
dxT

= Q First identification theorem(C-4)

vec (ABC) = (CT ⊗A) vec B Roth’s theorem(C-5)
dy
dzT

=
dy
dxT

dx
dzT

vector chain rule(C-6)

2. Age-classified populations

The population growth rate r in an age-classified model is calculated from the Euler-Lotka
equation (A-4) as a function of the age schedules of mortality and fertility (Section A).

2.1 The relationship

The sensitivities of r to changes in mortality and fertility at age x are

dr

dµ(x)
=

−c(x)v(x)
bĀ

(1)

dr

dm(x)
=

c(x)
bĀ

(2)

where c(x) is the stable age distribution (A-5), v(x) is the reproductive value (A-6), b is
the birth rate (A-7), and Ā is the mean age at reproduction (A-8). That is, the sensitivity
of r to a change in mortality at age x is proportional to the product of the reproductive
value at age x and the abundance of age x in the stable age distribution. The sensitivity

534 http://www.demographic-research.org
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of r to a change in fertility at age x is proportional to the stable age distribution (and
the reproductive value at age 0, which, equals 1; see Section 3.). The proportionality
constant in each case is the inverse of the product of the birth rate and the mean age of
reproduction.

2.2 Derivation

This perturbation analysis of r relies on implicit differentiation of the Euler-Lotka
equation (A-4). Let us introduce a perturbation parameter θ to measure the change in
mortality or fertility at a specified age.

Writing survival, fertility, and r as functions of θ gives the Euler-Lotka equation

(3) 1 =
∫ ∞

0

e−r(θ)a`(θ, a)m(θ, a) da.

Differentiating both sides of (3) with respect to θ gives

0 = −dr(θ)
dθ

∫ ∞

0

ae−r(θ)a`(θ, a)m(θ, a) da

+
∫ ∞

0

e−r(θ)a d`(θ, a)
dθ

m(θ, a) da

+
∫ ∞

0

e−r(θ)a`(θ, a)
dm(θ, a)

dθ
da.(4)

Solving (4) for dr/dθ gives

(5)
dr(θ)
dθ

=
1
Ā




∞∫

0

e−r(θ)a d`(θ, a)
dθ

m(θ, a) da +

∞∫

0

e−r(θ)a`(θ, a)
dm(θ, a)

dθ
da




where Ā is the mean age of reproduction in the stable population (A-8).

2.2.1 Changes in mortality

If the perturbation affects mortality at age x, we write

(6) µ(θ, a) = µ(0, a) + θδ(a− x)
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where δ(x) is the unit impulse function.2 The sensitivity of r to µ(x) is obtained as the
derivative of r with respect to θ, evaluated at θ = 0,

(11)
dr

dµ(x)
=

dr

dθ

∣∣∣∣
θ=0

.

Because only mortality is affected by θ

dm(θ, a)
dθ

= 0(12)

dµ(θ, a)
dθ

= δ(a− x).(13)

From (A-2),

d`(θ, a)
dθ

= −e−
∫ a
0 µ(θ,s)ds

∫ a

0

δ(a− x)da(14)

= −`(θ, a)H(a− x).(15)

Substituting into (5) and evaluating at θ = 0 gives

(16)
dr

dµ(x)
=
−1
Ā

(∫ ∞

x

e−ra`(a)m(a)da

)
.

2The unit impulse function, or Dirac delta function, is a generalized function defined by

δ(x) = 0 x 6= 0(7) ∫ ∞

−∞
δ(s)ds = 1.(8)

The unit impulse is used in signal processing (e.g., Kamen and Heck 1997: p. 7) to represent the limit of a
perturbation of unit strength applied over a shorter and shorter time interval. It’s most useful properties in our
application are

(9)
∫ ∞

−∞
δ(a− x)f(a)da = f(x)

and

(10)
∫ x

−∞
δ(s)ds = H(x)

where H(x) is the Heaviside function, or unit step function, which satisfies H(x) = 0 for x < 0 and H(x) = 1
for x > 0.

536 http://www.demographic-research.org



Demographic Research: Volume 23, Article 19

The integral in (16) is close to the reproductive value v(x) (A-6); specifically,

(17)
∫ ∞

x

e−ra`(a)m(a)da = `(x)e−rxv(x).

However, from (A-5) and (A-7), `(x)e−rx = c(x)/b. Making these substitutions into
(16) gives the formal relationship (1).

2.2.2 Changes in fertility

If the perturbation affects fertility at age x, we write

(18) m(θ, a) = m(0, a) + θδ(a− x).

Because only fertility is affected by θ, dµ(θ, a)/dθ = 0 and dm(θ, a)/dθ = δ(a − x).
Substituting these into (5) and evaluating the result at θ = 0 gives

(19)
dr

dm(x)
=

1
Ā

(
e−rx`(x)

)
.

From (A-5) and (A-7) it can be seen that the numerator is c(x)/b, which leads to the
formal relationship (2).

2.3 History and perspectives

Hamilton (1966) obtained the relationship (16) in an analysis of the evolution of
senescence. From (16) and (2) it is apparent that (provided r ≥ 0) the magnitudes of the
sensitivities of r to mortality and fertility decline with age. These sensitivities measure
the selection gradients on age-specific mortality and fertility. Thus Hamilton concluded
that the strength of selection against deleterious mutations would decline with their age
of action, that small positive effects at early ages could easily compensate for much larger
negative effects at later ages, and that the evolution of senescence was therefore inevitable.

In the years that followed Hamilton’s paper, several other authors developed
perturbation analysis for r, using related methods. Demetrius (1969) used a discrete
age-classified model, and Emlen (1970) used Hamilton’s results to derive the dynamics
of gene frequencies resulting from the selection gradients on age-specific survival and
fertility.

Keyfitz (1971), in a remarkable paper, used implicit differentiation to obtain the
sensitivity formulae of population growth rate, life expectancy, birth rates, death rates,
and the stable age distribution, apparently independently of Hamilton. He noted that the
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appearance of reproductive value in the sensitivity of r to mortality. Goodman (1971)
was apparently the first to note that the sensitivities of r to mortality and fertility could
be expressed in terms of the stable age distribution and reproductive value. Arthur (1984)
presented an approach based on functional differentiation; it would be interesting to
explore the connections between that approach and the matrix calculus methods in Section
4.

When Hamilton’s paper appeared in 1966, it was regarded as difficult and esoteric,
but it had a great impact. It provided the analytical machinery for examining trade-offs
between opposing demographic traits (“antagonistic pleiotropy;" Williams 1957; Rose
1991; Charlesworth 1994). These ideas are fundamental to the analysis of human aging
(e.g., Rose 1991; Wachter and Finch Washington, D.C.: National Academy Press; Carey
and Tuljapurkar 2003; Baudisch 2005) and, more generally, the analysis of life history
evolution in humans and other species (e.g., Charlesworth 1994; Stearns 1992). In the
most recent overview of evolutionary biodemography (Vaupel 2010), Hamilton’s paper is
still one of the foundations of evolutionary life history theory; in the most recent overview
of evolutionary biodemography (Vaupel 2010), the paper is one of the first citations.

Hamilton’s conclusions about the inevitability of senescence depend on the nature
of the perturbations described here by (6) and (18) — that is, additive perturbations
to mortality or fertility, respectively. Baudisch (2005; 2008) has pointed out that traits
leading to other kinds of perturbations would experience different patterns of selection
pressure with age. She examined proportional changes in mortality,

(20)
dr

d log µ(x)
= µ(x)

dr

dµ(x)
,

additive changes in survival p(x) = e−µ(x),

(21)
dr

dp(x)
= − 1

p(x)
dr

dµ(x)
,

and proportional changes in survival

(22)
dr

d log p(x)
= − dr

dµ(x)
.

One could also include proportional changes in fertility

(23)
dr

d log m(x)
= m(x)

dr

dm(x)
.
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There is no a priori reason that such traits should not arise in the course of evolution, but
they lead to very different conclusions about senescence. In particular, the magnitudes
of (20), (21), and (23) may increase, rather than decrease, with age (Baudisch 2005), so
Hamilton’s conclusion does not apply to such perturbations.

3. Stage-classified populations

Implicit in Hamilton’s analysis is the assumption that the vital rates are functions of age.
In many cases, they are not. In humans, characteristics such as economic, marital, or
health status, or spatial location, may provide important information in addition to age.
In other species, the vital rates depend on developmental stage or size more than on age.
Such populations are described by stage-classified demographic models, of which the
age-classified theory is a special case.

Stage-classified demography can be analyzed using matrix population models (Leslie
1945; Caswell 2001); see Section B. The discrete-time population growth rate λ is the
dominant eigenvalue of the population projection matrix A (guaranteed to be real and
positive by the Perron-Frobenius theorem; Caswell 2001). The effects of perturbations on
population growth can be approached by looking for the sensitivity of an eigenvalue to
changes in the entries of a matrix.

3.1 The relationship

The sensitivity of λ to a change in the entry aij of A is (Caswell 1978)

(24)
∂λ

∂aij
=

viwj

vTw
,

where the stable stage distribution w and the reproductive value vector v are the right
and left eigenvectors of A. The entry aij measures the per-capita production of stage i
by stage j. The effect of a change in aij is proportional to the reproductive value of the
destination stage and to the abundance of the origin stage in the stable population. This is
a generalization of the relationships (1) and (2) obtained from Hamilton’s analysis.

3.2 Derivation

The eigenvalue λ is a solution to the characteristic equation of A, which generalizes the
Euler-Lotka equation (A-4). Except in special cases it cannot be written down explicitly,
making the implicit differentiation approach used by Hamilton impossible. Instead, the
relationship (24) is obtained by a perturbation expansion. Suppose that A is perturbed to
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A + ∆A. This will result in perturbations of λ and of w, which must satisfy

(25) (A + ∆A) (w + ∆w) = (λ + ∆λ)(w + ∆w).

Expanding the products, setting second order terms to zero, and remembering that Aw =
λw gives

(26) A(∆w) + (∆A)w = λ(∆w) + (∆λ)w.

Multiply on the left by vT and simplify to obtain

(27) (∆λ)vTw = vT(∆A)w.

If the perturbation affects only one entry, for example aij , of A, then

(28) ∆λ =
viwj (∆aij)

vTw
.

Dividing both sides by ∆aij and taking the limit as ∆aij → 0 gives the relationship (24).

3.3 Age-classified models as a special case

To compare (24) with Hamilton’s results (1) and (2), consider an age-classified matrix
(a Leslie matrix) with fertilities Fi in the first row, survival probabilities Pi on the
subdiagonal, and zeros elsewhere (Leslie 1945; Keyfitz 1968). In this case (24) simplifies
to

∂λ

∂Pi
=

vi+1wi

vTw
(29)

∂λ

∂Fi
=

v1wi

vTw
.(30)

Equation (29) corresponds to (1); the sensitivity is proportional to the product of the
reproductive value and the stable stage distribution. Equation (30) corresponds to (2), and
shows why reproductive value is apparently missing from (2): reproductive value at birth
(v(0) in Hamilton’s notation) is scaled to equal 1.
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3.4 Sensitivity to lower-level demographic parameters

Figure 1: An example of lower-level parameters appearing in a portion of a
life cycle.

1

2

3

a21 = σγ

a31 = σ(1−γ)

Note: Individuals in stage 1 survive with probability σ, and, conditional on survival, move to stage 2 with
probability γ and to stage 3 with probability 1− γ.

The entries of A are often functions of other, lower-level parameters. The sensitivity
of λ to these parameters is obtained by the chain rule. For example, suppose that stage 1
may contribute individuals to stages 2 or 3 (Figure 1). Write the transition probabilities
as

a21 = γσ(31)
a31 = (1− γ)σ(32)

where σ is the survival probability and γ the probability that the individual moves to stage
2, conditional on survival. Then the sensitivities of λ to γ and to σ are given by

dλ

dσ
=

∂λ

∂a21

da21

dσ
+

∂λ

∂a31

da31

dσ
(33)

=
w1 [γv2 + (1− γ)v3]

vTw
(34)

dλ

dγ
=

∂λ

∂a21

da21

dγ
+

∂λ

∂a31

da31

dγ
(35)

=
σw1 (v2 − v3)

vTw
.(36)
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The sensitivity to survival is proportional to the weighted average of the reproductive
values of the destination stages, and the sensitivity to the transition probability γ is
proportional to the difference in reproductive value between the destination stages.

3.5 History, perspective, and generalizations

I first encountered this perturbation expansion in the proceedings of an engineering
conference (Desoer 1967). Eigenvalue perturbations were of particular interest to
engineers in the 1960s as part of a shift from frequency-domain methods to state-space
methods in the study of linear systems (Zadeh and Desoer 1963). However, the
result dates back to Jacobi (1846), and has been independently rediscovered many
times (e.g., Faddeev 1959; Papoulis 1966; Franklin 1968). This perturbation approach
has been extended to many other sensitivity problems, including the sensitivity of
subdominant eigenvalues and transient behavior, of growth rates in periodic and
stochastic environments, of the eigenvectors, and of the spreading speed in biological
or demographic invasions (see Caswell 2001: for reviews and references).

4. Sensitivity of growth rate via matrix calculus

Eq. (24) assumes that only a single entry of A is perturbed, and derivatives with respect
to other parameters must be assembled by summing the effects of those parameters on
all the entries of A, as in (36). A powerful alternative approach is to treat λ as a scalar
function of A, and A as a matrix-valued function of a vector of lower-level parameters.
The mathematical machinery of matrix calculus (Section C, Magnus and Neudecker 1988)
makes it possible to do this.

4.1 The relationship

Suppose that A is a function of a vector θ, of dimension p × 1, of parameters. The
derivative of λ with respect to θ is

(37)
dλ

dθT =
(

wT ⊗ vT

vTw

)(
dvec A

dθT

)
,

where ⊗ denotes the Kronecker product. In this notation, dλ/dθT is a 1× p vector whose
ith entry is dλ/dθi.
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4.2 Derivation

Begin by taking the differential of both sides of (B-5) to give

(38) (dA)w + A(dw) = (dλ)w + λ(dw).

where the differential of a matrix or vector is the matrix or vector containing the
differentials of the elements. Multiply both sides on the left by vT and simplify to obtain

(39) (dλ)vTw = vT(dA)w

Next, apply the vec operator (C-2) to both sides of (39). Since the left side is a scalar,
the vec operator has no effect. The right side is a product of three quantities, so Roth’s
theorem (C-5) implies that

(40) dλ =
wT ⊗ vT

vTw
dvec A

Equation (C-4) (the First Identification Theorem; Magnus and Neudecker 1985), implies
that

(41)
dλ

dvec TA
= (wT ⊗ vT) .

Finally, the chain rule (C-6) gives us the formal relationship (37), for the sensitivity of
λ to any vector of parameters. This generalizes the expression (24), but permits easy
calculation of the derivatives without having to keep track of summations.

4.3 History and extensions

Modern versions of calculus for matrix equations date back to Dwyer and MacPhail
(1948). Several different and not totally compatible approaches have been developed
(Nel 1980). The approach adopted here was developed by Magnus and Neudecker (1985)
See Magnus and Neudecker (1988) for a complete treatment, and Abadir and Magnus
(2005) for a recent introduction).

The matrix calculus approach to perturbation analysis is powerful, because it permits
differentiation of scalar-, vector- and matrix-valued functions of scalar-, vector-, or
matrix-valued arguments. Thus sensitivity analysis of growth rate is only the beginning of
its applications in demography. Recently it has been applied to measures of longevity, net
reproductive rate, and generation time (Caswell 2006; 2009b), to nonlinear demographic
models (Caswell 2008; 2009a; Verdy and Caswell 2008; Jenouvrier et al. 2010), to

http://www.demographic-research.org 543



Caswell: Sensitivity of population growth rate

stage-structured epidemic models (Klepac and Caswell 2010), and to transient dynamics
(Caswell 2007).

5. Conclusion

The three versions of this formal relationship, equations (1 – 2), (24), and (37), use
different analytical methods but agree in showing how the sensitivity of population growth
rate can be written in terms of the stable stage distribution and the reproductive value. In
general, the effect of a change in the rate at which individuals move from stage j to stage
i is proportional to the abundance of the origin stage (j) and the reproductive value of the
destination stage (i). If a vital rate produces individuals with low reproductive value, or if
few individuals are available to experience the change in the rate, the effect on population
growth will be small.

In the age-dependent model, the sensitivity of r to changes in fertility (2) appears to
lack the dependence on the destination reproductive value; this is because the reproductive
value at age 0 is 1. In the stage-dependent model, the reproductive value of the first
stage (whatever kind of newborn individual that may represent) is explicitly present in the
expression (30).

Each version of this formal relationship uses a different approach to perturbation
analysis: implicit differentiation, perturbation expansion, or matrix calculus. Of course,
these methods are all related, but each of them is particularly appropriate in its own
situations. As a result, perturbation analysis in demography now extends far beyond the
population growth rate (e.g., Caswell 2001; 2008; 2009b).
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