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Abstract
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1. Introduction

New growth theory has provided increasing evidence suggesting that the accumulation
of production factors alone cannot explain the observed cross-country differences in per
capita gross domestic product (see, for instance, McGrattan and Schmitz, 1999; and
Parente and Prescott, 2004). Authors like Klenow and Rodriguez-Clare (1997) and Hall
and Jones (1999) argue that differences in per capita gross domestic product (GDP,
henceforth) are mainly explained by differences in total factor productivity (TFP,
henceforth). Simultaneously, the recent development literature explains international
differences in the growth rates of GDP as the result of differences in the sectoral
composition of GDP (see Echevarria, 1997; and Laitner, 2000). Recently, Caselli (2004),
Cordoba and Ripoll (2004), and Chanda and Dalgaard (2005) unify these two lines of
research by showing that sectoral change contributes not only to output growth, but
also to productivity growth without any true technological change. By using multisector
growth models as the basis of growth accounting exercises, these works demonstrate
that the aggregate level of TFP can be decomposed into a contribution from sectoral
composition and a contribution from the level of technology. In this way, they show
that the composition effect can explain a large part of the differences in aggregate TFP
levels across countries. At this point, the open question is to explain sustained cross-
country differences in sectoral composition of output. In this paper, we assert that the
accumulation of capital is a candidate to explain these differences. For that purpose,
we characterize the equilibrium dynamics of an endogenous growth model, where the
long run sectoral composition of GDP depends on the initial stocks of capital. As TFP
depends on the sectoral composition of GDP, we will conclude that the contribution of
capital to explain GDP is larger when TFP is endogenous.1

Economies experiment meaningful changes in the structure of the production
activity along the process of economic development. On the one hand, empirical
evidence has shown that there is a relationship between the level and the sectoral
composition of GDP. Baumol and Wolf (1989), Chenery and Syrquin (1975) and
Kuznets (1971), among others, show that the process of development is related to
the process of structural change. On the other hand, as Chari et al. (1997) point
out, “the recent literature emphasizes that a broad measure of capital is needed to
account for at least some of the regularities in the data”. In particular, the process of
development is related to the growth of human capital, which explains the existence of
a strong accumulation of human capital along the development process. Galor (2005),
Galor and Moav (2004) and Pereira (xxxx) have shown the link between human capital
accumulation and GDP growth. Therefore, according to the data, the process of
development is linked to structural change and the accumulation of human capital.
However, while empirical evidence provides a strong support to the previous relations,
most growth models do not simultaneously take into account structural change and the
accumulation of human capital. The aim of this paper is to construct a growth model

1Cordoba and Ripoll (2005) also stress that the results of development accounting may be modified
when TFP is assumed to be endogenous and depend on capital stocks. However, in their model, TFP
is endogenous because they impose a particular accumulation law of TFP that depends on capital. In
contrast, in our model, TFP is endogenous because it depends on the sectoral composition of GDP
that is determined by capital accumulation.
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that while takes into account the relationship between human capital accumulation,
structural change and development, it also satisfies the Kaldor’s facts. Therefore, the
equilibrium of this model will converge to a balanced growth path (BGP, henceforth)
along which the GDP to capital ratio will remain constant.

For our purpose, we extend the two-sector model of endogenous growth with
constant returns to scale and with physical and human capital accumulation, introduced
by Uzawa (1965) and Lucas (1988). Apart from the absence of external effects, the main
departure from Lucas (1988) is in the modeling of preferences. On the one hand, we
assume that agents derive utility from the consumption of two goods. On the other
hand, we assume that consumption is subject to a minimum requirement, which makes
the utility function be non-homothetic. Because of this non-homotheticity, the sectoral
composition of consumption changes as the economy develops, which drives the change
in both the sectoral composition of GDP and in the sectoral allocation of production
factors along the development process. The later in turn affects the level of GDP by
modifying TFP. Thus, in our model there is a double causality between growth and
structural change. Moreover, contrary to standard development literature, we assume
that the minimum consumption requirement does not vanish as the economy grows,
which means that the utility function is asymptotically non homothetic. This implies
that the long run sectoral composition of consumption will depend on the income level.
Therefore, we do not interpret the consumption requirement as a minimum subsistence
level but as an aspiration in consumption, because utility rises only when consumption
grows faster than its minimum requirement.

Many others papers analyzing economic growth and sectoral composition have also
considered multiple consumption goods or minimum consumption requirements. For
instance, Rebelo (2001) and Steger (2000) assume that consumption is subject to a
minimum subsistence level in an endogenous growth model. Ngai and Pissaridis (2004)
consider an exogenous growth model with heterogenous consumption goods, whereas
Roberson (1999, 2000) and Steger (2006) introduce heterogenous consumption goods in
endogenous growth models. Finally, Echevarria (1997), Laitner (2000) and Kongsamunt
et al. (2001) introduce the two assumptions in exogenous growth models to analyze
the interrelationship between sectoral composition and growth. In the present paper,
we introduce these two assumptions in a model of endogenous growth, which yields
important changes in the growth patterns. As in the standard two-sector growth model
(see, for instance, Caballé and Santos, 1993), the set of BGPs is a linear manifold of
dimension one along which the relative prices and the growth rate are constant. This
means that there is a continuum of BGPs and that the initial conditions on the two
capital stocks determines the BGP the economy converges to. However, in contrast with
the standard two-sector growth model, the manifold of BGPs does not emanate from
the origin when the following conditions hold: (i) individuals derive utility from the
consumption of the two heterogenous goods; (ii) consumption is subject to a minimum
consumption requirement; and (iii) the technologies used by the two sectors exhibit
different capital intensities. When these conditions are satisfied, the GDP level, the ratio
between physical to human capital and the sectoral structure, given by the allocation
of resources across sectors, depends on the BGP the economy converges to. Thus, our
model predicts that economies with the same fundamentals but different endowments
of human and physical capital will converge to a common price level and growth rate,
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although the long-run levels of the capital stocks, the ratio of physical to human capital
and the GDP to capital ratio will remain being different.

These results imply that economies with different endowments will converge to
different sectoral capital allocations and different sectoral compositions of consumption
and GDP. To see this, note that when capital endowments are small, the economies are
forced to devote a large amount of their resources to consume the good that is subject
to the minimum consumption requirement. Thus, the composition of consumption
depends on the stocks of capital and, obviously, this makes the composition of GDP
depend on these stocks. In particular, the ratio between the output of the sector
producing the good that is subject to the minimum consumption requirement and the
output of the other sector will be larger in those economies with smaller capital stocks
and, moreover, this ratio will decrease as capital stocks rise. As a consequence of this
different composition of GDP, when the stock of physical capital is low, the ratio of
physical to human capital will be large (small) if the sector producing the good that is
subject to the minimum consumption requirement is more (less) intensive in physical
capital than the other sector.

The non-convergence to a common long-run sectoral composition has interesting
consequences for the conclusions derived from the exercises of development accounting.
In fact, TFP in a multisector growth model depends on the sectoral structure, which
in our model is endogenous and depends on the stock of capital. Our results then
imply that the level of physical capital is a source of differences in TFPs across
economies. Thus, we assert that, because of the minimum consumption requirement,
capital accumulation also affects the level of GDP by means of the induced changes in
the sectoral composition and TFP. We can then interpret this minimum consumption as
a barrier to riches, as it forces a particular sectoral composition of GDP that limits the
value of aggregate production that can be attained given the capital stocks.2 Therefore,
according to our model, the empirical studies of development accounting that assume
an exogenous TFP obtain biased measures of the contribution of capital endowments
to explain the observed cross-country differences in GDP.

However, we show numerically that the contribution of capital to explain differences
in the long-run values of TFP is relatively small in our model. This negative result
arises because the differences in capital stocks generate small disparities in the sectoral
allocation of physical and human capital at the BGP. This contribution of capital
may instead be large when economies are assumed to be off the BGP, as the process
of sectoral change in the composition of GDP occurs mainly along the transition.
In particular, we show that two economies with different initial levels of physical
and human capital exhibit significatively different sectoral structures when there is
a negative relationship between the accumulation of the two capital stocks along the
transition. In this case, the contribution of capital endowments to explain differences
in GDP across economies is larger along the transition than at the BGP. From this
analysis, we conclude that the nature of the development process depends on the slope
of the policy functions driving the accumulation of the capital stocks. In particular, by
limiting the analysis to the plausible case where the sector producing the good subject to

2Cordoba and Ripoll (2004) postulate that economies would be poor because they specialize in a
sector with a low level of TFP. We argue that they specialize in these sectors because they must satisfy
a minimum consumption requirement.
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the minimum consumption requirement is relatively more intensive in physical capital,
we obtain that the value and even the sign of the slope of these policy functions depends
on the initial levels of physical and human capital, which is in stark contrast with the
standard two-sector model of endogenous growth (see Caballé and Santos, 1993). This
means that the sectoral structure of two economies with the same fundamentals but
different initial conditions on the capital stocks may diverge along the transition.

The plan of the paper is as follows. Section 2 presents the model. Section 3
characterizes the steady-state equilibrium. In Section 4, we explain differences in GDP
per capita across countries. Section 5 characterizes the transition towards the BGP
and its implications for development accounting. Section 6 concludes the paper and
presents some possible extensions to the present research. All the proofs and lengthy
computations are in the Appendix.

2. The economy

Let us consider a two-sector growth model in which there are two types of capital
k and h, that we denote physical and human capital, respectively. One sector
produces a commodity Y according to technology Y = A (sk)α (uh)1−α = AuhzαY ,
where, respectively, s and u are the shares of physical and human capital allocated
in this sector, and zY =

sk
uh is the capital ratio in this sector. The commodity Y can

either be consumed or added to the stock of physical capital. The law of motion of the
physical capital stock is thus given by

k̇ = A (sk)α (uh)1−α − c− δk, (2.1)

where c denotes the amount of Y
devoted to consumption, and δ = (0, 1) is the depreciation rate of the physical capital
stock. The other sector produces a commodity H by means of the production function
H = γ [(1− s) k]β [(1− u)h]1−β = γ(1− u)hzβH , where zH = (1−s)k

(1−u)h . This commodity
can also be either devoted to consumption or to increase the stock of human capital.
The evolution of human capital is thus given by

ḣ = γ [(1− s) k]β [(1− u)h]1−β − x− ηh, (2.2)

where x denotes the amount of H devoted to consumption, and η ∈ (0, 1) is the
depreciation rate of the human capital stock. Note that this model can be interpreted
as a generalization of the two-sector growth model, in which the two sectors produce
both consumption and investment goods. Because the two sectors produce final goods,
we define the Gross Domestic Product (GDP) as follows:

Q = Y + pH, (2.3)

where p is the relative price of good H in terms of good Y.
The economy is populated by an infinitely lived representative agent characterized

by the following utility function:

U(c, x) =

h
(c− c)θ x1−θ

i1−σ
1− σ

,
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where θ ∈ [0, 1] is the share parameter for good c in the composite consumption good
(c− c)θ x1−θ, σ > 0 is the constant elasticity of marginal utility with respect to this
composite consumption good, and c is a minimum consumption requirement. We also
assume that the growth rate of the minimum consumption coincides with the long-run
growth rate of consumption g∗, i.e.

c = c0e
g∗t, (2.4)

in order to guarantee that the equilibrium converges to a BGP.3 Observe that, given a
constant value of x, the utility rises when the growth rate of consumption c is larger
than g∗.We can then interpret this increasing path of consumption requirements as an
aspiration, as the utility rises only when consumption grows faster than the minimum
consumption requirement. Note that the introduction of the minimum consumption
using this additive functional form implies that the constraint c > c must hold for all t.

The representative agent maximizes the discounted sum of utilitiesZ ∞

0
e−ρtU(c, x)dt,

subject to (2.1) and (2.2), where ρ > 0 is the subjective discount rate. Let µ1 and
µ2 be the shadow prices of k and h, respectively. Appendix A provides the first order
conditions of this maximization problem, and derives the system of dynamic equations
that fully characterize the equilibrium paths by following the standard procedure used
in the two-sector model of endogenous growth (see, for example, Bond et al., 1996). In
the remainder of this section, we only provide the equations that compose this dynamic
system defining the equilibrium dynamics. Define z as the aggregate ratio from physical
to human capital, i.e., z = k

h . First, because by definition p = µ2
µ1
, we get the equation

that drives the growth of prices

ṗ

p
= − (1− β) γzβH + βγzβ−1H p+ η − δ, (2.5)

with

zH = φ

∙
β (1− α)

α (1− β)

¸
p

1
α−β , (2.6)

where

φ =
³ γ
A

´ 1
α−β

µ
1− β

1− α

¶ 1−β
α−β

µ
β

α

¶ β
α−β

.

As follows from (2.5), the growth of the price is driven by the standard non-arbitrage
condition that states that the returns on physical and human capital must coincide.
Note that (2.5) is a function of p alone and only depends on technology parameters. In
contrast, the price level is driven by the marginal rate of substitution, i.e.,

p =

µ
1− θ

θ

¶µ
c− c

x

¶
, (2.7)

3 If we instead assumed that the minimum consumption grows at a rate lower than the long-run
growth rate of consumption c, then the equilibrium would converge to an asymptotic BGP. This means
that the equilibrium would converge to a stationary solution only when consumption diverges to infinite.
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which shows that the price level depends on the parameter θ and on the composition
of consumption. This yields an important difference with respect to the standard two-
sector growth model with a unique consumption good (see, as an example, Bond et al.,
1996), where the price level is related with the level of consumption.

We now proceed to characterize the growth rate of consumption expenditure. In
this economy with two consumption goods, we define consumption expenditure as
w = c+ px. Moreover, we denote the fraction of consumption expenditures devoted to
purchases of good c by wc, where

wc =
1

1 +
¡
1−θ
θ

¢ ¡
1− c

c

¢ , (2.8)

as follows from (2.7). Note that wc provides a measure of the composition of
consumption expenditures, which depends on θ and on the ratio c

c .
4 It follows that

the composition of consumption changes along the development process because of
the introduction of the minimum consumption requirement. In fact, the minimum
consumption makes the utility function be non-homothetic, which implies that the
composition of consumption depends on the level of income. In Appendix A, we obtain
that

ẇ

w
= g∗ +

µ
w − c

σw

¶ ∙
βγpzβ−1H − δ − ρ− σg∗ − (1− θ) (1− σ)

ṗ

p

¸
. (2.9)

As follows from (2.9), the two assumptions introduced on preferences have
interesting implications on convergence. On the one hand, the introduction of the
minimum consumption requirement implies that the dynamic adjustment is driven by
the dynamic behavior of the intertemporal elasticity of substitution (IES, henceforth),
that we will denote by χ. If we define the IES as a measure of the sensitivity of the
growth rate of consumption expenditure to the annual net discount rate, we obtain
that χ = w−c

σw . Given that we have assumed that the growth rate of the minimum
consumption requirement is equal to the long-run growth rate of consumption c, the
IES is constant in the long run even for finite values of consumption. However, during
the transition, and unlike the case of homothetic preferences, the IES is not constant.
On the other hand, the existence of two consumption goods implies that the convergence
is not only driven by the diminishing returns to scale but also by the change in the
relative price. The growth effect of a variation in the growth rate of prices depends on
the IES and on the elasticity of the marginal utility of c with respect to x, which is
given by (1− θ) (1− σ) . The combination of these two facts makes the model suitable
to explain some interesting features of the growth patterns along the development
process.5 However, this issue is beyond the scope of the present paper.

Finally, we characterize the growth rate of the two capital stocks. For that purpose,
we use (2.7) and the definition of w to rewrite the ratios c

k and
x
h as functions of p, w,

k and h. Given these functions, we get in Appendix A that

4Note that if c = 0 then wc = θ, whereas if c = c then wc = 1. Note also that if θ = 0 then wc = 0,
whereas if θ = 1 then wc = 1.

5As an example, note that the IES decreases with c
w
, which implies that the minimum consumption

deters growth. Thus, the model may explain the low growth rates in those economies, where agents
must devote most resources to consume in order to satisfy the minimum consumption requirement.
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k̇

k
= A

µ
uh

k

¶
zαY − δ − θw + (1− θ) c

k
, (2.10)

and
ḣ

h
= γ (1− u) (zH)

β − η − (1− θ)

µ
w − c

ph

¶
, (2.11)

with
zY = φp

1
α−β , (2.12)

and
u =

z − zH
zY − zH

. (2.13)

We can now define the dynamic equilibrium as a set of paths {w, p, k, h, c} that,
given the initial levels of the two capital stocks k0 and h0 and the initial level of
minimum consumption requirement c0, solves (2.5), (2.9), (2.10), and (2.11), satisfies
(2.6), (2.12), (2.13), the exogenous law of motion of the minimum consumption
constraint (2.4) and the usual transversality conditions

lim
t→∞µ1k = 0, (2.14)

and
lim
t→∞µ2h = 0. (2.15)

Note that the equilibrium will be characterized by three state variables, k, h and c, and
two control variables, w and p. Because there are three state variables, the transition
will be driven not only by the imbalances between the two capital stocks, as occurs
in the standard two-sector growth model, but also by the initial levels of the capital
stocks.

3. The balanced growth path

A steady-state equilibrium or BGP in our economy is an equilibrium path along which
both capital stocks, both consumption goods and consumption expenditures grow at
a constant rate, and capital allocation between sectors, relative prices and the ratio
from aggregate output to physical capital are constant. This section lays down the
properties of a BGP and the conditions for its existence.

Proposition 3.1. Assume that a BGP exists. Then, the relative price remains
constant along the BGP and, moreover, there is a unique long-run value of the relative
price p∗ that solves

− (1− β) γzβH + βγzβ−1H p∗ + η − δ = 0. (3.1)

The two capital stocks and consumption expenditure grow at the same constant growth
rate

g∗ =
βγzβ−1H p∗ − δ − ρ

σ
. (3.2)
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We have shown the existence and uniqueness of a long-run price level and growth
rate. Obviously, this does not imply the existence of a BGP, but it implies that if a BGP
exists then the price level and growth rates are unique. Note that these long-run price
level and growth rate neither depend on the weight of consumption goods in the utility
function, θ, nor on the minimum consumption requirement, c0. Thus, the assumptions
made on preferences do not affect the long-run value of these two variables that, as in
the standard two-sector growth model, only depends on technology. We show next that
the long-run level of the variables depends on the assumptions made on preferences.
For that purpose, we normalize the variables w, k, and h as follows

bw = we−g
∗t, (3.3)

bk = ke−g
∗t, (3.4)

and bh = he−g
∗t. (3.5)

Note that the normalized variables bw, bk and bh will remain constant along a BGP, andbw∗, bk∗, and bh∗ will denote the respective steady-state values of these variables. The
following proposition characterizes a steady-state equilibrium in terms of the normalized
variables bw, bk and bh.
Proposition 3.2. Given bk∗, a BGP is a set ng∗, p∗,bh∗, bw∗o that satisfies (1− σ) g∗ <

ρ and bk∗ ≥ kc, and solves (3.1), (3.2), and

bh∗ = m+ nbk∗, (3.6)bw∗ = l + jbk∗, (3.7)

where

m =

µ
1− θ

θ

¶µ
c0
bp∗

¶
,

n = −
µ
1

b

¶(µ
1− θ

θp∗

¶ ∙µ
AzαY
zY−zH

¶
− (δ + g∗)

¸
+

γzβH
zY−zH

)
,

l = −
µ
1

θ

¶ ∙
m

µ
AzHz

α
Y

zY − zH

¶
+ (1− θ) c0

¸
,

j =

µ
1

θ

¶ ∙
(1− nzH)

µ
AzαY
zY−zH

¶
− (δ + g∗)

¸
,

and

b = (η + g∗)− zH

µ
AzαY
zY−zH

¶µ
1− θ

θp∗

¶
− γzβHzY

zY−zH
.

Moreover, the following statements hold:
(i) the slopes n and j are positive;
(ii) when c0 > 0, θ ∈ (0, 1) and α 6= β, then m > 0 if α < β, whereas m < 0 if

α > β. Otherwise, m = 0.
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The previous result states the conditions on the fundamentals for the existence of
an interior BGP. On the one hand, the condition (1− σ) g∗ < ρ guarantees that the
transversality conditions hold and the objective function in the representative agent’s
problem takes a bounded value. On the other hand, the condition bk∗ ≥ kc ensures
that the value of the physical capital stock at the BGP satisfies bh∗ > 0 and bc∗ > c0.
Proposition 3.2 also shows that the set of steady-state values is a linear manifold of
dimension one. This means that there is a continuum of BGPs, which we will index bybk∗. Along this manifold there is a positive relationship between bw∗ and bk∗, and betweenbh∗ and bk∗. However, the ratios h∗

k∗
and w∗

k∗
can either change or remain constant from one

BGP to another. More precisely, the linear manifold of BGPs does not emanate from
the origin when the independent terms in (3.6) and (3.7) are different from zero. This
is an important difference with respect to the standard two-sector growth model, where
the set of BGPs forms a linear manifold emanating from the origin.6 This difference
yields the main results of the paper. The next corollary provides conditions for this
difference to hold.

Corollary 3.3. The manifold of BGPs does not emanate from the origin if and only
if the following statements hold:

(i) individuals derive utility from the consumption of the two goods, i.e. θ ∈ (0, 1);
(ii) the minimum consumption requirement is strictly positive, i.e., c0 > 0; and
(iii) capital intensity is different across sectors, i.e., α 6= β.

The main implication of the previous result for the purpose of this paper is that the
sectoral composition can change along the set of BGPs, which is in stark contrast with
the standard two-sector model of endogenous growth without externalities. In order to
show this conclusion, we first proceed to characterize in some detail the relationship
between the values of bh∗ and bk∗ derived from Proposition 3.2. Note first that the valuebh∗ depends positively on bk∗, since the function (3.6) has a positive slope. However, the
stationary ratio between both capital stocks, that we will denote by z∗, can increase,
decrease or remain constant after an increase in bk∗. By using the results on Proposition
3.2, we next characterize this dependence of z∗ on bk∗.
Proposition 3.4. Assume that c0 > 0, θ ∈ (0, 1) and bk∗ > kc. If α > β the ratio z∗

is a decreasing function of bk∗, whereas z∗ is an increasing function of bk∗ when α < β.
The ratio z∗ is constant if either c0 = 0, θ = 1, or α = β.

From the previous result, we conclude that different BGPs can exhibit different
physical to human capital ratios, although these ratios will be constant in each BGP.7

The minimum consumption requirement implies that if the normalized stock of capitalbk∗ at a BGP is small and, thus, GDP is small, then the economies are forced to devote
more resources to consume c than x. This means that the composition of consumption
expenditure depends on the value of bk∗. Obviously, this dependence also makes the

6See Caballé and Santos (1993) for an analysis of the BGP in the standard two-sector growth model.
7 In Lucas (1988), the presence of externalities in production generates a non-linear locus of capital

pairs k∗, h∗ along which capital ratio z∗ changes. Klenow and Rodriguez (2004) obtain a similar

result.
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composition of GDP depend on this capital stock bk∗. In particular, the ratio between
the output of sector Y and the output of sector X will be larger in those economies with
a smaller value of bk∗ and decrease as this value rises. As a consequence of this different
composition of GDP, when bk∗ is small, the required stock of physical capital is larger
(smaller) than the required stock of human capital if sector Y is more (less) intensive
in physical capital than sector X, i.e. when α > (<)β. Note that this explains that
if α > (<)β then the ratio z∗ is large (small) in poor economies, where the minimum
consumption requirement forces agents to devote most resources to sector Y , and it
also explains the reduction (increase) in this ratio as the normalized stock of physical
capital increases. Observe also that if α = β the factor intensity is the same in the
two sectors and, thus, the relative requirements of both capital stocks do not change
as bk∗ rises. This means that the ratio z∗ is constant when α = β. Finally, if either
θ = 1 (there is a unique consumption good) or c0 = 0, a rise in the normalized stock
of physical capital does not change the composition of consumption and, thus, it does
not change the capital ratio z∗. Therefore, it follows that only when θ ∈ (0, 1), c0 > 0,
and α 6= β, the ratio z∗ changes with the normalized stock of physical capital bk∗.

We next characterize the dependence of the stationary values of u and wc on bk∗.
For that purpose, we use the definition of u and wc and the results in Proposition 3.2.

Proposition 3.5. Let u∗ and w∗c be the steady-state values of u and wc, respectively.
If c0 > 0, θ ∈ (0, 1), and α 6= β, then u∗ and w∗c are an increasing and a decreasing
function of bk∗, respectively. Otherwise, both variables do not depend on bk∗.

The previous result implies that the composition of consumption and the sectoral
structure at the BGP also depends on the value of bk∗. In particular, if the conditions
in Corollary 3.3 hold, then these two variables will change from one BGP to another.
This result will be crucial to understand the mechanics that underlines the endogenerity
of TFP in our model. This result is a consequence of the introduction of a minimum
consumption requirement and of heterogenous consumption goods. However, the result
does not depend on the relative factor intensity ranking. The intuition is as follows. In
economies with a low normalized stock of physical capital at the BGP (poor economies),
the minimum consumption requirement forces agents to devote a large amount of
resources to consume good c. Thus, these economies are also forced to produce a large
amount of the commodity Y in order to satisfy the minimum consumption requirement,
which explains that u∗ decreases with the value of bk∗. Thus, the long-run sectoral
composition of consumption and GDP depends on the normalized stock of physical
capital. Note that the long-run sectoral composition does not depend on the actual
level of capital k but on the normalized level of capital bk∗. This implies that two
economies exhibit a different sectoral composition of GDP for a given level of capital
stock k if they attain this level at different periods. The economy that reaches a given
level of capital stock later has accumulated more aspirations, so that a larger fraction
of GDP must be devoted to satisfy the larger minimum consumption requirement at
that moment. Therefore, in our model the level and the composition of GDP is not
directly determined by capital stocks, but by the relationship between these stocks and
the stock of aspirations.

At this point, it seems convenient to analyze the stability of the set of BGPs in order
to determine if the initial conditions determine the BGP. The standard duality between
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Rybczynski and Stolper-Sumuelson effects determines the stability property.8 Thus,
this property neither depends on the factor intensity ranking nor on the assumptions
made on preferences.

Proposition 3.6. The manifold of BGPs is saddle path stable.

Saddle path stability means that there is a unique equilibrium path that converges
to a BGP in the manifold. Thus, we conclude that two economies with the same
fundamentals, but different initial endowments of capital stocks and aspirations, will
end up with the same relative prices and growing at the same rate, although the levels of
capital stocks, the physical to human capital ratio and the sectoral composition remain
being different. Therefore, this model provides an explanation of the differences across
countries in the long-run sectoral composition of GDP. Note that this explanation is
not present in the standard two-sector growth model, in which the economies share the
same long-run sectoral structure. In this sense, the version of the two-sector growth
model we consider is a theory of both economic growth and structural change because
long-run economic growth and long-run sectoral composition are endogenous.

Echevarria (1997), Rebelo (1991), Steger (2000) and Kongsamunt et al. (2001),
among many others, also consider growth models with endogenous sectoral composition
that changes as the economy develops along its transitional path. However, in
these papers the sectoral composition is constant along the set of BGPs. Thus,
although economies converge to different BGPs, they exhibit the same long-run sectoral
composition. By the contrary, in our model the economies can converge into BGPs with
different long-run sectoral composition depending on the initial conditions. Once in a
BGP, each economy grows at a constant rate, and its sectoral composition remains
constant. The dependence of the long-run sectoral composition on capital stocks, and
so on the initial conditions, is a result that emerges from the fact that the minimum
consumption requirement is an aspiration that grows permanently. This increasing
aspiration forces agents to devote a permanently growing amount of resources to
consume good Y, which sets a limit to structural change.

The non-convergence to a common sectoral composition of GDP will generate cross-
country differences in TFP without any change in technology levels. In fact, the
endogeneity of sectoral composition makes TFP depend on capital stocks. To see this,
we follow Cordoba and Ripoll (2004) and we use (2.1), (2.2) and (2.3) to rewrite GDP
as follows

Q = TFPkαh1−α, (3.8)

where

TFP = A

∙
u (α− β) + 1− α

(1− β)u

¸
(s)α (u)1−α .

This decomposition of GDP between production factors and TFP shows that the later
depends on the sectoral allocations of capital stocks. Therefore, as in any multisector
growth model, the level of TFP is endogenous in the sense that it depends on sectoral
composition. However, while in the standard two-sector growth model the long-run

8The role of the factor intensity ranking in the transitional dynamics of multi-sector growth models
is extensively presented in Bond et al. (1996).
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values of these capital shares are equal across countries with the same fundamentals, as
they do not depend on the value of the capital stock bk∗, in our model they depend on this
value. Therefore, in our version of the two-sector growth model, TFP is endogenous in
the sense that it depends on the capital stock. In particular, in poor economies the value
of u is large and the TFP will be lower than in richer economies where u is smaller. Note
that this result has interesting consequences on development accounting. In particular,
by taking TFP as exogenous, several authors have concluded that differences in capital
stocks cannot explain the observed disparities in the levels of GDP per capita (see, for
instance, Hall and Jones, 1999). According to our model, taking TFP as exogenous
introduces a bias in the results from the accounting analysis because the differences in
capital stocks also imply differences in TFP.9 In other words, our model implies that
the contribution of capital to explain GDP differences is underestimated when TFP is
assumed to be exogenous.

4. Development accounting

We will now show that the differences in capital stocks yield larger differences in GDP
levels when TFP is endogenous. For that purpose, in this section we will focus on
the set of BGPs. We first show this result analytically and then we provide several
numerical exercises. Note first that using (3.8) to explain GDP differences requires a
measure of human capital, which is a difficult variable to be measured. To avoid this
problem, we use the long-run relationship between physical and human capital implied
by (3.6) to rewrite the long-run value of GDP as a function of the long-run value of
the normalized stock of physical capital bk∗. By combining (3.6) and (3.8), and using
Proposition 3.2, the following result characterizes the relationship between the long-run
values of GDP and of physical capital implied by the model.

Proposition 4.1. Let us define the normalized level of GDP as bQ = Qe−g∗t and its
steady-state value as bQ∗. The value of bQ∗ is the following linear function of the steady-
state value of bk∗: bQ∗ = eb+ eabk∗, (4.1)

where eb = (1− α)mAzαY ,

and ea = αAzα−1Y + (1− α)nAzαY .

Moreover, the following statements hold: (i) ea > 0; and (ii) if θ ∈ (0, 1) , c0 > 0, and
α > (<)β then eb < (>) 0, whereas eb = 0 otherwise.

9Klenow and Rodriguez-Clare (1997), and Hall and Jones (1999) rewrite (3.8) as

Q = TFP
1

1−α k
Q

α
1−α

h . They use this transformation because they want to take into account that

the impact of the difference in technology between economies is larger than the one measured by TFP,
as it also affects the accumulation of capital. We do not have this problem since we do not consider
differences in technologies across economies. In contrast, we assume that economies exhibit different
TFP values only because they have different initial capital stocks. This means that, in this paper, in
order to capture the actual effect of differences in capital stocks we must take into account that TFP
is endogenous.
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As it is usual, in our model the ratio from GDP to physical capital is constant at
a steady-state equilibrium. However, this ratio may change along the set of BGPs. In
fact, when either θ = 1 or c0 = 0, our version of the two-sector constant returns to
scale growth model coincides with the standard two-sector growth model. In this case,
the relation between the steady-state values of GDP and of physical capital stock is
the same for all BGPs under the assumption of constant returns to scale. This result
also arises when α = β because in this case there is a unique production technology, so
that the model coincides with a one sector constant returns to scale growth model. On
the contrary, if θ ∈ (0, 1), c0 > 0 and α 6= β, then the GDP to physical capital ratio
is not constant along the set of BGPs since eb is different from zero. In this case, this
ratio is increasing (decreasing) in the stock of capital as eb < (>) 0 when α > (<)β. The
intuition is as follows. The minimum consumption requirement makes poor economies
devote a relatively large fraction of resources to sector Y . This implies that in these
economies the physical to human capital ratio is larger (smaller) when sector Y is more
(less) intensive in physical capital than sector X, i.e. when α > (<)β. Note that this
explains that if α > (<)β, then the ratio of GDP to capital is initially large (small) in
poor economies and this ratio decreases (increases) as the economy develops.

Note that the minimum consumption requirement affects the sectoral structure
of GDP and, in fact, it prevents capital accumulation. In this sense, the minimum
consumption requirement can be interpreted as a barrier to riches.10 To see this, note
that when α > (<)β, a rise in the stock of physical (human) capital that reduces the
strength of the minimum consumption requirement allows the economy to change the
sectoral structure, which results into a higher level of normalized GDP; that is, the
barrier to growth is surpassed when the physical capital stock rises.11 This implies
that bQ∗ increases more (less) than proportionally with the level of bk∗ when α > (<)β.
In fact, in the plausible case α > β an increase in the stock of capital causes a larger
increase in GDP in this model with endogenous TFP than in a model with exogenous
TFP.

Furthermore, the disparities observed across countries may be partially explained
by means of the differences in their initial level of minimum consumption. In fact,
economies with the same fundamentals, except for the initial level of the minimum
consumption requirement, will diverge permanently in their GDP to physical capital
ratio, in the capital ratio and in the sectoral structure, even though these countries
will exhibit the same stationary growth rate and relative price level. Figure 1 shows
how the long run ratios between GDP and physical capital and between the two
capital stocks depend on the value of c0 when α > β. We observe that the minimum
consumption requirement reduces the human capital stock and the level of GDP that
can be attained with a given stock of physical capital. This clearly shows that the

10Parente and Prescott (2000) introduce the notion of barrier to riches. In their paper, economies
start growing when a constraint that societies set to the adoption of new technologies is surpassed. In
contrast, in our paper, the economy starts growing when the stock of physical capital is large enough
to surpass the minimum consumption requirement, so that the society can start accumulating human
capital.
11When α < β, a rise in the stock of human capital allows to surpass the barrier to growth, whereas

a rise in the stock of physical capital has the opposite effect. The reason is that if α < β a rise in h (k)
results into a lower (higher) ratio z that reduces (increases) u. Thus, if α < β, a rise in h (k) increases
(decreases) TFP by means of reducing (rising) u.
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minimum consumption is a barrier to riches that deters development by means of
modifying the sectoral composition.

[Insert Figure 1]

We have shown that capital stocks in our model have an indirect effect on TFP
and GDP by changing the sectoral structure. In what follows, we use the output
decomposition in (3.8) to illustrate by means of numerical simulations how shocks in
the steady-state level of the normalized stock of physical capital alter GDP. These
shocks will affect GDP through three channels: (i) the direct contribution of physical
capital, that we denote by Ck; (ii) the indirect contribution derived from the induced
change in the human capital stock, that we denote by Ch; and (iii) the indirect
contribution derived from the induced change in TFP, that we denote by CTFP . For
our purpose, we consider two economies that only differ in their values of bk∗. The
parameter values are chosen so that the economy with the larger stock of physical
capital (rich economy) replicates some facts from US economy. We first set arbitrarily
the values of bk∗ and A equal to unity. We then proceed to choose the other parameter
as follows: we set α = 0.42 from Perli and Sakelliaris (1998); we fix δ = 5.6% to
replicate the investment/capital ratio and, moreover, we assume that η = δ; the value
of the preference parameter σ is equal to 2, which implies that the IES would be 0.5
if there were no minimum consumption requirement; the value of γ is such that the
net interest rate equals to 5.2%; the value of ρ is such that g∗ = 2%; the value of c0 is
such that χ = 0.21; and θ is such that wc = 0.6.12 Finally, we take alternative values
for the technological parameter β to illustrate how differences in the capital intensities
across sectors alters the results from the accounting exercises. In Table 1 we assume
that β = 0.32, whereas in Table 2 we assume that β = 0. Once the parameters have
been calibrated, we fix the value of bk∗ for the poor economy such that the value of wc

in this economy is equal to 0.95.13

[Insert Tables 1 and 2]

As we have mentioned, in Tables 1 and 2 the only difference between the rich and
poor economies is the value of bk∗. It follows that these economies have a common
long-run growth rate, interest rate and relative price. However, the levels of the other
variables, including the sectoral composition, are different. In fact, the differences inbk∗ yield a sectoral adjustment that is made in terms of both the sectoral composition
of consumption and the sectoral composition of GDP. The differences in the sectoral
composition occur because in the poor economy aspirations are stronger and, thus,
affect at a larger extend the composition of consumption. In Tables 1 and 2, these
stronger aspirations are shown in the ratio c0

c∗ , which is larger in the poor economy. Note
that these stronger aspirations result into a lower IES and a larger value of w∗c . This
12The variables that provide information on the sectoral composition are the sectoral structure (u) ,

the composition of consumption (wc) , and the composition of output. In a BGP, these three variables
are related, so that they cannot be calibrated simultaneously. In this paper we use wc as an object of
calibration.
13Our definition of poor economy then includes those economies whose aspiration forces to allocate

a large amount of resources to consume good Y. This happens when the fraction wc is large.

15



different composition of consumption affects the sectoral structure, which is measured
by u∗. The effect of these differences in sectoral structures on GDP is measured by
CTFP , which is clearly higher in Table 2 than in Table 1. This means that the effect of
sectoral composition on GDP is larger when the difference between the technologies is
larger, i.e., when the difference between α and β is larger. However, as can be checked
from Table 2, the large contribution of physical capital through the TFP when α and
β are very different is obtained at the cost of having an unreasonably low labor share
in sector Y.14 This implies that this contribution CTFP would be clearly small if the
value of β is set such that u∗ takes empirically plausible values.15

Note also that while there is a strong difference between the poor and rich economies
in terms of w∗c , the difference in terms of u∗ is small. This dissimilar response of w∗c
and u∗ to the difference in the values of bk∗ is explained as follows. A larger w∗c implies
that the ratio between the production of sectors Y and X must also be larger. This
can be satisfied either by rising the amount of human capital devoted to sector Y or by
reducing the consumption of the good produced in sector X in order to raise the stock
of human capital, which results into a higher production in sector Y. Note that only the
first effect rises TFP as it only depends on sectoral allocation of resources given by u∗

and s∗ (see (3.8)). However, as follows from the previous numerical examples, it seems
that the second effect is more important than the first one as large differences in w∗c
translates into a large value of Ch and a small value of CTFP (it is particularly small
when we consider the plausible case β = 0.32).16 These low values of CTFP imply that
the endogeneity of TFP does not rise significatively the ability of capital to explain
GDP differences across countries. In the following section, we show that this negative
result arises in part because we have assumed that both economies are in their BGPs.
We will also show that if we instead assume that the poor economy is in its transition
to the BGP, then the contribution of physical capital through the TFP may be large.
Moreover, we must finally point out that our model is too much stylized to closely
match particular observations; we merely use the parameterized model to illustrate the
qualitative features of our theory.

5. The dynamic equilibrium

In the previous sections we have proved that the sectoral composition and the TFP
at the BGP are determined by the initial conditions. In this section, we will show
that the sectoral composition of economies with the same fundamentals but different

14Tables 1 and 2 are based on the assumption that the initial stock of aspirations of the two economies
coincide. We could have assumed instead that the rich economy has an initial larger stock of aspirations,
which drives larger differences between the poor and rich economy. In fact, by introducing differences
in the initial stock of aspirations we can introduce large differences between the levels of GDP of the
two economies.
15Our analysis underestimates the contribution of TFP as it only considers the shift in TFP due

to differences in sectoral composition. In other words, our analysis does not take into account that
economies are also different in their technologies, which obviously results into differences in TFP. Temple
(2001) provides an indirect measure of the magnitude of this underestimation. He shows cross-country
evidence that structural change explains between 20% and 70% of the growth in TFP.
16 In Tables 1 and 2 the contribution of human capital is large. Manuelli and Seshadri (2005) show

that qualified human capital explains most of the differences in GDP. Pereira (xxxx) also stresses the
relevance of the accumulation of human capital to explain modern economic growth.

16



initial conditions may diverge along the process of dynamic adjustment to the BGP .
This increases the capacity of differences in capital endowments to explain disparities
in TFP across countries. Thus, in this section, we show that the contribution of capital
to TFP is larger when we consider that economies are out of their BGPs.

For the purpose in this section, we first linearly approximate the policy functions
around the set of BGPs. These policy functions depend on the assumptions made on
preferences and on the relative factor intensity ranking. In this section, we limit our
analysis to the plausible case with α > β. In Appendix C, we characterize the linear
approximation of the policy functions in this case. From this approximation, we first
observe that bk∗, which we have used to index the set of BGPs, is a function of the initial
values of both capital stocks. This means that, in contrast with the standard two-sector
model of endogenous growth (i.e., as c0 = 0 and θ = 1), it is not only the initial value
of the physical to human capital ratio, but also the levels of both capital stocks that
determine the BGP the economy converges to when our assumptions on preferences
hold (i.e., when θ ∈ (0, 1) and c0 > 0). Therefore, we have proved that economies with
different initial endowments of capitals will converge to BGPs with different values of
physical to human capital ratio, of consumption composition, of sectoral structure and
of GDP composition if θ ∈ (0, 1), c0 > 0 and α 6= β, eventhough these economies have
a common initial capital ratio.

At this point, we must also note that the stock of aspirations c is another state
variable in our model and, moreover, the initial value of this stock , c0, also affects the
value of bk∗. Thus, economies with different initial stocks of aspirations will converge
to long-run equilibria with different levels of GDP and different sectoral compositions
of consumption and GDP. Table 3 compares the BGPs of economies that are different
only in the initial value of the stock of aspirations. This example shows that a larger
c0 implies a smaller long-run value of GDP and affects the composition of consumption
and the sectoral structure. This shows up that the aspirations force individuals to
consume the good c, which forces a particular sectoral structure that limits economic
development.

[Insert Table 3]

In what follows we use the linear approximation to the policy functions to compare,
by means of numerical examples, two economies that are only different in their initial
stock of physical capital. We assume that the rich economy (i.e. the economy with
a higher stock of physical capital) is in its BGP, whereas the poor economy is in
the transition to the BGP. Table 4 shows the results of this simulation exercise. As
follows from this table, when we assume that both economies are in the BGP, the
differences in sectoral structure given by u∗ are small, whereas the differences in the
composition of consumption given by w∗c are large. In contrast, if we assume that the
poor economy is outside of the BGP, there are mainly no differences between the rich
and poor economies in terms of wc, whereas there are huge differences in terms of u.17

Obviously, this means that the contribution of physical capital to the differences in TFP
is larger when we assume that the poor economy is outside of the BGP. It then follows

17The dynamic adjustment in u is diven by the capital ratio z and the relative prices.
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that if we consider the process of dynamic adjustment to the BGP, the endogeneity of
TFP rises meaningfully the ability of capital endowments to explain GDP differences.

[Insert Table 4]

The difference between the results of Table 4 and those in Table 1 and 2 arises from
the fact that TFP depends on sectoral composition in terms of sectoral structure and
not in terms of consumption composition. Note that w∗c , is a decreasing function of bk∗
as follows from Proposition 3.5, whereas u∗ is an increasing function of z∗ as follows
from equation (2.13). Because along the manifold of BGPs the relationship between
the two capital stocks is positive, the difference in bk∗ between BGPs is larger than
the differences in the values of z∗, as it can be seen from Figure 2. This means that
the difference between two economies at the BGP is larger in terms of consumption
composition than in terms of the sectoral structure. This explains the numerical results
obtained in Tables 1 and 2, that show a large difference in w∗c between the two economies
and a small difference in u∗. In contrast, as shown in Figure 2, along the transition the
capital ratio changes more rapidly than the normalized stock of physical capital if the
policy function is downward sloping. It then follows that in this case economies adjust
their sectoral structures along the transition in a larger extend than their consumption
compositions. Thus, it is now obvious the explanation on the results in Table 4, where
the differences in TFP across economies with different endowments of capital stocks
are larger along the transition than these differences at the BGP.

[Insert Figure 2]

As we have mentioned, the results in Table 4 depend crucially on the negative
sign of the policy function relating the two capital stocks along the transition to the
BGP. This downward-sloping policy function ensures that the capital ratio z and the
sectoral allocations of capitals u and s change more rapidly along the transition than
the normalized stock of physical capital bk, which is the mechanism generating the larger
differences in TFP across economies reported by Table 4. Obviously, these results would
be the opposite if the policy function relating the two capital stocks were upward-
sloping. The sign of the slope of the policy functions then determines the nature of
the transition the economy follows, i.e., it determines the patterns of development and
of structural change, as well as the long run level of TFP. In order to illustrate this
fact, let us assume that an economy is initially in the BGP and a sudden injection of
physical capital occurs. If the slope of the policy function is negative the economy will
converge after this shock to a new BGP with a larger stock of human capital and a
smaller physical to human capital ratio. In this case, the structural change induced by
the increase in physical capital has a positive effect on the long-run level of TFP, as
the later depends negatively on the capital ratio (see equation (3.8) and the definitions
of u and s). In contrast, if policy function is upward-sloping, then the aforementioned
shock in the stock of physical capital leads the economy to another BGP with a smaller
stock of human capital and a larger capital ratio than the initial one. In this case, the
injection of physical capital changes the sectoral structure in a way that reduces the
long-run level of TFP. Clearly, the opposite conclusions would be derived from studying
the effects of a negative shock in the stock of physical capital.
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At this point, we characterize the relationship between the two capital stocks along
the equilibrium path and we show how our assumptions on preferences affect it. The
analysis of the sign of the slope of the policy functions was first addressed by Caballé
and Santos (1993) in the framework of a two-sector endogenous growth model without
minimum consumption requirement and a unique consumption good. They claim that:
(i) the economy belongs to the normal growth case when an increase in physical capital
stock results into an increase in human capital stock; (ii) the economy belongs to
the exogenous growth case when human capital stock does not increase when physical
capital stocks increases; and (iii) the economy belongs to the paradoxical growth case
when an increase in physical capital stock results into a decrease in human capital stock.
Therefore, the economy belongs to the normal growth case when the policy function
relating both capital stocks are downward-sloping, whereas the economy belongs to the
paradoxical growth case if this policy function is upward-sloping. The next proposition
characterizes the growth cases in our model and show how the introduction of a
minimum consumption requirement and of the second consumption good modifies the
relationship between the two capital stocks along the equilibrium path. In order to
simplify the analysis and to facilitate the comparison with the results from Caballé and
Santos (1993), we impose that β = 0, as these authors do.

Proposition 5.1. Assume that β = 0, and let us denote

v = 1 +

∙
(1− σ) (1− θ) zY

γp∗

¸ ¡
Azα−1Y − δ − g∗

¢
,

and

κ = v

∙
1− (1− θ)

c0bc∗
¸
.

Then, the equilibrium corresponds to the normal growth case when ακχ < 1, to the
exogenous growth case when ακχ = 1, and to the paradoxical growth case when
ακχ > 1.

Note that v may be either positive or negative when σ > 1, whereas if σ ≤ 1 then v
is larger than or equal to one. In particular, if v is negative then κ is also negative and
the equilibrium always belongs to the normal growth case. Note also that if θ = 1 then
κ = 1 and we obtain the result in Caballé and Santos (1993), i.e. the equilibrium belongs
to the normal growth case when αχ < 1, to the exogenous growth case when αχ = 1,
and to the paradoxical growth case when αχ > 1. In contrast, if θ < 1 then κ can be
either larger or smaller than one. This means that the introduction of the minimum
consumption requirement when θ < 1 may change the relationship between the two
capital stocks along the transition. Thus, economies with the same fundamentals but
different stocks of aspirations, that make them belong to different growth cases, will
exhibit different patterns of growth and structural change. Furthermore, the next result
shows that economies with the same fundamentals but different initial values of capital
stocks may also belong to different growth cases if θ ∈ (0, 1) and c0 > 0.

Proposition 5.2. Assume that β = 0. Let us define

kn =
αvc0

(αv − σ)
h
(1− nzH)

³
AzαY

zY−zH

´
− (δ + g∗)

i .
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If αv < σ, then the equilibrium belongs to the normal growth case. If αv > σ, then
those equilibrium paths converging to a BGP with bk∗ < kn belong to the normal growth
case, whereas those equilibrium paths converging to a BGP with bk∗ > kn belong to the
paradoxical growth case.

Because bk∗ depends on the initial conditions, the previous result states that, for
those vectors of parameters satisfying that αv > σ, the economy belongs to any growth
case depending on the initial conditions on the capital stocks. Therefore, the result
in Proposition 5.2 is an important difference with respect to the result in Caballé and
Santos (1993), where the economy belongs to a particular growth case regardless of the
initial conditions. This difference arises because the slope of the policy functions in our
model depends on the BGP the economy converges to (see Appendix C) and, thus, it is
determined by the initial conditions, whereas in the standard model (θ = 1 and c0 = 0)
the slope of the policy functions is only determined by the vector of parameters.

Our results on the growth cases have interesting implications on convergence and
development accounting. In particular, because the slope of the policy functions
depends on the initial conditions, two economies with the same fundamentals but
different initial endowments of capitals and aspirations may diverge along the transition
to their BGPs. In fact, the capital ratio, the sectoral composition and the TFP of
these two economies may diverge along the equilibrium path. This divergence would
be meaningfully larger if these economies belong to different growth cases. Figure 3
illustrates this extreme case. This figure shows the equilibrium path of two economies
that belong to different growth cases because they have different initial stocks of human
capital. Note that these two economies are initially close and they diverge along the
transition. On the one hand, the poor economy belongs to the normal growth case.
Therefore, along the transition, the stock of physical capital rises, while the stock
of human capital decreases. The rise in bk implies that consumption composition wc

decreases, and the reduction in bh implies that the ratio z increases strongly, which
yields a strong increase in the labor share u. On the other hand, the rich economy
belongs to the paradoxical growth case. Therefore, along the transition, both capital
stocks rise. This economy converges to a BGP with a value of bk∗ larger than in the
poor economy, which means that the change in wc is much larger than in the poor
economy. In contrast, the rise in bh implies that the increase in z is small compared to
the increase in this ratio in the poor economy and, thus, the change in u is lower than
in the poor economy.

[Insert Figure 3]

Table 5 presents a numerical exercise that compares two economies as the ones
illustrated in Figure 3. The table shows that these two economies diverge along the
transition in terms of both their sectoral composition and also in their GDP levels.
The divergence in terms of sectoral composition implies that the indirect contribution
of capital endowments to explain the differences in GDP through their effects on TFP
rises along the transition.

[Insert Table 5]
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The main result of this section is that the contribution of capital to TFP may be
large when we assume that the economies are out of BGPs. This result arises because
the structural change occurs mainly along the transition to the BGP and, moreover,
because the initial conditions modify the slope of the policy functions. On the one hand,
when θ < 1, the initial stock of aspirations modifies this slope, so that aspirations are a
barrier to economic development that may explain divergence in the patters of economic
development. On the other hand, when θ ∈ (0, 1) and c0 > 0, the initial value of the
capital stocks also changes the slope of the policy functions, which also explains that
economies may diverge in terms of sectoral composition, TFP and GDP.

6. Concluding remarks and extensions

In this paper we have analyzed the dynamic equilibrium of an extended version of
the two-sector, constant returns to scale and endogenous growth model, in which
both sectors produce consumption and investment goods. We have shown that the
introduction of a second consumption good modifies the patterns of growth both
in the long run and during the transition if we assume that preferences are non-
homothetic. In the model, preferences are non-homothetic because we introduce a
minimum consumption requirement. Under these assumptions, two economies with
the same fundamentals but different initial endowments will converge to a BGP with
the same relative prices and growth rates, although the capital ratio, the output-capital
ratio and the sectoral composition will be different. Furthermore, the initial conditions
determine the relationship between capital stocks along the equilibrium path leading
the economy to the BGP. Thus, according our model, identical economies except for
initial endowments may diverge along the transition. In this model, aggregate TFP
depends on the sectoral composition of GDP. As a rise in the stock of physical capital
modifies the sectoral composition of GDP, it increases TFP which is thus endogenous
in the model.

The theoretical results in this paper extends the debate on development accounting
initiated by Mankiw et al. (1992). These authors show that the accumulation of
capital explains most of GDP differences between rich and poor economies. Klenow and
Rodriguez-Clare (1997) and Hall and Jones (1999) argue that this analysis was wrong
because differences in technology yield differences in the accumulation of capitals. When
this is taken into account, it follows that differences in GDP are mainly explained by
differences in technology that result into differences in TFP. Our contribution, as those
of Cordoba and Ripoll (2005), shows that the previous analysis is also wrong when the
TFP is endogenously determined. In our paper, TFP is endogenous because sectoral
composition depends on the capital stocks. This means that a rise in the stock of capital
changes the sectoral composition and rises TFP. We show that the contribution of the
capital stocks to explain GDP differences is larger when this endogeneity is taken into
account. This suggests that an appropriate analysis of the contributions of technology
and of the stock of capital to explain GDP differences should take into account this
interaction between the capital stock and TFP.

We should point out that our results do not reduce the role of technology in
explaining international differences in GDP. On the contrary, we understand that they
reinforce this contribution, because in our model an increase in the technology level of
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one sector, say for instance A, has the following effects in TFP (see equation (3.8)): (i) a
direct effect because this technology level is a primary component of our decomposition
of TFP; (ii) an indirect effect because technology directly determines the sectoral
structure; and (iii) an indirect effect because technology indirectly affects the sectoral
structure by means of the induced changes in capital accumulation. The first two effects
have already been computed in the development accounting exercises. However, to the
best of our knowledge, the third effect has not been considered before. Note that our
results reconcile the two sides of the debate on development accounting. On the one
hand, technology has a crucial role in explaining the observed disparities in GDP across
countries. On the other hand, part of the contribution of technology to explain these
international differences comes from its interaction with capital accumulation.

Our model may also have other applications to explain some macroeconomic facts,
that should be incorporated to the research agenda. For instance, it provides a possible
explanation to the following puzzle on the share of labor income on GDP: cross-section
data show that richer countries have a larger labor income share, whereas time-series
data shows that the labor income share remains constant along the development process
of each country. Because labor income shares depends on the sectoral structure, our
model explains this puzzles. According to or model, labor income shares change out
of the BGP, whereas they remain constant in the BGP. However, different BGPs have
different sectoral composition and labor income shares. In particular, richer countries
have a higher share of labor in sector X, which has a higher labor income share. This
explains that the labor income share is larger in richer economies.

We have mentioned that there are different forces driving the growth of GDP in this
economy. This means that the growth rate may exhibit a non-monotonic behavior along
the development process. Therefore, the analysis of convergence seems a promising line
of research, that may show up the Kuznets’ facts concerning the relation between
sectoral composition of GDP and development. Another line of research is the study of
the effects of fiscal policy in the environment proposed in this paper. In our model, fiscal
policy also affects economic development by means of modifying sectoral composition.
In this environment, it seems interesting to study the level effects of fiscal policy. In
fact, some policies, that may not have effects on long run growth, may modify the
sectoral composition and, thus, the level of GDP and TFP. As an example, note that
consumption taxes, by modifying the composition of consumption, would affect the
long-run level and composition of GDP.
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A. The Equilibrium path

The first order conditions of the representative agent’s maximization problem are:µ
θ (1− σ)U

c− c

¶
e−ρt = µ1, (A.1)

µ
(1− θ) (1− σ)U

x

¶
e−ρt = µ2, (A.2)

µ
αY

s

¶
µ1 =

µ
βH

1− s

¶
µ2, (A.3)

µ
(1− α)Y

u

¶
µ1 =

µ
(1− β)H

1− u

¶
µ2, (A.4)

µ
αY

k
− δ

¶
+

µ
βH

k

¶µ
µ2
µ1

¶
= −

·
µ1
µ1

, (A.5)

µ
(1− α)Y

h

¶µ
µ1
µ2

¶
+

µ
(1− β)H

h
− η

¶
= −

·
µ2
µ2

. (A.6)

We now proceed to obtain the system of dynamic equations that characterize
the equilibrium. First, combining (A.3) and (A.4), we obtain the expressions (2.12)
and (2.6). Moreover, using the definitions of the ratios z, zY , and zH ,we obtain the
expression of u given by (2.13) and

s =
³zY
z

´µ z − zH
zY − zH

¶
. (A.7)

Second, from the definition of p, and using equations (A.3), (A.4), (A.5) and (A.6),
we get the equation that drives the growth of prices given by (2.5). Moreover, note
that (A.1) and (A.2) imply that (2.7) holds.

Third, log-differentiating the definition of w with respect to time, we get that the
growth rate of this variable is

ẇ

w
= (1− wc)

µ
ṗ

p
+

ẋ

x

¶
+ wc

µ
ċ

c

¶
, (A.8)

where, using (2.7), wc can be rewritten as

wc =
1

1 +
¡
1−θ
θ

¢ ¡
1− c

c

¢ . (A.9)

Differentiating with respect to time (A.1), (A.2) and (2.7), we obtain the growth rate
of c and x. Using these growth rates, equation (A.8) yields the growth rate of w given
by (2.9).

Finally, we use (2.7) to rewrite c
k and

x
h as functions of p, w, k and h. Given these

functions, we obtain from (2.1) and (2.2) the growth rate of k and h as is given by
(2.10) and (2.11), respectively.
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B. The steady-state equilibria

B.1. Proof of Proposition 3.1

By using (2.4), (2.5), (2.9), (2.10), and (2.11), it can be shown that the variables w, p,
k, h and c grow at a constant rate only if the price level is constant and satisfies (3.1)
and the growth rates of w, k, h and c coincide and satisfy (3.2). The uniqueness of the
price level and of the long-run growth rate follow by noticing that the left hand side of
(3.1) is a monotonic function of the price. Finally, the existence of a price level follows
from continuity of (3.1) and by noticing that the left hand side of this equation changes
its sign as the price rises from zero.

B.2. Proof of Proposition 3.2

We first use the definition of the normalized variables to rewrite the equations (2.9),
(2.10), and (2.11) as follows:

·bkbk = A

Ã
ubhbk
!
zαY −

θ bw + (1− θ) c0bk − (δ + g∗), (B.1)

·bhbh = γ (1− u) zβH − (η + g∗)− (1− θ)

µ bw − c0

pbh
¶
, (B.2)

·bwbw = g∗ +
µ bw − c0

σ bw
¶ ∙

βγpzβ−1H − δ − ρ− σg∗ − (1− θ) (1− σ)

µ
ṗ

p

¶¸
. (B.3)

Given the initial levels of the two capital stocks, k0 and h0, and of the
minimum consumption, c0, we define an equilibrium path of the normalized variablesn
p,bk,bh, bwo∞

t=0
as a path that solves the system of differential equations (2.5), (B.1),

(B.2), and (B.3), satisfies (2.12), (2.6), (2.13), the definition of the long-run growth
rate (3.2) and the two transversality conditions (2.14) and (2.15).

From the previous dynamic system we can obtain the stationary values of the

normalized variables bk∗, bh∗, bw∗. In a BGP ·bk = ·bh = 0, and then (B.1) and (B.2)
can be rewritten as

A

Ã
u∗bh∗bk∗

!
zαY −

θ bw∗ + (1− θ) c0bk∗ − δ − g∗ = 0, (B.4)

γ (1− u∗) zβH − (η + g∗)− (1− θ)

µ bw∗ − c0

p∗bh∗
¶

= 0. (B.5)

Let us define z∗ = k∗
h∗
and q∗ = c∗

h∗
. Using the definition of bw and (B.4), we obtain

bc∗bh∗ = (z∗ − zH)

µ
AzαY
zY−zH

¶
− (δ + g∗) z∗. (B.6)
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Combining (B.6) with (B.5), we obtain

bc∗ = c (z∗) =
c0

1−
γz
β
H(zY −z∗)
zY−zH −(η+g∗)

1−θ
θp∗ (z∗−zH)

Azα
Y

zY−zH −(δ+g∗)z∗

. (B.7)

By introducing (B.7) in (B.6), and after some algebra we get the following equation:

a z∗ + b = 0, (B.8)

where

a =

µ
1− θ

θp∗

¶ ∙µ
AzαY
zY−zH

¶
− (δ + g∗)

¸
+

γzβH
zY−zH

−
µ
1− θ

θp∗

¶µ
c0bk∗
¶
, (B.9)

and

b = (η + g∗)− zH

µ
AzαY
zY−zH

¶µ
1− θ

θp∗

¶
− γzβHzY

zY−zH
. (B.10)

The following lemma proves that there exists a positive root of equation (B.8). This
root is a function of bk∗ and it is given by

z∗ = ez ³bk∗´ = − b

a
. (B.11)

Lemma B.1. If α > β then a > 0 and b < 0, whereas a < 0 and b > 0 when α < β.

Proof. On the one hand, (B.4) implies thatµ
AzαY
zY−zH

¶
− (δ + g∗) =

³zH
z

´µ AzαY
zY−zH

¶
+
bc∗bk∗ , (B.12)

and a simplifies as follows

a =

µ
1− θ

θp∗

¶ ∙³zH
z∗
´µ AzαY

zY−zH

¶
+

µbc∗ − c0bk∗
¶¸
+

γzβH
zY−zH

,

which is positive when α > β (i.e., zY > zH) and bc− c0 > 0. In this case, b is negative
since the equation (B.2) requires that in the BGP the following inequality is satisfied:

γzβHzY
zY−zH

> η + g∗.

On the other hand, when α < β (i.e., zY < zH) one can directly see from (B.10) and
(B.9) that b > 0 and a < 0, respectively.

At this point, we can also express the values of bh∗, bc∗ and bw∗ as a function of bk∗.
First, note that bh∗ = k∗

z∗ , so that from (B.11) we get

bh∗ = eh³bk∗´ = m+ nbk∗, (B.13)
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where

m =

µ
1− θ

θ

¶µ
c0
bp∗

¶
, (B.14)

and

n = −
µ
1

b

¶"µ
1− θ

θp∗

¶ ∙µ
AzαY
zY−zH

¶
− (δ + g∗)

¸
+

γzβH
zY−zH

#
. (B.15)

Lemma B.2. The function (B.13) satisfies the following properties: (i) n > 0; and (ii)
if α > β then m ≤ 0, whereas m ≥ 0 when α < β.

Proof. The part (i) follows from Lemma B.1, the condition (B.12) and from the fact
that the sign of zY−zH coincide with that of α− β. The part (ii) is directly proved by
noting that the sign of m coincides with that of b.

Second, given the stationary value of z∗, and by using (B.6), we get

bc∗bh∗ = (z∗ − zH)

µ
AzαY
zY−zH

¶
− (δ + g∗) z∗. (B.16)

Thus, using (B.16) and (B.13), we get

bc∗ = ec³bk∗´ = d+ fbk∗, (B.17)

where

d = −m
µ
AzHz

α
Y

zY − zH

¶
, (B.18)

and

f = (1− nzH)

µ
AzαY
zY−zH

¶
− (δ + g∗) . (B.19)

Lemma B.3. The function (B.17) satisfy that d > 0 and f > 0.

Proof. First, from Lemma B.2 and from the fact that the sign of zY−zH coincides
with that of α− β, it can be shown that d > 0. Second, observe that

f =

µ
AzαY
zY−zH

¶
− (δ + g∗)| {z }
ξ

− nzH

µ
AzαY
zY−zH

¶
,

and using (B.15) and (B.10), we obtain

bf = ξ

"
(η + g∗)− γzβHzY

zY−zH

#
+

Ã
γzβH

zY−zH

!
zH

µ
AzαY
zY−zH

¶
. (B.20)

Observe that (B.2) implies that

(η + g∗)− γzY z
β
H

zY−zH
< −γzβH

µ
z

zY−zH

¶
. (B.21)
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Using the previous inequality, we can already show the sign of f. On the one hand, if
zY−zH > 0, then (B.20) and (B.21) implies that

bf <

Ã
γzβH

zY−zH

!
zH

µ
AzαY
zY−zH

¶
,

so that f > 0 since in that case b < 0. On the other hand, if zY−zH < 0, then we get
from (B.20) and (B.21) that

bf > −ξγzβH
µ

z

zY−zH

¶
+

Ã
γzβH

zY−zH

!
zH

µ
AzαY
zY−zH

¶
.

Thus, using the definition of u∗ and ξ, the previous inequality can be written as

bf >

Ã
γzβH

zY−zH

!
(−u∗AzαY + z∗ (δ + g∗)) .

Therefore, given that (B.4) implies that z∗ (δ + g∗)−u∗AzαY < 0, we obtain that in this
case f > 0 since b > 0 as zY−zH < 0.

Finally, we use the definition of bw∗ and (B.17) to obtain
bw∗ = l + jbk∗ (B.22)

where

l =
d− (1− θ) c0

θ
,

and

j =
f

θ
.

From Lemma A.3 is obvious that j > 0. However, the sign of l can not be characterized,
at least, analytically.

To close the proof of Proposition 3.2, we must show that a stationary solutionn
g∗, p∗,bh∗, bw∗o of the system of equations (2.5), (B.1), (B.2) and (B.3) for a givenbk∗ > 0 is a BGP. First, this stationary solution must satisfy that bh∗ > 0 and bc∗ > c0.
Thus, we must impose constraints on the value of bk∗. On the one hand, by using (3.6),
it can be shown that bh∗ ≥ 0 if and only if bk∗ ≥ kh where

kh = −m
n
. (B.23)

On the other hand, by using (B.17) it can be shown that bc∗ ≥ c0 if and only if bk∗ ≥ kc

where

kc =

µ
c0
bf

¶ ∙
b+

µ
1− θ

θ

¶µ
AzHz

α
Y

p (zY − zH)

¶¸
. (B.24)

Moreover, it can be shown that kc ≥ max©0, khª . First, after some algebra we get that
kc> kh when

1 > −
µ
1− θ

θ

¶µ
1

bp∗

¶⎛⎝
³

AzαY
zY−zH

´
− (δ + g∗)

n

⎞⎠ .
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Using the definition of n in (B.15), the previous inequality implies that

−
µ
1

b

¶"
γzβH

zY−zH

#
> 0,

which is satisfied as b (zY−zH) < 0. Second, using (B.10), we get

kc =

µ
c0
bf

¶⎡⎢⎢⎣(η + g∗)− γzβHzY
zY−zH| {z }

ϑ

⎤⎥⎥⎦ .
Note that if zY > (<) zH then b < (>) 0 and (B.2) implies that ϑ < (>) 0. Now, it is
obvious that kc > 0. Therefore, bh∗ > 0 and bc∗ > c0 if and only if bk∗ ≥ kc.

We must also prove that the transversality conditions (2.14) and (2.15) are satisfied
at steady-state equilibrium. Note that using (A.1) and (2.7), we get that the
transversality condition (2.14) is satisfied when

lim
t→∞− ρ− σ

µ
ċ− cg∗

c− c

¶
+ (1− θ)(1− σ)

ṗ

p
+

k̇

k
< 0,

which holds if (1− σ) g∗ < ρ . Following a similar procedure, it can be shown that the
transversality condition (2.15) is also satisfied when (1− σ) g∗ < ρ .

The condition (1− σ) g∗ < ρ also implies that the utility function is bounded. To
see this, note that the utility function is bounded when lim

t→∞e
−ρtU(c− c, x) = 0 . By

using, (2.7), we get that the previous limit holds if

lim
t→∞− ρ+ (1− σ)

µ
ċ− cg∗

c− c

¶
< 0 ,

which is satisfied if −ρ+ (1− σ) g∗ < 0 . Note that, even though c → c, the utility
function is bounded when this condition is satisfied.

B.3. Proof of Proposition 3.5

On the one hand, from the definition of u∗ in equation (2.13), we bet that the variable
only depends z∗ and p∗. Since, p∗ is constant for all BGP (i.e., does not depend on bk∗),
we get directly from Proposition 3.4 the relationship between u∗ and bk∗.On the other
hand, the proof of Proposition 3.2 states that bc∗ rises with bk∗. Moreover, from (2.8) we
observe that fraction of consumption expenditures wc decreases with bc∗ if c0 > 0 and
θ ∈ (0, 1). Therefore, the dependence of w∗c on bk∗ follows directly from the two previous
facts.

C. The dynamic equilibrium

C.1. Proof of Proposition 3.6

Using (2.5), (B.1), (B.2), and (B.3), we obtain the following Jacobian matrix evaluated
at a BGP:
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J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 −1 a14

a21 a22 a23 a24

0 0 0 a34

0 0 0 a44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where
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·
∂bk
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α
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"
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#µ
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¶
,
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·
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∂bk = − γzβH
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,
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·
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∂bh =

µ
1− θ

θ

¶µbc∗ − c0

p∗bh∗
¶
− γz∗zβH
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,
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·
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µ
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θ

¶µ
1
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¶
,
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·
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=

"
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(α− β) p∗

# ∙
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¸
+

µ
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θ

¶µbc∗ − c0
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¶
,

a34 ≡
·
∂bc
∂p
=

µbc∗ − c0
σ

¶Ã
βγzβ−1H +

(β − 1)βγzβ−1H

(α− β)
− (1− θ)(1− σ)

a44
p∗

!
,

a44 ≡
·
∂bp
∂p
= −βγp

∗zβ−1H

α− β

∙
1− α+ (1− β)

µ
zH
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¶¸
.

It is immediate to see that the eigenvalues λi, i = 1, 2, 3, 4, of J are λ1 = 0, λ2 = a44
and the two roots λ3 and λ4 are the solution of the following equation:

Q (λ) = λ2 − λ(a11 + a22) + a11a22 − a12a21 = 0.
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Note that λ2 < (>) 0 if α > (<)β. In order to obtain the sign of λ3 and λ4, we
characterize the elements of the polynomial Q (λ). First, using (B.2), and rearranging
terms, we get

a11a22 − a12a21 =

=

µ
AzαY

zY − zH
− (δ + g∗)

¶Ã
γzY z

β
H

zY − zH
− η − g∗

!

+

µ
AzαY zH
zY − zH

− (δ + g∗) z
¶Ã

γzβH
zY − zH

!
.

By manipulating the previous equation by using (B.10), (B.15) and (B.19), we obtain
a11a22 − a12a21 = −bf, which is positive when zY > zH and negative otherwise. Next,
we consider the other element of Q (λ) . After some manipulation, where we basically
replace δ + g∗ from (B.6), we get

a11 + a22 =
AzαY zH

(zY − zH) z∗
+
bc∗bk∗ +

µ
1− θ

θ

¶µbc∗ − c0

p∗bh∗
¶
+

γzβHz
∗

(zY − zH)
,

which is positive when zY > zH . It follows that one of the roots of the polynomial, for
example λ3 is always positive and the other one, λ4, is positive if α > β and negative
otherwise. Note that, regardless of the relation between α and β, there is a unique
negative root, which means that the manifold of BGPs is saddle path stable.

C.2. Linear approximation of the policy functions

We proceed to approximate the policy functions around the set of BGPs. Because
there are two control variables and two positive roots, using Proposition (3.6) we get
the following the linear approximation of the equilibrium saddle path:

E (t) = V +A+Beλt. (C.1)

where E (t) = (bk (t) ,bh (t) ,bc (t) , p (t)), bλ is the negative eigenvalue of J , V =
(Vk, Vh, Vc, Vp) is a vector of constant terms, A = (Ak, Ah, Ac, Ap) is the eigenvector
associated to the null root and B = (Bk, Bh, Bc, Bp) is the eigenvector associated tobλ. We proceed to find some properties of the vectors V, A and B. First, the relation
between the elements of the eigenvector A follows from matrix relationship JA = 0.
Solving this system of ordinary equations, we get that Ap = 0 and

Ah = −
µ
a21 + a23a11
a22 + a23a12

¶
| {z }

ah

Ak,

Ac =

µ
a11a22 − a12a21
a22 + a23a12

¶
| {z }

ac

Ak.

By using (B.2) and (B.15), we obtain that ah = n and ac = f.
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Second, the relation between the elements of the eigenvector B follows from the
system of equations (J − λ)B = 0, where I is the identity matrix. Assume that α > β,
then bλ = a44. Thus, we obtain from the previous matrix relationship that

Bh =
a21

³
a14 − a34

a44

´
− (a11 − a44)

³
a23a34
a44

+ a24

´
(a22 − a44) (a11 − a44)− a21a12| {z }

bh

Bp,

Bk =

⎛⎝a12

³
a24 + a23

a34
a44

´
− (a22 − a44)

³
a14 − a34

a44

´
(a22 − a44) (a11 − a44)− a21a12

⎞⎠
| {z }

bk

Bp,

Bc =

µ
a34
a44

¶
| {z }

bc

Bp,

Finally, since bλ < 0 then the set of paths given by (C.1) converges to the following
stationary solution:

k∗ = Vk +Ak,

h∗ = Vh + nAk,

c∗ = Vc + fAk,

p∗ = Vp.

This stationary solution corresponds to the manifold of BGPs obtained in Section 3
when Vk = 0, Vh = m, Vc = d, Vp = p∗ and Ak = bk∗.

Therefore, the linear approximation of the policy functions is given by

bk (t) = bk∗ + bkBpe
λt,bh (t) = m+ nbk∗ + bhBpe

λt,bc (t) = d+ fbk∗ + bcBpe
λt,

p (t) = p∗ +Bpe
λt.

Finally, using the initial conditions bk (0) and bh (0) , we get
bk∗ =

bhbk (0)− bkbh (0) + bkm

bh − nbk
,

Bp =
bh (0)− nbk (0)−m

bh − nbk
.

C.3. Proof of Proposition 5.1

We study the relationship between the two capital stocks when β = 0. This slope
is characterized by the sign of bh

bk
. In order to find this sign we must redefine the

equilibrium dynamics of our economy under the assumption β = 0. First, note that if
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β = 0 then s = 0 and, thus, zH = 0. Moreover, it can be proved that zβH converges
to unity as β tends to zero. Finally, observe that both marginal products of physical
capital in each sector equalize the rental rate of this capital in the aggregate economy
in the general case with β 6= 0. Thus, to characterize the equilibrium dynamics in the
case with β = 0 we replace αAzα−1Y by γβpzβ−1H . Given this properties of the economy
when β = 0, and using the elements of the Jacobian matrix in the proof of Proposition
3.6, it can be shown that the eigenvector simplifies as follows

bh
bk
= −

a21

³
a14 − a34

a44

´
− (a11 − a44)

³
a23a34
a44

+ a24

´
(a22 − a44)

³
a14 − a34

a44

´ ,

since a12 = 0 when β = 0. The denominator is negative since

a22 − a44 =

µ
1− θ

θ

¶µbc∗ − c0

pbh∗
¶
+ γu∗ + (1− α)Azα−1y > 0,

and

a14 − a34
a44

=
(α− 1)A

αp∗
zα−1Y

bk∗ −µbc∗ − c0
σ

¶µ
1− (1− θ)(1− σ)

p∗

¶
< 0.

It then follows that the sign of the eigenvector coincides with the sign of numerator,
that we will denote by N. We get that

N = −
µ

γ

zY

¶"
(α− 1)Azα−1Y

bk∗
αp∗

−
µbc∗ − c0

p∗

¶µ
1− (1− θ)(1− σ)

σ

¶#
−

∙bc∗bk∗ − (α− 1)Azα−1y

¸"
γbh∗z∗
αzY p∗

−
µbc∗ − c0

(p∗)2

¶µ
(1− θ) (1− σ)

σ

¶#
.

Since the marginal products of human capital equalize across sectors, the following
condition holds:

γp∗ = (1− α)Azαy .

By using the previous condition, we get after some manipulation that

N =

∙ bc∗γ
αp∗zY

¸ ∙µ
α (bc∗ − c0)

σbc∗
¶ ∙
1 +

µ
(1− σ) (1− θ) zY

p∗γ

¶µbc∗bk∗
¶¸
− 1
¸
.

Using (B.4), and since u∗ = k∗
h∗zY

, we get

N =

∙ bc∗γ
αp∗zY

¸⎡⎢⎢⎣µα (bc∗ − c0)

σbc∗
¶ ∙
1 +

µ
(1− σ) (1− θ) zY

p∗γ

¶¡
Azα−1y − δ − g∗

¢¸
| {z }

v

− 1

⎤⎥⎥⎦ .
(C.2)

Observe that v < 1 when σ < 1, whereas if σ > 1 then either v ∈ (0, 1) or v < 0.
The intertemporal elasticity of substitution satisfies

χ =
bc∗ − c0

σ [bc∗ − (1− θ) c0]
. (C.3)

35



Using (C.3) to replace bc∗ − c0 in (C.2), we get that

N =

∙ bc∗γ
αp∗zY

¸ ∙
αvχ

µbc∗ − (1− θ) c0bc∗
¶
− 1
¸
.

The results in Proposition 5.1 then follows.

C.4. Proof of Proposition 5.2

Note from (C.2) that if v < 0 then N < 0 and if v > 0 then N < (>) 0 when

1− σ

αv
< (>)

c0bc∗ . (C.4)

Using the definition of bc∗ as a function of bk∗ established by Lemma B.3 in the proof of
Proposition 3.2 (see Appendix B), Proposition 5.2 directly follows from (C.4).
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Tables

Table 1.18 β = 0.32

Rich Economy Poor Economy Comparison Accounting19bkR = 1 bkP = 0.63 kR

kP
= 1.58 Ck = 39.5%bhR = 0.12 bhP = 0.073 hR

hP
= 1.66 Ch = 60%

TFPR = 1.007 TFPP = 1.004 TFPR

TFPP = 1.002 CTFP = 0.5%bQR = 0.29 bQP = 0.18 QR

QP
= 1.63

c
cR
= 0.96 c

cP
= 0.99

wR
c = 0.6 wP

c = 0.95
uR = 0.4 uP = 0.5
gR = 2% gP = 2%
χR = 0.21 χP = 0.026

Table 2.20 β = 0

Rich Economy Poor Economy Comparison AccountingbkR = 1 bkP = 0.97 kR

kP
= 1.03 Ck = 3%bhR = 0.58 bhP = 0.33 hR

hP
= 1.76 Ch = 67%

TFPR = 1.35 TFPP = 1.17 TFPR

TFPP = 1.16 CTFP = 30%bQR = 0.99 bQP = 0.6 QR

QP
= 1.63

c
cR
= 0.96 c

cP
= 0.99

wR
c = 0.6 wP

c = 0.95
uR = 0.17 uP = 0.3
gR = 2% gP = 2%
χR = 0.21 χP = 0.026

18The other parameters are α = 0.42, A = 1, γ = 0.086, η = δ = 0.056, σ = 2, ρ = 0.012, θ = 0.0476
and c0 = 0.051.
19The contributions of the different factors to explain GDP differences is obtained from (3.8)

as follows: CTFP = ln TFPR/TFPP ln QR/QP , Ch = (1− α) ln hR hP ln QR/QP ,

and Ck = α ln kR kP ln QR/QP , where the superscripts R and P indicate the rich and poor

economies, respectively.
20The other parameters are α = 0.42, A = 1, γ = 0.112, η = δ = 0.056, σ = 2, ρ = 0.016, θ = 0.0475

and c0 = 0.18433.
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Table 3.21

c0 = 0.017 c0 = 0.025 c0 = 0.05 c0 = 0.1 c0 = 0.15bk∗ = 1.951 bk∗ = 1.955 bk∗ = 1.975 bk∗ = 2 bk∗ = 2.03bh∗ = 0.242 bh∗ = 0.241 bh∗ = 0.240 bh∗ = 0.238 bh∗ = 0.236bQ∗ = 0.5864 bQ∗ = 0.5862 bQ∗ = 0.5860 bQ∗ = 0.5858 bQ∗ = 0.5856
u∗ = 0. 351 u∗ = 0.360 u∗ = 0.387 u∗ = 0.442 u∗ = 0.498
w∗c = 0.458 w∗c = 0.488 w∗c = 0.576 w∗c = 0.753 w∗c = 0.930

21The parameters are α = 0.42, β = 0.32, A = 1, γ = 0.086, δ = η = 0.0 56, ρ = 0.01185, σ = 2,
θ = 0.4, h0 = 0.1 and k0 = 4. These values coincide with the ones of Table 1, with the exception of
θ. We consider here a smaller value of θ to avoid that small differences in the minimum consumption
yield huge differences in wc.
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Table 4. 22

Comparison at BGP
Rich Economy Poor Economy Comparison AccountingbkR = 1.95 bkP = 1 kR

kP
= 1.95 Ck = 16%bhR = 2.12 bhP = 0.32 hR

hP
= 6.65 Ch = 63%

TFPR = 1.636 TFPP = 1.1367 TFPR

TFPP = 1.44 CTFP = 21%bQR = 3.35 bQP = 0.586 QR

QP
= 5.7

uR = 0.1 uP = 0.34 uR

uP
= 0.377

wR
c = 0.34 wP

c = 0.99
wRc
wPc

= 0.34
c
cR
= 0.51 c

cP
= 0.997

gR = 2% gP = 2%
χR = 0.41 χP = 0.00625

Comparison along the transition
Rich Economy Poor Economy Comparison AccountingbkR = 1.95 bkP0 = 1.2125 kR

kP0
= 1.61 Ck = 13%bhR = 2.12 bhP0 = 0.532 hR

hP0
= 3.99 Ch = 54%

TFPR = 1.636 TFPP
0 = 1.0013

TFPR

TFPP
0
= 1.634 CTFP = 33%bQR = 3.35 bQP

0 = 0.753
QR

QP
0

= 4.46

uR = 0.1 uP0 = 0.9
uR

uP0
= 0.11

wR
c = 0.34 wP

0 = 0.326
wRc
wP0

= 1.035
c
cR
= 0.51 c

cP0
= 0.48

22The parameters are β = 0, α = 0.42, A = 1, γ = 0.116, η = δ = 0.056, σ = 2, ρ = 0.02, θ = 0.2
and c0 = 0.19968.
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Table 5.23

Comparison at BGP
Rich Economy Poor Economy Comparison AccountingbkR = 2 bkP = 1 kR

kP
= 2 Ck = 21.1%bhR = 0.28 bhP = 0.069 hR

hP
= 4.1 Ch = 59.4%

TFPR = 2.22 TFPP = 1.69 TFPR

TFPP = 1.31 CTFP = 19.5%bQR = 1.43 bQP = 0.36 QR

QP
= 3.97

uR = 0.0439 uP = 0.09 uR

uP
= 0.488

wR
c = 0.498 wP

c = 0.989
wRc
wPc

= 0.5
c
cR
= 0.497 c

cP
= 0.995

gR = 2% gP = 2%
χR = 7.5 χP = 0.15
bh
bk
= 0.0058 bh

bk
= −0.0043

Comparison at the initial period
Rich Economy Poor Economy ComparisonbkR0 = 1.3 bkP0 = 0.945 kR0

kP0
= 1.38 Ck = 16.2%bhR0 = 0.278 bhP0 = 0.09 hR0

hP0
= 3.1 Ch = 78.4%

TFPR
0 = 2.22 TFPP

0 = 2.127
TFPR

0

TFPP
0
= 1.04 CTFP = 5.4%bQR

0 = 1.18
bQP
0 = 0.515

QR
0

QP
0

= 2.3

uR0 = 0.044 uP0 = 0.049
uR0
uP0
= 0.89

23The parameters are β = 0, α = 0.42, A = 1, γ = 0.022, η = δ = 0, σ = 0.1, ρ = 0.02, θ = 0.333
and c0 = 0.032217.
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