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Non Technical Summary 

 
A remarkable element of recent advances in economic growth theory is the revival of the 
aggregate Constant Elasticity of Substitution (CES) function for the modeling of an economy’s 
productive potential. This revival aims at linking considerations about changes in factor income 
distribution to particular constellations of the elasticity of substitution on the one hand and the 
growth rates of labor and capital efficiency on the other. Our study presents an innovative 
approach for the estimation of such a function, applies it successfully to US data and derives 
results that have important implications for our understanding of factor substitution in the 
medium and long run.  

The workhorse of growth theory has tended to be the Cobb-Douglas production function 
whose elasticity of substitution is exactly unity. One reason for the general interest in this 
particular functional form is its accordance with the most prominent of the empirical stylized 
facts of long-term economic development: the approximate constancy of factor income shares 
during a steady increase in capital intensity (i.e., the capital/labor ratio) and per-capita income. 
Allowing for a non-unity elasticity of factor substitution (i.e., CES technology) would imply that 
the secular constancy in factor income shares has to be provided by another very strong 
assumption: technical progress has to be purely labor augmenting. Empirical research, moreover, 
has been hampered by the difficulties in identifying at the same time an aggregate elasticity of 
substitution and growth rates of labor and capital augmenting technical change from the available 
data.  

The major contributions of this paper to the theoretical and empirical challenges mentioned 
above are the following. First, we propose that empirical research on aggregate CES functions 
can be extended and much improved by applying the normalization procedure of De La 
Grandville (1989) and Klump and De La Grandville (2000) in a supply-side system. 
Normalization implies the fixing of baseline values for output, the input factors, the factor shares, 
and in a growing economy, the growth rates of technical progress. The benefit of the supply-side 
system approach, in turn, is that it treats the first-order conditions of a profit maximizing firm as 
a system, containing cross-equation parameter constraints, which may essentially alleviate the 
identification of structural parameters as e.g. the elasticity of substitution and technical progress 
parameters. Second, using a normalized CES function with factor-augmenting technical progress, 
we estimate a supply-side system of the US economy from 1953 to 1998. Unlike in most 
empirical works, we do not, however, constrain technical progress to evolve at a constant rate but 
allow for a quite general functional form (namely, the Box-Cox transformation). Putting a high 
emphasis on data consistency, we obtain robust results not only for the elasticity of substitution 
but also for the parameters of labor- and capital-augmenting technical change. We find that the 
elasticity of substitution is significantly below unity (between 0.5 and 0.7) and that the growth 
rates of technical progress show an asymmetrical pattern where the growth of labor-augmenting 
technical progress is almost exponential, while that of capital is hyperbolic or logarithmic. 
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1. Introduction 
 
A remarkable element of recent advances in economic growth theory is the revival of the 
aggregate Constant Elasticity of Substitution (CES) function for the modeling of an economy’s 
productive potential. This revival that is evident in theoretical as well as in empirical 
contributions aims at linking considerations about changes in factor income distribution to 
particular constellations of the elasticity of substitution on the one hand and the growth rates of 
labor and capital efficiency on the other. Against this challenging background our study presents 
an innovative approach for the estimation of such a function, applies it successfully to US data 
and derives results that have important implications for our understanding of factor substitution 
in the medium and long run.  

Neo-classical growth theory and the aggregate CES production function have a long 
common history, starting with the Solow’s (1956) seminal contribution. However, the workhorse 
of growth theory became the Cobb-Douglas production function whose elasticity of substitution 
is exactly unity. One reason for the general interest in this particular functional form is its 
accordance with the most prominent of the empirical stylized facts of long-term economic 
development: the approximate constancy of factor income shares during a steady increase in 
capital intensity (i.e., the capital/labor ratio) and per-capita income. Allowing for a non-unity 
elasticity of factor substitution (and hence assuming CES technology) would imply that the 
secular constancy in factor income shares has to be provided by another very strong assumption: 
technical progress has to be purely labor augmenting. The ongoing competition between both 
alternatives has only recently become obvious in two important papers. Seeing no evidence for a 
fading away of capital augmenting technical change, Jones (2003) defends the view that the long-
term production function is Cobb-Douglas. Acemoglu (2003) who relates the general existence of 
biased technical change to a non-unitary elasticity of substitution gives support to the idea that 
technical progress should be purely labor augmenting in the long-run.  

Empirical research, moreover, has been unable to settle this dispute so far. This relates to 
the difficulties in identifying at the same time an aggregate elasticity of substitution and growth 
rates of labor and capital augmenting technical change from the available data. For more than a 
quarter of a century following Berndt (1976), it had been almost common knowledge that 
estimations for the US economy strongly supported Cobb-Douglas. This view, however, has now 
been challenged on empirical and theoretical grounds. Chirinko (2002), summarizing the results 
of recent estimate of the elasticity of substitution that made use of different data sets and various 
methodological approaches, finds little support for the unitary value. Antras (2004) suggests that 
the finding of the Cobb-Douglas result in many older econometric investigations may be due to 
an omitted-variable bias caused by the assumption of Hicks neutral technical change. 

A still relatively rarely used framework for the estimation of aggregate CES production 
functions is the supply-side system approach. Its origin goes back to Marchak and Andrews 
(1947); in the context of cross-section analysis, and in the context of time series analysis it was 
introduced by Bodkin and Klein (1976) As presented by Willman (2002) or McAdam and 
Willman (2004b), the benefit of this approach is that it treats the first-order conditions of a profit 
maximizing firm as a system, containing cross-equation parameter constraints, which may 
fundamentally alleviate the identification of structural parameters as e.g. the elasticity of 
substitution and technical progress parameters. Applications of the supply-side system approach 
to European data (Willman, 2002), however, could not find sufficient support for a non-unitary 
elasticity of substitution, an application of this framework to US data, the quality and availability 
of which is better than that of euro-area data, is, notably, still missing. The major contributions of 
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this paper to the theoretical and empirical challenges mentioned above are the following. First, 
we propose that the identification of technical level and distribution parameters from each other 
in the aggregate CES function can be much improved by applying the normalization procedure of 
De La Grandville (1989), Klump and De La Grandville (2000) and Klump and Preissler (2000) in 
a supply-side system. Normalization implies the fixing of baseline values for output, the input 
factors, the factor shares, and in a growing economy, the growth rates of technical progress. 
Second, using a normalized CES function with factor-augmenting technical progress, we estimate 
a supply-side system of the US economy from 1953 to 1998. Unlike in most empirical works, we 
do not, however, constrain technical progress to evolve at a constant rate but allow for a quite 
general functional form. Putting a high emphasis on data consistency, we obtain robust results not 
only for the elasticity of substitution but also for the parameters of labor- and capital-augmenting 
technical change. We find that the elasticity of substitution is significantly below unity and that 
the growth rates of technical progress show an asymmetrical pattern where the growth of labor-
augmenting technical progress is almost exponential, while that of capital is hyperbolic or 
logarithmic. Third, our results are therefore supportive of Acemoglu’s view on biased 
technological change and defend a more extensive use of aggregate CES production functions in 
modern growth theory. 

The rest of the paper proceeds as follows. Section 2 reviews the theoretical and empirical 
disputes surrounding aggregate CES production functions. Section 3 discusses in detail the 
potential estimation biases that can occur in econometric estimations of the aggregate elasticity of 
substitution. Section 4 explains the normalization procedure and section 5 develops the 
normalized supply-side system that is estimated. Section 6 discusses the properties of the US data 
and their congruence with neo-classical growth theory. Section 7 discusses the estimation results. 
Section 8 draws conclusions for the theoretical debate and for further empirical research.    
 
2. The revival of the CES production function  
 
The continuous boom in endogenous growth theory since the mid-1980’s led to a renewed 
interest in CES production functions (e.g., see the discussion in La Grandville and Solow, 2004). 
This special type of production functions rooted in the mathematical theory of elementary mean 
values (Hardy et al., 1934, p. 13 ff.) was introduced into economics by Solow (1956) and has 
already been much debated in the early times of neoclassical growth theory during the 1960’s and 
1970’s. 1 However, not only conceptual problems causing controversial and problematic results in 
theoretical growth models (Klump and Preissler 2000) but also ongoing difficulties in empirically 
testing the parameters of the CES function, notably the aggregate elasticity of substitution (σ ), 
made their use less attractive. If the pioneering work by Arrow et al., (1961) stands for the 
hopeful beginning of empirical studies on the aggregate elasticity of substitution, the results 
derived by Berndt (1976) set perhaps a disappointing end to this debate. While in the former 
paper, estimate of the elasticity of substitution for the US was at a value of 0.57, the latter paper 
tended to prove that the elasticity of substitution in the US did not significantly deviate from one 
in the long run. Hence, the much less complicated Cobb-Douglas specification of the production 
function could be used for the modeling of the technological relationship between factor inputs 
and output.  

                                                                 
1 Though there are many plausible function forms, which may fit the data well – e.g., the translog function – here we 
concentrate on Cobb-Douglas and CES cases. This reflects the dominance of these two forms in the growth literature 
(e.g., Barro and Sala-i-Martin, 2003) and allows us to focus our discussion on key issues in the litera ture like the 
unitary or non-unitary value of the substitution elasticity and the nature of factor augmenting technical change. 
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One important property of the Cobb-Douglas function is the constancy of factor income 
shares. This property meets the essential condition for a steady state in neoclassical growth 
models and is in line with the most prominent of the empirical stylized facts of long-term 
economic development: the relative stability of factor income distribution despite a secular rise in 
capital intensity and per-capita income. It also follows immediately that the direction of technical 
change is irrelevant for income distribution in the Cobb-Douglas world. It is thus impossible to 
determine empirically any bias in the direction of technical change. In contrast, pronounced 
cycles in factor income distribution visible in many countries over what Blanchard (1997) called 
the “medium run” support the more general CES function and make possible biases of technical 
progress an important issue. It is an old insight that in the CES world a steady state with factor 
income shares is only possible, if exogenous technical progress is purely labor augmenting. 
Acemoglu (2002, 2003) was able to derive this same result in a model with endogenous 
innovative activities. He also demonstrates that over quite significant periods of transition growth 
of capital-augmenting progress can be expected resulting from endogenous changes in the 
direction of innovations. 

Acemoglu’s view that long-run production possibilities should be characterized by a CES 
production function with purely labor-augmenting technical change (and an elasticity of 
substitution below unity to avoid problems of stability) has recently been challenged by Jones 
(2003). He suggests that the long-run production function must be Cobb-Douglas under the 
crucial assumption that the underlying parameters of the production techniques, that basically 
stand for the emergence of new ideas, obey Pareto distributions. Short-run growth could then be 
modeled with the help of a CES production function (with an elasticity of substitution below 
unity) that is somehow nested in a Cobb-Douglas function for long-run growth. In a theoretical 
perspective the main difference between the two competing approaches is Acemoglu's 
“innovation possibilities frontier” on the one side, that describes the technological possibilities 
for transforming resources into blueprints for labor- and capital-augmenting innovations, and 
Jones’ Pareto-distribution for the emergence of new ideas. From an empirical perspective, the 
difference can be seen in different results concerning not only the long run elasticity of 
substitution and the long run dominance of biased technological change. While Jones would 
exclude any technological bias in the long-run Cobb-Douglas world, Acemoglu underlined the 
coexistence of labor- and capital augmenting technical change, but with asymmetric long-term 
properties. To our knowledge, this asymmetry in the dynamics of factor-augmenting technical 
change has so far not been subject to any empirical testing.  

Not only in the theory of endogenous growth, but also in other areas of dynamic 
macroeconomics, the concept of CES production functions could experience a revival. As it was 
already demonstrated by Solow (1956) in the standard neoclassical growth model, assuming an 
aggregate CES production function with an elasticity of substitution above unity is the easiest 
way to generate perpetual growth. Since scarce labor can be completely substituted by capital, the 
marginal product of capital remains bounded away from zero in the long run. Recently, it has 
been shown that integration into world markets is a feasible way for a country to increase the 
effective substitution between factors of production and pave the way for continuous growth 
(Ventura 1997, Klump 2001). On the other hand, it could be derived in several standard 
neoclassical growth models with aggregate CES production functions that with an elasticity of 
substitution below unity multiple growth equilibria and development traps can become possible 
(Azariadis 1996, Duffy and Papageorgiou 2000, Klump 2002, Kaas and von Thadden 2003).  

Public finance and labor economics are other fields where the elasticity of substitution has 
been rediscovered as a crucial parameter for understanding the effects of policy changes. This has 
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to do with the importance of factor substitution possibilities for the demand function of each 
input factor. As pointed out by Chirinko (2002), the lower the elasticity of substitution the 
smaller becomes the response of business capital formation to variations in interest rates that are 
caused by monetary or tax policy. In addition, the welfare effects of tax policy changes are highly 
sensitive to the assumed values of the elasticity of substitution. Rowthorn (1999) shows that with 
an elasticity of substitution below unity, fiscal incentives for investment become more effective 
for the creation of new jobs, whereas in a Cobb-Douglas world only wage policy affects 
employment. He concludes that with many estimates of σ lying below one, “capital investment 
does create employment even when benefits are upgraded in line with wages, whilst growth in 
the labor supply and technical progress with a labor-saving bias will cause a permanent rise in 
unemployment unless they are offset by additional investment. The policy implication is that 
measures to stimulate investment may have an important role to play in reducing 
unemployment.” (Rowthorn, 1999, p. 414) 

A whole series of papers have tried to explain the coincidence of rising unemployment and 
a hump-shaped behavior of factor income share in continental Europe with the help of models 
that incorporate particular assumptions about factor substitution and technological change. 
Caballero and Hammour (1998), Blanchard (1997) and Berthold et al., (2002) assume a 
production technology with purely labor-augmenting technical progress and a relatively high 
elasticity of substitution with values of above unity in the long-run, while in the short run the 
possibilities of factor substitution are rather limited due to putty-clay characteristics of the ex-
post production function. A wage-push shock would thus lead at first to only a small decline in 
employment and an increase in the labor-income share. In the long run, however, labor is 
replaced over-proportionally by capital and the labor-share will fall again. Critics of this line of 
explanation have argued that Europe has also experienced a decline in capital formation since the 
1970’s. A declining capital intensity, however, can cause a decline in employment and a rise in 
the capital income share only if the elasticity of substitution does not exceed unity (Rowthorn, 
1999).  

An intermediate position between the two views has been developed by Acemoglu (2002, 
2003) who introduces changes in the direction of factor-augmenting technical progress as an 
important, and so far neglected, endogenous adjustment mechanism. In his model, technical 
progress is strictly labor augmenting along the long-term balanced growth path, but it also 
becomes capital-biased in periods of transition. The short-term response to a wage-push is now a 
short-term fall in employment and an increase in the labor-income share. In the long run, 
however, capital-biased technical change will reverse the trend in income distribution and lead to 
an increase of the capital income share, while employment falls even further. Capital-augmenting 
technical change has thus an important role to play in the medium run, even if it should not be 
dominant in the very long run.  
 
3. Biases in earlier empirical studies 
 
Tables 1 and 2 present an overview of the results that previous empirical investigation obtained 
for the elasticity of substitution. We concentrate on the results from time-series or panel studies 
on aggregate data. In the case of the US, which has been widely studied, it is possible to find 
values of the elasticity of substitution above unity (with Harrod-neutral technical progress), at 
unity (with Hicks-neutral progress) and below unity (with Hicks-neutral progress and with 
technical progress augmenting both factors). The situation for other countries is little better; for 
Germany, values of σ  above, below and at unity have been estimated.  
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Using information about the degree of factor substitution from other sources does not re-
solve this puzzle, either. It has been recognized, for example, by Lucas (1967) that older time-
series studies for the US have generally provided lower σ  estimates than cross-section studies 
that are rather supportive of the Cobb-Douglas function. More recent cross section analysis based 
on micro data that where used to estimate the relationship between business capital formation and 
user costs (e.g., Chirinko et al., 1999) estimate very low elasticities of substitution ranging from 
0.25-0.40. A drawback of these kinds of studies, however, is their inability to quantify any 
growth rate of technical progress. 

Looking at Tables 1 and 2, there seem to be several reasons for systematic estimation 
biases. They are related not only to differences in data construction and measurement, but also to 
different à priori assumptions about the nature of technological change. Problems with data do 
not only concern the use of quality-adjusted measures for capital and labor inputs. In particular, 
they refer to the correct measurement of the user cost of capital. The papers by Berndt (1976) and 
Antras (2004) put a high emphasis on the selection of high quality, consistent data, but there are 
still weaknesses such as the non-regard of capital depreciation, of a possible mark-up, the 
treatment of indirect taxes and assumptions about self-employed labor income.  

On the conceptual side there is also the problem how exactly the parameters of the CES 
functions are to be estimated. Single equation, two equations and three equations system 
approaches are competing. Single equation estimates usually concentrate either on the production 
function itself or on the first-order condition of profit maximization with respect to labor or 
capital. The estimation of the single production function, however, can only be accomplished 
with quite restrictive assumptions about the nature of technological progress. Those implications 
will be further discussed below. Furthermore, the elasticity of substitution estimated from the 
first-order condition with respect to labor seems to be systematically higher than that that derived 
from the first-order condition with respect to capital. Finally, it has been pointed out already by 
David and van de Klundert (1965, p. 369), that single equation estimates (based on factor demand 
functions) are systematically biased, since factor inputs depend on relative factor prices that again 
depend on relative factor inputs.  
Two-equation systems that estimate demand functions for both input factors as in Berthold et al., 
(2002) should alleviate such a systematic simultaneous equation bias. However, since the two 
equation systems usually do not estimate explicitly a production function, the nature of 
technological progress is usually restricted by debatable à priori assumptions. Also, the estimated 
two equation systems have so far been unable to capture the existence of market imperfections 
that could be captured by the values of a possible mark-up on marginal production costs. This 
important empirical issue can only be adequately treated in three-equation system approaches.) 
The benefit of this approach is that it treats the first-order conditions of a profit maximizing firm 
as a system, containing cross-equation parameter constraints, which may fundamentally alleviate 
the identification of structural parameters as e.g. the elasticity of substitution and technical 
progress parameters. The estimation of the whole supply-side system not only contains demand 
functions for all factors of production but also an explicit aggregate CES production function. 
Applications of this framework to data from the Euro area by Willman (2002) and to German 
data by McAdam and Willman (2004a) demonstrated, however, that the high instability of most 
non-unitary elasticity of substitution estimates made it very difficult to reject the Cobb-Douglas 
hypothesis.  

Furthermore, the significance of restrictions imposed on the estimation with regard to the 
direction of technical change is an issue. Antras (2004), for instance, showed that the assumption 
of Hicks neutrality of technical progress, so popular in studies of the elasticity of substitution, 
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together with the observed development of factor income shares could lead to significant omitted-
variable biases. As Antras demonstrated, with the à priori assumption of a common growth rate 
for labor and capital augmenting technical change, a relatively stable relation of factor share and 
a rising capital intensity in the long run, it is a logical conclusion that Berndt (1976) found a 
Cobb-Douglas function with an elasticity of substitution equal to one that should fit best for the 
US. Finally, it has to be noted that all earlier studies of the CES function imposed constant 
growth rates of factor efficiency. A notable exception can only be found in Ripatti and Vilmunen 
(2001) who besides assuming a constant labor augmenting technical change specify capital 
augmenting technical progress to follow a logistic pattern. However, the latter choice is not based 
on free estimation but it is chosen on à priori basis. 
 
4. Normalizing a CES function with biased technological change 
 
The idea of normalizing CES functions was explicitly developed by de La Grandville (1989) and 
further explored by Klump and De La Grandville (2000) and Klump and Preissler (2000). It starts 
from the observation that a family of CES functions whose members are distinguished only by 
different elasticities of substitution needs a common fix point. Since the elasticity of substitution 
is defined as a point elasticity, one needs to fix baseline values for per capita production, capital 
intensity and factor income shares (or the marginal rate of substitution). If technical progress is 
biased in the sense that factor income shares change over time the nature of this bias can only be 
classified with regard to the baseline values at the given fix point. This important observation has 
already been pointed out by Kamien and Schwartz (1967) for the special case that the capital 
intensity at the given fix point, is equal to one. A principle contribution of this paper, therefore, 
lies with merging the normalization method with the empirical system approach. Furthermore, we 
model technical progress with a very flexible functional form which allows the data to 
discriminate between the different forms of technical progress. 

Since the focus of our analysis is on identifying possible biases in technical change, we 
concentrate on the following specification of the CES production function specification that was 
introduced by David and van de Klundert (1965, p. 75 ff.). This is a linear homogeneous CES 
production function with technological change that is augmenting the efficiency of both factors of 
production and can be written as:  
 

ρρρ
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tt KENEY                          (1) 
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=  is the substitution parameter (with σ  the elasticity of substitution). 

The relationship between the CES production function (1) and the traditional Arrow et al., 
(1961) form which, instead of the two efficiency levels contains a distribution and a single 
efficiency parameter, has been explored by Klump and Preissler (2000, p. 43 f.). Both 
specifications can be regarded as two members of one family of normalized CES productions 
functions as long as they share the same baseline values of capital ( 0K ) and labor input ( 0N ), 
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automatically, that under imperfect competition, two members of one family also share the same 

baseline values for the distribution parameter 
000

00
0 0KqNw

Kq
+

=π , where w and q refer to the 

wage rate and the rental price of capital, respectively.2  
Whereas the Arrow et al. (1961) specification seems to imply that technological change is 

always Hicks-neutral, the specification (1) allows for different growth rates of factor efficiency. 
In order to circumvent problems related to the non-identification theorem by Diamond et al., 
(1978), we assume a certain functional form for the growth rates of both efficiency levels and 
define:  
 

0
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( )Ng t  and ( )Kg t  define the growth rates of labor-augmenting and capital-augmenting technical 

progress, respectively. Following the recent theoretical discussion about possible biases in 
technical progress, it is not clear that these growth rates should always be constant; patterns of 
logarithmic or hyperbolic growth seem plausible. This is why in our empirical investigations we 
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as with a transformation that gives more flexibility on the actual functional form and nests 
exponential, logarithmic and hyperbolic growth patterns as special cases. The Box-Cox (1964) 
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While iλ  equals unity (zero) {less than zero}, technical progress functions, ig are linear (long-
linear) {hyperbolic} functions in time. 
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K
tE  are the baseline values of the two efficiency levels, taken at the common 

baseline time 0t t= . Again, normalization of the CES function implies that members of the same 
CES family should all share the same baseline values and should in this point and at that time of 
reference only be characterized by different elasticities of substitution. In order to assure that this 
property holds also in the presence of growing factor efficiencies it follows that (see appendix 
One for an extended explanation of the normalization procedure): 
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2 Under perfect competition distribution parameter is equal to the capital income share but, under imperfect 
competition with zero markup, it equals the share of capital income over total factor income. 
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0 0( ) ( ) 1N Kg t g te e= =                                (6)
  
 
The last expression assures that in the common point of reference the factor shares are not biased 
by the growth of factor efficiencies but are just equal to the distribution parameters 0π  and 

01 π− (see also Appendix 1). 
Inserting the assumptions (2) and (3) and the normalized values (4), (5) and (6) into 

function (1) leads to a normalized CES function that can be rewritten in the following form that 
resembles again the Arrow et al., (1961) variant: 
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In this specification of the normalized CES function, with factor augmenting technical progress 

the growth of efficiency levels is now measured by the expressions 0( )
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Earlier theoretical and empirical work on CES functions used to assume exponential 

growth of both efficiency levels so that rates are given by ( )
N

N

t
tg

γ=
∂

∂ , ( )
K

K

t
tg

γ=
∂

∂ . Special 

cases of (7) are the specifications used by Rowthorn (1999), Bentolila and Saint-Paul (2003) or 
Acemoglu (2002, 2003), where 0 0 0 1N K Y= = =  is implicitly assumed, or by Antras (2004) who 
sets 0 0 1N K= = . Caballero and Hammour (1997), Blanchard (1997) and Berthold et al., (2002) 

work with a version of (7) where in addition to 0 0 1N K= = , 
( )

0==
∂

∂
K

K

t
tg

γ  is also assumed so 

that technological change is only of the labor-augmenting variety. It is also worth noting that for 
constant efficiency levels ( ) ( ) 0N Kg t g t= =  our normalized function (7) is formally identical 
with the CES function that Jones (2003, p. 12) has proposed for the characterization of the “short 
term”. In his terminology, the baseline parameters 0N , 0K  and 0Y  are “appropriate” values of the 
fundamental production technology that determines long run dynamics. This long-run production 
function is then considered to be of a Cobb-Douglas form with constant factor shares equal to 

                                                                 
3 Note we scaled (divided) the original iγ  and time t by the fixpoint value t0 . This rescaling allows us to interpret 

KN γγ  and directly as the ra tes of labour and capital augmenting technical change at the fixpoint period t0.  
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0π and 01 π−  and with a constant exogenous growth rate. Actual behavior of output and factor 
input is thus modeled as permanent fluctuations around “appropriate” long-term values.  

For empirical estimations of the normalized CES production function (7), it becomes an 
interesting question how the baseline values should be determined. One should be aware that the 
choice of the baseline values fixes also a reference level for factor income shares that is 
considered as “normal” – or “appropriate” in the sense of Jones (2003) – and is then used for the 
measurement of biased technological change. We think that this “normal” level of factor shares 
can only be detected from the data and should make use of as much information as possible. This 
is why we suggest that baseline values should be calculated on the basis of sample geometric 
averages, because over a longer period of time cyclical variations have netted out and even 
longer-term fluctuations have compensated. 

The choice of sample geometric average values for a practical implementation of 
normalization can imply a problem of scaling, however, since the geometric average of each time 
series is calculated independently. Hence, fix points calculated as the geometric averages of 
inputs correspond to the geometric average of output only if the production function is log-linear 
i.e. the Cobb-Douglas case. Therefore, we capture and measure the possible emergence of a 
scaling problem by introducing and estimating an additional parameter A . Its role is to capture 
the effects of the deviation of the CES from the log linear function on the fix point output 
corresponding to the geometric averages of inputs. 

With treating sample averages as baseline values at the common point (and time) of 
reference and introducing an additional scaling parameter A  so that YAY ⋅=0 , 0K K= , 0N N= , 

0π π=  and 0t t= . The scaling parameter A deviates from unity, when the estimated CES 
production function deviates from the log liner Cobb-Douglas function. Under perfect 
competition, the distribution parameter could be calculated directly, pre-recursively, from the 
data but, when associated with unobservable markup, it can be estimated jointly with the other 
parameters of the model. Hence, we arrive at the final econometric specification of our 
normalized CES function with factor augmenting technological change. Per-capita output can be 
written in logarithmic form as: 
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From the point of view of estimation, the advantage of normalized equation (8) over the un-
normalized case, is that all parameter have clear economic interpretations with well-defined, 
plausible ranges. For comparison, we can re-write an un-normalized counterpart of  (8): 
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As discussed in Klump and Preissler (2000), an important feature of the above un-normalized 
formulation is that the parameters B and b have no clear theoretic interpretation. They are 
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composite parameters conditional on, besides the selected fixed points, the elasticity of 
substitution.  
  
In the following, we use expression (8) for the estimation of an aggregate supply-side system as 
in Willman (2002) or in McAdam and Willman (2004b). Hence, the main merit in using it, 
instead of the un-normalized form, is that all parameters have clear empirical interpretation. 
 
5. The normalized supply-side system  
 
Firms are assumed to maximize their profits in imperfectly competing markets under the 
production function constraint (8). The first-order maximization conditions can be presented by 
the following three-equation system (which incorporates the generalized Box-Cox technical 
progress terms), 
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where the substitution parameter ρ  is presented in terms of the elasticity of substitution σ  and 
where parameter 0≥µ measures the size of the markup determined by the price elasticity of 
demand for goods. Equations (9) and (10) are the first-order condition of profit maximization 
with respect to labor and capital, respectively, and (11) is the production function.   

Equations (9) and (10) are normalized for the respective factor-income shares. This 
normalization demonstrates problems coupled with the identification of the Cobb-Douglas 
production function and the CES production function from each other, when the two-stage 
approach is used in estimating the parameters of the underlying production function. In most of 
the studies referred to in Tables 1 and 2, the elasticity of substitution has been estimated as a 
first stage result, i.e. the estimates are based on single equation estimation of equation (9) or 
equation (10) or on the difference of (9) and (10).  

To demonstrate the identification problem, let us assume that the available data is 
compatible with the implications of standard neo-classical growth model, i.e. that factor income 
shares – the lhs variables of equations (9) and (10) – as well as the capital-output ratio are 
stationary. If technical progress is not purely labor-augmenting, i.e. ( ) 0, ≠ttg K  and is non-
stationary, then the square bracket term on the right-hand side of equation (10) must be non-
stationary since, by assumption, the capital-output ratio was found to be stationary. Now by 
necessity, the elasticity of substitution, σ  must be unity (implying Cobb-Douglas). However, as 
technical progress is unobservable, data compatibility with neo-classical growth model and the 
Cobb-Douglas production function, implies that factor augmentation is not estimable from the 
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system (9) and (10). Another alternative is to take labor-augmentation as the maintained 
hypothesis, i.e. ( ) 0, =ttgK . Now the data compatibility with neo-classical growth model implies 
that, besides the left hand terms, the right hand terms in square brackets are also stationary. This, 
in turn, implies that independently from the magnitude of σ  the estimation of equations (9) and 
(10) gives stationary residuals, which is a necessary condition for data compatibility. 
Accordingly, the sign and size of the deviation of σ  from unity depends on the correlation 
between stationary variables. If the squared bracket terms in (9) and (10) are un-correlated with 
the left-hand terms, we end up with unit elasticity of substitution. The higher positive (negative) 
correlation is found, the more below (above) unity the estimate of the elasticity of substitution is. 
However, in the real world with frictions, one can question whether these current-period 
correlations measure only the elasticity of substitution with no effects from the speeds of 
adjustments of factor and output. 4  

The identification of the augmentation of technical change and the elasticity of 
substitution becomes easier, if the production function (11) is estimated jointly with the equations 
(9) and (10). In this respect, the non-linearity of the CES function alleviates the identification. 
The role of non-linearity can be illustrated by applying the Kmenta-approximation (Kmenta, 
1967) around the fix-points ttKKNN tt ===  and  , to separate the total factor productivity (TFP) 
term from the rest of the production function. We obtain: 
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           (12) 

 
A useful feature of approximation (12) is that it separates the output contribution of the total 
factor productivity from the output contribution of inputs. Equation (12) shows clearly that, when 
the elasticity of substitution 1≠σ , the factor augmentation introduces additional curvature into 
the estimated production function i.e., the squared bracket term in power two. When estimating 
equations (9)-(11) [or (9)-(10) and (12)] as a system, the stationarity of the estimation residual of 
equation (11) [or (12)] also requires the inclusion of this curvature term ( 1≠σ ), if the true 
production function is CES with labor-augmenting technical change. If the curvature term is not 
needed, the observed data compatibility with the neo-classical growth model implies that the 
underlying production function is Cobb-Douglas. One reservation to the above argument can be 
made. An estimated system can account for non-linear curvature effect also with close to unity 
values of the elasticity of substitution, if the difference ( ) ( )ttgttg KN ,, − , in power two in (12), is 
sufficiently high. However, in that case one would expect that the estimates for factor 
augmenting technical change components ( )ttg N ,  and ( )ttg K ,  are unreasonable in economic sense 
and, therefore, these results can be rejected.  
 

                                                                 
4 Apparently, identification becomes easier, if factor income shares as well as the capital-output ratio are non-
stationary, because in that case the estimation of the elasticity of substitution depend on the co-integration I(1) 
variables. On the other hand, then the time-series properties of the data indicate inconsistency with the requirements 
of the balanced growth path. 
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6. Data 
 
Our principle data source for the US (annual) series was the NIPA Tables (National Income and 
Product Accounts) for production and income, whose series may be found at 
http://www.bea.doc.gov/bea/dn/nipaweb/index.asp, Ho and Jorgenson (1999) for labor input, 
Herman (2000) for current cost and real capital stock and Auerbach (1983, 2003) for the data of 
the rental price of capital.5 Our data series runs from 1953 until 1998: the data span is explained 
by the availability of Auerbach’s user cost series. In estimation, we use the following series and 
data transformations.  

The output series is calculated as Private non-residential Sector Output – this is total 
output minus Indirect Tax Revenues, Public-Sector output and Housing-Sector Output. After 
these adjustments the output concept we use, corresponds to the concept of the private non-
residential capital stock.  

In addition, three alternative measures are used for labor input, i.e. total private sector 
employment, corresponding number of hours worked and the constant quality index of labor 
input taken from Ho and Jorgenson (1999). They argue that total number of hours is not 
appropriate measure of the flow of labor services because it ignores significant differences in the 
quality of the labor services provided by different workers. A constant quality index of labor 
input, which they have constructed, captures substitution among different types of labor inputs by 
weighting the hours of differentiated labor groups by their marginal products. They argue that 
this helps identify correctly the contribution of productivity to output growth 

As discussed by, for example, Krueger (1999) and Gollin (2002), a problem in calculating 
labor-income is that it is unclear how the income of proprietors (self-employed) should be 
categorized in the labor-capital dichotomy. Some of the income earned by self-employed workers 
clearly represents labor income, while some represents a return on investment or economic profit. 
In this study, two alternative approaches to account for also self-employed workers' labor income 
are applied. First, following e.g. Krueger (1999) and Antras (2004) we add two-thirds of 
proprietors' income to the private sector compensation to employees. Although blunt, since 
Johnson (1954), this has been a common convention to account for self-employed labor income. 
Second, a straightforward approach – although apparently better founded in economic terms – is 
to use compensation per employee as a shadow price of labor of self-employed workers. Hence, 
labor-income is calculated also as:  
 

EmployeesSector Private toonCompensati
EmploymentPrivateTotal

EmployedSelf1 ⋅







+           (13) 

 
Recently the latter approach has been applied e.g. by Blanchard (1997), Gollin (2002) and 

Bentolila and Saint-Paul (2003).  
The construction of the capital income data is most problematic. This is due to the fact 

that the pure profit (or the markup) component cannot be separated from the rest of non-labor 
income in national accounting. However, as part of constructing the national income and product 
accounts, the Bureau of Economic Analysis (BEA) calculates also estimates of fixed assets and 
consumer goods including estimates of net capital stocks in real and nominal terms (Herman, 
2000). This information is needed in calculating national account figures for consumption. 
Accordingly, a consistent estimate for the (non-profit) capital income should be obtained as the 

                                                                 
5 We are grateful to Alan Auerbach for providing us with his data on the rental price of capital.  
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product of real rental price of capital, as e.g. constructed by Auerbach (1983, 2003), and BEA 
figures of current-cost fixed capital. We chose this practice.   

Before estimation, it is useful, first, to check the internal consistency of our data set and, 
second, to evaluate how compatible it is with the implications of the standard neo-classical 
growth model.  

Conventionally, we believe in empirical applications little (or too little) attention has been 
paid to the internal consistency of the data, especially regarding the distribution of the non-labor 
income into the capital income and the implied markup components. For that purpose, the 
accounting identity of the non-housing private sector provides a useful framework: 
  

( )qKwNpYofit +−=Pr                  (14) 
 
Internal consistency would require that the sample average of the implied markup component is 
non-negative. Further, if demand functions of goods are isoelastic and either competition in 
different sectors is the same or sectoral output shares remain stable, then the implied markup 
component should be stationary.6 These requirements are fulfilled by our data. As shown in the 
lowest panel of Figure 1, the markup share, although exhibiting temporarily negative values, is 
for the most of the sample period positive. In addition, it is also stationary as the augmented 
Dickey-Fuller test statistic shows ADF (1)= -3.65, where the number inside brackets refer to the 
number of lags. 
  How compatible is our data with the balanced growth path implied by the standard neo-
classical growth model? Are factor-income ratios stationary, as the theory would imply? Based 
on the “eyeball” econometrics the three panels of Figure 1 show that these stationarity 
requirements are not, at least, strongly violated. The upper panel of Figure 1 shows that, over the 
sample, the trend growth rates of production and the capital stock are around the same whilst the 
growth of employment has been slower. A closer statistical examination, however, shows that the 
capital-output ratio, with ADF (1) = -1.80, is non stationary. Interestingly, two of our three 
alternative measures for labor input have around the same longer-run trend, i.e. total private 
sector employment and the constant quality index of the labor input. This implies that 
improvements in the quality of labor have roughly compensated for the effects of shortened 
average weekly working hours on labor input and that both measures of labor input imply around 
the same average contribution from labor-augmented technical change. The development of 
factor income shares seems to be quite well in line with the implications of the neo-classical 
growth model (the middle and lower panel of Figure 1). The ADF (0) = -3.61 for the capital 
income share implies stationarity. Our two ways to account for self-employed workers' labor 
income results in quite similar developments for the labor-income share. In both cases, the 
rejection of the null hypothesis of unit root is just in the border of 5 per cent significance level. 
ADF (0) = -2.90, when two-thirds of proprietors' income is included by the labor income, and 
ADF (2) = -3.00, when compensation per employee is used as a shadow price of labor of self-
employed workers. 

We can conclude, therefore, that although the deviations are not dramatic, the properties 
of our data do not fully coincide with the implications of the standard neo-classical growth 
model. The most prominent deviation is the non-stationarity of the capital-output ratio although 
factor-income shares are, at least, borderline stationary. Do these deviations have any 
implications concerning the underlying production technology and the nature of technical 
progress? The first implication is that technical progress cannot be only labor augmenting. There 
                                                                 
6 See the discussion in Willman (2002) or McAdam and Willman (2004a, 2004b) 
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must be also a capital augmenting component in technical progress. However, as in our sample, 
the capital-output ratio has no clear trend, in line with the endogenous growth model of 
Acemoglu (2003), capital augmenting technical progress may be a transitory phenomenon. The 
second implication is that the Cobb-Douglas production technology is not fully compatible with 
these properties of the data. Under the Cobb-Douglas technology, independently from the 
augmentation of the technical change, the capital-output share as well as factor income shares 
should be stationary. 

These anticipations are confirmed by the estimation results, which we present in the 
following section.  
 
7. Results 
 
Our main results are presented in Tables 3 to 6, referring, as before, to the estimation of the 
system (9)-(11). 

Alongside the numerical results are the associated Graphs 1.1 to 4.4 corresponding to 
each case in the tables. The tables show the parameter estimates and their standard errors. As can 
be seen, most parameters are significant at the 1% level. Also shown are the changes in technical 
progress (evaluated at the fixed point), total Technical Factor Progress (calculated as defined in 
equation (12)), as well as the Log Likelihood of each specification and the Augmented Dickey-
Fuller tests for stationarity for the residuals of the Labor, Capital and Output equations. Tables 3 
and 4 present estimation results when labor input is measured in employed persons, Table 5 
when labor input is measured in hours, whereas in Table 6 we use the quality-adjusted series of 
Ho and Jorgenson (1999). As already discussed (Section 6) a problem in calculating labor-
income is that it is unclear how the income of proprietors (self-employed) should be categorized 
in the labor-capital dichotomy. First, we add two-thirds of proprietors' income to the private 
sector compensation to employees. Second, we use compensation per employee as a shadow 
price of labor of self-employed workers. In Table 3, we use the former approach and the latter in 
Tables 4 to 6. Results, however, are not overly sensitive to which definition is used. 

Furthermore, the graphs display the residuals from each of the equations, technical 
progress and its growth contributions. The box on the bottom right hand side of each graph shows 
the sensitivity of the Log-Likelihood with respect to the initial condition for the key σ parameter; 
given, that we estimate a non-linear system, the issue of identifying global optima is a primary 
concern.7 

In the first two columns of each table, constant factor augmenting technical progress is 
assumed (i.e., 1== KN λλ ). Examining the Log-Likelihood in each case, we see that the second 
column embodies the global minimum implying a σ  around one and the first column contains a 
local minimum with a value around 0.5-0.6. Nevertheless, a closer examination of second 
columns of tables 3-6 reveals some weakness in these (constant-growth) estimates (i.e., the 

                                                                 
7 This consideration arises because non-linear estimation can be sensitive to starting parameter values. Accordingly, 
variations help identify the global maximum. In our case, the results were only sensitive to different starting values 
in the σ  parameter. This may be expected since our system has a singularity at σ =1. When we start with σ <1, it 
would essentially require a stroke of luck for the estimation process to skip over the singularity into the above-unity 
zone; similarly starting with σ >1, we will be limited to above-unity solution territory. Thus, there may be separate 
optima with below and above unity values for σ . Consequently, we performance a fine grid search of initial 

guesses: ( ) [ ]5.2,00 ∈σ . Given this range and for the various cases, we find that estimated σ ’s cluster around 
unity or 0.6. In each of the graphs (lower right-hand box) therefore, we present the range of σ ’s estimated against 
this starting-value grid search and the associated log-likelihood. 
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apparent global minimum). For example, although the implied total Technical Factor Progress 
over the sample on average is reasonable, its time profile is less so. More importantly, factor-
specific technical progress parameters, though insignificant, appear economically unreasonable: 
yielding large negative (positive) labor (capital) progress and an implied growth in total factor 
productivity (i.e., second right-hand panel box in Graphs 1.2) that is strongly decreasing and at 
the end is close to intersecting the zero line. These unreasonably high estimates for factor 
augmenting technical progress indeed results in a strong curvature effect also with close to unity 
elasticity of substitution in the TFP-component, without any reasonable economic interpretation, 
as discussed in Section 5, in the context of equation (12).  

The first column, in turn, although not representing a global minimum is, in an economic 
sense, more plausible. This well-below-unity elasticity (around 0.5-0.6) is coupled with 
reasonable labor and capital augmenting technical progress. According to these results, labor-
augmenting technical progress is dominating (i.e., 1.7% annual versus 0.4 for capital and 1.4 for 
TFP when labor input is measured in terms of employed persons or quality adjusted index; when 
labor input is measured in terms of hours both labor augmented technical progress and TFP are 
somewhat faster, i.e. 2.1% and 1.7%, respectively). Furthermore, although improved, the residual 
properties of production function (associated with the local minimum) are not fully satisfactory – 
see the hump in the labor share in the Graphs 1.1, 2.1, 3.1 and 4.1 (bottom-left box), which 
suggests some underlying (and missing) non-linear form for the equations.  

Consequently, we proceeded to freely estimate the technical progress parameters in a 
time-varying manner (i.e. 1, ≠KN λλ ). This yields appreciably better results: in all cases, the 
Log Likelihood was superior and σ  was always found to be significantly well below unity (as 
before, around 0.6). Note, that this σ  value was always associated with the global minimum, as 
can be verified by inspecting the lower right box in the Graphs (although as this box shows there 
still remain well-defined local minimum for σ  around unity). Likewise, we see in these time-
varying cases that residual properties are now satisfactory (i.e., stationary) when the Ho and 
Jorgenson (1999) quality-adjusted labor input is used. This therefore represents our preferred 
case. However in all tables, we derive economically-reasonable values for augmented technical 
progress for labor and capital and broadly in line with the first column, the elasticity of 
substitution are around 0.6. 

Of the unconstrained time-varying results (column 1.3 in Table 3, column 2.3 in Table 4; 
column 3.3 in Table 5; column 4.3 in Table 6), we see that labor-augmenting technical progress 
shows an exponential pattern (also seen in the top right box of the corresponding graphs) 
although with growth rates slightly decelerating (i.e., middle right boxes). Further, since point 
estimates for Kλ  are negative, this implies that capital-augmenting technical progress shows a 
hyperbolic pattern (i.e., top right box) although with growth rates asymptoting towards zero (i.e., 
middle right boxes). Since Kλ  is not significantly different from zero (except in Table 3), we 
impose a value of zero and therefore estimate the more parsimonious form in Tables 3-6 
(columns 1.4, 2.4, 3.4 and 4.4). There, all parameters are highly significant and residual 
properties are roughly similar to the corresponding unconstrained case. 

Furthermore, we present in the tables cases which explicitly uses the Kmenta 
approximation for the TFP component (columns 2.4 KMENTA, 3.4 KMENTA and 4.4 
KMENTA in Tables 3-6). We find quite similar technical progress as before. Estimates of the 
value for σ , though still well below unity, are somewhat higher than before (of the order of 0.05, 
0.1 extra); this apparent bias arises from the fact that the Kmenta approximation is itself an 
approximation linearised around a value of unity for σ .  
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  Let us summarize. We have seen that where we do not allow for time-varying technical 
change (i.e., we impose the conventional case of constant factor-augmenting technical progress), 
that a global minimum is associated (like so many other studies) with a unitary elasticity of 
substitution. However, that case is not characterized by stationary residuals or by plausible 
technical parameters. A local minimum (associated with an elasticity of 0.6) displays similarly 
poor residual properties but more economically reasonable technology parameters. When we 
allowed the data to choose the functional form (via the Box-Cox transformation) we found not 
only that labor-augmenting technical progress exceeds that of capital but that labor-augmenting 
technical progress shows an exponential pattern whilst that of capital displays a hyperbolic (or a 
most logarithmic) dynamic. This is in line with Acemoglu’s growth model, which allows 
temporary but persistent capital-augmenting technical progress.  

Regarding other parameters, ( A and µ ), estimated values are well in line with our priors. 
The scale parameter is in the neighborhood of one, the capital share parameter corresponds well 
to the sample average of capital income share. The mark-up is significantly different from zero 
and appears relatively robust at 4%.8 Furthermore, as discussed in Section 4, the distribution 
parameter is robustly identified by the normalized system (at 0.2), and is not, for example, 
sensitive to different sigma estimates and is well in line with observed average capital-income 
share (accounting for the markup). 

Finally, in Appendix Two, to provide further evidence on the empirical application of the 
Normalization approach, we perform recursive estimation of our supply-side system with the 
various fixed point estimated first within the rolling and then imposed at their full-sample values. 
Unsurprisingly, we find the second, full-information approach, to, provide the more robust 
results. 
 
8. Conclusions 
 
Our analysis was motivated by both theoretical and empirical contributions that have recently 
challenged the dominance of the Cobb-Douglas production for modeling the aggregate 
production function in models of economic growth. The natural alternative to the Cobb-Douglas 
function being the CES function with non-unitary elasticity of substitution we analyzed the many 
problems that occur with estimations of the respective parameters of this functional form. We 
propose that by using normalized CES functions and more flexible functional form for the growth 
rate of factor efficiencies the estimation results can be much improved.  

Applying a normalized CES function with factor-augmenting technical progress, we 
estimate a supply-side system of the US economy from 1953 to 1998. Avoiding potential 
estimation biases that have occurred in earlier estimations and putting a high emphasis on the 
consistency of the data set, required by the estimated system, we obtain robust results not only for 
the aggregate elasticity of substitution but also for the parameters of labor and capital augmenting 
technical change. We find that the elasticity of substitution is significantly below unity (between 
0.5 and 0.7) and that the growth rates of technical progress show an interesting asymmetrical 
pattern where the growth of labor-augmenting technical progress is exponential, while the growth 
of capital augmenting progress is hyperbolic or logarithmic. 

Our results are therefore supportive of Acemoglu’s view on biased technological change 
where labor efficiency growth is dominant in the long run while capital efficiency growth must 
fade away. Given a non-unitary elasticity of substitution this pattern of technical growth rates 
                                                                 
8 It is worth noting that estimates of the markup parameter, µ , are very sensitive to possible measurement errors and 
aggregation errors in the level of the capital stock and the user cost of capital. 
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guarantees the secular stability of income shares whereas they can fluctuate in the medium run. 
We think that with these properties the CES production function has still (or again) a prominent 
role to in the theory of economic growth.  
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Table 1.  
Empirical studies of aggregate elasticity of substitution and technological change in the US 

   

Estimated Annual Rate Of Efficiency Change 

Study 
Sample 
(Annual 

Frequency) 

Assumption on 
Technological 

Change 

Estimated 
Elasticity of 
Substitution: 

σ 
Neutral: 

N Kγ γ=  
Labor- 

augmenting: Nγ  

Capital- 
Augmenting: 

Kγ  

Arrow et al. 
(1961) 1909-1949 Hicks-Neutral 0.57 1.8 - - 

Kendrick and 
Sato (1963) 1919-1960 Hicks-Neutral 0.58 2.1 - - 

Brown and De 
Cani (1963) 

1890-1918 

1919-1937 

1938-1958 

1890-1958 

Factor 
Augmenting 

0.35 

0.08 

0.11 

0.44 

Labor saving ( N Kγ γ− = 0.48) 

Labor saving ( N Kγ γ− = 0.62) 

Labor saving ( N Kγ γ− = 0.36) 

? 
David and van 

de Klundert 
(1965) 

1899-1960 Factor 
Augmenting 0.32 - 2.2 1.5 

Bodkin and 
Klein (1967) 1909-1949 Hicks-neutral 0.5-0.7 1.4-1.5   

Wilkinson 
(1968) 1899-1953 

Factor 
Augmenting 0.5 Labor saving ( N Kγ γ− = 0.51) 

Sato 
(1970) 1909-1960 

Factor 
Augmenting 0.5 – 0.7 - 2.0 1.0 

Panik 
(1976) 1929-1966 Factor 

Augmenting 0.76 Labor saving  ( N Kγ γ− = 0.27) 

Berndt 
(1976) 

1929-1968 Hicks-neutral 0.96-1.25 ? - - 

Kalt  
(1978) 1929-1967 

Factor 
Augmenting 0.76 - 2.2 0.01 

Hicks-neutral 0.94-1.02 1.14 - - Antras  
(2003) 1948-1998 Factor-

augmenting 0.8 Labor saving ( N Kγ γ− = 3.15) 
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Table 2. 
Recent empirical studies of aggregate elasticity of substitution in different countries 

 

Study Countries 
Sample 

(Frequency) 
Assumption For 

Technological Change 

Estimated Elasticity 
Of Substitution: 

σ 

Lewis and Kirby 
(1988) Australia 

1967-1987 
(Weekly) Hicks-Neutral 0.78 

Easterly and Fischer 
(1995) 

Soviet Union 1950-1987 
(Annual) 

Hicks-Neutral 0.37 

Andersen et al. (1999) 
Panel of 17 OECD 

countries 
1966-1996 
(Annual) Hicks-Neutral 1.12 

Bolt and van Els 
(2000) 

Austria  
Belgium 
Germany 
Denmark 

Spain 
Finland 
France 
Italy 

Netherlands 
Sweden 

UK 
US 

Japan 

1971-1996 
(Quarterly) 

Hicks-Neutral 

0.24 
0.78 
0.53 
0.61 

1 
0.34 
0.73 
0.52 
0.27 
0.68 
0.6 
0.82 
0.3 

Duffy and 
Papageorgiou (2000) 

82 developed and 
developing countries  

1960-1987 
(Annual) Hicks-Neutral 1.4 

Ripatti and Vilmunen 
(2001) Finland 1975-1999 

(Quarterly) 
Factor 

Augmenting 
0.6 

Willman (2002) Euro area 
1970-1997 
(Quarterly) 

Harrod Neutral 
Hicks Neutral 
Solow Neutral 

0.37-Infinity 
0.66-2.23 

0.95-1.05 (a) 

Berthold et al. (2002) 
US 

Germany 
France 

1970-1995 
(Semi-Annual) Harrod-Neutral 

1.15 
1.45 
2.01 

Bertolila and 
Saint-Paul (2003) 

Panel of 13 industries 
in 12 

OECD countries 

1972-1993 
(Annual) Harrod-Neutral 1.06 

McAdam and 
Willman (2004a) Germany 

1983-1999 
(Quarterly) Hicks Neutral 0.7-1.2 

 
Note:  

(a) In the light of statistical criteria, Solow Neutral was preferred since, for Hicks- and Harrod-Neutral 
cases elasticity estimates were highly unstable (being strongly sample dependent). 
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Table 3. Estimation of Supply-Side 
(Labor Input: Employed persons, Labor Income: Proprietors’ income set at 67%) 

       

 
Constant Factor-Augmenting Technical 

Growth 
Time-Varying Factor-Augmenting Technical 

Growth (Box-Cox Case) 

GRAPHS 
1.1 

(Local Optimum) 
1.2 

(Global Optimum) 
1.3 

(Global Optimum) 
1.3 KMENTA 

(Global Optimum) 

A 
1.000 

(0.014) 
1.030 

(0.017) 
1.027 
(0.011) 

1.027 
(0.011) 

π  0.221 
(0.010) 

0.219 
(0.009) 

0.219 
(0.010) 

0.219 
(0.010) 

Nγ  0.017 
(0.001) 

-0.248 
(0.141) 

0.016 
(0.001) 

0.016 
 (0.001) 

Nλ  1.000 
(—) 

0.538 
(0.120) 

0.609 
(0.137) 

Kγ  
0.004 

(0.001) 
0.944 

(0.488) 
0.002 
(0.001) 

0.003 
(0.001) 

Kλ  
1.000 
(—) 

-1.028 
(0.460) 

-0.835 
(0.502) 

σ  0.600 
(0.014) 

0.999 
(0.001) 

0.639 
(0.032) 

0.707 
(0.036) 

µ  1.039 
(0.014) 

1.041 
(0.014) 

1.042 
(0.014) 

1.040 
(0.015) 

 

0
tt

t
gN =

δ
δ

 0.017 -0.248 0.016 0.016 

0
tt

t
gK =

δ
δ

 0.004 0.944 0.002 0.003 

TFP 0.014 0.014 0.013 0.013 

 
Log Lik. -18.039 -18.157 -18.714 -18.718 
ADFN -2.880 -3.350 -3.340 -3.460 
ADFK -3.550 -3.520 -3.530 -3.520 
ADFY -2.440 -2.000 -2.480 -2.470 

 
 
Note: Standard Errors in parenthesis. 
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Table 4. Estimation of Supply-Side 
(Labor Input: Employed persons, Labor income: Self-employed labor share) 

 

 
 
  

Constant Factor-
Augmenting Technical 

Growth 

Time-Varying Factor-
Augmenting Technical 
Growth (Box-Cox Case) 

Time-Varying Factor-
Augmenting Technical 
Growth (Box-Cox Case) 

With  
Logarithmic Capital- 

Augmenting Technical 
Growth 

GRAPHS 
2.1 

(Local 
Optimum) 

2.2 
(Global 

Optimum) 

2.3  
(Global 

Optimum) 

2.3 
KMENTA 

(Global 
Optimum) 

2.4 
(Global 

Optimum) 

2.4 
KMENTA 

(Global 
Optimum) 

A 1.000 
(0.014) 

1.039 
(0.016) 

1.029 
(0.012) 

1.029 
(0.012) 

1.029 
(0.012) 

1.028 
(0.013) 

π  0.221 
(0.009) 

0.220 
(0.009) 

0.220 
(0.010) 

0.220 
(0.010) 

0.221 
(0.010) 

0.220 
(0.010) 

Nγ  0.017 
(0.001) 

-0.198 
(0.113) 

0.015 
(0.001) 

0.015 
(0.001) 

0.015 
(0.001) 

0.015 
(0.001) 

Nλ  1.000 
(—) 

0.461 
(0.153) 

0.531 
(0.188) 

0.428 
(0.142) 

0.557 
(0.131) 

Kγ  0.004 
(0.001) 

0.768 
(0.384) 

0.004 
(0.001) 

0.005 
(0.002) 

0.004 
(0.001) 

0.005 
(0.001) 

Kλ  1.000 
(—) 

-0.253 
(0.371) 

0.219 
(0.653) 

0.00 (a) 
(—) 

σ  0.467 
(0.007) 

0.997 
(0.003) 

0.592 
(0.021) 

0.677 
(0.028) 

0.579 
(0.021) 

0.695 
(0.027) 

µ  1.039 
(0.012) 

1.042 
(0.012) 

1.042 
(0.012) 

1.040 
(0.013) 

1.042 
(0.012) 

1.040 
(0.013) 

 

0
tt

t
gN =

δ
δ

 

0.017 -0.198 0.015 0.015 0.015 0.015 

0
tt

t
gK =

δ
δ

 

0.004 0.768 0.004 0.005 0.004 0.005 

TFP 0.014 0.014 0.013 0.013 0.013 0.013 

 
Log Lik. -18.131 -18.414 -18.836 -18.835 -18.825 -18.833 
ADFN -2.460 -3.140 -2.810 -2.840 -3.670 -2.850 
ADFK -3.610 -3.540 -3.570 -3.560 -3.580 -3.560 
ADFY -2.230 -1.660 -2.400 -2.370 -2.380 -2.380 

  

Note: Standard Errors in parenthesis. (a) We imposed a value of –0.001 for Kλ  which proved, within our sample, to 
give a close enough approximation to logarithmic function since a value of zero renders the equation indeterminate; 

thus, we employ the approximation of the function ( )ttK −lnγ by 











−





−

−

1
001.0

001.0

t
ttKγ

 . 
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Table 5. Estimation of Supply-Side 
(Labor Input: Hours, Labor Income: Self-employed labor share) 

 
 
  

Constant Factor-
Augmenting Technical 

Growth 

Time-Varying Factor-
Augmenting Technical 
Growth (Box-Cox Case) 

Time-Varying Factor-
Augmenting Technical 
Growth (Box-Cox Case) 

With  
Logarithmic Capital- 

Augmenting Technical 
Growth 

GRAPHS 
3.1 

(Local 
Optimum) 

3.2 
(Global 

Optimum) 

3.3  
(Global 

Optimum) 

3.3 
KMENTA 

(Global 
Optimum) 

3.4 
(Global 

Optimum) 

3.4 
KMENTA 

(Global 
Optimum) 

A 
1.000 

(0.012) 
1.040 

(0.011) 
1.029 

(0.008) 
1.030 

(0.008) 
1.029 

(0.008) 
1.029 

(0.009) 

π  0.221 
(0.009) 

0.219 
(0.009) 

0.221 
(0.009) 

0.221 
(0.010) 

0.221 
(0.009) 

0.219 
(0.009) 

Nγ  0.021 
(0.001) 

-0.198 
(0.116) 

0.019 
(0.001) 

0.019 
(0.001) 

0.019 
(0.001) 

0.019 
(0.001) 

Nλ  1.000 
(—) 

0.545 
(0.075) 

0.611 
(0.100) 

0.533 
(0.079) 

0.671 
(0.080) 

Kγ  
0.004 

(0.001) 
0.785 

(0.397) 
0.003 

(0.001) 
0.005 

(0.001) 
0.004 

(0.000) 
0.004 

(0.001) 

Kλ  
1.000 
(—) 

-0.175 
(0.317) 

0.880 
(0.873) 

0.00 (a) 
(—) 

σ  0.485 
(0.009) 

0.997 
(0.003) 

0.544 
(0.019) 

0.651 
(0.028) 

0.541 
(0.019) 

0.694 
(0.029) 

µ  1.039 
(0.012) 

1.043 
(0.012) 

1.043 
(0.012) 

1.039 
(0.012) 

1.043 
(0.012) 

1.039 
(0.012) 

 

0
tt

t
gN =

δ
δ

 

0.021 -0.198 0.019 0.019 0.019 0.019 

0
tt

t
gK =

δ
δ

 

0.004 0.785 0.003 0.005 0.004 0.004 

TFP 0.017 0.017 0.016 0.016 0.016 0.016 

 
Log Lik. -18.341 -18.982 -19.338 -19.328 -19.331 -19.298 
ADFN -2.504 -3.152 -3.621 -3.474 -3.653 -3.399 
ADFK -3.612 -3.542 -3.581 -3.571 -3.588 -3.553 
ADFY -2.317 -2.338 -3.175 -3.105 -3.163 -3.133 

  

Note: Standard Errors in parenthesis. (a) We imposed a value of –0.001 for Kλ  which proved, within our sample, to 
give a close enough approximation to logarithmic function since a value of zero renders the equation indeterminate; 

thus, we employ the approximation of the function ( )ttK −lnγ by 











−





−

−

1
001.0

001.0

t
ttKγ

 .
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Table 6. Estimation of Supply-Side 
(Labor Input: Quality-adjusted hours, Labor income: Self-employed labor share) 

 
 

 
 
  

Constant Factor-Augmenting 
Technical Growth 

Time-Varying Factor-
Augmenting Technical Growth 

(Box-Cox Case) 

Time-Varying Factor-
Augmenting Technical Growth 

(Box-Cox Case) 
With  

Logarithmic Capital- 
Augmenting Technical Growth 

GRAPHS 
4.1 

(Local 
Optimum) 

4.2 
(Global 

Optimum) 

4.3 
(Global 

Optimum) 

4.3 
KMENTA 

(Global 
Optimum) 

4.4  
(Global 

Optimum) 

4.4 
KMENTA 

(Global 
Optimum) 

A 1.000 
(0.012) 

1.040 
(0.007) 

1.029 
(0.006) 

1.029 
(0.006) 

1.029 
(0.006) 

1.029 
(0.007) 
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FIGURE 1. 

Production, inputs, factor-income shares and markup
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Notes: For the employment series we have three measures: (a) employed persons, (b) hours 
worked, (c) constant labor quality index. 
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Graphs 1.1: Constant Factor-Augmenting Technical Growth 
(Labor Input: Employed persons, Labor Income: Proprietors’ income set at 67%) 

 
 

 (Local Optimum)  

Properties of the supply-side system
L-share residuals (ADF(0)=-2.88)

sigma = 0.60

1953 1956 1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998
-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

K-share residuals (ADF(0)=-3.55)
sigma = 0.60

1953 1956 1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6

Production function residuals (ADF(1)=-2.44)
sigma = 0.60

1953 1956 1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998
-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

TFP L-augenting K-augmenting

Technical progress, log-levels
sigma = 0.60

1953 1956 1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998
-0.4

-0.3

-0.2

-0.1

-0.0

0.1

0.2

0.3

0.4

TFP (change) L-augm.(change) K-augm.(change)

Growth contributions of technical progress
sigma = 0.60

1953 1957 1961 1965 1969 1973 1977 1981 1985 1989 1993 1997
0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Scatter plot (Sigma, Likelihood): Local Minima

Sigma

L
ik

el
ih

o
o

d
 v

al
u

e

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
-18.75

-18.50

-18.25

-18.00

-17.75

-17.50

 



 
 

30 

Graphs 1.2: Constant Factor-Augmenting Technical Growth 
(Labor Input: Employed persons, Labor Income: Proprietors’ income set at 67%) 
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Graphs 1.3.: Time -Varying Factor-Augmenting Technical Growth 
(Box-Cox Case) 

(Labor Input: Employed persons, Labor Income: Proprietors’ income set at 67%) 
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Graphs 1.3. (Kmenta Case): Time-Varying Factor-Augmenting Technical Growth 
(Box-Cox Case) 

(Labor Input: Employed persons, Labor Income: Proprietors’ income set at 67%) 
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Graphs 2.1: Constant Factor-Augmenting Technical Growth 
 (Labor Input: Employed persons, Labor income: Se lf-employed labor share) 

 
 

(Local Optimum) 
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Graphs 2.2: Constant Factor-Augmenting Technical Growth 
(Labor Input: Employed persons, Labor income: Self-employed labor share) 

 
 

(Global Optimum) 
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Graphs 2.3: Time-Varying Factor-Augmenting Technical Growth (Box-Cox Case) 
 (Labor Input: Employed persons, Labor income: Self-employed labor share) 
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Graphs 2.3 (Kmenta Case): Time-Varying Factor-Augmenting Technical Growth (Box-Cox 
Case) 

 (Labor Input: Employed persons, Labor income: Se lf-employed labor share) 
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Graphs 2.4: Time-Varying Factor-Augmenting Technical Growth (Box-Cox Case) 
With Logarithmic Capital-Augmenting Technical Growth 

 (Labor Input: Employed persons, Labor income: Self-employed labor share) 
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Graphs 2.4 (Kmenta Case): Time-Varying Factor-Augmenting Technical Growth (Box-Cox 
Case) With Logarithmic Capital- Augmenting Technical Growth 

 (Labor Input: Employed persons, Labor income: Self-employed labor share) 
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Graphs 3.1: Constant factor-augmenting technical growth 
 (Labor Input: Hours, Labor Income: Self-employed labor share) 

 
(Local Optimum) 
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Graphs 3.2: Constant Factor-Augmenting Technical Growth 
(Labor Input: Hours, Labor Income: Self-employed labor share) 
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Graphs 3.3. : Time -varying factor-augmenting technical growth (Box-Cox case) 
(Labor Input: Hours, Labor Income: Self-employed labor share) 
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Graphs 3.3. (Kmenta Case): Time -varying factor-augmenting technical growth (Box-Cox 
case) 

(Labor Input: Hours, Labor Income: Self-employed labor share) 
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Graphs 3.4. : Time-varying factor-augmenting technical growth (Box-Cox case) with 
logarithmic capital- augmenting technical growth. 

(Labor Input: Hours, Labor Income: Self-employed labor share) 
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Graphs 3.4. (Kmenta case): Time -varying factor-augmenting technical growth (box-cox 
case) with logarithmic capital- augmenting technical growth. 

(Labor Input: Hours, Labor Income: Self-employed labor share) 
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Graphs 4.1: Constant factor-augmenting technical growth 
(Labor Input: Quality-adjusted hours, Labor income: Self-employed labor share) 

 
 

(Local Optimum) 

Properties of the supply-side system
L-share residuals (ADF(0)=-2.5)

sigma = 0.51

1953 1956 1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998
-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

K-share residuals (ADF(0)=-3.61)
sigma = 0.51

1953 1956 1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6

Production function residuals (ADF(1)=-2.15)
sigma = 0.51

1953 1957 1961 1965 1969 1973 1977 1981 1985 1989 1993 1997
-0.075

-0.050

-0.025

0.000

0.025

0.050

0.075

TFP L-augenting K-augmenting

Technical progress, log-levels
sigma = 0.51

1953 1956 1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998
-0.4

-0.3

-0.2

-0.1

-0.0

0.1

0.2

0.3

0.4

TFP (change) L-augm.(change) K-augm.(change)

Growth contributions of technical progress
sigma = 0.51

1953 1957 1961 1965 1969 1973 1977 1981 1985 1989 1993 1997
0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Scatter plot (Sigma, Likelihood): Local Minima

Sigma

L
ik

el
ih

o
o

d
 v

al
u

e

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
-20.0

-19.5

-19.0

-18.5

-18.0

-17.5

-17.0

 
 
 



 
 

46 

Graphs 4.2: Constant Factor-Augmenting Technical Growth 
(Labor Input: Quality-adjusted hours, Labor income: Self-employed labor share) 
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Graphs 4.3. : Time -varying factor-augmenting technical growth (Box-Cox case) 
(Labor Input: Quality-adjusted hours, Labor income: Self-employed labor share) 
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Graphs 4.3. (Kmenta Case): Time -varying factor-augmenting technical growth (Box-Cox 
case) 

(Labor Input: Quality-adjusted hours, Labor income: Self-employed labor share) 
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Graphs 4.4. : Time-varying factor-augmenting technical growth (Box-Cox case) with 
logarithmic capital- augmenting technical growth. 

(Labor Input: Quality-adjusted hours, Labor income: Self-employed labor share) 
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Graphs 4.4. (Kmenta case): Time -varying factor-augmenting technical growth (box-cox 
case) with logarithmic capital- augmenting technical growth. 

(Labor Input: Quality-adjusted hours, Labor income: Self-employed labor share) 
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Appendix One: Normalization 
 

From (2) and (3), it follows immediately that at the point in time of reference 0t t=  the 
expression (6) must hold.  

Next, the factor income share ratio is calculated and at the point of reference set equal to 
the baseline values:  
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This leads to the following expression for 
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Finally, total output according to (1) is calculated at the point of reference and set equal to 
the baseline value, leading to: 
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With the help of this expression, one obtains (4) and (5). 
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Appendix Two: Recursive Estimation 
 
To provide further evidence on the empirical application of the Normalization approach, we 
perform recursive estimation of our supply-side system (specifically, the following results refer 
to our preferred specification 2.4). We consider two exercises: first, to estimate incrementally 
(i.e., recursively) specification 2.4 where the fixed points and the scale parameter (A) are 
determined or estimated within each rolling sample; second, where these values are fixed at their 
full-sample values. 

Fig1A embodies the time-varying sub-sample fixed points. We can see that the system 
embodies good convergence properties – that is to say, the recursive values converge very 
quickly to their long-run values, especially the technical progress parameters. For example, 
σ starts at 0.9 but exhibits thereafter a smooth downward profile towards a value of around 0.7 in 
the 1980s and then around mid-1990s it starts to dip to a lower value, this may represent a new 
regime or some protracted mean-reversion. So it may indicate that the late 1990s was somehow 
exceptional (either permanent or temporarily). 

Notably the Scale parameter (A) has an upward trend, which mirrors inverselyσ . A 
plausible explanation is that this relates to the non-linearity which becomes stronger the more 
sigma estimates deviates from unity. When σ  in the early part of the estimation sample (close to 
unity) then also as expected scale parameter (A) is close to unity.  

Now we look at Fig 2A (single full sample fixed-point average). Here, we derive more 
precise estimates from this procedure. Initial estimates closer to their full-sample ones: 
unsurprising since we use more information. The parameter σ  converges from 0.9 to 0.6 albeit 
in a rather bumpy manner which appears to relate to the first oil crisis. A plausible explanation is 
that the data features around the first oil shock did not reflect developments in the rest of the 
sample. Nevertheless, the recursive procedure tries hard to fit this movement in the data (this 
appears inconsistent with this full-sample fixed point which captures (as desired in modeling the 
economy’s long-run productive potential) the truly long-run features. This movement can also be 
seen in the other parameters. 

The names in the below graphs correspond to the symbols as: beta ( ),π  eta ( µ ), gamma 
( Nγ ), kamma ( Kγ ), laml ( Nλ ), scale (A) and sigma (σ ). 
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 Figure. 2A. Recursive Estimates  
(Time-Varying Sub-Sample Dependent Fixed-Point) 
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Figure. 2B— Recursive Estimates 
(Single Full-Sample Dependent Fixed-Point) 
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