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Abstract
This paper studies the effects of taxation on long-run growth in a

two-sector endogenous growth model with (i) physical capital as an
input in the education sector and (ii) leisure as an additional argument
in the utility function. Due to the flexibility of labor supply, taxation
of income may induce agents to spend more or less time on leisure
activities. Income taxation - the same rate applies for capital and labor
income - reduces the growth rate. The contribution of endogenous
leisure in this case is confined to reducing or increasing the size of the
effect on the growth rate. The same is true if only labor income is
taxed. However, if only capital income is taxed, the sign of the effect
may reverse. In that case, the positive effect of the increase in total
non-leisure time dominates the direct negative effect, implying that
capital taxation increases the long-run growth rate.
JEL Classification: E20, H20, J22, J24, O41

1 Introduction

Income taxation affects the incentives to invest in different sectors of the
economy, potentially affecting the long-run growth rate. This paper stud-
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ies the impact of taxation on long-run growth in a two-sector endogenous
growth model. The model features both physical capital as an input in the
education sector as well as leisure as an additional argument in the util-
ity function. Endogenizing labor supply through leisure-dependent utility in
models of economic growth has significant implications for the dynamics of
these models, see e.g. Ladrón-de-Guevara et al. (1997) and De Hek (1998,
1999). The present analysis shows that the model may exhibit multiple bal-
anced growth paths, and establishes a necessary condition for the existence
of multiple balanced growth paths. The main purpose of this paper, how-
ever, is to show that the introduction of both features has significant and
novel results on the impact of taxation on long-run growth. Most notably,
this set-up implies that capital income taxation may lead to faster long-run
growth.
The taxation analysis focuses on the case of a unique stationary equi-

librium. It distinguishes three tax regimes: income taxation (equal rates on
labor and capital income), capital income taxation and labor income taxa-
tion. Like in the case without a labor-leisure choice, income taxation has
a negative effect on the long-run growth rate. However, depending on the
relative importance of substitution and income effects, a tax on income leads
to a rise or fall in the time spent on leisure activities, which in turn in-
creases respectively reduces the size of the negative effect on growth. The
same is true if only labor income is taxed. However, contrary to the case
without a labor-leisure choice, a tax on capital income may have a positive
effect on the long-run growth rate. This occurs mainly when the elasticity
of intertemporal substitution is small, since in that case the income effect
is (relatively) strong, implying that agents tend to work more and/or invest
more time in human capital accumulation - the main engine of growth - in
response to an increase in the tax rate. This reduction in leisure time then is
reinforced as, compared to a tax on income, a tax on capital income induces
more time spent on production and human capital accumulation, because
labor (time) is not taxed. The positive impact of capital income taxation
on growth is shown to hold for sensible parameter values and is robust. In
an extension of the model, the implications of introducing productive gov-
ernment expenditures are studied. The main conclusion from this analysis is
that improvements in the productivity (in the goods sector as well as in the
education sector) affect the growth rate positively.
The effects of income taxation in the context of a two-sector endogenous

growth model have been examined before by many authors. Some of these
studies use numerical simulations of calibrated models to calculate the effect
of tax reform on growth, e.g. Lucas (1990), Jones, Manuelli and Rossi (1993),
Stokey and Rebelo (1995) and Hendricks (1999). Others, like Chamley (1992)

2



and Mino (1996), examine analytically the effect of (capital) income taxation
on growth. Almost all these studies conclude that a (capital) income tax is
bad for growth. An exception is Uhlig and Yanagawa (1996) who show that
higher capital income taxes may lead to faster growth in an overlapping
generations economy with endogenous growth. The reason for this positive
effect is however entirely different from the reason in the present paper. They
assume that labor income is paid mostly to the young while capital income
accrues mostly to the old. This implies that a higher capital income tax,
accompanied with a lower labor income tax, leaves the young with more
income out of which to save. If the interest elasticity of savings is sufficiently
low, the net effect on savings and, therefore, on growth is positive.
The analysis in the present paper is closely related to the analyses in

Rebelo (1991), Ladrón-de-Guevara et al. (1997) and Ortigueira (1998). In
fact, the model in the present paper is the same as Rebelo’s model with
an endogenous leisure choice (Rebelo, 1991, section III). Due to analytical
difficulties, Rebelo confines his analysis of the effect of income taxation on
the rate of growth to numerical simulations. These simulations indicate that
taxing income has a negative effect on the growth rate. The analysis in
this paper shows analytically that this is true. Ladrón-de-Guevara et al.
(1997) establishes that there could be multiple balanced growth paths in the
human capital accumulation model of Lucas (1988) if leisure is endogenously
determined. The present analysis extends this result to the more general
two-sector endogenous growth model, where physical capital is included as an
input in the education sector. Ortigueira (1998) studies the impact of labor
and capital income taxation on the transitional dynamics to the balanced
growth path. He considers both the case of physical capital in the education
sector and leisure as an additional argument in the utility function as two
separate extensions of the basic model. That model is different from the
present model in the sense that the tax revenues are remitted as lump-sum
transfers to the households.
From a modelling point of view, the main innovation of this paper rela-

tive to the previous literature is to combine physical capital as an input in
the educational sector and leisure as an additional argument in the utility
function. Previous work has studied models with either the former or the
latter feature, but not with both. The finding that endogenous leisure may
strengthen or weaken the effect of income taxation on growth, but does not
reverse the sign, depends on this combination. Furthermore, compared to
the model with endogenous leisure but without capital in the education sec-
tor, the present study shows that the combination of both features leaves
the possibility of multiple balanced growth paths intact. The interesting and
novel finding that capital income taxation may have a positive impact on

3



the long-run growth rate is however shown to be a consequence of the labor-
leisure choice. The inclusion of capital as an input in the education sector
actually reduces this possibility.
The paper is organized as follows. Section 2 describes the model and its

solution, including the possibility of multiple balanced growth paths. Sec-
tion 3 analyses the effects of taxation on long-run growth, including income,
capital-income and labor-income taxation, in the unique BGP case. Section
4 discusses the implications of introducing productive government expendi-
tures in the model. A summary is given in section 5.

2 The Model

Following Rebelo (1991, section III), the model consists of two sectors with
different technologies for production and education. A fraction φ of physical
capital K together with NH efficiency units of labor, where N is the fraction
of time allocated to labor and H the stock of human capital, are used for the
production of goods, i.e.,

Y (t) = A (φ(t)K(t))1−γ (N(t)H(t))γ , (1)

where A > 0 and 0 < γ < 1 are parameters. Profit maximization implies that
in equilibrium firms must pay each production factor its marginal product:

r(t) = (1− γ)A (φ(t)K(t))−γ (N(t)H(t))γ , (2)

w(t) = γA (φ(t)K(t))1−γ (N(t)H(t))γ−1 , (3)

where r is the interest rate and w the wage rate. The government imposes
flat-rate taxes on capital income, τ r, and labor income, τw. The analysis will
be undertaken in a closed economy context, but, as noted by Rebelo (1991), is
valid in a world of open economies connected by international capital markets
if all countries follow the worldwide tax system. Furthermore, to focus on the
effects of taxation, government revenues do not affect the marginal utility of
private consumption and leisure or the production possibilities of the private
sector1. Under these assumptions, capital accumulation takes place according
to

·
K(t) = (1− τ r)r(t)φ(t)K(t) + (1− τw)w(t)N(t)H(t)− δkK(t)− C(t), (4)

1The implications of productive government expenditures are examined in section 4.
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where δk is the depreciation rate of capital and C aggregate consumption.
Human capital accumulation takes place by combining the remaining frac-

tion (1− φ) of the capital stock with (1−N −L)H efficiency units of labor,
where L is the fraction of the time used for leisure activities. To focus on the
impact of income taxation, the production of human capital is not included
in the definition of the tax base (whereas income generated from human cap-
ital is included). In essence, human capital is viewed as a nonmarket activity
whose inputs are not subject to factor income taxation.2 The human capital
stock depreciates at the rate δh. This leads to the following human capital
accumulation equation:

·
H(t) = B [(1− φ(t))K(t)]1−β [(1−N(t)− L(t))H(t)]β − δhH(t), (5)

where B > 0 and 0 < β < 1 are parameters.
The government is restricted to run a balanced budget. That is, the

government can neither finance deficits by issuing debt nor run surpluses by
accumulating assets. Government expenditures, G(t), therefore equal tax
revenues in each period,

G(t) = τ rr(t)φ(t)K(t) + τww(t)N(t)H(t). (6)

Inserting the expressions for r(t) and w(t) in the government budget con-
straint implies that G(t) = [τ r(1− γ) + τwγ]Y (t).
In the presence of an endogenous leisure choice, the preferences of the

households have to be such that in equilibrium the rate of growth of con-
sumption and the allocations of time between work, leisure and human capital
accumulation are constant. The following utility function is used throughout
the paper3:

U(C,L,G) =
(CαL1−α)1−σ − 1

1− σ
+ v(G), (7)

2In support of this case, we can argue that the individual time input (and implicit labor
income) used in the production of human capital - think of student’s time spent on school -
is not taxed. Lucas (1990) and Rebelo (1991) are examples of this case. On the other hand,
human capital accumulation can also be thought of as (partly) a market activity whose
inputs are taxed and/or subsidized (e.g. Pecorino, 1993, Stokey and Rebelo, 1995). The
salaries of teachers, for example, are taxed inputs into the production of human capital.
However, in many countries public spending on education is large and/or human capital
accumulation is subsidized or has favorable tax treatments, limiting the impact of taxation
in the education sector.

3See King, Plosser and Rebelo (1988) for a derivation of the class of utility functions
from which this function is taken.
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for σ > 0 (1/σ is the elasticity of intertemporal substitution) and 0 < α ≤ 1.
The function v(.) satisfies the usual regularity conditions with v0(.) > 0
and v00(.) < 0. Tax revenues are used to provide services that enter into
households’ utility functions (see e.g. Barro, 1990). Here we impose an
additive structure, ensuring that G does not affect the marginal utility of
private consumption and leisure. Because households take the government
expenditures as given, government expenditures do not affect the choices of
the households. (However, they do affect the utility or welfare level of the
households, implying that production will be lower than optimal.)
A competitive equilibrium for this economy is a set of infinite sequences

for the quantities {C(t), L(t), N(t), φ(t), K(t), H(t), G(t)}, prices {r(t),
w(t)} and constant tax rates τ r and τw such that, taken the prices and G(t)
as given, the tuple {C(t), L(t), N(t), φ(t)} maximizesZ ∞

0

e−ρtU(C(t), L(t), G(t))dt (8)

subject to equations (4) and (5), and such that C(t) ≥ 0,K(t) ≥ 0, H(t) ≥ 0,
0 ≤ L(t) ≤ 1, 0 ≤ N(t) ≤ 1, 0 ≤ L(t) +N(t) ≤ 1, 0 ≤ φ(t) ≤ 1, K(0), H(0)
given, while the path {L(t), N(t), φ(t), K(t), H(t), G(t), r(t), w(t)} satisfies
equations (2), (3) and (6). The parameter ρ reflects the time preference of
the households.
In order to have different technologies for production and education, γ

and β should be different. The most plausible case is that the goods sec-
tor is relatively intensive in physical capital while the educational sector is
relatively intensive in human capital, i.e. γ < β. In most models with hu-
man capital accumulation β is chosen to be one, as in Lucas (1988) and
Ladrón-de-Guevara et al. (1997).
First, in a competitive equilibrium, the allocation of both physical and

human capital across the two sectors is such that the marginal products of the
two types of capital (measured in terms of units of physical capital) should
be equated in the two sectors, i.e.,

(1− τ r)r = q(1− β)B [(1− φ)K]−β [(1−N − L)H]β (9)

and
(1− τw)w = qβB [(1− φ)K]1−β [(1−N − L)H]β−1 , (10)

where q is the relative value of human capital in terms of physical capital.
Second, the return from investing one unit in physical capital should be the
same as the return from investing 1/q units in human capital. Hence,

(1−τ r)r−δk = βB [(1− φ)K]1−β [(1−N − L)H]β−1 (1−L)−δh+
·
q

q
. (11)
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Third, the optimal growth rate of consumption, given the interest rate, is

·
C

C
=
(1− τ r)r − δk − ρ

σα
(12)

with σα = 1− (1− σ)α. Last, the optimal allocation of time between leisure
and non-leisure activities requires that the marginal utility of leisure equals
the marginal productivity of non-leisure time measured in terms of utility of
forgone consumption,¡

CαL1−α
¢−σ

(1− α)CαL−α = λqβB [(1− φ)K]1−β [(1−N − L)H]β−1H,
(13)

where λ is the current-value shadow price of the capital stock. The derivation
of equations (12) and (13) is given in appendix 6.1.

2.1 The balanced growth path

In a balanced growth pathC,K andH grow at constant rates, while φ,N and

L remain constant. In particular, it follows that
·
C/C =

·
K/K =

·
H/H ≡ g.

If we define x ≡ K/H and z ≡ C/H, then this implies that, along a balanced
growth path,

·
x = 0 and

·
z = 0. Using equations (4) and (5), the

·
x = 0

equation is given by

(1− τ r)rφ+ (1− τw)w
N

x
− C

K
− δk = B (1− φ)1−β (1−N − L)β x1−β − δh.

(14)
Similarly, by equations (5) and (12), the

·
z = 0 equation can be written as

(1− τ r)r − δk − ρ

σα
= B (1− φ)1−β (1−N − L)β x1−β − δh. (15)

Furthermore, equations (9), (10), (11) and (13), together with the fact that
·
q = 0 in a balanced growth path, imply that

1− τw
1− τ r

γ

1− γ

φ

N
=

β

1− β

1− φ

1−N − L
, (16)

(1− τ r)(1− γ)A

·
φ

N
x

¸−γ
− δk = βB

·
(1− φ)

1−N − L
x

¸1−β
(1− L)− δh, (17)

(1− α)z = α(1− τw)γA

·
φ

N
x

¸1−γ
L. (18)
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This system of equations, consisting of the equations (14)-(18), charac-
terizes a balanced growth path. To solve this system of equations, we need
to impose δk = δh. Then, as is shown in appendix 6.2, the solution of this
system involves the solution of the next two equations in the two unknown
variables N and L:

(1− γ)(1− Tψ)N2 +

+(1− L){β(1− γ + Tγ)− (1− γ)(1− 2Tψ)}N +

−T (1− L)

½
(1− γ)ψ(1− L) +

αβγ

1− α
L

¾
= 0, (19)

N =
σα − β

σα
(1− L) +

(ρ+ (1− σα)δ)(Tψ)
−(1−ν)(1−β)βν

σαB1−ν [(1− τ r)A(1− γ)]ν
(1− L)ν, (20)

with ψ ≡ γ(1−β)
β(1−γ) < 1, T ≡ 1−τw

1−τr and ν ≡ 1−β
1−β+γ < 1. The first equation

derives from the
·
x = 0 equation, whereas the second equation derives from

the
·
z = 0 equation. To solve this reduced system of two equations, notice

that the first equation can be written as aN2 + b(L)N + c(L) = 0, with
c(L) < 0. To keep the analysis clear, we impose the following condition:

Condition 1 Tψ < 1.

The reason for imposing this condition is that this ensures that a > 0,
which implies that (i) the discriminant (b2 − 4ac) is always positive (hence,
there are only real solutions) and (ii) only one of the two solutions is positive.
Hence - disregarding the negative solution - N can be expressed as a function
of L, say N = f(L). Moreover, imposing this condition is not only a device
to establish a unique positive solution, it is also an empirically plausible
condition. As ψ lies between 0 and 1, the condition requires T to be less than
some value larger than one. E.g. if γ = 2/3 (consistent with the usual data
on labor’s share of income) and β = 3/4(> γ), the condition requires T to be
less than 3/2. Concerning the empirical evidence, Carey and Tchilinguirian
(2000) have constructed average effective tax rates on both capital and labor
income for the OECD countries, which are reported in table 1. The last
column shows the resulting values of T . It follows that 14 out of 21 countries
have a T smaller than 1 and all reported countries have a T that is smaller
than 3/2. Hence, the condition is likely to be satisfied in reality. Notice that
this condition is automatically satisfied if β = 1 (as this implies that ψ = 0).
Similarly, equation (20) expresses N as a function of L, say N = h(L).

Therefore we have a balanced growth path if f(L) = h(L).
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2.2 The possibility of multiple balanced growth paths

In this section we shortly review the possibility of having multiple balanced
growth paths in this model. First, we establish a necessary condition for
the existence of more than one balanced growth path. This necessary con-
dition derives from the fact that a balanced growth path is characterized
by the equality of two functions of L, f(L) and h(L). First it is shown
that f(L) is strictly concave. Since a strictly concave function has at most
two intersections with a convex function, and because f(1) = h(1) is one of
the intersections, there will be at most one interior solution if h(L) is convex.
Hence, convexity of h(L) excludes the possibility of multiple balanced growth
paths. This leads to the next proposition.

Proposition 1 Let Condition 1 hold. A necessary condition for the exis-
tence of multiple balanced growth paths is that σ < 1 + ρ

αδ
.

Proof. See appendix 6.5.1.

Is it likely that this condition holds in reality, or not? Given plausible
values of the relevant parameters - 0 ≤ ρ ≤ 0.1, 0 < δ ≤ 0.1 and 0 < α ≤ 1 -
and the empirically estimated range of values for σ - usually σ is estimated
somewhere between 1 and 5 - the comparison could come out either way.
However, if the condition holds, this does not imply that there are mul-

tiple balanced growth paths, as it is only a necessary condition. Given the
complexity of the model, to find out whether it is actually possible to have
multiple BGP’s we resort to a numerical analysis. It turns out that it is
possible to have more than one balanced growth path, as can be seen in fig-
ure 14. This figure shows the existence of three BGP’s (all of which satisfy
the transversality condition as given in appendix 6.1). BGP 1 and BGP 2
are interior, while BGP 3 is a non-interior balanced growth path (in which
N + L = 1). See appendix 6.3 for a proof that the non-interior BGP is
characterized by f(L) = 1 − L (i.e., it lies on the point of intersection of
N = f(L) and N = 1− L).
The existence of multiple balanced growth paths raises the question of

the stability properties of the BGP’s. Due to the complexity of the dynamic
system, we investigated the stability of the BGP’s numerically (see appendix
6.4). That analysis implies, similar to Ladrón-de-Guevara et al. (1997), that
BGP 2 is unstable, while BGP 1 and BGP 3 are stable. Let xi (i = 1, 2, 3)

4There are many combinations of the parameters that result in three BGP’s. Another
example, with a higher (more realistic) value of σ, is: α = 0.3, β = 0.97, γ = 0.5, A = 1.7,
B = 0.385, ρ = 0.07, σ = 1, δ = 0.05, τr = τw = 0.
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denote the capital-human capital ratio at BGP i. Then, given some initial
value x0 (6= x2) there are z0, N0, L0 and φ0 such that {x0, z0, N0, L0, φ0} lies
on a stable manifold and x0 converges to either x1 or x3, depending on the
specific value of x0. The next lemma implies that along the curve of f(L) a
higher value of L is accompanied with a higher capital-human capital ratio.

Lemma 2 Let Condition 1 hold and let x(L,N) denote the optimal capital-
human capital ratio as a function of L and N . Then ∂x(L,f(L))

∂L
> 0.

Proof. See appendix 6.5.2.

From this Lemma we may conclude that - given the stability properties
implied by the numerical analysis - if x0 is smaller than x2 it converges to x1
and if x0 is larger than x2 it converges to x3. Furthermore, as will be apparent
from the equation describing the growth rate of the economy as a function of
leisure (see equation 21), more leisure lowers the growth rate on a balanced
growth path. Thus, an economy with a relatively high human capital stock
will converge to the ’high-growth’ BGP, while an economy endowed with
a relatively low human capital stock will end up in the ’low-growth’ BGP
(in which the growth rate is actually negative if the depreciation rate δ is
positive).
As a last remark, it should be noted that the existence of multiple bal-

anced growth paths relies on the presence of a labor-leisure choice, i.e. 0 <
α < 1. If α = 1, the model reduces to the basic two-sector endogenous
growth model as described by Rebelo (1991, section III A), which has a
unique interior solution.

3 The effects of taxation

This section analyses the effects of taxation - income taxation, labor income
taxation and capital income taxation - on the long-run growth rate. We will
restrict the analysis to the case of a unique interior balanced growth path.
The analysis of taxation in the case of multiple balanced growth paths5 does
not add much to the economic intuition. In particular, the taxation analysis
is practically the same for the stable interior equilibrium (the most plausible
one) as for the unique balanced growth case.

5If h(0) < f(0) it may happen that there is one interior BGP. However, that BGP will
be unstable and the economy will converge to one of the two non-interior BGP’s. This
situation, therefore, falls into the category of multiple BGP’s.
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To find the effect of taxation on the long-run growth rate we first write
the growth rate, g, as a function of L,

g(L) = Q(1− τ r)
(1−γ)ν(1− τw)

γν(1− L)1−ν − ρ+ δ

σα
, (21)

with Q ≡ ψ(1−β)(1−ν)(βB)1−ν ((1− γ)A)ν /σα. See appendix 6.6 for a deriva-
tion of this result. Notice that this expression for the growth rate reduces to
the growth rate in Rebelo (1991, equation 14) if α = 1.

3.1 Income taxation

Taxing (total) income implies that both tax rates are equal, i.e. τw = τ r ≡ τ
and T = 1. The above equation for the growth rate shows that, if both
tax rates are equalized to τ , the tax rate has a direct negative effect on the
growth rate of (1 − τ)ν . This direct effect consists of two opposing effects.
First, taxation takes resources away from a productive sector (the capital
production sector) to use it in some unproductive (but utility enhancing)
way. Second, income taxation reduces the marginal products of capital and
labor in the production of capital, inducing the economy to shift resources
from capital production to human capital production.
Moreover, the tax rate has an indirect effect on the growth rate through

its impact on leisure. This indirect effect consists of a substitution effect and
an income effect. On the one hand, due to the reduced return to labor in the
production of capital, more time will be directed towards leisure activities.
On the other hand, taxation reduces the agent’s available income, urging him
to devote more time to the production of physical and human capital.
The determination of the overall effect of an income tax on the long-run

growth rate thus involves the effect of the tax rate on the equilibrium value
of leisure. To find this latter effect, notice that, since T = 1, the function
f(L) is not affected by a change in the tax rate τ . The function h(L),
on the contrary, is affected by a change in the tax rate. In particular, the
nature of this effect (positive or negative) depends on the earlier encountered
comparison between σ and 1 + ρ/(αδ): An increase in τ induces a positive
shift of h(L) if σ < 1 + ρ/(αδ) and a negative shift if σ > 1 + ρ/(αδ). (See
figure 2 for an example of the latter effect.) Hence, higher income taxes
lead to a new balanced growth path with more or less time spent on leisure
activities, depending on the relative value of σ, the inverse of the elasticity
of intertemporal substitution (EIS). Intuitively, the higher σ, the lower the
EIS and the more anxious agents are to smooth their consumption over time
and, hence, the stronger the income effect. As a result, at a relatively high
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level of σ the income effect dominates the substitution effect, leading to less
time spent on leisure activities.
Spending less time on leisure activities and hence more time on working,

either to produce output (and capital) or to produce human capital, has
obviously a positive effect on the growth rate, as is also clear from equation
(21). This raises the question whether this (indirect) positive effect could be
stronger than the (direct) negative effect. Analyzing the derivative of g(L)
with respect to the tax rate τ , however, reveals that this situation cannot
arise.

Proposition 3 Let Condition 1 hold. Suppose that there is a unique interior
BGP. Let τw = τ r ≡ τ . Then an increase in the tax rate induces a decline
the long-run rate of growth.

Proof. See appendix 6.5.3.

Taxing both labor income and capital income equally reduces the long-run
growth rate. Compared to the situation with a fixed labor supply, the nega-
tive effect of income taxation on the long-run growth rate is either stronger
(i.e. more negative) in the case of a relatively large EIS, which leads to more
time spent on leisure activities, or weaker (i.e. less negative) in the case of
a relatively small EIS, which leads to less time spent on leisure activities.
Smith (1996) finds a similar but opposite effect of introducing uncertainty
into a one-sector AK model. He finds that: (i) If the EIS is small, an increase
in the tax rate reduces growth more than predicted by non-stochastic mod-
els; (ii) If the EIS is large, the long-run growth rate decreases by less than
predicted by non-stochastic models.6 The reason behind this result is that in
his model, by construction, an increase in the tax rate reduces both the mean
and variance of after-tax income. The resulting reduction in uncertainty (as
measured by the variance) might increase or decrease the growth rate, de-
pending on the value of the EIS. E.g., if the EIS is small, the income effect
dominates the substitution effect, implying that a reduction in uncertainty
leads to less (precautionary) savings and, consequently, less growth.
If β = 1, that is, if human capital accumulation is independent from

physical capital, the expression for the growth rate, as given by equation
(21), changes to

g(L) =
B

σα
(1− L)− ρ+ δ

σα
. (22)

6The comparison between the effects of uncertainty in Smith (1996) and the effects
of endogenous labor supply in the present paper on the impact of tax rates on long-run
growth can de drawn even further. Both analyses show that it is actually possible for a
tax increase to increase growth (see section 3.2 in the present paper).
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This implies that taxes have no direct effect on the long-run growth rate.
Moreover, it can easily be shown that in this case the function h(L) is inde-
pendent from any tax rate (see appendix 6.2). As a result, income taxation
has no indirect effect on the growth rate either. Hence, the finding that
endogenous leisure may strengthen or weaken the effect of income taxes on
growth, but does not reverse the sign, depends on the combination of both
physical capital in the educational sector and leisure as an additional argu-
ment in the utility function.

3.2 Capital income taxation

In this section we analyze the effect of a capital income tax on the long-run
growth rate. Let us first start with the case in which capital is not an input
in the education sector, i.e. β = 1. In this case, the two depreciation rates
on physical and human capital need not be equal. In fact, the analysis is
feasible7 for δk ≥ δh. The growth rate, obtained from equations (11) and
(12), is equal to

g(L) =
B

σα
(1− L)− ρ+ δh

σα
, (23)

implying that the capital income tax rate has no direct effect on the growth
rate. A change in the time spent on leisure, then, directly translates into a
change in the growth rate. To find the indirect effect of the tax rate through
the effect on leisure, we need to examine, as in the previous section, the effect
of the tax rate on the functions f(L) and h(L), which are (implicitly) given in
appendix 6.2, equations (38) and (39). First notice that f(L) only depends
on the capital income tax rate, τ r, through T . The derivative of f(L) with
respect to T can be derived from total differentiation of equation (38). As a
result,

∂f(L)

∂T
∝ α

1− α
L− f(L) > 0. (24)

The positive sign of this derivative follows directly from equation (38) by
noticing that (1 − γ)BN2 > 0. A higher capital income tax rate therefore
shifts the function f(L) upwards.
Second, the capital income tax rate has no effect on h(L). This implies

that, given the existence of a unique equilibrium, the effect of the tax rate
on the equilibrium value of leisure is negative. Since h(0) > f(0) = 0 (see
footnote 4), h(L) - which is monotone in L - intersects f(L) from above,
which implies that an upward shift of f(L) decreases the equilibrium value
of leisure. A rise in the capital income tax rate consequently leads to less

7See Appendix 6.2.
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time spent on leisure activities, and hence to a rise in the rate of economic
growth.

Proposition 4 Given Condition 1, let a unique interior BGP exist. If hu-
man capital is the only input in the education sector, an increase in the tax
rate on (physical) capital income induces a rise in the long-run rate of growth.

Proof. This follows immediately from the consideration preceding the
proposition.

Let us now examine the case in which capital is an input in the education
sector, i.e. 0 < β < 1, with δk = δh. Equation (21) reveals that in this case
the capital income tax rate has a direct negative effect on the growth rate
of (1− τ r)

(1−γ)ν. The indirect effect is now more complicated as the sign of
the derivative of f(L) with respect to T cannot be established analytically.
However, extensive numerical computations8 show that ∂f(L)/∂T is positive
for all L ∈ (0, 1). Then a higher τ r, which implies a higher T , shifts f(L)
upwards.

Numerical Result 1 ∂f(L)/∂T > 0 for all L ∈ (0, 1).

The effect of the capital income tax rate on h(L) can be deduced from
rewriting equation (20) as

h(L) =
σα − β

σα
(1− L) + [ρ+ (1− σα)δ]×

×∆(1− τ r)
−ν(1−γ)(1− τw)

−(1−ν)(1−β)(1− L)ν, (25)

with ∆ = ψ−(1−ν)(1−β)βν
σαB1−ν [A(1−γ)]ν . Therefore, the effect of the capital income tax

rate on h(L), like in the case of the (total) income tax rate, depends on the
relative values of σ, α, δ and ρ: An increase in τ r induces a positive shift of
h(L) if σ < 1 + ρ/(αδ) and a negative shift if σ > 1 + ρ/(αδ).
Again we can ask ourselves the question whether the positive effect on

the growth rate through a fall in the time spent on leisure activities could
dominate the direct negative effect. While this was not possible in the case
of income taxation, it is possible in the case of capital income taxation to
construct examples in which the tax rate has a positive effect on the long-
run growth rate. Moreover, it is possible for sensible or empirically plausible

8The numerical computations depend on the values of α, β, γ and T , such that 0 <
α < 1, 0 < γ < β < 1 and 0 < T < 1/ψ.
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parameter values. To show this, consider the following benchmark economy:

γ = 0.67, ρ = 0.05, δ = 0.1, σ = 3, β = 0.95, α = 0.5,

A = 0.5, B = 0.4, τw = 0.

The value of γ = 0.67 is consistent with data on labor’s share of income;
the time preference parameter ρ and the depreciation rate δ are usually set
between 0 and 0.1; the elasticity of intertemporal substitution, 1/σ, is usually
estimated between 0.2 and 1, see e.g. Vissing-Jørgenson (2002), Mulligan
(2002); labor’s share in the accumulation of human capital is restricted to
be higher than γ, i.e. β ∈ (γ, 1]; the parameter α, representing the relative
importance of consumption versus leisure in utility, should lie between 0 and
1; the parameters A and B are chosen to get reasonable values in equilibrium
for working and leisure time and the growth rate. Table 2 shows the impact
of increasing τ r from 0 to 0.5 on leisure L and the growth rate g. In the
benchmark economy - see table 2a with σ = 3 - the increase in the capital
income tax rate induces a decline in the time spent on leisure, from 0.325
to 0.306, which is enough to offset the direct negative effect of taxation on
the growth rate as the growth rate increases from 3.71% to 3.82%. Tables
2a - 2i examine the robustness of this result by varying the parameters. The
general picture that arises from these exercises is that the positive effect of
capital income taxation on the growth rate is robust to (small) changes in the
parameters. The most critical parameters are α, β and σ. Table 2a shows
that, according to intuition, the positive effect on the growth rate declines as
σ becomes smaller. Actually, the critical value of σ, below which the effect
on the growth rate turns negative, is approximately 1.54. This shows that
the positive effect on the growth rate is not restricted to values of σ above
1 + ρ/(αδ) (which is equal to 2 in the benchmark economy). The restriction
on β is more severe, as is shown in table 2b. Here, the turning point lies
just below 0.92, indicating that the accumulation of human capital should
be highly human capital intensive to exhibit a positive effect. Varying the
parameter α (table 2d) shows a positive effect on the growth rate for α < 0.7,
i.e., as long as the appreciation for leisure (compared to consumption) is not
too small. Finally, table 2g shows that starting from a distorted economy
(τw > 0) does not change the result qualitatively.
Notice that the finding that capital income taxation can have positive

growth effects depends on the endogeneity of the leisure choice. With a fixed
labor supply this result cannot be obtained.

Proposition 5 Let capital be an input in the education sector. Then there
exist configurations of the parameters such that an increase in the tax rate
on capital income induces a rise in the long-run rate of growth.
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Proof. This follows from numerical simulation of the model (see table
2).

Taxation of physical capital in the output sector reduces the marginal
products of capital and labor (the latter through a fall in φ, the share of cap-
ital used in final goods production) in the production of capital, inducing the
economy to shift resources from capital production to human capital produc-
tion and to leisure activities. This substitution effect concerns substitution
of resources between the two sectors of the economy. With respect to the
time allocated to leisure, this substitution effect is opposed by the income
effect. These effects are similar to the effects of income taxation. Contrary
to total income taxation, taxing only physical capital makes human capital
accumulation even more attractive because the income generated from cap-
ital is taxed, while the income generated from human capital is not taxed.
This extra substitution effect, which concerns substitution between the fac-
tors physical and human capital, allows capital taxation to raise the long-run
growth rate.
In the case of β = 1, the growth rate is independent of the tax rate other

than through leisure. This independence arises from the fact that the rate
of return to investment in human capital is equal to B(1 − L) − δh. In an
efficient production plan the capital-labor intensity in the output sector is
chosen so that the rate of return to physical capital is also B(1−L)−δh. The
resulting effect of capital income taxation on leisure time is unambiguously
negative, giving rise to the positive impact of capital income taxation on the
growth rate.
Decreasing β, however, introduces physical capital into the human capital

accumulation function, causing the rate of return to investment in human
capital and therefore the growth rate to be directly dependent of the tax
rate. The lower β, the higher the direct impact of τ r on the growth rate.
As a result, in the case of β < 1, a positive effect of capital income taxation
on growth needs the extra effect of a strong income effect (a relatively low
value of the EIS), causing agents to work more and/or invest more in human
capital as a response to the introduction of capital income taxation.
To get an idea about the robustness of this result with respect to the

functional forms of the production function and the human capital accumu-
lation function9, it is easy to show (see appendix 6.7) that the growth rate
in equation (23) requires human capital accumulation to be a linear func-
tion of the human capital input only but is independent from the functional

9The functional form of the utility function is restricted to the CES-type (see also
footnote 2).
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form of the production function. Thus, given the linearity in the human
capital accumulation function, for any production function, a change in the
time spent on leisure directly translates into a change in the growth rate. A
positive effect of capital income taxation on the growth rate, then, requires
that an increase in the tax rate induces agents to spend less time on leisure
activities. This is a realistic possibility given the clear and plausible reasons
for a possible reduction in leisure time, and is unlikely to be the result of
the functional forms being of the Cobb-Douglas type. Moreover, suggested
by the results above, in the case of physical capital as an input in human
capital accumulation the reduced amount of time spent on leisure may still
dominate the direct negative effect as long as the human capital sector is
human capital intensive enough.
A last robustness check concerns a situation in which the education sector

is included in the tax base. If capital in the education sector is taxed too,
this would lower the growth rate as human capital accumulation is made
less attractive, thereby reducing the scope for capital taxation to have a
positive impact on growth. In fact, in the benchmark economy, if we tax
physical capital in both sectors equally (at 50%) the long-run growth rate
actually declines, compared to no taxation. However, a positive impact on
the growth rate is regained if e.g. the tax rate on capital in the education
sector is reduced (due to subsidies or favorable tax treatments) to ca. 25%
or less. Another possibility to regain the positive impact is to increase β,
human capital’s share in knowledge production, to ca. 0.97 or higher.

3.3 Labor income taxation

Let us again first examine the case of β = 1. Given the growth rate in
equation (23) and the functions f(L) and h(L) (equations 38 and 39 in ap-
pendix 6.2), it is easy to see that the effect of a labor income tax is exactly
the opposite of the effect of a capital income tax. A tax on labor income,
therefore, induces a downward shift in f(L), while leaving h(L) unchanged.
Under the same conditions as in the previous subsection, a higher tax rate
on labor income will increase the time spent on leisure.

Proposition 6 Given Condition 1, let a unique interior BGP exist. If hu-
man capital is the only input in the education sector, an increase in the tax
rate on labor income induces a decline in the long-run rate of growth.

Proof. Follows immediately from Proposition 4.

Considering the more general case in which capital is an input in the
education sector, equation (21) directly shows that the labor income tax rate
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has a direct negative effect on the growth rate of (1 − τw)
γν. The indirect

effect of the labor income tax rate through leisure is very similar to the
indirect effect of the capital income tax rate. First, the effect of τw on f(L)
is exactly the opposite from the effect of τ r, i.e., a higher τw shifts f(L)
downwards (given Numerical Result 1). Second, the effect of τw on h(L) is
qualitatively similar to the effect of τ r and follows from equation (25): An
increase in τw induces a positive shift of h(L) if σ < 1+ρ/(αδ) and a negative
shift if σ > 1 + ρ/(αδ).
What will be the effect of the labor income tax rate on the long-run

rate of growth? If we compare labor income taxation with income taxation,
the use of physical capital in the capital accumulation process is not taxed,
implying that more capital is used to accumulate physical capital and less
to accumulate human capital. This has a negative effect on growth. This
suggests that the effect of the labor income tax rate on the long-run rate of
growth is negative. This is confirmed in the next proposition.

Proposition 7 Let Condition 1 and Numerical Result 1 hold. Suppose that
there exists a unique interior BGP. Then an increase in the tax rate on labor
income induces a decline in the long-run rate of growth.

Proof. See appendix 6.5.4.

Hence, increasing the tax rate on labor income reduces the long-run rate
of growth. Like in the case of income taxation, the negative effect of income
taxation on the long-run growth rate, compared to the situation with a fixed
labor supply, is either stronger (i.e. more negative) in the case of more time
spent on leisure activities or weaker (i.e. less negative) in the case of less
time spent on leisure activities.

3.4 Optimal taxation

So far, we have discussed the impact of various tax rates on the economy’s
long-run growth rate. One of the key results shows that increasing the cap-
ital income tax rate can raise the growth rate. The implication for welfare,
however, is not clear. Obviously, the welfare implications depend on the util-
ity provided by government services G, i.e. on the function v(.) in equation
(7). If government services do not provide any utility (v(.) ≡ 0), implying
that the tax revenue is wasted, any taxation will decrease welfare in this
model, as there is no externality or any other friction to block the First
Fundamental Theorem of Welfare Economics. If the marginal utility from
government services on the other hand is extremely high for small values of
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G (e.g. limG↓0 v0(G) = ∞) taxing capital income (or labor income) to some
degree will improve welfare.
In the first situation where tax revenues are wasted it is obviously optimal

to abstain from taxation, either on capital or labor income. The second
situation is more complicated. What are the welfare-maximizing tax rates
on capital and labor income when the (benevolent) government can choose
any mix of (linear) capital and labor income tax rates? Answering this
question would imply the comparison of different paths - corresponding to
different tax rates - given initial conditions. Such an analysis would involve
transitional dynamics. Combined with the fact that we cannot explicitly
solve the model, finding the optimal tax rates would involve an extensive
numerical analysis well beyond the scope of this paper. What we can do,
however, is to point out two reasons why precisely capital income or labor
income should be taxed. In favor of a positive tax on capital income is the
fact that, since the households take the government services as given, too
much time is spent on leisure compared to the social optimum. This fact is
favorable to capital income taxation because capital income taxation leads to
less time spent on leisure (on the balanced growth path) than labor income
taxation. In favor of a positive tax on labor income is the fact that a tax on
labor income will generate higher tax revenues since labor’s share of income,
γ, is higher than capital’s share of income, 1− γ.

4 Productive government expenditures

In the preceding analysis we have assumed that tax revenues are used to pro-
vide services that enter into households’ utility functions, without affecting
the marginal utility of consumption and leisure or the production possibili-
ties of the private sector. In this section we will examine the implications of
introducing government expenditures that do influence the production possi-
bilities of the private sector (infrastructure, education, etc.). See e.g. Barro
(1990) and Glomm and Ravikumar (1997) for related analyses.
Suppose that government expenditures can be used for either improving

the productivity of goods production, GY , or facilitating the accumulation of
human capital, GH , with GY +GH = G, without generating utility directly
(i.e., v(.) ≡ 0 in equation 7). In fact, let the production function change to

Y (t) = A

µ
GY (t)

Y (t)

¶
(φ(t)K(t))1−γ (N(t)H(t))γ , (26)

in which the productivity in the goods sector, A(.), is an increasing function
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of government expenditures in the goods sector as a fraction of output10,
with GY (t) = ξ[τ r(1−γ)+ τwγ]Y (t), 0 < ξ < 1. Similarly, let human capital
accumulation take place according to

·
H(t) = B

µ
GH(t)

Y (t)

¶
[(1− φ(t))K(t)]1−β [(1−N(t)− L(t))H(t)]β − δhH(t),

(27)
in which the productivity in the education sector, B(.), is an increasing
function of government expenditures in the education sector as a fraction of
output, with GH(t) = (1 − ξ)[τ r(1 − γ) + τwγ]Y (t). The advantage of this
formulation is that the effect of a change in the capital and/or labor income
tax rate(s) is essentially the same as its effect in the model without productive
government expenditures combined with a change in the parameters A and
B.
The effect of an increase in A and/or B on the growth rate (through

both the direct as well as the indirect effect) runs opposite to the effect of
an increase in the tax rate on income, τ . First, by equation (21), increasing
A and/or B increases the growth rate directly. Second, by equation (20), in-
creasing A and/or B induces more or less time spent on working depending
on the relative value of σ compared to 1+ρ/(αδ). Since raising the productiv-
ity of goods production or human capital accumulation is income enhancing,
it will reduce working time and stimulate leisure time if the income effect is
relatively strong (σ relatively large), and vice versa in the case of a relatively
weak income effect. However, since the productivity improvements affect
both capital and labor in one of the two sectors, the direct positive effect
on growth is always stronger than the indirect effect through leisure11 Thus,
productivity improvements in the output sector or in the education sector
unambiguously raise the long-run growth rate.
The overall effect of an increase in the tax rate therefore depends on the

size of the government-induced productivity improvements. For example, in
the original model with B = 0.25 (and a relatively small σ)12 increasing the
tax rate (on total income) from 0 to 0.165 (which creates the same amount

10If e.g. A (x) = Axθ, the production function can be rewritten as Y (t) =

A
1

1+θG(t)
θ

1+θ (φ(t)K(t))
1−γ
1+θ (N(t)H(t))

γ
1+θ . This shows that this formulation encompasses

the one in which G, K and H together display constant returns to scale. However, this
particular functional form implies that G is an essential factor of production, complicating
the comparison with the model without productive government expenditures.
11An increase in A has the same effects as a decrease in τ , implying that the direct effect

on growth is stronger than the indirect effect through leisure (see Proposition 3). The same
result can be derived (along the lines of the proof of Proposition 3) for an increase in B.
12The other parameter values are: γ = 0.67, ρ = 0.05, δ = 0.05, σ = 1, β = 0.8, α = 0.5,

A = 0.5.
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of government revenues as τ r = 0.5) raises leisure time from 0.361 to 0.375
and reduces the growth rate from 2.21% to 1.51%. However, if the govern-
ment revenues G are used to boost productivity in the education sector to
B = 0.264, both leisure time and the growth rate stay roughly constant.
Similarly, it takes productivity in the goods sector, A, to rise from 0.5 to ca.
0.6 to offset the negative effect on the growth rate from taxation.13 Hence,
compared to these growth-neutral productivity improvements, smaller pro-
ductivity increases will (only) weaken the effect of taxation, while higher
productivity increases will reverse the sign. The latter situation makes it
possible that increasing tax rates and (productive) government expenditures
simultaneously has a net positive effect on the growth rate. This is similar to
what Kocherlakota and Yi (1997) find, using time series data for the U.S. and
U.K., when they regress per capita income on public policy variables. Their
results suggest that a simultaneous increase in public equipment capital and
marginal tax rates has a net positive effect on growth.14

Similar results apply for the case of a relatively high σ. Although leisure
time now increases as a response to higher productivity in both sectors, the
resulting effect is an increase in the growth rate which may or may not
overtake the initial negative effect of increased tax rates.
The extension of above observations to the cases of capital income and

labor income taxation is straightforward. Improvements in the productivity
in the goods sector as well as in the education sector affect the growth rate
positively. This increases the set of parameter values for which capital income
taxation raises the growth rate, and, depending on the size of the government-
induced productivity improvements, opens up the possibility that even labor
income taxation results in a higher growth rate.

5 Summary

The present study analyses the effects of taxation on long-run growth in a
two-sector endogenous growth model with (i) physical capital as an input
in the education sector and (ii) leisure as an additional argument in the
utility function. Due to the flexibility of labor supply, taxation of (capital
and/or labor) income may induce agents to spend more or less time on leisure
activities, depending on the relative sizes of the substitution and income

13Notice that the parameters A and B in both equations (20) and (21) are raised to the
power ν resp. (1− ν). As β is relatively high (γ < β < 1), ν is relatively small, implying
that increases in B are more effective than increases in A.
14For more empirical evidence regarding the impact of public capital/expenditures on

output/growth see Glomm and Ravikumar (1997, section 4).

21



effects. In the case of income taxation, where capital and labor income
are taxed equally, the resulting effect on the growth rate is negative, as in
the case without endogenous leisure. The finding that endogenous leisure
may strengthen or weaken the effect of income taxation on growth (without
reversing the sign) is, however, the result of including both endogenous leisure
as well as capital as an input in the education sector.
Capital income taxation increases both the attractiveness of the educa-

tion sector relative to the output sector as well as the factor human capital
relative to the factor physical capital. In this case the direction of the effect
may also change, in particular when the elasticity of intertemporal substitu-
tion is (relatively) small, implying a strong income effect. In that case, the
positive effect of the increase in total non-leisure time dominates the direct
negative effect of the tax rate on growth, implying that capital income tax-
ation increases the long-run growth rate. The possibility of a positive effect
of capital income taxes on growth is shown to be a consequence of the labor-
leisure choice. The inclusion of capital as an input in the education sector
actually reduces this possibility.
Labor income taxation, on the contrary, has a negative effect on the

growth rate, with or without capital as an input in the education sector.
In general, with capital in the education sector, endogenous leisure may
strengthen or weaken the effect of labor income taxes on growth, but does
not reverse the sign.
If the tax revenues are used to improve the productivity in the goods

sector and/or the education sector, the impact on the growth rate is positively
influenced. The effect of taxation on the long-run growth rate then depends
on the size of the productivity improvements. Relatively small productivity
improvements leave the qualitative results unchanged, while relatively large
productivity improvements convert a negative effect on growth to a positive
one. Hence, even labor income taxation may positively influence the growth
rate as long as the productivity improvements - financed with the tax - are
high enough.
Besides the effects of taxation on growth, this study establishes a neces-

sary condition for the existence of multiple balanced growth paths and shows
that, for certain parameter configurations, the model actually exhibits three
balanced growth paths. This is due to the labor-leisure choice. Whether
capital is included in the education sector or not does not change this result.
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6 Appendix

6.1 The consumer optimization problem

The Hamiltonian associated with the representative consumer’s optimization
problem reads

H = (CαL1−α)1−σ

1− σ
+ λ

·
K + µ

·
H, (28)

where
·
K and

·
H are given by equations (4) and (5). The first-order conditions

are: ¡
CαL1−α

¢−σ
αCα−1L1−α = λ, (29)

·
λ = λρ− ∂H

∂K
, (30)¡

CαL1−α
¢−σ

(1− α)CαL−α = µβB [(1− φ)K]1−β [(1−N − L)H]β−1H,
(31)

·
µ = µρ− ∂H

∂H
. (32)

If we define q ≡ µ
λ
, and make use of equations (9), (10) and (11), we can

show that ·
λ

λ
=

·
µ

µ
= ρ+ δk − (1− τ r)r, (33)

which implies, by equation (29), that the growth rate of consumption is given
by equation (12). Furthermore, by the definition of q, equation (31) directly
turns into equation (13). Notice that equation (33) implies that q is constant.
Since µ is growing at the same rate as λ and H is growing at the same

rate as K, the transversality condition is given by

lim
t→∞

£
e−ρtλ(t)K(t)

¤
= 0. (34)

It is easy to show that the transversality condition holds if

(1− σ)α [(1− τ r)r − δk] < ρ. (35)

Notice that the transversality condition is automatically satisfied if σ > 1.
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6.2 Solution to the system of equations (14)-(18)

Let δk = δh. Using equations (2) and (3), equation (14) can be rewritten as

(1− τ r)(1− γ)A

µ
φ

N

¶−γ
x1−γφ+ (1− τw)γA

µ
φ

N

¶1−γ
x1−γN − z

= B

µ
1− φ

1−N − L

¶1−β
x2−β(1−N − L). (36)

Note that equation (16) implies that

1− φ

1−N − L
= (Tψ)

φ

N

and
φ =

N

Tψ(1−N − L) +N
.

Then, from equation (17), we can derive an expression of x, i.e.,

x =

·
(1− τ r)(1− γ)A

βB(Tψ)1−β(1− L)

¸ 1
1−β+γ N

φ
. (37)

Moreover, it is easy to show that N
φ
(1−N−L) = Tψ(1−L)2+(1−2Tψ)(1−

L)N + (Tψ − 1)N2. These observations, together with equation (18), imply
that equation (36) transforms to equation (19).
To derive equation (20), we rewrite equation (15) with the help of equation

(11):

βB (1− φ)1−β (1−N − L)β−1 x1−β(1− L)− δ − ρ

= σαB (1− φ)1−β (1−N − L)β x1−β − σαδ,

or,

B (1− φ)1−β (1−N − L)β−1 x1−β [β(1− L)− σα(1−N − L)]

= ρ+ (1− σα)δ.

Inserting the expression for x and simplifying yields equation (20).
If β = 1 and δk 6= δh, it is easy to show that equations (19) and (20)

change to

(1−γ)BN2+Tγ[B(1−L)+δk−δh]N−T αγ

1− α
[B(1−L)+δk−δh]L = 0, (38)
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N =
σα − 1
σα

(1− L) +
ρ+ (1− σα)δh

σαB
. (39)

To ensure the existence of a unique positive solution to equation (38), the
depreciation rates are restricted to δk ≥ δh. (This restriction implies that
B(1−L)+δk−δh is positive for all L, such that (i) the discriminant is always
positive (implying that there are only real solutions) and (ii) only one of the
two solutions is positive.)

6.3 The non-interior balanced growth path

The Hamiltonian associated with the restricted optimization problem (in
which N = 1− L) reads

H = (CαL1−α)1−σ

1− σ
+ θ

·
K, (40)

where
·
K is given by equation (4) (with φ = 1 andN = 1−L). The first-order

conditions are: ¡
CαL1−α

¢−σ
αCα−1L1−α = θ, (41)

·
θ = θρ− ∂H

∂K
, (42)¡

CαL1−α
¢−σ

(1− α)CαL−α = θ(1− τw)wH. (43)

Equations (41) and (43), together with (3) (with φ = 1 and N = 1 − L)
imply that

z =
α

1− α
(1− τw)γAx

1−γ(1− L)γ−1L,

while the
·
x = 0 and

·
z = 0 equations are now given by

(1− τ r)(1− γ)A(1− L)γx1−γ + (1− τw)γA(1− L)γx1−γ = z (44)

and
(1− τ r)r − δ − ρ = −σαδ. (45)

It is easy to show that the solution for L to this set of equations is implicitly
given by

(1− τ r)(1− γ) + (1− τw)γ =
α

1− α
(1− τw)γ

L

1− L
, (46)

which is exactly equal to equation (19) with N = 1− L.
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6.4 Stability of the balanced growth paths

To investigate the local stability of the balanced growth paths, we first derive
the law of motion of the variables {x, z, L,N, φ}. Elimination of the costate
variables leads to the following system of five differential equations:

·
x = A (φx)1−γ Nγ −B(1− φ)1−β(1−N − L)βx2−β − z,

·
L =

L

1− (1−σ)(1−α)
σα

·
η(x,L,N, φ) +

1− γ

β − γ
µ(x, L,N, φ)

¸
,

·
z = z

·
η(x,L,N, φ) +

(1− σ)(1− α)

σαL

·
L

¸
,

·
N = N

"
1− φ

φ(1− L)−N

·
L+

1−N − L

φ(1− L)−N

Ã ·
x

x
+

1

β − γ
µ(x,L,N, φ)

!#
,

·
φ = φ(1− φ)

·
1− L

(1−N − L)N

·
N +

1

1−N − L

·
L

¸
,

where η(.) and µ(.) are given by

η(x,L,N, φ) =
(1− γ)A

σα
(φx)−γ Nγ −B((1− φ)x)1−β(1−N − L)β

−ρ+ (1− σα)δ

σα
,

µ(x,L,N, φ) = (1− L)βB((1− φ)x)1−β(1−N − L)β−1

−(1− γ)A (φx)−γ Nγ.

By differentiating each differential equation with respect to x, z, L,N and φ
in a steady state, we obtain the coefficients matrix of the linearized system
around a steady state. The eigenvalues of this matrix determine the local
stability of the steady state. If all eigenvalues have negative real parts the
steady state is locally stable. If all eigenvalues have positive real parts the
steady state is unstable. If some of the eigenvalues have negative and others
positive real parts, there exists a stable manifold, which is defined as the
set of points on which convergence to the steady state takes place. The
dimension of the stable manifold is equal to the number of eigenvalues with
negative real parts.
In the case of the three equilibria of figure 1 the (approximate) values of

the eigenvalues, which are given in table 3, imply that BGP 2 is unstable,
while BGP’s 1 and 3 are stable, i.e. both have a stable manifold of dimension
one.
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6.5 Proofs

6.5.1 Proof of Proposition 1

As written in the paragraph preceding Proposition 1, the first step in the
proof is to prove that f(L) is strictly concave. Solving equation (19) for
N = f(L) yields

2(1− γ)(1− Tψ)f(L) + (1− L)Ω = (1− L)Q (47)

with Q =
¡
Ω2 + 4(1− γ)(1− Tψ)T{(1− γ)ψ + αβγ

1−α
L
1−L}

¢1/2
> 0 and Ω =

{β(1−γ+Tγ)−(1−γ)(1−2Tψ)}. Differentiating this equation with respect
to L gives

2(1− γ)(1− Tψ)f 0(L) = Ω−Q+
2(1− γ)(1− Tψ)Tαβγ

(1− α)Q(1− L)
.

Replacing Ω−Q with the expression implied by equation (47) and simplifying
yields

(1− L)f 0(L) = −f(L) + αβγT

(1− α)Q
, (48)

which, since Q > 0, implies that

−(1− L)f 0(L) < f(L). (49)

Using equation (48), the second derivative of f(L) can be written as

f 00(L) =
−2(1− γ)(1− Tψ)(αβγT )2

(1− α)2(1− L)3Q3
< 0. (50)

This proves that f(L) is strictly concave.
The second step is to find out when h(L) is convex and/or concave. It is

straightforward to show that the second derivative of h(L) is given by

h00(L) = −ν(1− ν)
(ρ+ (1− σα)δ)(Tψ)

−(1−ν)(1−β)βν

σαB1−ν [(1− τ r)A(1− γ)]ν
(1− L)ν−2. (51)

Hence, h(L) is strictly concave if σ < 1+ ρ
αδ
and strictly convex if σ > 1+ ρ

αδ
.

6.5.2 Proof of Lemma 2

From equation (37) we derive that

x(L,N) = X0 [Tψ(1− L) + (1− Tψ)N ] (1− L)
−1

1−β+γ , (52)
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with X0 ≡
h
(1−τr)(1−γ)A
βB(Tψ)1−β

i 1
1−β+γ

> 0. This implies that

x(L, f(L)) = η1(1− L)
γ−β

1−β+γ + η2f(L)(1− L)
−1

1−β+γ , (53)

with η1 ≡ X0Tψ > 0 and η2 ≡ X0(1− Tψ) > 0 (by Condition 1). Differen-
tiating with respect to L yields

∂x(L, f(L))

∂L
= η1

β − γ

1− β + γ
(1− L)

−1
1−β+γ + η2f

0(L)(1− L)
−1

1−β+γ

+η2
1

1− β + γ
f(L)(1− L)

−1
1−β+γ−1. (54)

This derivative is positive iff

η1
β − γ

1− β + γ
+ η2f

0(L) + η2
1

1− β + γ
f(L)(1− L)−1 > 0, (55)

which is true since equation (49) implies that

−f 0(L) < 1

1− β + γ
f(L)(1− L)−1, (56)

since 1
1−β+γ > 1.

6.5.3 Proof of Proposition 3

Inserting τw = τ r ≡ τ into equation (21) implies that the growth rate as a
function of L reads

g(L) = Q(1− τ)ν(1− L)1−ν − ρ+ δ

σα
. (57)

The derivative with respect to τ is, then, given by

∂g(L)

∂τ
= −νQ(1− τ)ν−1(1− L)1−ν − (1− ν)Q(1− τ)ν(1− L)−ν

∂L

∂τ
, (58)

which implies that ∂g
∂τ

< 0 iff

∂L

∂τ
> − ν

1− ν

µ
1− L

1− τ

¶
≡ −1− β

γ

µ
1− L

1− τ

¶
. (59)

To prove the proposition we will show that this inequality is satisfied.
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The total derivative of f(L) = h(L), which applies in a balanced growth
path, can be written as

(f 0(L)− h0(L))
∂L

∂τ
=

∂h(L)

∂τ
. (60)

Let h(L) = H0(1−L)+H1(1−τ)−ν(1−L)ν, whereH0 andH1 can be deduced
from equation (20). Then

∂h(L)

∂τ
= νH1(1− τ)−ν−1(1− L)ν (61)

and
−h0(L) = H0 + νH1(1− τ)−ν(1− L)ν−1. (62)

This implies thatµ
1− τ

1− L

¶
∂L

∂τ
=

νH1(1− τ)−ν(1− L)ν−1

f́(L) +H0 + νH1(1− τ)−ν(1− L)ν−1
, (63)

which should be higher than − ν
1−ν to satisfy equation (59). Hence, equation

(59) is satisfied iff

(1− ν)H1(1− τ)−ν(1− L)ν−1

f 0(L) +H0 + νH1(1− τ)−ν(1− L)ν−1
> −1. (64)

In the case of a unique interior BGP, h(L) intersects f(L) from above, imply-
ing that f 0(L)−h0(L) > 0. This allows us to multiply both sides of equation
(64) with f 0(L)− h0(L) which yields

f 0(L) +H0 > −H1(1− τ)−ν(1− L)ν−1, (65)

or

−f 0(L) < H0 +H1(1− τ)−ν(1− L)ν−1 =
h(L)

1− L
=

f(L)

1− L
. (66)

According to equation (49) this inequality is satisfied.

6.5.4 Proof of Proposition 7

This proof proceeds along the same lines as the proof of proposition 3. First,
it is easy to show that ∂g

∂τw
< 0 iff

∂L

∂τw
> − γν

1− ν

µ
1− L

1− τw

¶
≡ −(1− β)

µ
1− L

1− τw

¶
. (67)
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Then we take the total derivative of f(L) = h(L), which can be written as

(f 0(L)− h0(L))
∂L

∂τw
=

∂h(L)

∂τw
− ∂f(L)

∂τw
. (68)

Two observations need to be made at this point. First, by Numerical Result 1,
∂f(L)
∂τw

< 0. Second, in the case of a unique interior BGP, h(L) intersects f(L)
from above, which implies that f 0(L) − h0(L) > 0. These two observations
imply that

∂L

∂τw
>

∂h(L)/∂τw
f 0(L)− h0(L)

, (69)

which can be rewritten asµ
1− τw
1− L

¶
∂L

∂τw
>
(1− ν)(1− β)H1(1− τw)

−(1−ν)(1−β)(1− L)ν−1

f 0(L) +H0 + νH1(1− τw)−(1−ν)(1−β)(1− L)ν−1
. (70)

If the right-hand side of this inequality is higher than −(1− β), i.e.,

(1− ν)(1− β)H1(1− τw)
−(1−ν)(1−β)(1− L)ν−1

> −(1− β)
£
f́(L) +H0 + νH1(1− τw)

−(1−ν)(1−β)(1− L)ν−1
¤
, (71)

equation (67) is satisfied and the proof is done. It is easy to show that this
inequality can be transformed to

−f 0(L) < h(L)

1− L
=

f(L)

1− L
, (72)

which is satisfied according to equation (49).

6.6 Derivation of the growth rate as a function of L

Equation (2) implies that

(1− τ r)r = (1− τ r)(1− γ)A

·
φ

N
x

¸−γ
= βB

·
(1− φ)

1−N − L
x

¸1−β
(1− L)

= βB(Tψ)1−β
µ
φ

N

¶1−β
x1−β(1− L)

where the second and third equations follow from equations (17) - with δk =
δh - and (16) respectively. Inserting the expression for x as given by equation
(37), yields

(1− τ r)r = ψ(1−β)(1−ν)(βB)1−ν ((1− γ)A)ν (1− τ r)
νT (1−β)(1−ν)(1− L)1−ν .

(73)
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Inserting this equation into equation (12) yields the growth rate as a function
of L as given in equation (21).

6.7 A general set-up

For any functions F (., .) and G(., .) - ignoring the time indications t - let

Y = F (φK,NH),

and ·
H = G ((1− φ)K, (1−N − L)H)− δhH,

replace equations (1) and (5) respectively. The first-order conditions, then,
read

(1− τ r)r = qG1((1− φ)K, (1−N − L)H), (74)

(1− τw)w = qG2((1− φ)K, (1−N − L)H), (75)

(1− τ r)r − δk = G2((1− φ)K, (1−N − L)H)(1− L)− δh, (76)

σαg = (1− τ r)r − δk − ρ, (77)

z =
α

1− α
qG2((1− φ)K, (1−N − L)H)L. (78)

Equations (76) and (77) together directly imply that

g =
G2((1− φ)K, (1−N − L)H)(1− L)

σα
− δh + ρ

σα
. (79)

If G(., .) = B(1−N −L)H, i.e. a linear function of the human capital input
only, the growth rate reduces to

g =
B(1− L)

σα
− δh + ρ

σα
. (80)
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Table 1. Average Effective Tax Rates1, 1991-1997
Per cent

capital income (τ r) labor income (τw) T ≡ 1−τw
1−τr

Australia 28.0 22.6 1.21
Austria 18.9 41.8 0.72
Belgium 30.8 39.7 0.87
Canada 38.6 28.7 1.16
Denmark 29.12 42.8 0.81
Finland 19.6 44.5 0.69
France 23.6 40.2 0.78
Germany 19.9 35.9 0.80
Greece 26.8 24.3 1.03
Ireland 18.7 25.1 0.92
Italy 31.0 36.3 0.92
Japan 32.6 24.0 1.13
Netherlands 24.7 41.0 0.78
New Zealand 34.9 24.2 1.16
Norway 20.2 35.5 0.81
Portugal 18.3 22.7 0.95
Spain 20.6 30.4 0.88
Sweden 30.5 48.5 0.74
Switzerland 25.1 30.2 0.93
U.K. 38.4 21.0 1.28
U.S.A. 31.1 22.6 1.12

Simple average 26.7 32.5 0.92

1. The average effective tax rates on capital and labor income are taken from
Carey and Tchilinguirian (2000, Table 4) using the revised methodology.

2. Denmark’s capital income tax rate is for 1991-1996.
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Table 2. The effect of capital income taxation on leisure time,
L, and the growth rate, g

a. Varying σ
σ = 2 σ = 3 σ = 4

τ r = 0 τ r = 0.5 τ r = 0 τ r = 0.5 τ r = 0 τ r = 0.5
L
g

0.288 0.273
0.0570 0.0577

0.325 0.306
0.0371 0.0382

0.343 0.323
0.0275 0.0285

b. Varying β
β = 0.90 β = 0.93 β = 1

τ r = 0 τ r = 0.5 τ r = 0 τ r = 0.5 τ r = 0 τ r = 0.5
L
g

0.325 0.306
0.0265 0.0260

0.325 0.306
0.0322 0.0325

0.328 0.311
0.0594 0.0629

c. Varying γ
γ = 0.5 γ = 0.6 γ = 0.75

τ r = 0 τ r = 0.5 τ r = 0 τ r = 0.5 τ r = 0 τ r = 0.5
L
g

0.356 0.323
0.0322 0.0338

0.336 0.312
0.0352 0.0365

0.314 0.301
0.0392 0.0399

d. Varying α
α = 0.4 α = 0.6 α = 0.7

τ r = 0 τ r = 0.5 τ r = 0 τ r = 0.5 τ r = 0 τ r = 0.5
L
g

0.399 0.381
0.0284 0.0298

0.257 0.240
0.0432 0.0438

0.193 0.178
0.0479 0.0479

e. Varying ρ
ρ = 0 ρ = 0.02 ρ = 0.07

τ r = 0 τ r = 0.5 τ r = 0 τ r = 0.5 τ r = 0 τ r = 0.5
L
g

0.261 0.248
0.0719 0.0720

0.344 0.329
0.0547 0.0553

0.437 0.415
0.0107 0.0128
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f. Varying δ
δ = 0.05 δ = 0.07 δ = 0.15

τ r = 0 τ r = 0.5 τ r = 0 τ r = 0.5 τ r = 0 τ r = 0.5
L
g

0.391 0.366
0.0519 0.0541

0.364 0.342
0.0460 0.0477

0.261 0.248
0.0219 0.0220

g. Varying τw
τw = 0.1 τw = 0.25 τw = 0.5

τ r = 0 τ r = 0.5 τ r = 0 τ r = 0.5 τ r = 0 τ r = 0.5
L
g

0.328 0.306
0.0361 0.0382

0.335 0.311
0.0341 0.0359

0.353 0.321
0.0293 0.0323

h. Varying A
A = 0.1 A = 0.3 A = 0.7

τ r = 0 τ r = 0.5 τ r = 0 τ r = 0.5 τ r = 0 τ r = 0.5
L
g

0.317 0.299
0.0263 0.0271

0.322 0.304
0.0336 0.0345

0.326 0.308
0.0396 0.0406

i. Varying B
B = 0.2 B = 0.3 B = 0.5

τ r = 0 τ r = 0.5 τ r = 0 τ r = 0.5 τ r = 0 τ r = 0.5
L
g

0.267 0.253
−0.0115 −0.0114

0.305 0.288
0.0131 0.0137

0.337 0.317
0.0607 0.0622

Table 3. The (approximate) eigenvalues of the three BGP’s

BGP 1 BGP 2 BGP 3
0.055 0.052 0.073
0.027 0.027+0.033i -0.006
0 0.027-0.033i 0
-0.028 0
0 0
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Figure 1: An example of multiple equilibria (α = 0.6, β = 0.96, γ = 0.5,
A = 1.8, B = 0.106, ρ = 0.03, σ = 0.35, δ = 0.05, τ r = τw = 0).
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Figure 2: An example of the effect of income taxation on the unique BGP
(α = 0.5, β = 0.8, γ = 0.67, A = 0.2, B = 0.4, ρ = 0.05, σ = 4, δ = 0.1,
τ r = τw = 0, τ ŕ = τ ẃ = 0.5).
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