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Abstract

In this paper we solve an N ∈ N players differential game with log-
arithmic objective functions. The optimization problem considered here
is based on the Uzawa Lucas model of endogenous growth. Agents have
logarithmic preferences and own two capital stocks. Since the number of
players is an arbitrary fixed number N ∈ N the model’s solution is more
realistic than the idealized concepts of the social planer or the competitive
equilibrium. We show that the symmetric Nash equilibrium is completely
described by the solution to one single ordinary differential equation. The
numerical results imply that the influence of the externality along the bal-
anced growth path vanishes rapidly as the number of players increases.
Off the steady state the externality is of great importance even for a large
number of players.
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1 Introduction

This paper studies an N players differential game that is based on the Uzawa
(1965) and Lucas (1988) model of endogenous growth. Each player owns a goods
producing firm and has access to educational services. The game’s time horizon
is infinite and the number of players is fixed. The goods sector technology is
Cobb-Douglas in human and physical capital while the schooling technology is
linear in human capital only. At the outset of the game, the players’ initial
endowments are identical and their task is to choose simultaneously the op-
timal consumption and the optimal allocation of human capital between the
two sectors. Since the goods sector productivity is influenced by the economy-
wide average level of human capital, the representative player has to know the
decisions of his co-players in order to determine optimally his own controls.
Furthermore, the game is symmetric in the players’ constraints and their objec-
tive functions. These facts motivate us to restrict our search for a solution to
symmetric Nash equilibria.

By generalizing the solution method introduced in Bethmann and Reiß
(2004) we present the game’s open-loop solution. The main idea is to exploit
the model’s inherent homogeneity (cf. Caballé and Santos, 1993) in order to
reduce the complexity of the optimization problem. This is done by using the
geometric mean when defining the economy-wide average level of human capital
such that we are able to subsume the information of the relevant state variables
in a weighted product, with the model’s inherent homogeneity determining the
respective weights. Following Mulligan and Sala-i-Martin (1991) we refer to
the result of this transformation as the state-like variable. The multiplicative
structure of this variable together with the logarithmic utility function allows
us to rewrite the value function as the sum of the ‘value-function-like function’
and expressions representing the influence of the human capital stocks of each
single agent on his life-time utility. The introduction of the value-function-like
function then allows us to reduce the complexity of the representative play-
ers Hamilton-Jacobi-Bellman (HJB) equation to an implicit partial differential
equation. In fact we are able to state an explicit solution to this equation.
However, it is the generalization of the unstable solutions to the resulting HJB
equations in the social planer’s and the infinitely many agents case (cf. Beth-
mann and Reiß, 2004). Nevertheless, the knowledge of this function allows us to
determine the model’s steady state. Using a standard transformation (cf. Bron-
stein and Semendjajew, 1999) we get an equivalent explicit partial differential
equation, which can be further reduced to an ordinary differential equation by
inserting the symmetric Nash equilibrium condition. Finally, we use the steady
state in order to determine an initial value problem for this ordinary differential
equation.

The numerical results show that the number of agents does indeed influence
the optimal human capital allocation of the representative agent. However this
influence of N decreases very fast. Moreover, the strength of this phenomenon
heavily depends on the degree of the external effect of human capital on the
goods sector productivity. In fact we show that both parameters work in op-
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posite directions. An increase in the degree of the external effect resembles the
effect that a lowering of the number of players has on the outcome of the differ-
ential game. Although, the conjecture that both effects are reciprocal suggests
itself, we show that this only holds for the steady state allocation. Off the bal-
anced growth path the influence of number of players also vanishes, the degree
of the external effect however is still driving the agents’ decisions.

The paper is organized as follows. Section 2 introduces the model. Section 3
states the differential game implied by the players’ coupled optimization prob-
lems. Section 4 presents the mathematical solution strategy. Section 5 examines
the numerical results showing the above mentioned antagonistic effects of the
two parameters. Section 6 concludes. The Appendix contains statements that
are omitted in the main paper for clarity of the exposition.

2 The model

We assume a closed economy populated by N ∈ N identical and infinitely-lived
oligopolists. They are producing a single good and have access to a schooling
sector providing educational services. The representative oligopolist1 A(i), i ∈
NN , has logarithmic preferences over consumption streams

U (i) =
∫ ∞

t=0

e−ρt ln c
(i)
t dt, (1)

where c
(i)
t is the agent’s level of consumption at time t and ρ > 0 is the subjective

discount rate. The logarithmic utility function implies that the intertemporal
elasticity of substitution is equal to one. Agents have a fixed endowment of time,
which is normalized as a constant flow of one unit. The variable u

(i)
t denotes the

fraction of time allocated to goods production at time t. The fraction 1 − u
(i)
t

of time is spent in the schooling sector. As agents do not benefit from leisure,
the whole time budget is allocated to the two sectors. Hence, in any solution
the condition

u
(i)
t ∈ [0, 1] (2)

has to be fulfilled. The variables c
(i)
t and u

(i)
t are the agent’s control variables.

Human capital production is determined by a linear technology in human capital

ḣ
(i)
t = B(1− u

(i)
t )h(i)

t , (3)

where we assume that B is positive. This technology together with constraint
(2) implies that human capital will never shrink, i.e. the growth rate ḣ(i) is
non-negative. If we set u

(i)
t equal to zero, we get the potential growth rate of

the oligopolist’s human capital stock. If we set u
(i)
t equal to one, a stagnation

of his human capital follows. The schooling technology implies that the realized
1Henceforth we use oligopolist, agent, and player interchangeably.
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marginal and average product are equal to B(1 − u
(i)
t ). Note that we abstract

from depreciation.
The economy’s goods supply is given by N identical producers manufactur-

ing a single good. They are using a Cobb-Douglas technology in the two inputs
physical and human capital. The level of human capital utilized in goods pro-
duction equals the total level of the stock of human capital multiplied by the
fraction of time spent in the goods sector at time t. Total factor productivity
A is enhanced by the external effect γ of the economy’s average stock of human
capital, ha,t. Hence, the oligopolist’s output yt is determined by

y
(i)
t = A(k(i)

t )α(u(i)
t h

(i)
t )1−αhγ

a,t.

The parameter α is the output elasticity of physical capital and we assume
α ∈ (0, 1). The exponent γ is assumed to be nonnegative. If we set ut equal to
one, we get the potential output of the representative oligopolist. We assume
that the economy-wide average level of human capital is defined by the geometric
mean of the individual human capital stocks

ha =
( N∏

n=1

h(n)
) 1

N

. (4)

Since all agents are homogeneous, the economy’s average level of human capital
must equal the representative agent’s level of human capital at any point in
time

h
(i)
t = ha,t, ∀t ≥ 0. (5)

The oligopolist can either consume or invest his output y
(i)
t , i.e. his budget

constraint reads as follows

y
(i)
t = c

(i)
t + k̇

(i)
t , ∀t ≥ 0.

The right-hand side describes the spending of the oligopolist’s earnings, where
k̇

(i)
t is the rate of change of his physical capital stock k

(i)
t . Since we abstract from

depreciation, this rate corresponds to his net investment in physical capital.
The left-hand side collects the streams of income stemming from the agent’s
physical capital stock and from his work effort u

(i)
t h

(i)
t . We assume that the

initial values k0 and h0 are strictly positive. Note that by consuming more than
current production it is possible to disinvest in physical capital, i.e. the growth
rate of physical capital turns negative.

Informational assumptions

In order to quantify the influence of the external effect and of the number of
players on the game’s outcome, we compute the model’s open-loop equilibrium
strategies. The open-loop equilibrium concept is characterized by the fact that
the agents commit themselves at the outset to entire temporal paths of human
capital allocation and consumption that maximize the discounted utility given
the decision paths of all other agents. The next section discusses the optimiza-
tion problem at hand as a differential game.
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3 The N-players game

We consider a non-cooperative differential game with N ∈ N players. The game
extends over the unbounded time interval [0,∞). The state of the game at each
instant t ∈ [0,∞) is described by a vector st :=

{
k

(1)
t , h

(1)
t ; ..; k(N)

t , h
(N)
t

} ∈ R2N
++,

where R2N
++ is the state space of the game. The entries k(i) and h(i) denote

the physical and human capital stocks of agent A(i), i ∈ NN , i.e. we denote
player-specific variables and functions by upper indices. Let us define the set
S̄ as the subset of R2N

++ with elements of the form {z, y; z, y; ..; z, y}, where
y, z ∈ R++. Then the symmetric initial state of the game is a fixed vector
s̄0 =

{
k0, h0; ..; k0, h0

} ∈ S̄ ⊂ R2N
++. At each point in time t ∈ [0,∞), each

player i ∈ NN chooses the control variables c(i) and u(i) from his set of feasible
controls χ, with

χ =
{
(f, g) : R2N

++ 7→ [0,∞)× [0, 1] |locally bounded and measurable
}

.

The state of the game evolves according to the differential equations

k̇
(i)
t = A

(
k

(i)
t

)α(
u

(i)
t

)1−α(
h

(i)
t

)1−α(
ha,t

)γ − c
(i)
t ,

ḣ
(i)
t = B

(
1− u

(i)
t

)
h

(i)
t .

These equations hold for all t ∈ [0,∞) and all i ∈ NN . Note that the assumption
(4) allows us to rewrite the term hγ

a, which influences total factor productivity
in the goods sector, as follows

hγ
a =

(
h(i)

) γ
N

(∏

j 6=i

h(j)
) γ

N

,

where j 6= i is a shortcut and stands for j ∈ NN \ {i}. We assume that agents
make their choices simultaneously and try to solve the following dynamic op-
timization problems (DOPs). The representative agent A(i) seeks to maximize
his lifetime utility

U (i) = max
c
(i)
t ,u

(i)
t

∫ ∞

t=0

e−ρt ln c
(i)
t dt,

subject to the state dynamics

k̇
(i)
t = A(k(i)

t )α
(
u

(i)
t

)1−α(h(i)
t )1−α+ γ

N

(∏

j 6=1

h
(j)
t

) γ
N − c

(i)
t , ∀ t ≥ 0,

ḣ
(i)
t = B

(
1− u

(i)
t

)
h

(i)
t , ∀ t ≥ 0,

k
(i)
t ≥ 0 and h

(i)
t ≥ 0, ∀ t ≥ 0.

Since for positive γ all these optimization problems are coupled via the values of
the individual human capital stocks h(j), we interpret this optimization problem
as a multiple players’ non-cooperative game Γ (t, st). Note that the above DOPs
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are homogeneous in the initial conditions (cf. Bethmann and Reiß, 2004), a fact
that we will exploit extensively in the next section. The symmetry in the agents’
initial endowments together with the symmetry in preferences and technology
causes us to look for symmetric Nash equilibria. Applying the definition (e.g.
Dockner et al. (2000), Chapter 4) to our game Γ (0, s̄0), the policy functions
u(i∗) and c(i∗) form a Nash equilibrium if

U (i)
(
(u(i∗), c(i∗)); (u(j∗), c(j∗)), j 6= i

)
≥ U (i)

(
(u(i), c(i)); (u(j∗), c(j∗)), j 6= i

)

holds for all feasible controls u(i) and c(i) and for all agents A(i), i ∈ NN . In the
following section we assume that agents commit themselves to entire courses
of action at the outset of the game and are not allowed to revise them at any
subsequent date.

4 The open-loop solution

In this section we solve the non-cooperative game under the assumption that
the agents are not allowed to revise their action paths once they have made
their choices, i.e. we consider that agents play open-loop strategies. In Section
4.1 we exploit the game’s homogeneity in the initial conditions in order to re-
duce the Hamilton-Jacobi-Bellman equation to an implicit partial differential
equation. Along the balanced growth path this equation is an implicit differ-
ential equation and we are able to give an explicit solution which is indeed the
representative agent’s value function. However, outside this path the applica-
tion of this function leads to non-feasible controls. In Section 4.2 we start with
the implicit partial differential equation describing the solution to our problem.
We define the symmetric Nash equilbrium and reduce the problem to an initial
value problem for a single explicit ordinary differential equation.

4.1 The Hamilton Jacobi Bellman equation

The representative agent defines the value function as the solution to his opti-
mization problem:

V (i)(s0) := max
(c(i),u(i))∈X

{∫∞
0

e−ρt ln c
(i)
t dt, τ = ∞

−∞, τ < ∞,

where τ denotes the stopping time τ := inf{t ≥ 0 | kt = 0}. In order to determine
the value function, we write down the Hamilton-Jacobi-Bellman (HJB) equation
for the value function V (i) := V (i)(st):

ρV (i) = max
(c(i),u(i))∈X



ln c(i) + V

(i)
k k̇

(i)
t + V

(i)
h ḣ

(i)
t +

∑

j 6=i

V
(i)

h(j) ḣ
(j)
t + V

(i)
t



 (6)

Here, V
(i)
k , V

(i)
h , and , V

(i)

h(j) denote the partial derivatives with respect to the
agent’s own capital stocks k(i) and h(i) and with respect to the other agent’s
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human capital stocks h(j). These derivatives can be interpreted as the shadow
prices of relaxing the corresponding constraints. V

(i)
t denotes the partial deriva-

tive with respect to time t. Since the representative agent has no influence on
the evolution of his co-players stocks of human capital h(j), it does not matter
whether the braces include the last two terms or not. The first order necessary
conditions are:

c(i∗) = 1

V
(i)

k

, (7)

u(i∗) =
(

A(1−α)V
(i)

k

BV
(i)

h

) 1
α k(i)(∏

j 6=1 h(j))
γ

αN

(h(i))1− γ
αN

. (8)

The representative agent chooses the consumption stream such that the marginal
utility is equal to the marginal change of wealth with respect to physical capital.
The optimal allocation of human capital between the two sectors is determined
by the weighted ratio of the marginal changes in goods production and school-
ing due to a marginal shifting of the human capital allocation. The respective
weights are the agent’s shadow prices of the corresponding state variable. Since
the value function V (i) is obviously increasing in its arguments, the relation (7)
ensures that the consumption rate is positive. Equally, u(i∗) ∈ (0,∞) holds,
but u(i∗) > 1 may well occur. For the moment, let us suppose that the controls
(c(i∗), u(i∗)) found above are feasible. We continue with the insertion of our
findings into the HJB equation (6). We obtain:

ρV (i) + 1 + ln V
(i)
k − V

(i)
t

= α
(
AV

(i)
k

) 1
α
(

1−α

BV
(i)

h

) 1-α
α k(i)

( N∏
n=1

h(j)
) γ

αN

+BV
(i)
h h(i) +

∑

j 6=i

BV
(i)

h(j)(1−u
(j)
t )h(j).

The homogeneity in the initial conditions allows us to generalize Mulligan and
Sala-i-Martin’s (1991) idea to introduce the representative agent’s state-like
variable x

(i)
t and his control-like variable q

(i)
t . Here, we define them as follows:

x
(i)
t = k

(i)
t

h
(i)
t

(∏N
n=1 h

(n)
t

) γ/N
1−α

and q
(i)
t = c

(i)
t

h
(i)
t

(∏N
n=1 h

(n)
t

) γ/N
1−α

. (9)

The evolution of x(i) can be determined by taking the derivative with respect
to time and inserting the state dynamics for k(i) and h(n) respectively, n ∈ NN :

ẋ
(i)
t = A

(
x

(i)
t

)α(
u

(i)
t

)1−α−q
(i)
t − (1−α+γ− γ

N

∑
j 6=iu

(j)
t )Bx

(i)
t

1−α + (1−α+ γ
N )Bu

(i)
t x

(i)
t

1−α . (10)

We see that the evolution of x
(i)
t is completely described by three groups of

variables. First, by the state-like variable x(i) itself, second by A(i)’s controls
u(i) and q(i), and third by all other agent’s human capital allocation decision
paths u

(j)
t with j 6= i. The homogeneity in the initial conditions implies that we

are led to apply the same controls ũ
(i)
t = u

(i)
t and q̃

(i)
t = q

(i)
t for any symmetric
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initial state s̃0 with x̃
(i)
0 = x

(i)
0 . The only difference is that the consumption

rate c̃
(i)
t differs from c

(i)
t , by the factor

h̃
(i)
0

h
(i)
0

(
N∏

n=1

h̃
(n)
0

h
(n)
0

) γ/N
1−α

=
(

h̃
(i)
0

h
(i)
0

) 1−α+γ
1−α

.

Following Bethmann and Reiß (2004) we deduce the symmetric solution from
the value function-like function f (i) with V (i)(s̄t) = f (i)(x(i), t; u(j)

t , j 6= i) via

V (i)(s̄t, t; u
(j)
t , j 6= i) = f (i)(x(i), t; u(j)

t , j 6= i) + (1−α+ γ
N ) ln h(i)

ρ(1−α) +
γ
N

∑
j 6=i ln h(j)

ρ(1−α) ,

where the semicolon indicates that we restrict the function to given time depen-
dent paths of the other agents’ allocations of human capital. The derivatives of
V (i) with respect to the agent’s capital stocks k(i) and h(i), with respect to the
other agents’ human capital stocks h(j) with j 6= i, and with respect to time
can be expressed in terms of the function f (i) := f (i)

(
x

(i)
t , t; u(j)

t , j 6= i
)
. Hence,

we consider:

V
(i)

k(i) = f(i)
x x(i)

k(i) ,

V
(i)

h(i) = 1−α+γ/N
1−α

(
1

ρh(i) − f(i)
x x(i)

h(i)

)
,

V
(i)

h(j) = γ/N
1−α

(
1

ρh(j) − f(i)
x x(i)

h(j)

)
,

V
(i)
t = f

(i)
t ,

where f
(i)
x := ∂f(i)

∂x(i) and f
(i)
t := ∂f(i)

∂t . Thus the function f (i) determines deci-
sively the shadow values of the two private production factors and of the other
agent’s stocks of human capital. The introduction of f (i) allows us to rewrite
the first order necessary conditions (7) and (8):

c(i∗)(x(i)) = k(i)

x(i)

(
∂f(i)

∂x(i)

)−1 (11)

u(i∗)(x(i)) =
(

(1−α)2A

B
(
1−α+γ/N

)(
1

ρf
(i)
x

−x(i)
)
) 1

α

x(i). (12)

Let ua,t denote the arithmetic mean of all other agents A(j), j 6= i, decisions
of allocating their stocks of human capital, i.e. we define the optimal average
human capital allocation decision at date t as follows:

u∗a,t := 1
N−1

∑

j 6=i

u
(j∗)
t .

Using this definition and the above first order necessary conditions we first
determine the balanced growth path solution, where the state-like variable x(i)

and the controls q(i) and u(i) remain constant over time. In this case the optimal
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average human capital allocation must also be a constant in the interval [0, 1],
i.e. u∗a,t = u∗a ∈ [0, 1] for all t ≥ 0. Then the HJB-equation is time independent

such that f
(i)
t = 0 holds. We rewrite the HJB equation as follows:

f (i)− B(1−α+γ−γu∗a
N-1
N )

ρ2(1−α) + 1+ln f(i)
x

ρ = B(1−α+γ−γu∗a
N-1
N )x(i)

ρ(1−α)

[
(f(i)

x )
1
α ϕ

1-α
α

( 1
ρ−x(i)f

(i)
x )

1-α
α
−f (i)

x

]

with

ϕ := 1−α
1−α+γ/N

(
αα(1−α)A

B
(
1−α+γ−γu∗a

N-1
N

)α

) 1
1−α

.

Note, that we have reduced the HJB equation along the balanced growth path
to an implicit differential equation, where ϕ is a strictly positive constant. We
claim that a solution to this equation is given by:

f (i)(x(i)) = B(1−α+γ−γu∗a
N-1
N )

ρ2(1−α) + ln ρ−1
ρ + 1

ρ ln(x(i) + ϕ). (13)

Indeed, we have f
(i)
x = 1/(ρx(i)+ρϕ) as well as 1/ρ−x(i)f

(i)
x = ϕf

(i)
x and hence:

0 = f (i) + 1+ln f(i)
x

ρ − B(1−α+γ−γu∗a
N-1
N )

ρ2(1−α) and 0 =
(
f(i)

x

) 1
α ϕ

1−α
α

(
1
ρ−x(i)f

(i)
x

) 1−α
α

− f (i)
x .

The controls derived from f (i) are given by:

u(i∗) =
(

(1−α)2A
B(1−α+ γ

N )ϕ

) 1
α

x(i) and q(i∗) = ρ
(
x(i) + ϕ

)
.

The insertion of these findings into the dynamics equation (10) for the state-like
variable xt leads us to the following quadratic equation:

ẋ
(i)
t = a

(
x

(i)
t

)2 +
(
aϕ− ρ

)
x

(i)
t − ϕρ with a := B(1−α+γ−γua

N−1
N )

αϕ . (14)

A search for the steady states of x(i) shows that on the positive axis ẋ
(i)
t only

vanishes for the value:

x(i)
ss =

ρ

a
= ρ(1−α)

B(1−α+ γ
N )

(
α(1−α)A

B(1−α+γ−γu∗a
N-1
N )

) 1
1−α

.

Linearizing the right hand side of equation (10) at x(i) = x
(i)
ss shows that x

(i)
ss is

locally unstable:

ẋ
(i)
t ' (ρ + aϕ)

(
x

(i)
t − x(i)

ss

)
, with ρ + aϕ > 0.

Therefore we infer that f (i) yields the unstable solution branch in the phase
diagram. Unfortunately, an analytic expression for the stable solution branch
is unknown. The steady state controls implied by f (i) are the following:

u(i∗)
ss = ρ(1−α)

B(1−α+γ/N) and q(i∗)
ss = ρϕ

B

αρ+B(1−α+γ−γu∗a
N-1
N )

1−α+γ−γu∗a
N-1
N

. (15)

We stress that f (i) determines u
(i∗)
ss independently of u∗a such that the decen-

tralized steady state is unique.
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4.2 The symmetric Nash equilibrium

By symmetry, u(i∗) = u∗ and c(i∗) = c∗ do not depend on the agent A(i) and in
particular the average human capital allocation rule satisfies ua = u(i∗). Hence,
the agent’s lifetime utility U (i) only depends on his own controls u(i) and c(i)

and on the average decision rule u∗a concerning the optimal allocation of human
capital ha. Thus, u∗ and c∗ satisfy the Nash condition if

U
(
(u(∗)

t )t≥0, (c
(∗)
t )t≥0, (u∗a,t)t≥0

)
≥ U

(
(ut)t≥0, (ct)t≥0, (u∗a,t)t≥0

)

holds for all feasible controls (ut)t≥0 and (ct)t≥0. Note that from now on we
drop the superscript (i) in the notation. Furthermore, we restrict our attention
of the HJB-equation to the homogeneous form G(t)(x, fx(x, t), ft(x, t)) with:

G(t)(x, p, d) := B(1−α+γ−γu∗a,t
N-1
N )

ρ2(1−α) + d−ln p
ρ + B(1−α+γ−γu∗a,t

N-1
N )

ρ(1−α) xp

[
ϕ

1-α
α

t

( 1
ρp−x)

1-α
α
−1

]
,

where we have defined

ϕt := 1−α
1−α+γ/N

(
αα(1−α)A

B
(
1−α+γ−γu∗a,t

N-1
N

)α

) 1
1−α

.

Consequently, p(x, t) := fx(x, t) solves the partial differential equation:

p = G(t)
x + G(t)

p px + G
(t)
d pt,

where the respective derivatives of the homogeneous form G(t) are given by

G(t)
x (x, p, d) =

B(1−α+γ−γu∗a,t
N-1
N )

ρ(1−α) p
[

ϕ
1-α
α

t ( 1
ρp + 1−2α

α x)

( 1
ρp−x)

1
α

− 1
]
,

G(t)
p (x, p, d) = − 1

ρp +
B(1−α+γ−γu∗a,t

N-1
N )

ρ(1−α) x
[

ϕ
1-α
α

t ( 1
αρp−x)

( 1
ρp−x)

1
α

− 1
]
,

G
(t)
d (x, p, d) = 1

ρ .

Note that the dynamics equation (10) for the state-like variable xt together with
the restated first order necessary conditions (11) and (12) imply that ẋt = ρG

(t)
p

holds along the optimal control path. From economic theory we immediately
infer that xt converges monotonically to the steady state xss such that ẋt =
ρG

(t)
p 6= 0 holds off the balanced growth path. Denoting the inverse function

of t 7→ xt by x 7→ t(x) we put p̃(x) = p(x, t(x)) for x > 0 and x 6= xss. From
G

(t)
d = G

(t)
p ẋ−1

t we thus infer

p̃(x) = G(t)
x + G(t)

p

(
p̃′(x)− (

t′(x)− ẋ−1
t

)
pt

)
= G(t)

x + G(t)
p p̃′(x),

where G(t) means of course G(t(x)) along the solution path. There we know
from the Nash condition that ua,t = u∗(xt) holds which we can finally insert to

10



obtain the ordinary differential equation p̃ = Gx + Gpp̃
′ with

Gx(x, p) = B(1−α+γ−γ N-1
N u(p,x))

ρ(1−α) p
[(

ϕ(p, x)
) 1-α

α ( 1
ρp − x)

−1
α

(
1
ρp + 1−2α

α x
)−1

]
,

Gp(x, p) = − 1
ρp + B(1−α+γ−γ N-1

N u(p,x))

ρ(1−α) x
[(

ϕ(p, x)
) 1-α

α
(

1
ρp − x

) -1
α

(
1

αρp − x
)−1

]
.

Here the notation ϕ(p, x) reflects that ϕt depends on u(p, x) which is itself
derived from formula (12), that is

u(p, x) =
(

(1−α)2A

B(1−α+γ/N)( 1
ρp−x)

) 1
α

x. (16)

Hence the optimal average decision rule u∗a,t is replaced by (16) thereby stressing
that the agents commit themselves to time dependent control paths (ut)t≥0 at
the outset of the game. The differential equation is now explicit with

p̃′ =
p̃−Gx

Gp
.

Using the fact that q = p−1 and hence q′ = −p−2p′ holds we can rewrite this
equation in terms of the optimal control-like variable such that the following
explicit ordinary differential equation has to be solved:

q′ = q
1− B(1−α+γ−γ N−1

N u(q,x))

(1−α)ρ

[(
ϕ(q, x)

) 1-α
α ( q

ρ −x)
−1
α

(
q
ρ + 1−2α

α x
)−1

]

q
ρ −

B(1−α+γ−γ N−1
N u(q,x))x

(1−α)ρ

[(
ϕ(q, x)

) 1-α
α

(
q
ρ − x

)−1
α

(
q

αρ − x
)−1

] . (17)

This fraction is indeterminate at xss:

q′(x) =
K (x, q(x))
L (x, q(x))

and K (xss, q(xss)) = L (xss, q(xss)) = 0.

In order to obtain determinacy at xss we use L’Hôpital’s rule, which gives

q′(xss) =
Kx(xss, q(xss)) + Kq(xss, q(xss))q′(xss)
Lx(xss, q(xss)) + Lq(xss, q(xss))q′(xss)

.

This leads us to a quadratic equation in q′(xss), one solution of which we already
know from W , namely q′(xss) = ρ. Therefore, there exists exactly one other
possible solution of q′(xss) which is given by

q′(xss) =
−Kx (xss, q (xss))
ρLq(xss, q(xss))

.

As a result the fraction is now determinate with

q′(xss) =
(αρ+B(1−α+γ−γ N-1

N uss))((1−α+γ)uss+(1−α)(1−α+γ−γ N-1
N uss)(1+ 1−α+γ

1−α+γ/N
))

(1−α2)(1−α+γ−γ N-1
N uss)+α(1−α+γ)uss .

(18)
The Appendix states some intermediate results that we obtained when deter-
mining this expression. Note that only a simple initial value problem remains
to be solved, which is done in next section.
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Figure 1: Phase diagrams for q(x) with γ = 0.1 and γ = 0.5.
Left: 2 players. Right: 1000 players.

5 Numerical results

In this section we discuss the findings of the preceding section and examine the
influence of the number of players and the influence of the external effect γ
on the outcome of the differential game which is driven by the human capital
allocation u. In order to do this, we consider the following typical calibration
of the parameter values

A = 1, B = 1
10 , ρ = 1

20 , and α = 1
3 . (19)

Figure 1 contains the phase diagrams for the representative players control-like
variable q(x) where we have set the degree of the external effect γ equal to 0.1
and to 0.5, respectively. The left diagram displays the duopoly solution and the
right diagram refers to the case with 1000 players. The linear lines are derived
from the unstable solution (13) to the HJB-equation with the parameter ua

set equal to its steady state value (15). The concave lines that start in the
respective origin are the optimal controls q derived from the true value function
V , that is the numerical solution of the initial value problem given in equations
(17) and (18). Both the stable and the unstable function meet in the respective
saddle point (xss, qss). Note, that the duopolist’s relatively high valuation of
human capital leads to lower steady-state values of x in the left diagram than
the corresponding steady states in the right diagram where N = 1000 holds. On
the other hand, if γ increases, we observe a shifting of the steady state to the
left, i.e. the N -effect and the γ-effect work in opposite directions. Consequently,
in cases with low γ or with a high number of players N , the players’ influence
on the average productivity is very small such that the steady-state proportion
of consumption to the physical capital stock is lower than the two players case
or in the case where γ is higher. The pictures show these proportions as the
angles between the x-axis and the straight line between the steady state and
the origin.

Figure 2 shows the optimal human capital allocation u in the (x, γ) space
as a surface. The left part represents the duopoly solution and the right part

12
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Figure 2: Optimal time share u in (x, γ) space.
Left: 2 players. Right: 1000 players.

the case with N = 1000. The black lines correspond to the respective steady-
state values uss. Since the duopolist has more influence on the evolution of the
average human capital stock, his valuation of human capital is higher than that
of the representative oligopolist in the N = 1000 players game. This explains
why for positive γ the duopolist’s allocation of human capital to the goods
sector is always smaller than the corresponding value of u in the right part. For
small values of x and γ, they both are about to set u larger than one. Keeping
γ fixed, the fraction of time allocated to goods production decreases when x
increases. This observation can be rationalized as follows. A high value of x
indicates that the economy’s endowment of human capital is relatively low. This
leads to high marginal returns of human capital in goods production. Arbitrage
reasoning implies that the realized marginal productivity of human capital in
the schooling sector must also be relatively high2. Hence a comparatively high
fraction of human capital is attracted by the schooling sector. This explains the
relatively low value of u. Since the marginal returns of human capital in goods
production and γ are positively related, this reasoning can also explain the
negative slope of the surface with respect to γ. Since an increase in the number
of players causes the influence of a single player on the average level of human
capital to be declining, we observe for the optimal human capital allocation that
u(x) decreases in N . In this sense considering different N ’s means a rescalation
of the γ-axis, i.e. the surface is stretched like a rubber blanket if the number N
increases (see also Figure 5 in the Appendix). The following two figures examine
the interplay of γ and N in detail.

Figure 3 shows the optimal human capital allocation u depending on the
number of players N . The left diagram displays the respective steady state
values. The case N = 1 corresponds to the social planer’s solution. Since the
social returns are taken into account by the planner, his steady state valuation
of human capital is higher than that of an arbitrary oligopolist. This explains

2The opportunity costs of schooling are also determined by the shadow values of the rep-
resentative agent’s capital stocks.
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Figure 3:
Optimal time share u with respect to N .
Left: Steady state uss. Right: Optimal choice
u(xce

ss).

why for positive γ the planner’s allocation of human capital to the goods sector
is smaller than the corresponding value of u in cases where N is bigger than
one. A similar argument holds for arbitrary oligopolies with N and N ′ players,
where N < N ′. The higher marginal returns of the representative players human
capital in the N players case lead to a lower steady state value of u compared to
the N ′ players case. Keeping these reflections in mind we now consider optimal
allocations along the transition towards the steady state. The right diagram of
the figure refers to the optimal human capital allocation if the state-like variable
is equal to its competitive equilibrium steady state xce

ss, i.e. in the case where
N = ∞ holds

xce
ss = ρ

B

(
α(1−α)A

(1−α+γ−γ ρ
B )B

) 1
1−α

.

Since xss is increasing in N we know that the optimal allocation u of the N
players game at this state must be smaller than its respective steady state
u(xce

ss) < u(xss). For increasing values of N two effects start to set in. First, the
game’s steady state of the state-like variable converges against xce

ss from below.
Second, as mentioned above the representative player’s influence on the average
human capital stock is shrinking. Both effects cause the optimal choice of u(xce

ss)
to increase.

Figure 4 shows the values of u where we consider the state-like variable to
be far away from steady state. In the right part of the figure x = 3xce

ss holds, i.e.
we consider a relative scarcity of human capital. This causes the productivity of
human capital in the goods sector w to be very high, where the representative
player’s w(i) is given by

w(i) = (1−α+ γ
N )y(i)

h(i) .

If we neglect the respective shadow values for the moment, it follows that the
opportunity costs of schooling are also very high in this case. Then the players
optimal allocation of human capital to the goods sector must be relatively small
in order to match the marginal productivity of human capital in the two sec-

14



1 10 100 1000

N

0.2

0.4

0.6

0.8

1
U

0.2

0.4

0.6

0.8

1

γ=1
γ=0.75
γ=0.5
γ=0.25
γ=0

1 10 100 1000

N

0.2

0.4

0.6

0.8

1

U

0.2

0.4

0.6

0.8

1

γ=1
γ=0.75
γ=0.5
γ=0.25
γ=0

Figure 4: Optimal time share u(x) with respect to N .
Left: For x = 3xce

ss. Right: For x = 1/3xce
ss.

tors. Clearly, this effect is the more distinct the bigger the parameter γ, i.e. the
higher the marginal productivity of his human capital stock in the goods sector.
In the right part of the figure we consider x = 1/3xce

ss. This corresponds to a
relative scarcity in physical capital thereby implying a relatively low marginal
productivity of human capital. Note, that for large numbers N the optimal
human capital allocation to the goods sector is the bigger the higher the val-
ues of γ. This can be rationalized as follows. Let two games be given. In the
first game the parameter γ is bigger than the second game’s γ. Furthermore,
suppose that the number N is relatively large such that we can neglect the rep-
resentative agent’s influence on the economy-wide average human capital stock.
If we assume that the average human capital stock in both games grow with
the same rate the representative agent knows that the marginal productivity of
his human capital stock in the next moment will be higher in the case where γ
is big. This means that the shadow value of his present stock of human capital
is smaller than in the low γ case. Thereby the shadow values give an incen-
tive for human capital investment in the high γ case. Furthermore, the original
assumption that the average stock of human capital in both cases grow at the
same rate can not be a symmetric Nash equilibrium, at least in one of the two
games considered. We conclude that the average stock of human capital grow
faster in the high γ case.

6 Conclusion

In this paper we have derived the open loop solution of a differential game with
logarithmic objective functions. The focus on time dependent control paths
and on symmetric Nash equilibria has permitted to solve the differential game
for an arbitrary number of players. We have shown that the game’s solution
is completely described by an initial value problem for an ordinary differential
equation. Since the allocation of human capital between the two production
sectors is crucial for our understanding of the transitional dynamics (cf. Mul-

15



ligan and Sala-i-Martin, 1993) we have examined the influences of the number
of players N and the degree of the external effect γ on the optimal choice of
u. We have shown that both parameters have a decreasing influence on the
steady-state allocation. Furthermore, the influence of both parameters vanishes
for large N . Off the steady state, the optimal allocation is more sensitive to the
two parameters. Again the importance of N vanishes. However, we show that
the importance of the degree of the external effect γ remains when the number
of players increases.

Appendix

Human capital allocation

Figure 5 shows similar plots as Figure 2 in the main text. The only difference
here is that we have set N equal to 1, 3, 10, and 100. We observe that the
surface indeed the optimal human capital allocation u in the (x, γ) space as a
surface. It can be seen that the number N of players causes the surface to rise to
the left of the steady state and to part represents the duopoly solution and the
right part the case with N = 1000. The black lines correspond to the respective
steady-state values uss.
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Figure 5: Optimal time share u with respect to (x, γ).

16



The initial value q′(xss)

Note that the derivatives of ϕ(q, x) at q = q(xss) and x = xss are found to be

ϕx = ϕss
a αγ(N−1)ux

(1−α)[N(1−α+γ)−γ(N−1)uss] and ϕq = ϕss
a αγ(N−1)uq

(1−α)[N(1−α+γ)−γ(N−1)uss] .

The respective derivatives of (16) are given by

ux = uss
B(1−α+γ−γ N−1

N uss)+ρ

αρϕ and uq = uss

ρϕss
a

.

Let K(q(xss), xss) and L(q(xss), xss) denote the numerator and denominator
of the differential equation (17). Since q′(xss) = −Kx(q(xss),xss)

ρLq(q(xss),xss) holds for the
second root of the quadratic equation we have to look at the following two
derivatives:

Lq(xss, q(xss)) = 1−α2

α + (1−α+γ)uss

1−α+γ−γ N-1
N uss

Kx(xss, q(xss)) = −ρqss

αϕ

{
(1−α+γ)(1−α)

1−α+γ/N + (1−α)2(1−α+γ−γ N-1
N uss)

(1−α+γ/N)uss

(
1+ 1−α+γ

1−α+γ/N

)}
.

This implies the expression given in equation (18).
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