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1. Introduction  
 

Trade and development policies have often been supported by arguments stressing 

improvements in productivity at the microeconomic level.  The traditional infant industry argument, 

for instance, suggests that new firms operate at such high costs that they would be unable to 

compete with well-established foreign firms without protection. While such protection would be 

detrimental to the country’s welfare initially, by allowing domestic firms to start operations it would 

give them the opportunity to grow and learn by doing, decreasing production costs over time.  

When the infant firms mature, the argument concludes, protection would become unnecessary as 

they would be able to compete in international markets. 

More recently, policies of export-led growth have also been supported on the grounds that 

they improve the productivity of exporting firms. One often-cited reason for such improvement is 

that foreign buyers transfer technology to firms that introduce new export products. Additionally, as 

case study evidence from Taiwan suggests, the possibility of exploiting profitable opportunities by 

selling in export markets may stimulate firms to improve their own technological capabilities 

(Westphal (2002)). Improvements in productivity associated with the access to export markets have 

been referred to by Clerides et al. (1998) and others as learning-by-exporting. 

While the notion that firms learn by exporting is intuitively appealing, the empirical 

evidence has been inconclusive. Exporters have been found to be significantly more productive, 

larger, more capital-intensive, and to pay higher wages than nonexporters, but these desirable 

characteristics might be the cause and not the consequence of their participation in export markets. 

If entry into export markets is characterized by economically significant sunk costs, only firms that 
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are productive enough would have the capability of exporting. It is possible, then, that the strong 

positive association between productivity and participation in export markets reflects the self-

selection of the better firms into export markets and not the effect of exporting on productivity. In 

fact, many empirical studies using plant-level data have found support for this alternative causal 

interpretation.1 Yet, self-selection and learning-by-exporting are not mutually exclusive 

possibilities, as high-productivity firms that can afford the sunk cost of entry to export markets may, 

in principle, continue to improve their productivity as a result of their exposure to exporting. 

Several studies have found support for learning-by-exporting, even after controlling for self-

selection effects.2 

Despite the large and growing literature on this subject, we believe that the lack of 

conclusive evidence on learning-by-exporting warrants further investigation. In this paper, we 

revisit a basic question: how to define learning-by-exporting? To answer this question we consider 

the parallels between learning-by-exporting and learning-by-doing. In his classical work on 

learning-by-doing, Arrow (1962) suggests two main characteristics of learning. First, “learning is 

the product of experience. Learning can only take place through the attempt to solve a problem and 

therefore only takes place during activity” (p. 155). Second, “learning associated with repetition of 

essentially the same problem is subject to sharply diminishing returns… To have steadily increasing 

performance, then, implies that the stimulus situations must themselves be steadily evolving rather 

than merely repeating” (pp. 155-6). 

We believe that Arrow’s general characterization of learning applies to domestic firms 

                                            
1 Bernard and Wagner (1997), Clerides et al. (1998), Bernard and Jensen (1999), Aw et al. (2000), Isgut (2001), 
Fafchamps et al. (2002), Delgado et al. (2002), Arnold and Hussinger (2004), Alvarez and Lopez (2004). 
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breaking into export markets. Those firms need to solve new problems such as adopting stringent 

technical standards to satisfy more sophisticated consumers.  The production of export goods may 

require the introduction of new, more efficient equipment to which workers need to adjust.  Export 

markets are likely to be more competitive than the domestic market, putting pressure on firms to 

meet orders in a timely fashion and ensure quality standards for their products.  Meeting all these 

challenges may help firms improve their productivity.  However, once—and provided that—firms 

succeed in meeting these challenges, the scope for further learning may be significantly diminished. 

This characterization suggests reasons why many previous studies have not found evidence 

of learning-by-exporting. One common method to capture learning-by-exporting effects is to 

compare the performance of mutually exclusive groups, such as exporters and nonexporters. The 

problem is that not all exporters have the same level of engagement in export markets: while some 

firms devote considerable resources to their export activities, others are only marginally involved in 

exporting, with little scope for learning. The presence of firms marginally engaged in export 

markets in the group of exporters is likely to generate a downward bias in the estimated effect of 

learning-by-exporting. Another common method is to regress a performance variable, such as total 

factor productivity (TFP) or average variable costs, on a lagged indicator variable measuring export 

participation.  This method is also subject to the criticism that export participation does not capture 

the level of engagement in exporting. A further disadvantage is that it does not take into account 

how long firms have participated in the export market. If, as Arrow suggested, learning is subject to 

sharply diminishing returns, successfully established exporters are unlikely to learn from exporting. 

                                                                                                                                             
2 Kraay (1999), Castellani (2002), Baldwin and Gu (2003), Van Biesebroeck (2004), Girma et al. (2004), Bigsten et al. 
(2004), Hahn (2004), Blalock and Gertler (2004), De Loecker (2004). 
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 Therefore, their presence in the group of exporters is also likely to generate a downward bias in the 

effect of learning-by-exporting. 

The previous discussion suggests two ideas to truly capture learning-by-exporting effects in 

the data. A first idea is to focus on young plants. Young plants are much more likely than 

established plants to face new stimulus situations, which require managers and workers to find 

solutions to new technical and organizational problems. This is the reasoning underlying the strong 

evidence of learning-by-exporting found by Delgado et al. (2002) and Baldwin and Gu (2003) for 

young Spanish and Canadian manufacturing plants, respectively. In our paper, we seek to confirm 

this evidence for young Colombian manufacturing plants. A second idea is to focus on measures of 

export experience, rather than on export participation, to capture learning-by-exporting effects.  Our 

export experience measures, the number of years a firm has exported and an index of cumulative 

exports, require that we observe plants’ complete production and export histories. This provides us 

with a second rationale for focusing on young plants born in 1981 or later as 1981 is the first year 

when plant-level export data is available in the annual Colombian manufacturing surveys.   

Our results show robust evidence of learning-by-exporting effects for young plants, using 

both traditional export participation measures and our export experience measures. The average 

annual rate of TFP growth for young entrants into export markets is around 3% to 4% higher than 

that for young nonexporters. Each additional year of export experience increases plant TFP 

between 4% and 5%, even controlling for a dummy indicating whether the plant is currently 

exporting.  In extensions to our main results we show that learning-by-exporting is significantly 

more important for young plants than for old plants. Also, we find that the relationship between 
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export experience and productivity varies across industries.  The volume of industry exports and the 

proportion of industry exports going to high-income countries contribute to this cross-industry 

variation. 

The paper is organized as follows. In Section 2, we review the learning-by-exporting 

literature. Our empirical strategy and data are described in Sections 3 and 4. Our results are 

presented in Sections 5 and 6.  Section 7 concludes. 

 

2. The Measurement of Learning-by-Exporting Effects 

Following the influential papers of Bernard and Jensen (1999) and Clerides et al. (1998), the 

literature has used two main methods to measure learning-by-exporting effects. The first method 

consists of separating the sample into mutually exclusive groups, such as exporters and 

nonexporters, to assess differences in plant performance between these groups. Consider the 

following equation explaining a measure of performance for firm i at year t:3 

itiiiioiit tZtDtZDY ηωβββααα +++++++= 020102010 ''ln ,    

where Di0 is a dummy variable equal to one if the plant belongs to the “treatment” group and equal 

to zero if the plant belongs to the “control” group during the baseline year t = 0; Zi0 is a vector of 

observable plant characteristics, such as size or industry affiliation in the baseline year; t is a time 

trend; iω is an unobservable, time-invariant plant effect; and itη  is an i.i.d. disturbance. Taking 

average annual differences between t = 0 and T, we obtain: 

                                            
3 We use the terms firms and plants interchangeably in the paper, but our empirical analysis relies on plant-level data. 
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( ) itiiiiTiT ZDYY
T

Y εβββ +++=−≡∆ 020100 'lnln
1

ln ,          (1) 

where 0iiTiT ηηε −≡ .  The difference-in-difference estimator 1̂β  measures the average differential 

in performance between plants in the treatment group and plants in the control group, after 

accounting for general trends influencing the performance of all plants equally, trends in 

performance related to observable plant characteristics, and unobserved time-invariant plant effects. 

 Several variants of Equation (1) have been estimated in the literature, using data from both 

industrial and developing countries, considering diverse treatment and control groups and time 

horizons (T). For example, Bernard and Jensen (1999) define their treatment group as U.S. 

manufacturing plants that export in the initial year of the sample, and estimate Equation (1) using 

different time periods - 1984-1988, 1989-1992, and 1984-1992 - and different time horizons - short 

run (T=1), medium run (T=3, 4), and long run (T=8). 

One extension of Equation (1) developed in the literature has been the inclusion of more 

than one dummy identifying different, mutually exclusive treatment groups. Bernard and Jensen 

(1999), for example, consider three groups: (1) plants that do not export in t=0 but export in t=T 

(entrants), (2) plants that export in both years (continuous exporters), and (3) plants that export in 

t=0 but do not export in t=T (quitters). The control group consists of plants that do not export in 

either year.  Another extension developed in the literature has been to select the treatment and 

control groups from a subset of the plants in the sample. For example, Aw et al. (2000) use three 

nonconsecutive years of plant-level data for Korea and Taiwan and consider (i) regressions where 

only entrants to export markets are the treatment group and nonexporters are the control group, 
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excluding quitters and continuous exporters from the estimating sample; and (ii) regressions where 

quitters are the treatment group and continuous exporters are the control group, excluding both 

entrants and nonexporters from the estimating sample. 

While most researchers have estimated some variant of Equation (1) using OLS, Delgado et 

al. (2002) use a nonparametric method to compare the distributions of productivity growth of 

Spanish manufacturing exporters and nonexporters during 1991-1996. Estimation is performed 

separately for subsamples of small and large firms. Interestingly, the authors cannot reject the null 

hypothesis that productivity growth is greater for exporters than for nonexporters when the sample 

includes only young firms (those that started operations between 1986 and 1991). This result is 

valid for small and large young firms. 

The most recent innovation in the measurement of learning-by-exporting effects through 

group comparisons has been the use of matching methods to control more precisely for differences 

between firms in treatment and control groups. As the literature on evaluation methods for 

nonexperimental data suggests, the appropriate comparison to evaluate the effects of entry into 

export markets involves a counterfactual. Letting 
1

iTY∆  denote the performance between t=0 and T 

of a firm that entered export markets at )T0(t <≤= ττ  and 
0

iTY∆  denote the hypothetical 

performance of the same firm had it not started to export, the causal effect of entry is captured by 

01
iTiT YY ∆−∆ . The average treatment effect on the treated is defined as the expectation of this 

counterfactual difference for the subpopulation of firms that actually entered the export market at 

time τ : ]1|[]1|[ 01 =∆−=∆ ττ iiTiiT DYEDYE . Unfortunately, the second term is unobservable.  

What we observe is the difference in performance between entrants and nonexporters, 
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]0|[]1|[ 01 =∆−=∆ ττ iiTiiT DYEDYE . However, this difference provides a poor estimate of the 

causal effect of entering into export markets on performance if, as both theory and empirical 

evidence suggest, exporters have very different characteristics from nonexporters. Matching 

methods identify a subpopulation of nonexporters that are similar to the population of entrants into 

export markets before entry, where similarity is based on set of observable firm characteristics. 

Girma et al. (2004), Arnold and Hussinger (2004), and De Loecker (2004) use propensity score 

matching to select appropriate subpopulations of nonexporters. This method requires the estimation 

of probit regressions to explain the probability of entry into export markets. Once the subpopulation 

of nonexporters is identified, differences in performance can be estimated nonparametrically or 

through a parametrical form similar to Equation (1) above. 

The second method of measurement of learning-by-exporting effects consists of adding one 

or more dummies for lagged export participation to a regression explaining a measure of firm 

performance. For example, Clerides et al. (1998) regress average variable costs on lagged export 

participation controlling for the real exchange rate, lagged capital stock and lagged average variable 

costs.  Kraay (1999) regresses three alternative measures of performance (labor productivity, TFP, 

and unit costs) on lagged export participation, lagged performance and firm fixed effects.  Bigsten 

et al. (2004) and Van Biesebroeck (2004) estimate production functions with a lagged export 

participation dummy added as a shifter of total factor productivity. A representative regression of 

the second method is given by: 

itiitititit XYDY εωββββ +++++= −− 'lnln 212110 ,                  (2) 

where Dit-1 is a dummy variable equal to one if the plant exported at time t-1; the vector Xit includes 
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both time-varying variables, such as the capital stock or the number of workers, and fixed plant 

characteristics, such as industry affiliation; iω is an unobservable, time-invariant firm effect; and itε  

is a time-varying performance shock. 

A major econometric problem with Equation (2) is that the export participation decision is 

endogenous because exporting is positively associated with performance; therefore, if itε  is 

persistent, 1β̂  may pick up the effects of past favorable performance shocks. One way to deal with 

this endogeneity problem is to estimate Equation (2) using instrumental variables or GMM. Kraay 

(1999) estimates a variant of this equation in first differences under the identifying restrictions that 

itε is i.i.d. and that the export participation decision is predetermined: 0]D[E
isit

=∗ ε  for all s > t. 

Notice that the latter restriction allows export participation to be positively correlated with current 

and past performance shocks, as the self-selection hypothesis suggests. Van Biesebroeck (2004) 

also estimates a variant of Equation (2) using Blundell and Bond (1998) System-GMM estimator. 

A more involved method of dealing with the endogeneity of export participation is to 

estimate Equation (2) simultaneously with another equation explaining the decision to participate in 

export markets. This is the approach taken by Clerides et al. (1998), where the two equations are 

estimated using full information maximum likelihood. An important finding of Bigsten et al. (2004) 

is that this type of estimation result is not robust to the distributional assumption on the error terms. 

In Clerides et al. (1998) the four error terms of the model (i.e., one plant effect and one i.i.d. 

disturbance in each equation, with the two plant effects and the two i.i.d. errors allowed to be 

correlated across equations) are normally distributed. Bigsten et al. (2004) approximate the 

bivariate distribution of the two plant effects nonparametrically by a discrete multinomial 
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distribution and find that this modification has dramatic effects on the estimation results: the 

coefficient on lagged export participation in their performance equation becomes positive and 

significant.4 

Table 1 presents a selective overview of the methodology and results of learning-by-

exporting studies. The table focuses only on segments of the cited studies that apply the methods 

examined in this section to the study of learning-by-exporting. The numbers (1) and (2) in the 

second column correspond, respectively, to studies based on variants of Equations (1) and (2).  In 

some cases, more than one method is used in the same paper. While the majority of studies use 

dummy variables to define the treatment group of exporters or to indicate whether the firm has 

exported in an earlier period, there are a few exceptions. Kraay (1999) and Castellani (2002) use 

export intensity, defined as the ratio of exports to sales. Interestingly, Castellani (2002) finds 

evidence of learning-by-exporting for Italian manufacturing firms when the dummy Di0 is replaced 

by export intensity in the initial year. Fafchamps et al. (2002) use the number of years since the firm 

began exporting to identify learning-by-exporting for a cross-section of Moroccan exporters.5  

 As mentioned in Section 1, we believe that the phenomenon of learning-by-exporting is 

related, like learning-by-doing, to the intensity of exposure to new challenging tasks. Therefore, an 

important aspect of our methodology is to capture learning-by-exporting using measures of export 

experience that convey not only whether or not the firm has participated in export markets in the 

                                            
4 Van Biesebroeck (2004) proposes a third method of estimation of Equation (2) based on Olley and Pakes (1996). 
5 Blalock and Gertler (2004) introduce export intensity and the number of years a plant has exported as robustness 
checks to their main regression.  Unfortunately, the main variable in those regressions is a dummy for contemporaneous 
exports, whose interpretation as learning-by-exporting is problematic due to the endogeneity of the export participation 
decision. 
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past but also the intensity and persistence over time of the firm’s exposure to export markets.  In the 

next section we explain in detail our approach to measuring learning-by-exporting effects. 

 

3. Empirical Specification 

 The measure of plant performance used in this paper to assess the presence of learning-by-

exporting effects is total factor productivity (TFP). In the literature reviewed in Section 2, 

researchers often rely on a two-step approach, first regressing output on inputs to obtain plant-level 

time series of TFP and then estimating a variant of Equations (1) or (2) above with TFP as the 

dependent variable. An alternative method is to test directly for learning-by-exporting effects in the 

estimation of the production function, the so-called one-step approach (Van Biesebroeck, 2004; 

Bigsten et al., 2004). In this paper, we show results using both approaches, though we emphasize 

the two-step approach due to its greater flexibility. 

In our measurement of TFP, we take into account two elements: (i) factors of production 

differ in their quality, and (ii) the choice of variable inputs may be correlated with productivity 

shocks unobserved by the econometrician. Accounting for differences in factor quality is important 

in light of the criticism by Katayama et al. (2003) to plant-level TFP estimates that they consider to 

be unreliable since physical volumes of output and inputs are not observed but rather estimated by 

deflating nominal sales revenues and input expenditures using sector-wide price indexes. If there is 

a positive association between factor quality and sales revenue (resulting from either a higher 

volume or a better quality of output), omitting factor quality measures in the production function 

will make plants using better inputs look as if they are more productive. Similarly, if plant 
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managers choose variable inputs based on knowledge of their plant’s current productivity, the 

estimated coefficients on variable inputs in the production function will be upwardly biased. This 

bias will make plants that use relatively more variable inputs appear less productive. 

In this paper, we consider the following production function:  

( )itqititititit QKMLAY kml 'exp ββββ= ,                   (3) 

where Ait is total factor productivity; Lit, Mit, and Kit are, respectively, labor, intermediate inputs, 

and capital; and Qit is a vector of factor quality measures. The vector Qit includes two measures of 

labor quality, skill intensity Sit and wage premium Wit, and one measure of capital quality, capital 

vintage Vit. Finally, we model total factor productivity as 

  ( )itititEEitYEit EEYEA εωββ +++= exp ,                  (4) 

where YEit is a measure of output experience, EEit is a measure of export experience, itω  a plant-

specific productivity shock known to the plant manager, and itε  a zero-mean productivity shock 

realized after variable inputs are chosen. In our estimation, YEit is a vector including two measures 

of output experience. 

In the two-step approach, we estimate the production function without taking into account 

the potential dependence of TFP on output and export experience: 

itititVitWitSitkitmitlit VWSkmly εωβββββββ ++++++++= 0 .                 (5) 

As mentioned above, a major econometric problem with Equation (5) is the possibility of an 

upward bias in the estimated coefficients on variable inputs (labor, intermediate inputs, skill ratio, 

and wage premium) and a corresponding downward bias in the estimated coefficients on quasi-
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fixed inputs (capital and vintage). To obtain consistent estimates of the production function 

parameters, we use a modified version of the combination of parametric and nonparametric 

techniques proposed by Levinsohn and Petrin (2003) [henceforth LP].  

The LP estimation procedure makes use of plant-level intermediate inputs’ choices to 

correct for the simultaneity between variable inputs and productivity. Estimation proceeds in two 

stages. First, the coefficients on labor, skill intensity, and wage premium are obtained by semi-

parametric techniques. Following LP, we assume that a plant's demand for intermediate inputs 

increases monotonically with its productivity, conditional on its capital and vintage. Then, the 

inverse of the intermediate inputs demand function depends only on observable intermediate inputs, 

capital and vintage and its nonparametric estimate can be used to control for unobservable 

productivity, removing the simultaneity bias. Second, intermediate inputs, capital and vintage 

coefficients are obtained by generalized method of moments (GMM) techniques. The identification 

assumption is that capital and vintage adjust with a lag to productivity.6 Further estimation details 

and results for a set of industries are provided in Appendix A.   

Equation (5) is estimated separately for each of twenty four 3-digit ISIC Colombian 

manufacturing industries. We construct our measures of plant TFP as −=





 +≡

itit

^

itit
yâ εω  

( )
itVitWitSitkitmitl0

VˆWˆSˆkˆmˆlˆˆ βββββββ ++++++  after obtaining consistent production function 

parameters.  In the second step, we estimate 

ititEEitYEit uEEYEa +++= βββ0ˆ             (6) 

                                            
6 More specifically, we assume that productivity follows a Markov process: it1ititit

]/[E ξωωω +=
− where 
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by different methods, such as OLS, fixed effects, and Blundell and Bond (1998) system-GMM. 

In the one-step approach, we include output and export experience directly in the production 

function:  

         itititEEitYEitVitWitSitkitmitlit EEYEVWSkmly εωβββββββββ ++++++++++= 0 .        (7) 

As above, we use intermediate inputs to correct for the endogeneity of input choices with respect to 

productivity. We assume that the plant manager observes its current productivity itω  before making 

profit-maximizing choices of labor, labor quality, and intermediates to be combined with the quasi-

fixed input capital and its quality and produce output. To obtain the coefficients on production and 

export experience variables, we modify the LP estimation procedure. The main identifying 

assumption is that production and export experience are taken by plant managers as state variables 

like capital; hence their coefficients are obtained in the same stage of the estimation as that of 

capital. All details on the estimation procedure are provided in Appendix A. 

 

4. Data  

The dataset used in this study is constructed from the 1981-1991 annual census of 

Colombian manufacturing plants conducted by Departamento Administrativo Nacional de 

Estadística (DANE). The census covers all manufacturing plants with ten or more employees.7  The 

variables provided by the census are in current pesos, except for the number of workers and the 

                                                                                                                                             

it
ξ represents the unexpected part of current productivity to which capital and vintage do not adjust. 
7 More specifically, DANE requires a plant to have more than ten employees to enter the census for the first time, but 
then continues to cover the plant regardless of its employment levels.  As a result, plants with less than ten employees are 
included in the sample in almost all years. 
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consumption of electric energy. Therefore, we use a series of price indexes to convert all the 

nominal variables into 1986 constant pesos. We obtain implicit price indexes for different types of 

capital goods and producer price indexes (PPI) at 3-digit ISIC (revision 2) from DANE, and 

construct our own indexes for domestic and imported raw materials and for exports. Details on the 

construction of price indexes and other data issues are provided in Appendix B. 

The main variables for our analysis are output, labor, intermediate inputs, skill intensity, 

wage premium, capital, vintage, production experience, and export experience. Output Yit is 

obtained as the sum of the value of domestic sales plus net inventory accumulation deflated by PPI 

and the value of exports deflated by the exports price index. Labor Lit is the total number of 

workers. Intermediate inputs Mit is the sum of raw materials consumption and energy consumption 

in constant pesos. Raw materials consumption in constant pesos is the sum of the values of 

domestic and imported raw materials consumed during the year deflated by the price indexes of, 

respectively, domestic and imported raw materials. Energy in constant pesos is the sum of electric 

energy consumed during the year valued at 1986 prices plus consumption of fuels and lubricants 

deflated by the PPI of the petroleum refineries sector.   

Our measures of labor quality are skill intensity Sit, defined as the ratio of the number of 

white collar workers, managers, and technicians to the total number of workers, and the wage 

premium Wit, defined as the ratio of the plant’s average wage in a given year to the average wage 

paid that year in the region where the plant is located.8 Bahk and Gort (1993) use the plant’s 

average wage as a measure of labor quality on the grounds that variations in wages "mainly 

                                            
8 We consider thirteen regions: eight major metropolitan areas (Bogotá, Medellín, Cali, etc.), four regions in the interior, 
and the rest of the country.   
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measure differences in skills rather than differences in the prices of identical classes of labor" (p. 

565). Given the greater degree of geographical segmentation in Colombian labor markets, we 

normalize average plant wages by the regional average wage.   

Following Bahk and Gort (1993), our measure of capital is gross capital.  Gross capital at 

time t, Kit, is defined as cumulative purchases minus cumulative sales of capital goods up to t-1.  To 

obtain this measure we aggregate purchases and sales of four types of capital goods (buildings and 

structures, machinery and equipment, transportation equipment, and office equipment) in constant 

pesos.  The omission of depreciation rates in the measurement of the capital stock is justified under 

the assumption that maintenance outlays offset the adverse output effects of physical decay. Of 

course, capital equipments of different vintages are affected by different degrees of obsolescence. 

Given the observed continuous technological improvements in the international capital goods 

industry, newer plants and plants that invest more frequently will most likely be more productive.9 

For that purpose, our production function includes a measure of capital vintage Vit, whose 

construction is explained in Appendix B. 

We consider two measures of production experience in our analysis. Our first measure is the 

number of years a plant has been in operation (age). A problem with this measure is that it assumes 

that the plant accrues a similar level of experience each year, which is unrealistic since production 

levels, which give rise to experience, are likely to vary from year to year. Our second measure is a 

plant-specific index of cumulative production up to t-1. The index is scaled by the level of 

                                            
9 The effect of embedded technological change on productivity is quantitatively significant. Jensen et al. (2001) find that 
the 1992 cohort of new entrants into the U.S. manufacturing industry were, on average, more than 50% more productive 
than the 1967 entrants in their year of entry, even after accounting for industry-wide factors and input differences. 
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production in the first year of operations of the plant.10 This measure takes into account Arrow’s 

assumption that learning will vary according to the degree of exposure to production experience. A 

similar measure, cumulative production without scaling by production in the first year, has been 

commonly used in the empirical learning-by-doing literature (Bahk and Gort (1993)).  The absence 

of scaling, however, is problematic in panel data regressions since differences in the scale of 

production across plants are likely to confound the effect of experience on productivity for 

individual plants. Thus, we believe that our plant-specific cumulative production index is a better 

measure. 

When accounting for learning-by-doing effects, the functional form is as important as the 

specific measures of output experience used. As Young (1991) pointed out, empirical studies of 

learning-by-doing have mostly ignored Arrow’s (1962) assumption that learning-by-doing is 

subject to sharply diminishing returns. The problem is that output experience measures have been 

most often included as logarithmic terms, implying an unbounded effect of experience on 

productivity. Taking this criticism into account, we enter our output experience measures in the 

production function in reciprocal form. This functional form implies that the effect of experience on 

productivity converges to zero, and we expect to find a negative and significant YEβ  in our 

regressions for evidence of learning-by-doing effects. 

By analogy to the output experience variables, we define export experience alternatively as 

the number of years in which the plant has exported up to t-1 or as an index of cumulative exports 

up to t–1.  Similarly to the cumulative output index, the plant’s cumulative exports are scaled by the 

                                            
10 This means that the index takes a value of one in the second year of operations of the plant. 
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level of exports in the first year the plant has exported. Unfortunately, we cannot use a reciprocal 

functional form in our regressions because both indexes of plant export experience are zero for the 

majority of observations in the sample. 

Given our definitions of output and export experience, we need to restrict our main 

estimating sample to plants born in 1981 or later, the first year when information on exports is 

included in the census.11 Besides limiting our sample to plants born in or after 1981, we require 

plants to have a minimum of three years of data and have positive values for the key variables 

output, labor, intermediate inputs, capital, and wage premium. We exclude plants that do not report 

data in some year between their first and last year in the survey and plants belonging to industries 

with less than 100 plant-year observations. In addition, given that our output and export experience 

measures depend on cumulative output and exports up to t-1, we exclude from the estimating 

sample the first observation of each plant. Applying these criteria, we obtain a sample of 3,324 

young plants and 16,706 plant-year observations. Finally, since our estimation procedures are 

sensitive to outliers, we reduce further our sample to 3,091 plants and 15,457 plant-year 

observations. The criteria for the elimination of outliers are described in Appendix B. To compare 

the effect of export experience on productivity in young and old plants, Section 6 uses a larger 

sample including both young and old plants. The latter plants appear continuously in the Colombian 

manufacturing census since 1974. This sample includes 6,171 plants and 46,574 plant-year 

observations. 

                                            
11 A limitation of this procedure is that some of the “new” plants in 1981 could have actually been born before 1981, but 
were smaller than the cutoff level of ten employees required to fill out the census form. Similarly, if a new owner 
acquires a previously operating plant and registers it under a different name, it might be coded in the census as a new 
plant. Since we do not have information to sort out these potential sources of error, we consider plants that appear for the 
first time in the census as new plants.   
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We find that young plants are much smaller, since on average they employ one third of the 

labor and produce one fifth of the output of old plants. While the use of skilled labor by young and 

old plants is similar, the wages in the former are about one fourth lower than those in old plants.  

Young plants invest substantially more than old plants, with an investment/output ratio about 70% 

higher. Consequently, their capital is of a much newer vintage. This is perhaps the reason why 

young plants’ TFP is only about 7% lower than that of old plants, although their labor productivity 

is 35% lower. Finally, while young plants are half as likely to participate in export markets, when 

they do so, their average exports are only 20% less than those of old plants. 

  

5. Main Results 

 Some initial insights on the relationship between productivity and exporting can be gained 

from Figure 1 that shows levels and growth rates of plant TFP before, during, and after the year of 

entry into export markets. More specifically, the figure plots in bold lines the estimated coefficients 

of the dummy variables
τ
itD  in regressions of the form itititit DZY εδβα

τ
τ

τ +++= ∑' , where 

10 =itD  if plant i enters the export market at time t; 1=a
itD  (a<0) if plant i will enter the export 

market a years after time t; and 1=b
itD  (b>0) if plant i has entered the export market b years before 

time t. itZ contains year, industry, and region dummy variables, and itY  is alternatively the level (in 

logs) and the average annual growth rates of plant i’s TFP at time t over horizons of one, three, and 

five years. The thinner lines show 95% confidence intervals around the parameter estimates. 

Panel A of Figure 1 shows that the levels of TFP jump up at the time of entry into export 
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markets and remain higher after entry. Although the figure shows some support for the self-

selection hypothesis, i.e. that entrants are already more productive before entry, the estimates are 

not significantly different from zero. Panel B shows that TFP grows about 6% in the year of entry.  

Productivity growth continues to be positive and significantly different from zero up to four years 

after entry. Panels C and D show clear trends of increased productivity growth over longer time 

horizons, ranging from 3% to 4.5% between 3 and 8 years after entry. 

 While the results in Figure 1 are suggestive of learning-by-exporting, they should be taken 

with caution as they are not based on a clear-cut comparison between a treatment and a control 

group of plants. A better approach is based on the estimation of Equation (1) whose results are 

shown in Table 2 for unmatched (Panel A) and matched samples (Panel B). In both cases the 

treatment group consists of entrants into export markets, and the control group consists of plants 

that do not enter export markets during the sample period. To avoid spurious comparisons, all 

regressions include only one observation for each treated plant, and exclude plants that start 

exporting in their first year of life. However, the unmatched and matched samples differ 

dramatically in the number of observations in the control group. While the unmatched sample 

includes all the observations for all the nonexporters, the matched sample includes a single 

observation for each nonexporter that is matched to an entrant into export markets in the same 

industry and year. To obtain the matched sample, we use propensity score matching based on a 

probit regression explaining entry into export markets at time t.12 The probit includes as regressors 

                                            
12 We thank Jens Arnold for sharing his STATA code for matching plants in the same year and industry. In our 
matching, we ensure that two technical conditions are verified: (i) plants in the matched sample belong to the common 
support defined by the lowest propensity score of a treated plant and the highest propensity score of a control plant, and 
(ii) the balancing condition is verified. See Becker and Ichino (2002) and Leuven and Sianesi (2003). 
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one period lagged values of plant size (labor), wage, capital vintage, productivity, the real exchange 

rate, the volume of exports in the industry and the region, and the number of exporters in the 

industry and the region. The number of exporters in the industry, plant size, the real exchange rate, 

and capital vintage are positively and significantly associated with entry into export markets.   

 Column (1) of Table 2 (Panel A) shows estimates of the coefficient 1β  in Equation (1) with 

average annual growth rates of plant TFP over one to five years horizons as dependent variables.  

The regressions using the unmatched samples include initial wage, skill, size (labor), capital 

intensity, and year, industry, and region dummies as controls. The regressions using the matched 

samples are estimated without additional controls. Due to the small sample size, it is not possible to 

include a full set of dummy variables as controls. Also, in regressions using only initial wage, skill, 

size capital intensity as controls, these variables turned out to be statistically insignificant and their 

inclusion did not change the estimates of the parameter of interest.13 Interestingly, the estimation 

results are similar, regardless of the sample used. The average annual rate of growth of TFP of 

entrants into export markets is around 3% higher than that of nonexporters in the unmatched sample 

and around 4% higher in the matched sample. The regression results presented in column (2) of 

Table 2 (Panels A and B) provide a different perspective as they are based on differences in the 

plant’s percentile in the TFP distribution for its industry and year. They suggest that between four 

and five years after entry, entrants into export markets advance 12 to 14 percentiles in their 

industry’s TFP distribution.14 

                                            
13 Incidentally, the lack of significance of the controls suggests that the matching method is accurate in identifying 
nonexporters with very similar characteristics to those of the entrants into export markets. 
14 Note that although the sample size is substantially smaller, the standard errors in the regressions with the matched 
samples are only about 50% higher than those in the regressions with the unmatched samples. 
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The results in Table 2 are also suggestive of the presence of learning-by-exporting effects. 

However, as argued in Section 1, a dummy to identify entrants into export markets does not 

accurately capture their exposure to export activities. In Table 3, we present estimates of Equation 

(6) using both OLS with industry dummies and fixed plant effects. The fixed effects or within 

estimates are obtained by subtracting from each variable itx  its plant-specific mean over time .ix  

before estimation by OLS.15 All regressions include year dummies. Since conventional F-tests 

reject the null hypothesis of no fixed effects, we focus on the results with fixed effects, although we 

also present OLS results for comparison. Interestingly, in all cases age has an unexpected sign, 

indicating that productivity decreases as plants get older.  In contrast, the cumulative output index 

has always the expected positive sign. These results suggest that it is the intensity of exposure to 

production activities, and not the mere passage of time, that contributes to learning-by-doing.16  Our 

measures of export experience are positive and significant in all regressions in Table 3. In the 

fixed effects regressions, plant TFP increases 4.8% for each additional year of export experience 

and 2.1% for an increase of one standard deviation (about 10) in the cumulative exports index. 

Two counterarguments can be made to the proposition that export experience increases 

productivity. A first counterargument is that although plants typically experience a boost in 

measured TFP during the years when they export, this boost may not reflect a true productivity 

increase but merely a higher utilization of existing factors in response to the increased demand 

                                            
15 We also estimated random effects specifications but found that often the Hausman test rejected the exogeneity of the 
regressors with respect to the random plant effects, making the fixed effects specification more appropriate. 
16 Olley and Pakes (1996) also find that age is inversely associated with plant productivity. Levhari and Sheshinski 
(1973) find that average workers’ age is insignificant when average workers’ experience is included in the production 
function. 
 
 



 

 

23

facing the plant. To examine this possibility, we include in columns (3), (4), (8) and (9) of Table 

3 a current exports dummy. As expected, we find that while plants increase substantially their 

TFP in the years when they export (about 7% in the fixed effects regressions), the effect of export 

experience remains positive and statistically significant. Moreover, in the fixed effects 

regressions, the estimated coefficients of export experience are essentially unchanged, with or 

without the current exports dummy. 

A second counterargument is that exporters are better and more productive regardless of 

how much export experience they have. One way to investigate this possibility is to include an 

exporter dummy variable (equal to 1 for plants that export in at least one year) in the regressions. 

The results in columns (5) and (10) of Table 3 show that the export experience variables remain 

positive and statistically significant after accounting for the fact that exporters are on average 

more productive than nonexporters. Another way to address this point is by reestimating the 

regressions in columns (1)-(4) and (6)-(9) of Table 3 for the subsample of plants that export at 

least once during the sample period (2,576 observations). The results, available from the authors 

upon request, are very similar to those in Table 3. The coefficients on the numbers of years 

exported decrease slightly (to 4.3% and 3.5%, respectively, in the fixed effects regressions with 

or without the current exports dummy), but remain highly significant. 

A potential concern with the results in Table 3 is that our TFP measures may be serially 

correlated. In fact, the main identifying assumption in the LP methodology used for the 

estimation of the production function is that productivity follows a Markov process, which plant 

managers can forecast before choosing their variable inputs. One way to address this possibility 
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is by allowing the error term in Equation (6) to be autoregressive. Given the significance of plant 

effects found in Table 3, we include a fixed effect if  to account for unobserved plant 

heterogeneity in TFP: 

  itiitEEitYEit ufEEYEa ++++= βββ0ˆ  

  ),0.(..~,1,1 νσνρνρ diiuu itititit ≤+= − .           (6’) 

This specification leads to the following estimating equation: 

       itiitEEitEEitYEitYEitit fEEEEYEYEaa νρρββρβββρρ +−+−+−+−+= −−− )1()1(ˆˆ 1101 .       (8) 

As is well known in the econometric literature (Nickell, 1981), fixed effects estimates of this model 

are biased when 0 and 1 ≠< ρρ .  Therefore, we estimate Equation (8) using the system-GMM 

method proposed by Blundell and Bond (1998). Note, however, that Equation (8) can be estimated 

consistently in first differences by OLS if ρ =1: 

ititEEitYEit EEYEa νββ +∆+∆=∆ ˆ             (9) 

In Table 4, we show the results from estimating Equation (8). As in Blundell and Bond 

(1998), we estimate the equation imposing no restrictions on the coefficients on the lagged 

explanatory variables. We assume that output and export experience are predetermined variables, 

implying that lagged values of those variables and of the dependent variable dated t-2 and earlier 

are valid instruments to estimate Equation (8) in first differences. We find, however, that including 

instruments dated t-2 leads to a rejection of the Sargan test of overidentifying restrictions. Thus, in 

our final specification we include as instruments lags of output and export experience variables and 

of the endogenous variable dated t–3 or earlier. We find evidence of second order serial correlation 
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in the first differenced residuals of Equation (8) in estimations for the full sample.17 After extensive 

experimentation with alternative instruments sets and subsamples, we find evidence of no second 

order serial correlation only when we estimate Equation (8) for a subsample of young plants with 8 

or 9 annual observations. The results presented in Table 4 are based on that subsample. The output 

experience coefficients change their sign, though age becomes statistically insignificant. Export 

experience continues to be positively associated with TFP, with each additional year of export 

experience increasing TFP by about 9% while the coefficient on the cumulative exports index is 

positive but not statistically significant.18 The most noticeable result in Table 4, however, is that the 

estimate of ρ  is very close to 1. Using a conventional t test of H0: ρ =1 against H1: ρ <1, we fail 

to reject the null hypothesis in both regressions with p-values of 0.25 and 0.47.   

To obtain more information on the time series properties of the variables used in this model, 

we test for the null hypothesis of unit roots by estimating simple AR(1) specifications by OLS.19  

Our tests cannot reject the null hypothesis of a unit root in our TFP series, with p-values of 0.13 

(with year dummies) and 0.46 (without year dummies). The tests overwhelmingly reject the null 

hypothesis of unit roots in the output and export experience variables.  Although unit root tests have 

low power to distinguish between a random walk and a highly persistent AR(1) process, the 

evidence suggests that assuming that ρ =1 is a reasonable approximation. While estimating 

                                            
17 By construction, the first differenced residuals of Equation (8) follow an MA(1) process; therefore, if tν  is i.i.d. we 

should find evidence of first order but not of second or higher order correlation in these residuals. The m1 and m2 
statistics reported in Table 4 test, respectively, for first and second order serial correlation in the residuals. 
18 For comparison purposes we also estimate for this subpanel the regressions corresponding to Table 3 and find an 
effect of export experience on TFP that is larger than for the full sample: e.g., the coefficient on the number of years 
exported in the fixed effects specifications is 5.7%. 
19 Bond et al. (2002) show that the t-test on the OLS coefficient of the lagged value of the series has high power when 
the variance of unobserved heterogeneity is relatively small. 
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Equation (9) by OLS is perfectly feasible under this assumption, we prefer to estimate the model 

using a cross-section of long-differences, defined as the difference between the first and last 

observation of each plant in the sample.20 This model allow us to focus on the cross-sectional 

differences in experience and productivity, exploiting the additional variability due to differences in 

the number of years that plants are in the sample.21 The results are presented in Table 5 for the full 

sample and for a subsample of plants that export since their first year in the sample. The results for 

the full sample, shown in columns (1)-(4), are very similar to those from the fixed effects 

regressions in Table 3. This is reassuring because under the assumption that ρ =1, estimates 

obtained using the within transformation are consistent. The results suggest that an additional year 

of export experience increases productivity by 4.2% after accounting for current exports. 

In columns (5)-(8) of Table 5 we show the results for the subsample of born exporters.  It is 

important to focus on this group for two reasons. First, as Hallward-Driemeier et al. (2003) point 

out, focusing on plants that start exporting from their first year eliminates the problem of self-

selection of more productive plants into export markets, allowing us to identify a truly causal 

effect of export experience on plant productivity. Second, when the estimating sample includes 

observations for which the export experience variables are zero, it is unclear whether the 

coefficients on those variables are just capturing a one-time boost in productivity when export 

experience increases from zero to one.22 By including in the regression only plants with strictly 

                                            
20 Recall that since our output and export experience measures depend on cumulative output and exports up to t-1, we 
exclude from the estimating sample the first observation of each plant. 
21 Note that the error term of the long differences between the first (2) and last (Ti ) time the plant is in the sample is 

∑
=

iT

i
3τ

τν , which is, by construction, heteroskedastic.   

22 We thank Eduardo Engel for pointing out this possibility. 
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positive export experience, we ensure that the estimated coefficient captures the effect of the 

accumulation of additional export experience after entry into export markets on plant 

productivity. The results for born exporters show that plant TFP increases 7.7% for each 

additional year of export experience, after accounting for current exports. Since in this subsample 

the cumulative exports index is always strictly positive, we estimate the regressions with the 

cumulative exports index expressed in logs, which allows for an easier interpretation. The results 

suggest that a doubling of the index increases TFP by 7% after accounting for current exports. 

 

6. Extensions 

In order to better understand why export experience is conducive to plant learning, we 

consider in this section several extensions to our main results. A first question is whether only 

young plants learn from the exposure to export markets. As mentioned above, we focus in this 

paper on young plants because we observe their full history and measure export experience most 

accurately. The inclusion of old plants in the analysis requires some assumptions. We assume 

that old plants showing at least three years with zero exports before exporting for the first time 

during the 1981-1991 period (for which information on exports is available) are new entrants into 

export markets. Of course, it is possible that some of these plants have actually exported before 

1981, but this criterion eliminates at least the group of established exporters that are likely to 

export every year. 

Table 6 shows estimation results for a variant of Equation (1) using a matched sample. The 

regressions include two dummy variables identifying young and old entrants into export markets.  
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These specifications allow us to determine if young plants experience better performance after 

entering into export markets than old plants. As for Table 2, we find that control variables are 

insignificant and do not alter the estimated coefficients of interest; thus Table 6 shows results from 

regressions that do not include controls. Columns (1) and (2) show the estimated coefficients on the 

dummies for young and old entrants into export markets in regressions with the average annual 

growth rate of TFP as dependent variable. Note that young plants entering into export markets 

experience average annual rates of TFP growth around 3.5% faster than nonexporters over horizons 

of two to five years after entry, while old entrants’ grow over the same horizons around 1.8% faster 

than nonexporters. Columns (3) and (4) also show differences in the changes of the plants’ relative 

position in their industry-year TFP distribution. Young plants entering into export markets move up 

10 percentile points five years after entry compared to nonexporters, twice as much as old plants. 

 Table 7 shows the results from estimating Equations (6) and (9) with an interaction term to 

capture differences in the impact of export experience on TFP for young and old plants. As in Table 

5, we estimate Equation (6) with fixed effects and Equation (9) as a cross section of long 

differences. We present results for the full sample in columns (1)-(4) and for the subsample of 

exporters in columns (5)-(8). We include the current exports dummy in all regressions.  The results 

indicate that young plants learn significantly more from exporting than old plants. On average the 

effect of an additional year of export experience on TFP is 6.3% for young plants and 1.9% for old 

plants, and the coefficient on the cumulative exports index is 7 times higher for young plants 

compared to old plants.   

Another important question to investigate is whether results change when output experience 
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and export experience are included directly in the production function as in Equation (7), the so-

called one-step approach. Table 8 presents results for the five Colombian manufacturing industries 

with the largest number of young plants.23 For simplicity, we show only the estimated coefficients 

on output and export experience variables. Export experience is measured either as the number of 

years the plant has exported or as the plant’s cumulative exports index. We study whether the 

inclusion of a current exports dummy or an exporter dummy affects the estimated export experience 

effect. The results confirm the findings from our two-step regressions. Plant productivity decreases 

with age but increases with cumulative output experience and the coefficients on age and the 

cumulative output index tend to be statistically significant. As in Section 5, it appears as if the 

intensity of exposure to production activities, which is a better measure of experience than the 

number of years a plant has produced, leads to learning-by-doing. 

 The number of years the plant exported has a positive effect on TFP that is statistically 

significant in all but one of the LP regressions. The sign and significance of this effect is robust to 

the inclusion of either the current exports dummy or the exporter dummy in the production function 

equation. On average, an additional year of exports increases plant TFP by 5.4% without controls, 

by 4.7% when controlling for the exporter dummy, and by 3.4% when controlling for the current 

exports dummy.  These estimates are on average consistent with those obtained using the two-step 

approach, but there are differences across industries: the effect is larger in the food processing and 

clothing industries and smaller in the plastics and metal products industries. The cumulative exports 

index is positive and statistically significant in most of the LP regressions, and three of the five 

                                            
23 These industries are the same as those shown in Table A1 of Appendix A. 
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cases in which it is not significant occur for the metal products industry.  Including the current 

exports dummy does not alter the positive sign or the significance of the coefficient on the 

cumulative exports index. This coefficient is less robust, though, to the inclusion of the exporter 

dummy: in the food products and plastics industries, it remains positive but not statistically 

significant.  These industry-specific results suggest that the relationship between export experience 

and productivity might vary across industries. Our last question is whether we can explain this 

variation. 

 We explore two hypotheses to explain differences in learning-by-exporting across 

industries. The first hypothesis is that plants have more scope for learning-by-exporting when they 

export to high-income countries. This hypothesis is motivated by the presumption that consumers in 

high-income countries are more discriminating about the quality of the goods they import.  

Therefore, their markets are likely to be more competitive than the markets of low-income 

countries. As a result, Colombian manufacturers exporting to those countries will face higher 

demands on such aspects as product quality, delivery time, and post-sale services, which in turn 

give managers and workers more opportunities for learning and productivity enhancement. 

To investigate this possibility, we construct an additional variable using data from the 

World Trade Flows, 1980-1997 database (WTDB) compiled by R. Feenstra: the share of industry 

exports going to high-income countries.24 The list of high-income countries is obtained from the 

World Bank.25 To match these additional data to our main dataset, we convert the industry 

classification codes of the WTDB files from the U.S. Department of Commerce Bureau of 

                                            
24 The data can be downloaded from http://data.econ.ucdavis.edu/international/. 
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Economic Analysis’s industry classification into the ISIC rev. 2 by aggregating the twenty four 

industries in our sample into twenty industries before conducting the regression analysis.  It should 

be noted that during the sample period a rather large share of Colombian manufacturing exports 

went to Panama and the Netherlands Antilles.  Since these are important ports for transshipments, 

we assume that the share of Colombian exports to these countries that are transshipped to high-

income countries in each industry can be approximated by the share of exports of Panama and the 

Netherlands Antilles in that industry that go to high-income countries. 

In Table 9 we show regression results from estimating a modified version of Equation (6) to 

which we add the interaction between an export experience variable the share of industry exports 

going to high-income countries. We estimate all the regressions in Table 9 by fixed plant effects, 

and include the current exports dummy. The results in columns (1) and (2) show that the interaction 

between any of the export experience variables and the share of industry exports going to high-

income countries is always positive and significant. To gain a better perspective on the economic 

significance of these estimates, we compare the textile and clothing industries, which direct on 

average 70% of their exports to high-income countries during the sample period, with the metal 

products industry (ISIC 381), whose share of exports going to high-income countries is only 24%. 

A simple calculation based on the regression results shows that an additional year of export 

experience increases TFP by 5.6% in the textile and clothing industries compared to 2.7% in the 

metal products industry. Similarly, the coefficient on the cumulative exports index is 2.5 higher in 

the textile and clothing industry than in the metals products industry.   

                                                                                                                                             
25 http://www.worldbank.org/data/countryclass/countryclass.html. 
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The second hypothesis is that learning-by-exporting is positively associated with the total 

value of exports of the industry. This hypothesis is motivated by the possibility that network 

externalities facilitate the access to export markets. A higher value of exports from a particular 

Colombian industry may suggest that such industry has more developed channels of distribution, 

making it easier for newcomers to export markets to start exporting. If correct, this perspective 

implies that in industries characterized by low value of exports the barriers of access to export 

markets are substantial. In those industries, we should not find much evidence of learning-by-

exporting due to the difficulties faced by plants in trying to establish themselves as exporters. 

In columns (3) and (4) of Table 9 we show regression results from estimating a modified 

version of Equation (6) to which we add the interaction between an export experience variable and 

the log of the value of industry exports.26  The results provide support to this hypothesis as well. In 

all cases the coefficients on the interaction between one of the export experience variables and the 

value of industry exports are positive and significant, while the coefficients on the experience 

variables per se are negative. To interpret the results, consider again the differences between the 

textile and clothing industries, with average annual exports of $327 millions during the sample 

period, with the metal products industry, which exports only $29 millions per year. Using the 

estimates in columns (3) and (4), we find that an additional year of export experience increases TFP 

by 6.3% in the textile and clothing industries compared to 2.5% in the metal products industry.  

Similarly, the coefficient on the cumulative exports index is 3.4 times higher in the textile and 

clothing industry than in the metals products industry. 

                                            
26 Industry exports are measured in thousands of current U.S. dollars. 
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7. Conclusion 

 While the hypothesis that firms improve their productivity when exposed to competitive 

export markets—learning-by-exporting—is intuitively appealing, the corresponding empirical 

evidence has been inconclusive. Researchers have often favored the alternative hypothesis that 

firms that improve their productivity self-select into export markets. In this paper we consider the 

parallels between learning-by-exporting and learning-by-doing. From Arrow’s (1962) classical 

study of learning-by-doing, we know that learning occurs when workers and managers gain 

experience in solving new technical and organizational problems, and that learning associated with 

repetitive tasks is subject to sharply diminishing returns. Arrow’s characterization of learning-by-

doing applies to learning-by-exporting because firms breaking into export markets need to solve 

new problems, such as adopting new technical standards, introducing more efficient equipment, and 

ensuring product quality to satisfy sophisticated consumers. Drawing on this characterization, we 

focus our empirical investigation of learning-by-exporting on young plants, which are much more 

likely than old, established plants to face new technical and organizational challenges. We also 

favor using measures of export experience to study whether productivity improvements are 

associated with the extent of exposure to export markets. 

We find strong evidence of learning-by-exporting for our sample of young Colombian 

manufacturing plants. First, we find that young plants that enter export markets experience annual 

average rates of TFP growth between 3% and 4% higher than those of young plants that never 

export. This gap is robust to the use of matching methods and to the use of the plant percentile in 

the industry-year distribution of TFP as an alternative measure of performance.  Second, we find 
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that TFP increases between 4% and 5% for each additional year a plant has exported, after 

accounting for the effect of current exports on TFP. A particularly important issue in our empirical 

specification is to take into account the persistence of TFP. In our data we cannot reject the 

hypothesis that TFP has a unit root. Therefore, using differences or the within transformation 

produces consistent estimates of the effect of export experience on plant TFP. Third, our results on 

export experience are robust to the use of different subsamples of our main dataset, such as the 

subsample of plants that export in at least one year (exporters) and the subsample of plants that start 

exporting from their first year (born exporters).  

Fourth, using a larger dataset that includes also old, established plants, we compare the 

effect of entry into export markets and export experience on TFP for young and old plants. We find 

that the gap in annual average rates of TFP growth between entrants to the export markets and 

nonexporters is 3.5% for young plants compared to 1.8% for old plants. We also find that each 

additional year of export experience increases TFP by 6.3% in young plants, compared to 2% in old 

plants. Fifth, we include export experience directly in the estimation of the production functions of 

the five largest Colombian manufacturing industries, the so-called one-step approach. The results 

confirm that export experience variables have a positive and generally significant effect on young 

plants’ TFP. The estimates of the effect of an additional year of export experience on TFP range 

between 3.4% and 5.4% on average, which are consistent with those obtained using the two-step 

approach.  These regressions uncover important differences in the magnitude of the learning-by-

exporting effect across industries. To explain these differences, we augment the dataset with 

Colombian export data by industry and country of destination. Our results, using the two-step 
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approach, suggest that young Colombian manufacturing plants learn the most from exporting if they 

produce in industries that (i) deliver a larger percentage of their exports to high-income countries 

and (ii) are characterized by a larger volume of exports. 

As mentioned in Section 1, evidence of improvements in productivity at the  

microeconomic level has supported various trade and development policies. Our robust evidence of 

TFP improvements for young plants as a result of learning-by-exporting points to two general 

policy recommendations.  The first is to avoid policies that discourage access of domestic plants to 

export markets. Since plant productivity increases with cumulated export experience, policy makers 

should try to avoid policies that lead to marked drops or instability in the profitability of exporting. 

The second recommendation is to foster a competitive business environment that facilitates the 

reallocation of factors of production toward their most efficient uses. As young plants clearly 

benefit from exporting, an institutional framework that facilitates the process of creative-destruction 

by which failing plants give rise to new plants will allow the expedient redeployment of resources 

and entrepreneurial talent to productivity-enhancing exporting activities. 
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Table 1: Selective Review of Learning-by-Exporting (LBE) Studies using Plant-level 
Data (a) 
 

 
Study, Country, and Sample Period 

Measurement Method and 
Estimation Technique (b) 

Evidence of 
LBE? 

Bernard & Wagner (1997): Germany 1978-
1992 

(1) OLS No 

Clerides et al. (1998): Colombia 1981-1991, 
Morocco 1984-1991 

(2) FIML including an equation 
for export participation 
(2) GMM 

No 
 
Some (Morocco) 

Bernard and Jensen (1999): USA 1984-1992 (1) OLS No 
Kraay (1999): China 1988-1992 (2) Instrumental variables (lagged 

export intensity) 
Yes 

Aw et al. (2000): Taiwan 1981, 1986, and 
1986; Korea 1983, 1988, and 1993 

(1) OLS Some (Taiwan) 

Isgut (2001): Colombia 1981-1991 (1) OLS No 
Delgado et al. (2002): Spain 1991-1996 (1) Nonparametric estimation Some (young 

plants) 
Castellani (2002): Italy 1989-1994 (1) OLS  

(1) OLS (export intensity in t=0) 
No 
Yes 

Hallward-Driemeier et al. (2002): Indonesia, 
Korea, Malaysia, Phillipines, Thailand 1999 

(1) OLS, cross section (dummy 
for born exporters) 

Yes (except 
Korea) 

Fafchamps (2002): Morocco 1999 (1) Instrumental variables, cross-
section (years since first export) 

No 

Baldwin & Gu (2003): Canada 1974, 1979, 
1984, 1990, and 1996 

(1) OLS 
(2) SYS-GMM 

Yes 
Yes 

Van Biesebroeck (2004): Cameroon, Kenya, 
Tanzania, Zambia, Zimbabwe 1992-1994; 
Ghana 1991-1993; Cote d’Ivoire 1994-1995 

(2) SYS-GMM 
(2) FIML as in Clerides et al. 
(2) OP 

Yes 
Yes 
Yes 

Girma et al. (2004): UK 1988-1999 (1) Matched samples  Yes 
Bigsten et al. (2004): Cameroon, Kenya, 
Ghana, and Zimbabwe 1992-1995 

(2) FIML as in Clerides et al. 
(2) FIML nonparametric errors 

No 
Yes 

Hahn (2004): Korea 1990-1998 (1) OLS Yes 
Blalock and Gertler (2004): Indonesia 1990-
1996 

(2) Various (contemporaneous 
exports) 

Yes 

Arnold and Hussinger (2004): Germany 1992-
2000 

(1) Matched samples No 

De Loecker (2004): Slovenia 1994-2000 (1) Matched samples Yes 
Alvarez and Lopez (2004): Chile 1990-1996 (1) OLS No 
Notes: (a) The information included in this table is based on what we consider to be the main 
regression(s) used to measure learning-by-exporting effects in each of the papers cited.  (b) Most 
studies use dummy variables to define the treatment group of exporters or to indicate whether the 
firm has exported in a previous period; other types of export variables are noted in parentheses.  
When a study uses more than one method, we enter them in separate rows in the same cell. 



Figure 1: Plant TFP and TFP Growth Before and After Entry into Export Markets

A. TFP Levels    B. TFP Growth over One-year Horizons

C. TFP Growth over Three-year Horizons    D. TFP Growth over Five-year Horizons
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A. Unmatched Sample

Time    
Horizon 

Number     
of     

Entrants

Number      
of 

Nonexporters 

  TFP      
Growth

  TFP   
Percentile

        (1)       (2)
1 Year 231 12881 0.015 1.3

(0.014) (1.5)
2 Years 154 10255 0.030 *** 5.5 ***

(0.010) (2.0)
3 Years 106 7629 0.026 *** 5.1 **

(0.008) (2.6)
4 Years 76 5604 0.037 *** 14.0 ***

(0.008) (3.2)
5 Years 56 3953 0.030 *** 12.8 ***

(0.007) (3.8)

B. Matched Sample

Time    
Horizon 

Number     
of     

Entrants

Number      
of 

Nonexporters 

  TFP      
Growth

  TFP   
Percentile

        (1)       (2)
1 Year 228 187 0.036 * 1.8

(0.021) (2.2)
2 Years 151 126 0.058 *** 10.0 ***

(0.016) (3.3)
3 Years 103 94 0.041 *** 9.2 **

(0.014) (4.0)
4 Years 73 66 0.043 *** 14.3 ***

(0.011) (4.7)
5 Years 53 48 0.033 *** 11.8 **
 (0.010) (4.6)
Notes: Standard errors in parentheses. ***, ** and * indicate significance at the
1%, 5% and 10% confidence levels, respectively. TFP percentile indicates the
percentile in the TFP distribution for the plant's industry in a given year. In
Panel B, the sample used in the regressions is a matched sample where each
entrant into export markets is matched to a control plant in the same industry
and year. 

Table 2: Average Annual Growth Rate of Plant TFP and Plant TFP Percentile
Changes after Entry into Export Markets
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Table 3. The Effect of Learning-by-Doing and Learning-by-Exporting on Plant Productivity

OLS Fixed 
Effects

OLS Fixed 
Effects

OLS OLS Fixed 
Effects

OLS Fixed 
Effects

OLS

   (1)    (2)    (3)    (4)    (5)    (6)    (7)    (8)    (9)    (10)

Number of Years Plant Exported 0.039*** 0.048*** 0.022*** 0.047*** 0.028***
(0.005) (0.005) (0.006) (0.005) (0.006)

Cumulative Exports Index 0.0029*** 0.0020*** 0.0024*** 0.0020*** 0.0026***
(0.0007) (0.0004) (0.0007) (0.0004) (0.0007)

Current Exports Dummy 0.085*** 0.066*** 0.104*** 0.070***
(0.015) (0.011) (0.012) (0.011)

Exporter Dummy 0.045*** 0.066***
(0.010) (0.008)

Inverse of Plant Age 0.351*** 0.123*** 0.330*** 0.116*** 0.335*** 0.350*** 0.140*** 0.320*** 0.132*** 0.324***
(0.035) (0.045) (0.035) (0.045) (0.035) (0.035) (0.044) (0.035) (0.044) (0.035)

Inverse of Cumulative Output Index -0.282*** -0.097** -0.265*** -0.091** -0.268*** -0.288*** -0.115*** -0.259*** -0.108*** -0.260***
(0.032) (0.040) (0.032) (0.040) (0.032) (0.032) (0.040) (0.032) (0.040) (0.032)

Industry Effects (3-digit)    Yes    Yes    Yes    Yes    Yes    Yes

N. Observations    15457    15457    15457    15457    15457    15457    15457    15457    15457    15457
R-squared    0.95    0.99    0.95    0.99    0.95    0.95    0.99    0.95    0.99    0.95
Notes: Robust standard errors in parentheses. ***, ** and * indicate significance at the 1%, 5% and 10% confidence levels, respectively. All regressions include year
dummies. The Current Exports Dummy equals 1 for plant i in year t if plant i engages in exports in year t . The Exporter Dummy equals 1 for plant i in all years if plant
i engages in exports in at least one sample year. 
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Table 4. Accounting for Plant Productivity Dynamics

System-GMM System-GMM

                (1)                  (2)

Lagged Productivity (t-1) 0.995 *** 0.999 ***
(0.008) (0.006)

Number of Years Plant Exported (t) 0.092 **
(0.037)

Lagged Number of Years Plant Exported (t-1) -0.097 **
(0.043)

Cumulative Export Index (t ) 0.0013
(0.0018)

Lagged Cumulative Export Index (t -1) -0.0010
(0.0024)

Inverse of Plant Age (t) -1.213 -1.528
(1.893) (1.852)

Lagged Inverse of Plant Age (t-1) 1.185 1.474
(1.292) (1.265)

Inverse of Cum. Output Index (t) 1.578 * 1.925 **
(0.912) (0.878)

Lagged Inverse of Cum. Output Index (t-1) -1.287 * -1.588 **
(0.776) (0.751)

N. Observations 3038 3038 
Tests of GMM Consistency (P-values)
Sargan    0.270    0.262
m1    0    0
m2    0.215    0.208
Notes: The dependent variable is current productivity. All regressions include year dummies.
Robust standard errors in parentheses. ***, ** and * indicate significance at the 1%, 5% and
10% confidence levels, respectively. The sample consists of plants remaining in the sample
for 8 years or longer. The Current Exports Dummy equals 1 for plant i in year t if plant
i engages in exports in year t . Lags dated t-3 and earlier of the output experience variables,
the export experience variable and the dependent variable are used as instruments in the first
difference equation. The first difference dated t-2 of the output experience variables, the
export experience variable and the dependent variable are used as instruments in the levels
equation. m1 is a test for first order serial correlation in the residuals of the first-differenced
equation and m2 is a test for second order serial correlation in the residuals of the first-
differenced equation.
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Table 5. The Effect of Learning-by-Doing and Learning-by-Exporting on Plant Productivity Using Cross-Sections of Long Differences

    (1)     (2)     (3)     (4)     (5)     (6)     (7)     (8)

∆ Number of Years Plant Exported 0.046*** 0.042*** 0.078*** 0.077***
(0.005) (0.005) (0.018) (0.018)

∆ Cumulative Exports Index 0.0017*** 0.0017*** 0.071** 0.070**
(0.0003) (0.0003) (0.035) (0.035)

∆ Current Exports Dummy 0.093*** 0.111*** 0.104** 0.108**
(0.019) (0.019) (0.049) (0.050)

∆ Inverse of Plant Age 0.319*** 0.308*** 0.336*** 0.321*** 0.714* 0.531 0.076 -0.103
(0.071) (0.071) (0.072) (0.071) (0.388) (0.385) (0.392) (0.398)

∆ Inverse of Cum. Output Index -0.167*** -0.148** -0.206*** -0.179*** -0.311 -0.171 -0.212 -0.072
(0.065) (0.065) (0.065) (0.065) (0.375) (0.370) (0.426) (0.433)

N.Observations    3091    3091    3091    3091    130    130    130    130

Adjusted R-squared    0.04    0.04    0.02    0.03    0.36    0.37    0.26    0.28

Full Sample Subsample of Born Exporters

Notes: The dependent variable is the change in productivity between the last and the first year of the plant in the sample. The symbol ∆
represents, for any regressor, the change in that regressor between the last and the first year of the plant in the sample. All regressions include
year dummies. Robust standard errors in parentheses. ***, ** and * indicate significance at the 1%, 5% and 10% confidence levels respectively.
The Current Exports Dummy equals 1 for plant i in year t if plant i exports in year t . In columns (5)-(8) the cumulative exports index is
expressed in logs.
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Time      
Horizon 

Number of 
Young 

Entrants

Number of 
Old  

Entrants

Number       
of 

Nonexporters
Young 
Plants

Old    
Plants

Young 
Plants

Old    
Plants

        (1)       (2)       (3)       (4)
1 Year 216 301 405 0.028 0.025 3.0  1.4

(0.017) (0.015) (1.9) (1.4)
2 Years 151 244 310 0.037 *** 0.010  10.6 *** 1.5

(0.012) (0.010) (2.6) (1.7)
3 Years 104 202 244 0.031 *** 0.018 ** 13.4 *** 2.9

(0.010) (0.008) (3.6) (2.1)
4 Years 73 169 195 0.038 *** 0.019 ** 17.4 *** 2.7

(0.010) (0.008) (4.7) (2.4)
5 Years 54 135 148 0.033 *** 0.021 ** 16.0 *** 4.3

(0.009) (0.007) (6.1) (3.0)

  TFP                         
Growth

  TFP                         
Percentile

Notes: Standard errors in parentheses. ***, ** and * indicate significance at the 1%, 5% and 10% confidence levels,
respectively. The sample used in the regressions is a matched sample where each entrant into export markets is matched to a
control plant in the same industry and year. Columns (1) and (2) show coefficients obtained from a single regression for each
time horizon having TFP growth as dependent variable. Columns (3) and (4) show coefficients obtained from a single
regression for each time horizon having TFP percentile as dependent variable.

Table 6. Average Annual Growth Rate of Plant TFP and Plant TFP Percentile Changes after Entry into Export Markets for
Young and Old Plants
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Table 7. The Effect of Learning-by-Doing and Learning-by-Exporting on Plant Productivity for Young and Old Plants

    (1)     (2)     (3)     (4)     (5)     (6)     (7)     (8)

Number of Years Plant Exported * Young 0.067*** 0.057*** 0.065*** 0.061***
(0.004) (0.007) (0.005) (0.010)

Number of Years Plant Exported * Old 0.022*** 0.018** 0.017*** 0.020**
(0.003) (0.007) (0.004) (0.009)

Cumulative Exports Index * Young 0.0027*** 0.0024*** 0.0024*** 0.0019***
(0.0004) (0.0007) (0.0004) (0.0007)

Cumulative Exports Index * Old 0.0004*** 0.0003 0.0003** 0.0004
(0.0001) (0.0003) (0.0001) (0.0003)

Current Exporter Dummy 0.076*** 0.087*** 0.115*** 0.142*** 0.069*** 0.055*** 0.127*** 0.092***
(0.006) (0.006) (0.166) (0.015) (0.007) (0.007) (0.022) (0.021)

Inverse of Plant Age 0.223*** 0.225*** 0.416*** 0.438*** 0.354*** 0.279*** 0.801*** 0.783***
(0.040) (0.040) (0.082) (0.082) (0.107) (0.104) (0.252) (0.252)

Inverse of Cumulative Output Index -0.194*** -0.209*** -0.405*** -0.441*** -0.311*** -0.313*** -0.755*** -0.817***
(0.037) (0.037) (0.077) (0.077) (0.097) (0.095) (0.231) (0.230)

N. Observations    40208    40208    5455    5455    6351    6351    806    806
R-squared    0.99    0.99    0.06    0.05    0.99    0.99    0.21    0.18

Full Sample Subsample of Exporters

Notes: The dependent variable is plant productivity in columns (1), (2), (5) and (6) and the change in productivity between the last and the first year of the
plant in the sample in columns (3), (4), (7) and (8). All regressions include year dummies. Robust standard errors in parentheses. ***, ** and * indicate
significance at the 1%, 5% and 10% confidence levels, respectively. The Current Exporter Dummy equals 1 for plant i in year t if plant i engages in exports in
year t. 

Fixed Effects Long Differences Fixed Effects Long Differences

46



(1) (2) (3) (4) (5) (6)
311 Food Products (1937 Obs.)
Inverse of Plant Age 0.072 0.026 0.116 0.175 * 0.144 * 0.057

(0.090) (0.085) (0.095) (0.105) (0.086) (0.103)
Inverse of Cum. Output Index -0.070 -0.020 -0.097 -0.151 * -0.124 * -0.054

(0.079) (0.074) (0.082) (0.085) (0.071) (0.081)
Export Experience 0.060 ** 0.048 * 0.046 ** 0.017 * 0.020 * 0.005

(0.028) (0.026) (0.023) (0.009) (0.010) (0.007)
Current Exports Dummy 0.038 0.166 ***

(0.045) (0.047)
Exporter Dummy 0.103 0.035

(0.089)  (0.100)

321 Textiles (997 Obs.)
Inverse of Plant Age 0.087 0.095 0.362 * 0.230 0.345 ** 0.193

(0.174) (0.165) (0.219) (0.165) (0.169) (0.174)
Inverse of Cum. Output Index -0.204 * -0.213 * -0.360 ** -0.195 -0.319 *** -0.183

(0.122) (0.124) (0.171) (0.130) (0.106) (0.125)
Export Experience 0.036 * 0.028 * 0.059 ** 0.009 ** 0.009 *** 0.009 ***

(0.020) (0.016) (0.026) (0.004) (0.002) (0.003)
Current Exports Dummy 0.133 *** 0.040 *

(0.023) (0.021)
Exporter Dummy -0.013 -0.009

(0.082)  (0.111)

322 Apparel (3045 Obs.)
Inverse of Plant Age 0.268 *** 0.200 * 0.250 ** 0.283 ** 0.252 ** 0.250 **

(0.101) (0.107) (0.100) (0.119) (0.108) (0.105)
Inverse of Cum. Output Index -0.216 *** -0.161 * -0.206 ** -0.231 ** -0.219 ** -0.210 **

(0.083) (0.089) (0.087) (0.104) (0.089) (0.083)
Export Experience 0.092 *** 0.041 * 0.065 ** 0.018 *** 0.013 ** 0.015 **

(0.023) (0.021) (0.026) (0.007) (0.006) (0.007)
Current Exports Dummy 0.157 *** 0.159 ***

(0.027) (0.027)
Exporter Dummy 0.095 0.156 ***

(0.063) (0.056)

356 Plastics (914 Obs.)
Inverse of Plant Age 0.320 * 0.362 * 0.280 * 0.268 * 0.288 * 0.223

(0.181) (0.187) (0.160) (0.142) (0.149) (0.164)
Inverse of Cum. Output Index -0.262 * -0.279 ** -0.247 ** -0.240 ** -0.257 ** -0.233 **

(0.136) (0.131) (0.115) (0.094) (0.108) (0.110)
Export Experience 0.038 ** 0.026 * 0.034 ** 0.003 ** 0.002 * 0.002

(0.016) (0.015) (0.014) (0.002) (0.001) (0.0017)
Current Exports Dummy 0.077 * 0.068 *

(0.041) (0.037)
Exporter Dummy 0.044  0.106

(0.075)   (0.089)

381 Metal Products (1218 Obs.)
Inverse of Plant Age 0.187 * 0.222 * 0.188 0.226 * 0.266 ** 0.238 *

(0.108) (0.117) (0.118) (0.118) (0.125) (0.127)
Inverse of Cum. Output Index -0.168 ** -0.195 ** -0.171 * -0.205 ** -0.232 ** -0.199 *

(0.082) (0.097) (0.098) (0.100) (0.107) (0.110)
Export Experience 0.045 ** 0.024 0.030 * 0.001 0.001 0.001

(0.023) (0.017) (0.018) (0.006) (0.004) (0.004)
Current Exports Dummy 0.114 ** 0.094 *

(0.057) (0.049)
Exporter Dummy 0.075 0.160 *

(0.079)  (0.083)
Notes: All coefficients are obtained from regressions that include also additional inputs (labor, wage premium, skill intensity, materials,

capital and vintage) estimated by a modified Levinsohn-Petrin procedure. Bootstrapped standard errors in parentheses. ***, ** and *

indicate significance at the 1%, 5% and 10% confidence levels, respectively. 

Table 8. Results from One-Step Estimation of the Effect of Learning-by-Doing and Learning-by-Exporting on Plant Productivity

Number of Years Exported Cumulative Exports Index 
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   (1)    (2)    (3)    (4)

Number of Years Plant Exported 0.012 -0.140***
(0.008) (0.031)

Cumulative Exports Index 0.0002 -0.0130**
(0.0005) (0.0056)

Number of Years Plant Exported * Share of Industry Exports to 
High Income Countries 0.063***

(0.014)
Cumulative Exports Index * Share of Industry Exports to High 
Income Countries 0.0034***

(0.0010)
Number of Years Plant Exported * Log of Value of Industry 
Exports 0.016***

(0.003)
Cumulative Exports Index * Log of Value of Industry Exports

0.0014***
(0.0005)

Current Exports Dummy 0.068*** 0.070*** 0.681*** 0.070***
(0.011) (0.011) (0.011) (0.011)

Inverse of Plant Age 0.114*** 0.135*** 0.111** 0.131***
(0.044) (0.044) (0.045) (0.044)

Inverse of Cumulative Output Index -0.089** -0.111*** -0.089** -0.108***
(0.040) (0.040) (0.040) (0.040)

N. Observations 15457 15457 15457 15457
Adjusted R-squared 0.98 0.98 0.98 0.98
Notes: The dependent variable is plant productivity. All the regressions include year dummies and are estimated by
fixed (plant) effects. Robust standard errors in parentheses. ***, ** and * indicate significance at the 1%, 5% and
10% confidence levels, respectively. The Current Exporter Dummy equals 1 for plant i in year t if plant i engages in
exports in year t.

Table 9. The Effect of Export Experience on Plant Productivity Differentiated by Export Destination and Value of
Exports in the Industry
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APPENDIX A: ESTIMATION METHOD  

A1. Estimation of Equation (5) 

We assume that in any year t the manager observes the plant’s current 

productivity itω  before choosing labor itl , labor quality itS  and itW , and intermediates itm  

to combine with the quasi-fixed inputs, capital itk  and its quality itV  for the production of 

output ity .  Since itω  is known to the plant manager but unknown to the econometrician 

and may be positively correlated with itl , itS , itW and itm , it generates a potential 

simultaneity bias that is addressed by our estimation procedure. The plant's variable input 

demands, derived from profit maximization, depend on privately known productivity, 

capital, and capital vintage.  The intermediate inputs demand function ( )itititit Vkmm ,,ω=  

can be inverted to obtain a productivity function by imposing the following monotonicity 

assumption: conditional on capital and its vintage, the demand for intermediates increases 

with productivity. Note that the productivity function ( )itititit Vkm ,,ωω =  depends on 

observable variables only. The first stage of the estimation proceeds by rewriting 

Equation (5) in a partially linear form:  

( ) itititititWitSitlit VkmWSly εφβββ ++++= ,, ,       (A1) 

where 

( ) ( )ititititVitkitmoititit VkmVkmVkm ,,,, ωββββφ ++++= .         (A2) 

We allow the functions ( ).m , ( ).ω , and ( ).φ  to differ across a period of recession (1982-

1985) and a period of expansion (1986-1991) in Colombia. Since [ ] 0,,| =itititit VkmE ε , 

taking the difference between Equation (A1) and its expectation conditional on 

intermediate inputs, capital, and vintage generates the following expression: 
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[ ] [ ]( )+−=− itititititlititititit VkmlElVkmyEy ,,|,,| β      

[ ]( ) [ ]( ) ititititititWitititititS VkmWEWVkmSES εββ +−+− ,,|,,|             (A3) 

Equation (A3) is estimated by OLS (with no constant) to obtain consistent parameter 

estimates for labor, skill intensity, and wage premium.  The conditional expectations in 

Equation (A3) are the intercepts of locally weighted least squares (LWLS) regressions of 

output, labor, skill intensity, and wage premium on ( )ititit Vkm ,,  (see Fernandes (2003) for 

further details).  After obtaining estimates for ( )WSl βββ ,, , we estimate the function ( ).φ  

as a LWLS regression of itWitSitlit WSly βββ
)))

−−−  on  ( )ititit Vkm ,, .  

The second stage of the estimation obtains consistent estimates for ( )Vkm βββ ,, , 

assuming that productivity follows a first order Markov process as in Olley and Pakes 

(1996): [ ] itititit E ξωωω += −1|  where itξ  is the unexpected productivity shock and is 

independent and identically distributed (i.i.d.).  The estimation strategy is based on the 

identification assumption that capital and capital vintage may be correlated with expected 

productivity but are uncorrelated with the unexpected productivity shock.  The following 

three moment conditions are obtained by taking the expectation of Equation (5) 

conditional on, respectively, lagged intermediates, capital, and vintage, taking into 

account the fact that itω  follows a first order Markov process: 

[ ][ ]11 ||ˆˆˆ
−−−−−−−−− ititititVitkitmitWitSitlit mEVkmWSlyE ωωββββββ        

[ ] 0| 1 =+= −ititit mE ξε            (A4) 

[ ][ ]ititititVitkitmitWitSitlit kEVkmWSlyE ||ˆˆˆ
1−−−−−−−− ωωββββββ     

[ ] 0| =+= ititit kE ξε             (A5) 
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 [ ][ ]ititititVitkitmitWitSitlit VEVkmWSlyE ||ˆˆˆ
1−−−−−−−− ωωββββββ        

[ ] 0| =+= ititit VE ξε             (A6) 

Equations (A4)-(A6) indicate that intermediates in year t-1, and capital and vintage in 

year t are uncorrelated with the unexpected productivity shock in year t. The residuals 

itit ξε +  are calculated using the estimated coefficients ( )WSl βββ ˆ,ˆ,ˆ ,  candidate parameter 

values ( )*** ,, Vkm βββ , and a nonparametric estimate for [ ]1| −ititE ωω  obtained as a LWLS 

regression of  ( ) itkitmitWitSitlititit kmWSly *** βββββεω −−−−−=+
)))

itVitk Vk ** ββ −−  (from 

Equation (5)) on ( ) ( ) itVitkitmitititit VkmVkm **** ,, βββφω −−−=
)

 (from Equation (A2)). We 

construct a generalized method of moments (GMM) criterion function which weights the 

plant-year moment conditions, Equations (A4)-(A6), by their variance-covariance matrix.  

Our estimation algorithm uses OLS estimates of intermediates, capital, and vintage 

coefficients as initial parameter values and iterates on the sample moment conditions to 

match them to their theoretical value of zero and reach final parameter estimates. We use 

a derivative optimization routine complemented by a grid search. When the parameters 

that minimize the criterion function are obtained from grid search, these parameters are 

used as initial values for the derivative optimization routine to reach more precise final 

( )Vkm βββ ,,  values. The standard errors for the parameter estimates are obtained by 

bootstrap. The bootstrap procedure consists of sampling randomly with replacement 

plants from the industry’s original sample, matching or exceeding in any year the number 

of plant-year observations in that sample. If randomly selected, a plant is taken as a block 

(i.e. all of its observations are included in the bootstrap sample). We obtain estimates of 
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( )VkmWSl ββββββ ,,,,, for 100 bootstrap samples. The standard deviation of a parameter 

across bootstrap samples constitutes its bootstrapped standard error. 

We estimate Equation (5) separately for twenty-four 3-digit ISIC Colombian 

manufacturing industries. Table A1 shows regression results for the five Colombian 

industries with the largest number of young plants: food products (ISIC 311), textiles 

(ISIC 321), apparel (ISIC 322), plastics (ISIC 356), and metal products (ISIC 381).  

Columns (1) and (2) show results for production functions without factor quality 

variables, and columns (3) and (4) add wage premium, skill intensity, and vintage. OLS 

results are shown for comparison.  Under the assumption that variable inputs’ coefficients 

are upward biased and quasi-fixed inputs’ coefficients are downward biased, the results 

suggest that the LP procedure corrects these biases for about two-thirds of the estimated 

parameters. It should be noted that bootstrapped standard errors are larger than OLS 

standard errors, especially for the coefficients obtained in the second stage of the LP 

procedure. 

A2. Estimation of Equation (7) 

The first stage of the estimation is very close to that described above for Equation 

(5). The main difference is that the productivity function resulting from the inversion of the 

intermediate inputs demand function depends on additional state variables, the output 

experience and export experience variables: ( )itititititit EEYEVkm ,,,,ωω = . Thus, the first 

stage requires the estimation of LWLS regressions of output, labor, skill intensity, wage 

premium, and itWitSitlit WSly βββ
)))

−−−  on ( )ititititit EEYEVkm ,,,, . Note that in some of the 

variants of Equation (7) presented in the paper we use, instead of LWLS, a third degree 

polynomial in ( )itititititit EEYEVkm ,,,,ωω =  to approximate the function ( ).φ  and obtain 
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consistent parameter estimates for labor, skill intensity, and wage premium, as well as to 

obtain an estimate of ( ).φ . This choice is made for computational ease, as the two types of 

approximation give very similar results. In the second stage of the estimation, the GMM 

criterion function includes two additional moment conditions for the output and export 

experience variables. The residuals used in the moment conditions subtract from output the 

contribution of inputs and input quality (as in Equations (A4)-(A6)) but also the contribution 

of the output and export experience variables. 

  To check the robustness of our results we also estimate Equation (7) including (i) 

a dummy variable representing current exports (equal to 1 in any year when the plant is 

exporting) and (ii) a dummy variable representing exporter status (equal to 1 in all years 

for a plant if that plant exports in at least one sample year).  The coefficient on the current 

exports dummy is estimated in the first stage of our modified LP procedure because a 

plant’s decision to export, alike the usage of variable inputs, may be affected by 

productivity shocks not observed by the econometrician. In contrast, the exporter dummy 

is treated as a state variable thus its coefficient is estimated in the second stage of our 

modified LP procedure. 

 

APPENDIX B 

B1. Price indexes 

 To obtain price indexes for domestic raw materials, we construct a matrix A with 

typical element {aij} equal to the share of raw materials originating in industry i in the 

total value of raw materials used by industry j aggregating data from Colombian input-

output matrices for 1992 through 1998. This allows us to obtain a more robust measure of 
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raw materials shares than that obtained using data for a single year. Although the input-

output matrices used do not cover our sample period, 1981-1991, we believe that input-

output relationships are relatively stable over these two decades. Matrix A has 22 rows 

and 17 columns corresponding to the Colombian national accounts classification of 

industries. The number of rows exceeds the number of columns because some raw 

materials used in manufacturing originate in the primary sector.  Note that by 

construction 1
22

1

=∑
=i

ija . Hence, our domestic raw materials price indexes are weighted 

averages of producer price indexes: for each manufacturing industry j = 1, …, 17 and 

time t, the domestic raw materials price index is defined as ∑
=

=
22

1i
itij

RM
jt pap .  To perform 

this calculation we aggregate 29 manufacturing producer price indexes at the 3-digit ISIC 

revision 2 into 17 producer price indexes at the broader Colombian national accounts 

classification. We use production weights for the period 1975-1989 to aggregate these 

price indexes. For the primary sectors included in the calculations we use wholesale price 

indexes. 

 The construction of exports price indexes is more involved because the series 

available from Banco de la República (Colombia’s central bank) starts only in 1990.  For the 

period 1975-1990, we construct export price indexes using detailed trade data from the 

Dirección de Impuestos y Aduanas Nacionales (DIAN).  Export transactions in 1975-1990 

are recorded at an 8-digit Colombian trade classification (NABANDINA) based on the 

Brussels Tariff Nomenclature.  For each NABANDINA and year, we compute export prices 

in pesos per unit of weight by dividing the value of exports of each NABANDINA by its 

weight. This is an imprecise proxy for unit export prices but is the best available because 
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only 5% of the observations have data on units other than weight. Note that even with better 

information on units, the calculation can be subject to errors due to variation in the mix of 

products included within each NABANDINA. To minimize potential spurious variation due 

these measurement problems we follow two procedures. First, we remove from the 

computations outliers defined as unit export prices whose average annual rate of growth 

exceeds the 90th percentile or is less than the 10th percentile for the whole sample.  Second, 

we regress the log of the unit export price on a fixed NABANDINA effect, a set of time-

industry dummies, and a variable representing the deviation of each export price from the 

law of one price. This variable is defined as log(EXPPESit/EXPDOLit) - log(Et), where 

EXPPESit is the value of exports in pesos of NABANDINA i at time t, EXPDOLit is the 

same value in dollars, and Et is the average exchange rate at time t. Since NABANDINA 

positions with very small values of exports are more likely to be affected by measurement 

problems, we estimate our regression using weighted least squares, with weights 

proportional to the square root of the constant dollar value of exports.  These regressions 

generate predicted log unit export values for every NABANDINA and year with export data 

(including positions excluded from the calculations due to outliers).  We use these smoothed 

unit export prices to compute Tornqvist price indexes for each ISIC industry j: 

( )( )∑
=

−−− −+=−
jI

i

j
it

j
it

j
it

j
it

X
jt

X
jt ppwwpp

1
111 loglog5.0loglog , where j

itplog  is the estimated log 

unit export price of NABANDINA i belonging to industry j at time t.  The weights j
itw  are 

the share of the value of exports in pesos of NABANDINA i in industry j at time t. 

 To obtain price indexes for imported raw materials, we first construct import price 

indexes from the DIAN trade data, following the same procedure as for the export price 
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indexes.  Then we follow a similar procedure to that used to construct domestic raw 

materials price indexes, but instead of using general input-output matrices we use the 1994 

Colombian input-output matrix for imported inputs. 

B2. Capital stock and capital vintage 

Our measure of gross capital is defined as ( )∑
−

=

−+=
1t

F
iiiit

i

SIFIRSTKK
τ

ττ , where FIRSTKi is 

capital the plant had before its first year in the sample, Fi is the first year when plant i is in 

the sample, Iit are purchases and Sit are sales of capital.  Iit and Sit are obtained by summing, 

respectively, purchases and sales of four different types of capital goods (buildings and 

structures, machinery and equipment, transportation equipment, and office equipment) 

expressed in constant pesos.  We use the implicit price index for machinery and equipment 

to deflate purchases and sales of office equipment since a separate price index for the latter 

type of capital good is not available.   

 Our measure of capital vintage is the ratio of net capital to gross capital: 

ititit KNKV = , where net capital is the conventional measure of capital obtained through 

the permanent inventory method. More precisely, ∑ =
= 4

1j

j
itit KNK , where j is a type of 

capital good, and j
itK  is defined recursively as j

i
j

it FIRSTKK =   for t = Fi , and 

j
it

j
it

j
it

jj
it SIKdK −+−= −1)1(  for t > Fi . The depreciation rates used are taken from Pombo 

(1999): 3.0% for buildings and structures, 7.7% for machinery and equipment, 11.9% for 

transportation equipment, and 9.9% for office equipment. Our measure of vintage provides a 

good summary of the temporal distribution of capital accumulation of a plant.  While new 

plants or plants that invest frequently will have higher values of itV , plants that have not 
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invested for several years will have a low value of itV , due to the effect of cumulative 

depreciation in the plant’s net capital stock. 

3. Outliers 

DANE conducts checks of the accuracy of the information provided by 

manufacturing plants in the annual censuses, but there may still be some reporting errors.  

While it is impossible for us to assess whether or not an outlier observation is due to a 

reporting error, including outliers in the regressions can greatly distort the estimation of 

the production function parameters and our measures of productivity.  To avoid this risk, 

we eliminate outliers from our dataset.  To define outliers, we compute log differences 

between four inputs (capital, labor, wage premium, and intermediate inputs) and output. 

For each industry, we compute the first and third quartiles and the inter-quartile range 

(IQR) of each of these log differences.  We define an outlier as a plant for which in at 

least one year one of the four log differences (a) exceeds the third quartile by x times the 

IQR or more, or (b) is less than the first quartile by x times the IQR or more.  The 

threshold x is conventionally defined as 1.5, which corresponds to a 0.7% probability of 

finding an outlier if the variable was normally distributed.  To minimize the loss of data, 

in nineteen out of twenty four industries we use a looser threshold of x = 2.5, which 

corresponds to a 0.005% probability of finding an outlier under the assumption of 

normality.  In the remaining five industries, we apply a somewhat stricter threshold of x = 

2.0 (corresponding to a 0.07% probability of finding an outlier under normality) since we 

find that the presence of outliers in the capital stock variable leads to negative 

coefficients for that variable under the looser 2.5 threshold. 



Table A1: Production Function Coefficients - Selected Colombian Industries 

Input OLS Levinsohn OLS Levinsohn Input OLS Levinsohn OLS Levinsohn
Petrin Petrin Petrin Petrin

(1) (2) (3) (4) (1) (2) (3) (4)
311 Food Products (1937 Obs.) 356 Plastics (914 Obs.)
Labor 0.137 *** 0.134 *** 0.149 *** 0.148 *** Labor 0.268 *** 0.263 *** 0.293 *** 0.295 ***

(0.007) (0.017) (0.007) (0.021) (0.015) -0.024 (0.014) (0.022)
Wage Premium 0.255 *** 0.289 *** Wage Premium 0.501 *** 0.424 ***

(0.026) (0.051) (0.046) (0.067)
Skill Intensity 0.233 *** 0.228 *** Skill Intensity 0.227 *** 0.146 **

(0.023) (0.042) (0.047) (0.070)
Intermediate Inputs 0.829 *** 0.601 *** 0.813 *** 0.785 *** Intermediate Inputs 0.705 *** 0.846 *** 0.681 *** 0.749 ***

(0.005) (0.087) (0.005) (0.054) (0.009) (0.058) (0.009) (0.060)
Capital 0.048 *** 0.221 *** 0.045 *** 0.051 * Capital 0.067 *** 0.024 0.055 *** 0.032 *
 (0.005) (0.055) (0.004) (0.029)  (0.007) (0.015) (0.006) (0.018)
Vintage 0.202 *** -0.060 Vintage 0.608 *** 0.284

(0.04) (0.138) (0.068) (0.190)

321 Textiles (997 Obs.) 381 Metal Products (1218 Obs.)
Labor 0.164 *** 0.165 *** 0.241 *** 0.234 *** Labor 0.277 *** 0.235 *** 0.334 *** 0.305 ***

(0.013) (0.025) (0.014) (0.022) (0.016) (0.028) (0.016) (0.034)
Wage Premium 0.352 *** 0.393 *** Wage Premium 0.453 *** 0.521 ***

(0.046) (0.059) (0.043) (0.080)
Skill Intensity 0.477 *** 0.428 *** Skill Intensity 0.519 *** 0.472 ***

(0.046) (0.070) (0.046) (0.107)
Intermediate Inputs 0.712 *** 0.540 *** 0.677 *** 0.482 *** Intermediate Inputs 0.698 *** 0.616 *** 0.657 *** 0.613 ***

(0.009) (0.068) (0.009) (0.087) (0.009) (0.063) (0.009) (0.086)
Capital 0.095 *** 0.180 *** 0.075 *** 0.015 Capital 0.053 *** 0.004 0.040 *** -0.056
 (0.007) (0.058) (0.007) (0.024)  (0.007) (0.04) (0.006) (0.095)
Vintage 0.485 *** 0.268 ** Vintage 0.391 *** 0.167 *

(0.071) (0.135) (0.066) (0.101)

322 Apparel (3045 Obs.)
Labor 0.335 *** 0.289 *** 0.384 *** 0.351 ***

(0.008) (0.017) (0.008) (0.015)
Wage Premium 0.437 *** 0.410 ***

(0.035) (0.05)
Skill Intensity 0.479 *** 0.489 ***

(0.03) (0.05)
Intermediate Inputs 0.639 *** 0.811 *** 0.605 *** 0.596 ***

(0.005) (0.044) (0.005) (0.055)
Capital 0.034 *** 0.041 ** 0.025 *** 0.029
 (0.005) (0.019) (0.005) (0.025)
Vintage 0.089 ** 0.106

 (0.037) (0.142)
Notes: Bootstrapped standard errors in parentheses in columns (2) and (4). ***, ** and * indicate significance at the 1%, 5% and 10% confidence levels, respectively. 
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