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Abstract

This paper analyzes the growth and welfare effects of competition in an
endogenously-growing economy with imitation and non-diversifiable
risk. The main findings are as follows. There is no imitation without
positive profits during innovation races. A larger proportion of com-
peting industries leads to slower economic growth. When competitive
profits are high or low, the economy grows faster than when they are
of medium size. If the government subsidizes innovation and imita-
tion optimally, then competitive profits are positively associated with
welfare. With an optimal uniform subsidy to all R&D, there is an
“inverted-U” relationship between competitive profits and welfare.
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1 Introduction

This paper considers the growth and welfare effects of competition when

households cannot wholly diversify their investment risk and economic growth

is characterized by product cycles as follows. Through the development of

new products, an innovator achieves a temporary advantage earning monopoly

profits. This advantage ends when an imitator succeeds in copying the inno-

vation, enters the market and starts competing with the innovator.

Product cycle models start from Segerstrom (1991), who assumes that

(i) incumbents and outsiders have the same costs of innovation, and (ii)

households eliminate investment risk wholly by diversification. Assumption

(i) leads to leapfrogging: innovations will always be performed by outsiders

and the current industry leaders will be wholly replaced. To eliminate this

unrealistic outcome, Aghion et al. (1997, 2001) construct models where tech-

nological laggards must first catch up with the leading-edge technology be-

fore battling “neck-to-neck” for technological leadership in the future. They

represent competition by the elasticity of substitution between firms’ prod-

ucts and show that competition has in general a positive effect on economic

growth. Mukoyama (2003) constructs a model in which only leaders can con-

duct next-round innovation, while outsiders can become leaders by imitation.

He represents competition by the relative proportion of competing industries

and shows that competition very commonly promotes economic growth.

The three papers above are based on the assumption (ii) of full diver-

sification. Wälde (1999a, 1999b) shows that with non-diversifiable risk in-

vestment decisions are made by households rather than firms, and the equi-

librium conditions differ substantially. To examine competition policy with

non-diversifiable risk, I extend Wälde’s one-industry growth model for an

economy with many industries and incorporate Mukoyama’s (2003) assump-

tions on imitation and cumulative technology into it. The model of this study

is therefore characterized as follows:

(i) Labor is homogeneous and inelastically supplied. It is used in innovation,

imitation or the production of the intermediate goods.

(ii) Competitive firms produce the consumption good from a great number

of intermediate goods according to Cobb-Douglas technology.
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(iii) Firms’ products are imperfect substitutes. A successful innovator of

a new technology crowds out all products made with old technology

and becomes a monopolistic producer until its technology is imitated.

A successful imitator starts producing a substitute for the innovator’s

product and establishes an innovation race with the incumbent produc-

ers. Imitation is necessary for an outsider to become an innovator.

(iv) R&D firms finance their expenditure by issuing shares. The households

save only in these shares. Each R&D firm distributes its profit among

those who had financed it in proportion to their investment in the firm.

The subsidies to R&D are financed by lump-sum taxes.

The remainder of this paper is organized as follows. Sections 2 and 3

consider firms in production and R&D. Section 4 examines households de-

ciding on saving. Section 5 examines general equilibrium and the effects of

competition without government subsidies. Section 6 considers the effects of

competition with government intervention.

2 Production

I assume a great number of intermediate-good industries that are placed

over the limit [0, 1]. Industry j ∈ [0, 1] contains intermediate-good firms

κ = 1, ..., aj. The representative consumption-good firm makes its output y

from the products of all intermediate-good firms through technology

log y =

∫ 1

0

log[Bjxj]dj, xj =

[
a
−1/ε
j

aj∑
κ=1

x
1−1/ε
jκ

]ε/(ε−1)

,

ε > 1, (1)

where Bj is the productivity parameter in industry j, aj the number of firms

in industry j, xj the quantity of intermediate good j, xjκ the output of firm

κ in industry j, and ε the elasticity of substitution between the products in

the same industry.1 The consumption-good firm maximizes its profit

Πc .
= Py −

∫
j∈[0,1]

aj∑
κ=1

pjκxjκdj

1With the specification (1), the price pj for the composite product of industry j will (in
the symmetric equilibrium pjκ = pj1) be independent of the number of producers in that
industry, aj . Otherwise, the effect of aj on pj would excessively complicate the analysis.
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by its inputs xj, taking the output price P and the input prices {pjκ} as

fixed. I normalize total consumption expenditure Py at unity. Because the

consumption-good firm is subject to constant returns to scale, we then obtain

Py = 1, Πc = 0, pjxj = 1 and pj =

[
1

aj

aj∑
κ=1

p1−ε
jκ

]1/(1−ε)

for all j,

xjκ =
∂pj

∂pjκ

xj =
1

aj

(
pj

pjκ

)ε

xj =
1

aj

pε−1
j p−ε

jκ for all j and κ, (2)

where pj is the price of the composite product xj.

I assume that all intermediate-good firms produce one unit of their out-

put from one labor unit. Technological change is random. I assume that a

successful innovator in industry j makes a perfect substitute for intermediate

good j that is composed of the outputs all incumbent firms with older tech-

nology in industry j.2 The innovator’s profit is Πj1 = (pj1−w)xj1, where pj1

is its output price, xj1 its output (= labor input) and w is the wage.

The innovator’s product provides exactly the constant µ > 1 times as

many services as the intermediate good of earlier generation. Firm κ of

earlier generation earns the profit Πo
jκ = (po

jκ−w)xo
jκ, where po

jκ is its output

price and xo
jκ its output. The innovator pushes the old firms out of the market

by choosing its price pj1 so that these earn no profit, Πo
jκ = 0 and po

jκ = w.

This and (2) yield pj1/µ = po
j = po

jκ = w, the mark-up rule pj1 = µw and the

innovator’s output and profit as follows:

xj = xj1 = 1/pj1 = 1/(µw) and

Πj1 = (pj1 − w)xj1 = (1− 1/µ)pj1xj1 = 1− 1/µ
.
= Π for aj = 1. (3)

The innovator is the first leader (i.e. the first incumbent producer) in

industry j. A successful imitator of the state-of-art good is able to make a

close substitute for the product of the innovator. Thus with each imitation,

the number of leaders and products increases by one. I assume that all leaders

1, ..., aj in industry j behave in Bertrand manner, taking each other’s prices

as given. Given (1) and (2), leader κ in industry j maximizes its profit

πjκ = pjκxjκ − wxjκ = (pjκ − w)xjκ, (4)

2This assumption is in line with technology (1), because xj = xj1 for aj = 1.
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by its price pxjκ, assuming that the prices pjı for the other leaders ı 6= κ

in industry j are kept constant. It therefore sets the wage w equal to the

marginal product of labor. Noting (2), this leads to the first-order condition

∂πjκ

∂pjκ

= xjκ + (pjκ − w)

[
∂xjκ

∂pjκ

+
∂xjκ

∂pj

∂pj

∂pjκ

]
= xjκ + (pjκ − w)

[
−εxjκ

pjκ

+ (ε− 1)
xjκ

pj

1

aj

(
pj

pjκ

)ε]
= xjκ

{
1 +

(
1− w

pjκ

)[
−ε+

ε− 1

aj

(
pj

pjκ

)ε−1]}
= 0. (5)

Because the conditions (2) and (5) hold for all κ = 1, ..., aj, the symmetry

pjκ = pj holds throughout all κ. This, (1), (2), (4) and (5) yield

pjκ/w =
{
1− [ε+ (1− ε)/aj]

−1
}−1 .

= Φ(aj), Φ′ < 0, ajpjκxjκ = 1,

πjκ = (pjκ − w)xjκ =
[
1− Φ(aj)

−1
]
pjκxjκ =

[
1− Φ(aj)

−1
]
/aj,

xj = ajxjκ = 1/pjκ = 1/[Φ(aj)w]. (6)

In order to make product market competition effective, I assume that the

entry of the second leader decreases the first leader’s mark-up:

µ > Φ(2). (7)

If anyone invests in imitative R&D to enter an industry with one leader,

then his prospective profit is πjκ

∣∣
aj=2

, but if he invests (with the same cost)

in imitative R&D to enter an industry with more than two leaders, then his

prospective profit is πjκ

∣∣
aj>2

. Because, by (6), the profit is smaller with more

than two leaders, πjκ

∣∣
aj=2

> πjκ

∣∣
aj>2

, investors invest in imitative R&D only

to enter in one-leader industries. I summarize:

Proposition 1 Each industry has one or two leaders. In one-leader indus-

tries the followers imitate and in two-leader industries the leaders innovate.

I denote the set of one-leader industries by Θ ⊂ [0, 1], and the relative

proportion of one-leader industries (two-leader industries), α (β) by

α =

∫
j∈Θ

dj, β
.
=

∫
j /∈Θ

dj = 1− α. (8)
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Noting aj = 2, (3), (6), (7) and (8), a firm’s profit π (Π) and and total output

xα (xβ) in one-leader (two-leader) industry are given by

Πj

∣∣
j∈Θ

= Π, Πjκ

∣∣
j /∈Θ, aj=2

.
= [1− 1/Φ(2)]/2

.
= π ∈ (0,Π/2), 1/Φ(2) = 1− 2π,

xβ = xj

∣∣
j /∈Θ, aj=2

=
1

Φ(2)w
=

1− 2π

w
> xα = xj

∣∣
j∈Θ

=
1

µw
=

1− Π

w
. (9)

The higher the elasticity of substitution between the products, ε, the closer

Φ(2) to its lower limit 1 and the smaller π.3 There are now two measures

of competition: a competing firm’s profit π and the relative proportion of

the competing (two-leader) industries, β. The purpose of this paper is to

examine the growth and welfare effects of these.

Noting (1), (3), (8) and (9), and summing up throughout all firms and

industries, we obtain that the employment of labor in production, x, and

total output y are determined as follows:

x
.
= αxα + (1− α)xβ =

ϕ

w
, ϕ(α, π)

.
= (1− Π)α+ (1− α)(1− 2π) < 1− 2π,

∂ϕ

∂α
= 2π − Π < 0,

∂ϕ

∂π
= 2(α− 1) < 0, xα = (1− Π)

x

ϕ
,

∂

∂π

(xα

x

)
> 0,

xβ = (1− 2π)
x

ϕ
> xα,

∂

∂π

(xβ

x

)
= (2π − 1)

x

ϕ2

∂ϕ

∂π
− 2

x

ϕ
= 2(Π− 1)

αx

ϕ2
< 0;

y = Bxα
αx

1−α
β = χ(α, π)xB, χ(α, π)

.
= (1− Π)α(1− 2π)1−α/ϕ(α, π),

log B
.
=

∫ 1

0

log Bjdj, (10)

where x is employment, ϕ = wx wage expenditure and B the average level of

productivity in the production of intermediate goods j ∈ [0, 1]. A decrease

in a competing firm’s profit π increases employment x and total wages in

production, ∂ϕ/∂π < 0. Because competing industries j /∈ Θ employ more

than monopoly industries j ∈ Θ (i.e. xβ > xα), a smaller proportion α of

monopoly industries raises employment x and total wages ϕ in production.

Finally, given (10), we obtain

1

χ

∂χ

∂π
=
∂ logχ

∂π
=

2(α− 1)

1− 2π
− 1

ϕ

∂ϕ

∂π
= 2(α− 1)︸ ︷︷ ︸

−

[
1

1− 2π
− 1

ϕ︸ ︷︷ ︸
−

]
> 0

and the following result:

3In papers that consider imitation in a framework with no growth, it is common to
measure competition directly by the level of profit [Cf. Kanniainen and Stenbacka (2000)].
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Proposition 2 A higher competitive profit π is associated with a higher pro-

ductivity χ of labor in production, ∂χ/∂π > 0.

Total output y = Bxα
αx

1−α
β must be maximized subject to the allocation of

labor between one-leader and two-leader industries, x = αxα + (1 − α)xβ,

keeping total employment in production, x, constant. Output y is at the

maximum, if all industries employ the same amount of labor, xα = xβ, and

this holds true only if the two-leader industries collude and set monopoly

prices, π = Π/2. A lower profit in the two-leader industries transfers labor

into two-leader industries (i.e. xα falls and xβ rises by (10)). The greater the

difference xβ − xα, the lower y for given x.

3 Research

Given proposition 1, there are three types of R&D firms: the first leader

(successful innovator), which I call firm 1, the second leader (successful im-

itator), which I call firm 2, and followers, which I call firm 0. In two-leader

industry j /∈ Θ, firms 1 and 2 innovate and no firm imitates. The techno-

logical change of firm κ ∈ {1, 2} is characterized by a Poisson process qjκ

in which the arrival rate of innovations, Λjκ, is in fixed proportion λ to the

firm’s own labor input ljκ:

Λjκ = λljκ for j /∈ Θ and κ ∈ {1, 2}. (11)

During a short time interval dν, there is an innovation dqjκ = 1 in firm κ with

probability Λjκdν, and no innovation dqjκ = 0 with probability 1− Λjκdν.

In one-leader industry j ∈ Θ, the representative follower (firm 0) imitates

and no firm innovates. The technological change of firm 0 is characterized

by a Poisson process Qj in which the arrival rate of imitations is given by

Γj = γl1−ς
j0 `ςβ for j ∈ Θ, (12)

where lj0 is the firm’s own labor input, `β the average labor input to innova-

tive R&D in the economy and γ > 0 and ς ∈ (0, 1) are constants. The input

`β characterizes the immediate spillover of knowledge from innovative to im-
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itative R&D.4 During a short time interval dν, there is an imitation dQj = 1

with probability Γjdν, and no imitation dQj = 0 with probability 1− Γjdν.

The invention of a new technology in industry j raises the number of

technology in that industry, tj, by one and the level of productivity, B
tj
j , by

µ > 1. Given this and (10), the average productivity in the economy, B, is a

function of the technologies of all industries, {tk}, as follows:

log B{tk} .
=

∫ 1

0

log B
tj
j dj, Btj+1

/
B

tj
j = µ, (13)

where {tk} denotes a vector that consists of tk for all k. The arrival rate of

innovations in industry j /∈ Θ is the sum of the arrival rates of both firms in

the industry, Λj1 + Λj2. The average growth rate of Bj due to technological

change in industry j in the stationary state is then given by

E
[
log B

tj+1
j − log B

tj
j

]
= (Λj1 + Λj2) log µ,

where E is the expectation operator.5 Because only industries j /∈ Θ inno-

vate, then, noting (11), the average growth rate of the average productivity

B in the stationary state is given by

g
.
=

∫
j /∈Θ

E
[
log B

tj+1
j − log B

tj
j

]
dj = (log µ)

∫
j /∈Θ

(Λj1 + Λj2)dj

= λ

∫
j /∈Θ

(lj1 + lj2)dj. (14)

Total employment in R&D is given by

l
.
=

∫
j /∈Θ

(lj1 + lj2)dj +

∫
j∈Θ

ljdj. (15)

There exists a fixed number N of households, each supplying one labor unit.

Total labor supply N is equal to inputs in production, x, and R&D, l:

N = x+ l. (16)

4In the case ς = 0 investment in imitative R&D were subject to constant returns to scale
and there were no equilibrium for a household (see section 4 and Appendix A, especially
equations (53) and (54)). With the spillover effect ς > 0, the average product of labor in
innovative R&D, Γj/lj0, falls with the increase in labor input lj0. This property ensures
that a household has an equilibrium.

5For this, see Aghion and Howitt (1998), p. 59.
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The government subsidizes R&D expenditures, but possibly at different

rates in innovating and imitating industries. Given 9, we obtain total expen-

ditures from these subsidies as follows:

R
.
= τα

∫
j∈Θ

wlj0dj + τβ

∫
j /∈Θ

(wlj1 + wlj2)dj, (17)

where wlj0 is expenditure on imitation in firm 0 industry j ∈ Θ, wljκ expen-

diture on innovation in firm κ ∈ {1, 2} in industry j /∈ Θ and τα ∈ (−∞, 1)(
τβ ∈ (−∞, 1)

)
is the subsidy to imitation (innovation). If the government

cannot discriminate between innovation and imitation, then τα = τβ.

In industry j ∈ Θ firm 0 and in industry j /∈ Θ firms 1 and 2 issue shares

to finance their labor expenditure in R&D, net of government subsidies. Be-

cause the households invest in these shares, we obtain

N∑
ι=1

Sιj0 = (1− τα)wlj0 for j ∈ Θ,

N∑
ι=1

Sιjκ = (1− τβ)wljκ for κ ∈ {1, 2} and j /∈ Θ, (18)

where wlj0 is the imitative expenditure of firm 0 in industry j ∈ Θ, τα the

subsidy to it, wljκ the innovative expenditure of firm κ ∈ {1, 2} in industry

j /∈ Θ, τβ subsidy to it, Sιj0 (Sιjκ) household ι’s investment in firm 0 in

industry j ∈ Θ (firm κ in industry j /∈ Θ), and
∑N

ι=1 Sιj0

(∑N
ι=1 Sιjκ

)
aggregate investment in firm 0 in industry j ∈ Θ (firm κ in industry j /∈ Θ).

Household ι’s relative investment shares in the firms are given by

iιj0
.
=

Sιj0

(1− τα)wlj0
for j ∈ Θ; iιjκ

.
=

Sιjκ

(1− τβ)wljκ
for j /∈ Θ. (19)

I denote household ι’s income by Aι. Total income throughout all house-

holds ι ∈ {1, ..., N} is then equal to income earned in the production of

consumption goods, Py, plus income earned in R&D, wl, minus government

expenditures R (= lump-sum taxes). Since Py = 1 by (2), this yields

N∑
ι=1

Aι = Py + wl −R = 1 + wl −R. (20)
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4 Households

The utility for risk-averting household ι ∈ {1, ..., N} from an infinite stream

of consumption beginning at time T is given by

U(Cι, T ) = E

∫ ∞

T

Cσ
ι e

−ρ(ν−T )dν with 0 < σ < 1 and ρ > 0, (21)

where ν is time, E the expectation operator, Cι the index of consumption, ρ

the rate of time preference and 1/(1−σ) is the constant relative risk aversion.

Because investment in shares in R&D firms is the only form of saving in

the model, the budget constraint of household ι is given by

Aι = PCι +

∫
j∈Θ

Sιj0dj +

∫
j /∈Θ

(Sιj1 + Sιj2)dj, (22)

where Aι is the household’s total income, Cι its consumption, P the consump-

tion price, and Sιj0 (Sιjκ) the household’s investment in firm 0 in industry

j ∈ Θ (firm κ in industry j /∈ Θ). When household ι has financed a success-

ful R&D firm, it acquires the right to the firm’s profit in proportion to its

relative investment share. Thus, I define:

sιjκ household ι’s true profit from firm κ in industry j when the uncertainty

in R&D is taken into account;

iιjκ household ι’s investment share in firm κ in industry j [Cf. (19)];

Πiιjκ household ι’s expected profit from firm κ ∈ {1, 2} in industry j /∈ Θ

after innovation in firm κ have changed the two-leader industry j into

a one-leader industry;

πiιj0 household ι’s expected profit from firm 0 in industry j ∈ Θ after imita-

tion in firm 0 have changed the one-leader industry j into a two-leader

industry.

The changes in the profits of firms in industry j are functions of the

increments (dqj1, dqj2, dQj) of Poisson processes (qj1, qj2, Qj) as follows:6

dsιjκ = (Πiιjκ − sιjκ)dqjκ − sιjκdqj(ζ 6=κ) when j /∈ Θ;

dsιj0 = (πiιj0 − sιj0)dQj when j ∈ Θ. (23)

6This extends the idea of Wälde (1999a, 1999b).
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These functions can be explained as follows. If a household invests in leader

κ in industry j /∈ Θ, then, in the advent of a success for that leader, dqjκ = 1,

the amount of its share holdings rises up to Πiιjκ, dsιjκ = Πiιjκ− sιjκ, but in

the advent of success for the other leader ζ 6= κ, its share holdings in leader

κ fall down to zero, dsιjκ = −sιjκ. If a household invests in imitating firm 0

in industry j ∈ Θ, then, in the advent of a success for the firm, dQj = 1, the

amount of its share holdings rises up to πiιj0, dsιj0 = πiιj0 − sιj0.

Household ι’s total income Aι consists of its wage income w (the household

supplies one labor unit), its profits sιj1 from the single leader in each industry

j ∈ Θ, its profits sιj1 and sιj2 from the two leaders 1 and 2 in each industry

j /∈ Θ, minus its share 1/N in the government’s expenditures R (= the

household’s lump-sum tax). Given this and (9), we obtain

Aι = w +

∫
j∈Θ

sιj1dj +

∫
j /∈Θ

(sιj1 + sιj2)dj −
R

N
. (24)

Household ι maximizes its utility (21) by its investment, {Sιj0} for j ∈ Θ

and {Sιj1, Sιj2} for j /∈ Θ, subject to its budget constraint (22), the stochas-

tic changes (23) in its profits, the composition of its income, (24), and the

determination of its relative investment shares, (19), given the arrival rates

{Λjκ,Γj}, the wage w, the consumption price P , the subsidies (τα, τβ) and

the government’s expenditures R. In the households’ stationary equilibrium

in which the allocation of resources is invariable across technologies, this

maximization yields the following results (see Appendix A):

ljκ = `β for j /∈ Θ,
lj0 = `α for j ∈ Θ,

`α
`β

= ψ(π, τα, τβ)
.
=

[
(1− τβ)πγ/2

(1− τα)Πλµσ

]1/ς

,

∂ψ

∂π
=

ψ

ςπ
> 0,

∂ψ

∂τα
> 0,

∂ψ

∂τβ
< 0, ψ(π, τ, τ) = ψ(π, 1, 1), (25)

w = ϕ(α, π)/(N − l), (26)

h =
1

1 +
{
1−

[
τααψ + 2τβ(1− α)

]
[αψ + 2(1− α)]−1

}
wl
, (27)

g =
(2λ log µ)l

αψ/(1− α) + 2
, ρ+

1− µσ

log µ
g =

λhµσΠ

(1− τβ)w
. (28)

Result (25) says that with a smaller subsidy τα to imitative R&D, a bigger

subsidy τβ to innovative R&D or with a lower profit π, investors spend rel-

atively more in innovative than imitative R&D (i.e. a higher `β/l). With a
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uniform R&D subsidy τα = τβ = τ , the relative investment in imitation is

independent of the subsidy.

The equations (25) lead to the following result:

Proposition 3 If there are no competitive profits, π = 0, then there is no

imitation, lj0 = `α = 0 for j ∈ Θ.

With non-diversifiable risk, households hold the shares of all innovating firms

in their portfolios. Given this, they have no incentives to invest in imitating

R&D unless there are profits during the innovation race.

5 General equilibrium

When innovation occurs in an industry, this industry switches from the group

of two-leader industries to that of one-leader industries, and when imita-

tion occurs in an industry, this industry switches from one-leader industries

to two-leader industries. In a steady-state equilibrium, every time a new

superior-quality product is discovered in some industry, imitation must oc-

cur in some other industry.7 Thus, the rate at which industries leave the

group of two-leader industries, β(Λj1 + Λj2)dν, is equal to the rate at which

industries leave the group of one-leader industries, αΓjdν. This, (8), (11),

(12) and (25) yield β(Λj1 + Λj2) = αΓj and

α

1− α
=
α

β
=

Λj1 + Λj2

Γj

=
λ(l1−ς

j1 + l1−ς
j2 )

γl1−ς
j0

=
2λ`1−ς

β

γ`1−ς
α

=
2λ

γ
ψς−1.

Given this equation, one solves for the proportion of one-leader industries as:

α(π, τα, τβ) = Ψ(ψ)
.
=

2λ

2λ+ γψ1−ς
, Ψ′ =

dΨ

dψ
= (ς − 1)(1− α)

α

ψ
< 0,

∂α/∂π < 0, ∂α/∂τα < 0, ∂α/∂τβ > 0, α(π, τ, τ) = α(π, 1, 1). (29)

7Cf. Segerstrom (1991), p. 817.
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Finally, given (10), (25) and (29), one obtains that wage expenditure in

production, wx = ϕ, depends on the profit π as follows:

dϕ

dπ
=
∂ϕ

∂α

∂α

∂ψ

∂ψ

∂π
+
∂ϕ

∂π
= (2π − Π)Ψ′∂ψ

∂π
+ 2(α− 1)

= (1− α)

[
(1− ς)(Π− 2π)

α

ψ

∂ψ

∂π
− 2

]
= (1− α)

[(1

ς
− 1

)(Π

π
− 2

)
α− 1

]
,

dϕ/dπ < 0 for π > π0, dϕ/dπ > 0 for π < π0,

lim
π→0

dϕ

dπ
=

1− α

π
lim

π→0, α→1

[(1

ς
− 1

)
(Π− 2π

)
α− π

]
=

1− α

π

(1

ς
− 1

)
Π > 0,

lim
π→Π/2

dϕ

dπ
= α− 1 < 0, (30)

where the constant π0 ∈ (1, µ) is defined by the equation

(1/ς − 1)(Π/π0 − 2)α(π0, τα, τβ) = 1.

Inserting (29) into equations (28) and noting (8), (10), (25), (26), (27)

and (30), one obtains

l(ψ, g) =

(
1

γ
ψς +

1

λ

)
g

log µ
,

∂l

∂ψ
> 0,

∂l

∂g
=
l

g
> 0, (31)

ρ+
1− µσ

log µ
g = ∇(l, τα, τβ, π)

.
= ∆(l, α, τα, τβ, π)

.
=

λµσΠ(N − l)/(1− τβ)

ϕ(α, π) +
{
1−

[
τααψ + 2τβ(1− α)

]
[αψ + 2(1− α)]−1

}
ϕ(α, π)2l/(N − l)

,

∂∆

∂β

∣∣∣∣
τα=τβ=0

= −∂∆

∂α

∣∣∣∣
τα=τβ=0

< 0,
∂∇
∂τβ

∣∣∣∣
τα=τβ=0

> 0,
∂∇
∂τ

∣∣∣∣
τ=τα=τβ

> 0,

∂∇
∂l

< 0,
∂∇
∂π

∣∣∣∣
τα=τβ=0, π>π0

> 0,
∂∇
∂π

∣∣∣∣
τα=τβ=0, π<π0

< 0. (32)

The equation (31) says that the demand for labor devoted to R&D, l,

is in fixed proportion to the growth rate g, and the equation (32) that a

household’s subjective discount factor ρ+ 1−µσ

log µ
g is equal to the rate of return

to savings, ∇. These two equations form a system of two unknown variables l

and g. The equilibrium is in the intersection Q of these. By the comparative

12



statics of this system, one obtains

g = ĝ(π, τα, τβ) = g̃(α, π, τα, τβ),
∂g̃

∂β

∣∣∣∣
τα=τβ=0

< 0 ⇔ ∂ĝ

∂π

∣∣∣∣
τα=τβ=0, π>π0

> 0

⇔ ∂ĝ

∂π

∣∣∣∣
τα=τβ=0, π<π0

< 0 ⇔ ∂ĝ

∂τ

∣∣∣∣
τα=τβ=τ

> 0 ⇔ ∂ĝ

∂τβ

∣∣∣∣
τα=τβ=0

> 0

⇔
(

1

γ
ψς +

1

λ︸ ︷︷ ︸
+

)
∂∇
∂l︸︷︷︸
−

< 1− µσ︸ ︷︷ ︸
−

. (33)

Unfortunately, these results are ambiguous, because an increase in the growth

rate g lowers both a household’s subjective discount factor ρ+ 1−µσ

log µ
g and the

rate of return to savings, ∇, through lower employment l in R&D. Empiri-

cally, one can assume that a small targeted subsidy τβ to innovative R&D

is growth enhancing. In such a case, the effect through the rate of return to

savings outweighs that through the subjective discount factor. The results

(33) can then be rephrased as follows:

Proposition 4 A higher proportion β of competing industries in the econ-

omy decreases the growth rate. A uniform subsidy τ to all R&D is growth

enhancing. When the competitive profit π is initially lower (higher) than the

constant π0, an increase in it is growth-hampering (growth-enhancing).

A higher proportion of competing industries raises the demand for labor in

production. This decreases labor devoted to R&D and the growth rate. A

higher subsidy to all R&D increases investment in R&D and the growth

rate. A decrease in the profit is in general growth enhancing because of cost

escaping effect, except that at high initial profit margins (i.e. π > π0) it is

outweighed by the “wage effect” as follows. With lower profits, firms charge

lower prices, produce more and employ more labor in production.

6 Optimal public policy

The symmetry across the households ι = 1, ..., n yields Cι = y/N . Noting

Cι = y/N , (10), (16), (29) and (31), a single household’s consumption relative

13



to the level of productivity, c, can be written as follows:

c(g, α, π)
.
=

Cι

B{tk}
=

y/N

B{tk}
=

x

N
χ =

[
1− l(ψ, g)

N

]
χ

= χ(α, π)

[
1− 1

N
l
(
Ψ−1(α), g

)]
,

∂c

∂g
= − χ

N

∂l

∂g
= − cl

xg
< 0, (34)

where Ψ−1 is the inverse function of Ψ. Given this, a single household’s

utility function (21) takes the form

U(Cι, T ) = E

∫ ∞

T

c(g, α, π)σ
(
B{tk}

)σ
e−ρ(ν−T )dν. (35)

On the assumption that the government is benevolent, it maximizes the

representative household’s welfare (35). I consider two cases:

(a) First-best policy. The government can discriminate between innovation

and imitation, τα 6= τβ. Because there is one-to-one correspondence

from (τα, τβ) to (g, α) through (25), (29) and (33), the government can

control the growth rate g and the proportion of imitating industries,

α, by the subsidies (τα, τβ). It maximizes social welfare (35) by the

growth rate g and the proportion of imitating industries, α.

(b) Second-best policy. The government cannot discriminate between inno-

vation and imitation, τα = τβ = τ . Given (25), (29) and (33), the pro-

portion of imitating industries, α, is wholly exogenous and the growth

rate g can be controlled by the uniform subsidy τ . The government

then maximizes social welfare (35) by g.

I denote by Υ({tk}) the value of each industry k using current technology

tk, and by Υ
(
tj + 1, {tk 6=j}

)
the value of industry j using technology tj + 1,

when other industries k 6= j use current technology tk. The maximization

problems in both the first-best (a) and second-best (b) cases above lead to

the Bellman equation

ρΥ(t) =

{
maxg,αF in the case of first-best policy (a),

maxg F in the case of second-best policy (b),
where

F .
= c(g, α, π)σ

(
B{tk}

)σ
+

∫
j /∈Θ

(Λj1 + Λj2)
[
Υ

(
tj + 1, {tk 6=j}

)
−Υ

(
{tk}

)]
dj

=
c(g, α, π)σ(
B{tk}

)−σ +
g

(1− α) log µ

∫
j /∈Θ

[
Υ

(
tj + 1, {tk 6=j}

)
−Υ

(
{tk}

)]
dj. (36)
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(a) First-best policy. The socially optimal levels for the growth rate g and

the proportion of imitating industries, α, are given by [see Appendix B]

g∗ =
ρσ log µ

(µσ − 1)(σ + x/l)
, α∗ =

η

η + l/x
, (37)

where

η(g, α, π)
.
= −α

c

∂c

∂α
(38)

is the elasticity of consumption with respect to the proportion of imitating

industries. Inserting g = g∗ from (37) into (28) yields the following result:

Proposition 5 The welfare-maximizing subsidy to innovative R&D is

τ ∗β = 1− hz

ρ+ 1−µσ

log µ
g∗

= 1−
(
σ
l

x
+ 1

)hz
ρ
. (39)

If the government cannot discriminate between innovative and imitative R&D,

then this is also the welfare-maximizing uniform subsidy to all R&D.

In explaining proposition 5, the starting point is that τ ∗α determines the

welfare-maximizing levels for both subsidies (τα, τβ). The next proposition

considers how much τα and τβ should be differentiated. The lower the propen-

sity to consume, h, the average rate of return to investment in imitative

R&D, z, or the relative proportion of workers in R&D, l/x, the more R&D

should be subsidized. The promotion of R&D by subsidies speeds up growth

and increases future consumption and welfare. On the other hand, it crowds

out the production of consumption goods through higher wages and decreases

welfare. The subsidies to R&D should be increased as long as the former

growth effect dominates over the latter current-consumption effect. The lower

the propensity to consume, h, the weaker the current-consumption effect and

the higher the optimal subsidy. The lower the “private” rate of return z to

imitative R&D, the higher subsidy is needed to cover the gap between it and

the social rate of return to imitative R&D. Finally, the lower the relative

proportion of workers in R&D, l/x, the less a proportional increase in R&D

crowds out current consumption and the higher the optimal subsidy.

Inserting (37) into (25), we obtain [see Appendix C]:

15



Proposition 6 If the government can discriminate between innovation and

imitation, τα 6= τβ, then the welfare-maximizing subsidy to imitative R&D,

τ ∗α, is determined by

1− τβ
1− τ ∗α

=

[
λ

γ
+

(
λ
γ

+ 1
)
ξ

γ
2

(
1 + 1

η
l
x

)
− ξ

]
µσ Π

π
.

The bigger the relative profit in the two-leader industries, π/Π, or the less

workers there are in R&D (i.e. the smaller l/x), the more the government

should prefer innovation to imitation (i.e. the higher τ ∗β relative to τα and the

lower the ratio (1− τ ∗β)/(1− τα)). The profit in the two-leader industries, π,

and the subsidy to imitative R&D, τα, are strategic substitutes, for they both

increase the incentives to imitate. Therefore, at the optimum, the increase

in π relative to Π should lead to the decrease in τα relative to τβ.

Noting (34), (36) and proposition 2, we obtain ∂χ/∂π > 0, ∂c/∂π > 0,

∂F/∂π > 0 and the following result:

Proposition 7 In the first-best case τα 6= τβ, an increase in the competitive

profit π is welfare-enhancing (i.e. F rises).

(b) Second-best policy. In this case, the rule (39) determines the uniform

subsidy τ = τα = τβ and the welfare-maximizing level α∗ of α is given by

(37). Because α is an decreasing function of π through ψ [cf. (25) and

(29)], there is a welfare-maximizing level π∗ for the mark-up factor π in the

two-leader industries as well. This result can be rephrased as follows:

Proposition 8 If the government cannot discriminate between innovation

and imitation but uses the uniform subsidy τ = τα = τβ optimally, then there

is an “inverted-U” relationship between the competitive profit π and welfare.

A decrease in the profit has two opposing effects. It decreases the consump-

tion price and thereby increases current consumption and welfare. On the

other hand, it transfers labor from R&D to the production of goods. This

decreases the growth rate, future consumption and welfare. These opposing

effects are balanced for π = π∗ and α = α∗.
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7 Conclusions

This paper examines a multi-industry economy in which growth is generated

by creative destruction. In each industry, a firm creating the newest tech-

nology by a successful innovative R&D project crowds out the other firms

with older technologies from the market and becomes the first leader of the

industry. A firm creating a copy of the newest technology starts producing

a close substitute for the innovator’s product and establishes an innovation

race with the first leader. There is systematic investment risk that the house-

holds cannot eliminate by diversification. The government subsidizes R&D,

possibly discriminating between innovative and imitative R&D, and affects

the competing firms’ mark up rate through competition policy.

Mukoyama (2003) assumes that firms’ products are perfect substitutes

and shows that firms’ are ready to imitate in order to be able to participate

in the innovation race, although during the race there are no profits. After

the assumption of fully diversifiable risk is relaxed, this is no more possible.

With non-diversifiable risk, households hold the shares of all innovating firms

in their portfolios. Given this, they have no incentives to invest in imitating

R&D unless there are profits during the innovation race.

In the literature, the degree of product market competition has been

represented by either the elasticity of the substitution of firms’ products

[Cf. Aghion et al. (1997, 2001)] or the proportion of competing industries

in the economy [Cf. Mukoyama (2003)]. This paper shows that with non-

diversifiable risk these two representations are qualitatively different. The

elasticity of product substitution is otherwise growth enhancing, except that

at high elasticities it is outweighed by the “wage effect” as follows. With

more intense PMC firms charge lower prices, produce more and employ more

labor in production. The proportion of competing industries is negatively

associated with the growth rate.

The other findings of this paper are as follows. In the first-best case

where the government is able to set different subsidies to innovation and

imitation, a higher elasticity of product substitution diminishes welfare. It

transfers labor from the one-leader industries, which contain a recent inno-

vator and a number of imitating followers, into the two-leader industries, in

which an innovator and a recent imitator are in an innovation race. Because
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the decrease in output in the one-leader industries outweighs the increase in

output in the two-leader industries in terms of consumption, consumption

and welfare must fall.

In the second-best case where the government cannot discriminate be-

tween innovation and imitation but uses a uniform subsidy to all R&D, there

is an “inverted-U” relationship between the elasticity of product substitution

and social welfare. A higher elasticity has two opposing effects. It decreases

the consumption price and thereby increases current consumption and wel-

fare. On the other hand, it transfers labor from R&D to the production of

goods and thereby decreases the growth rate, future consumption and wel-

fare. The elasticity of product substitution is at its welfare-maximizing level

when these two opposing effects are balanced. When it is below (above) the

welfare-maximizing level, it should be increased (decreased).

Appendix

A. Results (25)-(33)

I denote:

Ω
(
{sιkυ}, {tk}

)
the value of receiving profits sιkυ from all firms υ in all in-

dustries k using current technology tk.

Ω
(
Πiιjκ, 0, {sι(k 6=j)υ}, tj + 1, {tk 6=j}

)
the value of receiving the profit Πiιjκ

from firm κ in industry j /∈ Θ using technology tj +1, but receiving no

profits from the other firm which was a leader in that industry when

technology tj was used, and receiving profits sι(k 6=j)υ from all firms υ in

other industries k 6= j with current technology tk.

Ω
(
πiιj1, πiιj2, {sι(k 6=j)υ}, {tk}

)
the value of receiving profits πiιjκ from firms

κ ∈ {1, 2} in industry j ∈ Θ, but receiving profits sι(k 6=j)υ from all firms

υ in the other industries k 6= j with current technology tk.

The Bellman equation associated with the household’s maximization is8

ρΩ
(
{sιkυ}, {tk}

)
= max

Sιj ≥ 0 for all j
Ξι, (40)

8Cf. Dixit and Pindyck (1994).
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where

Ξι
.
= Cσ

ι +

∫
j∈Θ

Γj

[
Ω

(
πiιj1, πiιj1, {sι(k 6=j)υ}, {tk}

)
− Ω

(
{sιkυ}, {tk}

)]
dj

+

∫
j /∈Θ

∑
κ=1,2

Λjκ

[
Ω

(
Πiιjκ, 0, {sι(k 6=j)υ}, tj + 1, {tk 6=j}

)
− Ω

(
{sιkυ}, {tk}

)]
dj.

(41)

Because ∂Cι/∂Sιjκ = −1/P by (22), the first-order conditions are given by

Λjκ
d

dSιjκ

[
Ω

(
Πiιjκ, 0, {sι(k 6=j)υ}, tj + 1, {tk 6=j}

)
− Ω

(
{sιkυ}, {tk}

)]
=
σ

P
Cσ−1

ι

for j /∈ Θ and κ ∈ {1, 2}, (42)

Γj
d

dSιj0

[
Ω

(
πiιj1, πiιj2, {sι(k 6=j)υ}, {tk}

)
− Ω

(
{sιkυ}, {tk}

)]
=
σ

P
Cσ−1

ι

for j ∈ Θ. (43)

I try the solution that for each household ι the propensity to consume,

hι, and the subjective interest rate rι are independent of income Aι, i.e.

PCι = hιAι and Ω = Cσ
ι /rι. Let us denote variables depending on technology

tk by superscript tk. Since according to (24) income A
{tk}
ι depends directly

on variables {stk
ιk}, I denote A

{tk}
ι ({stk

ιk}). Assuming that hι is invariant across

technologies yields

P {tk}C{tk}
ι = hιA

{tk}
ι ({stk

ιk}). (44)

The share in the next innovator tj +1 is determined by investment under the

present technology tj, s
tj+1
ιjκ = Πi

tj
ιjκ for j /∈ Θ. The share in the next imitator

is determined by investment under the same technology tj, s
tj
ιjκ = πi

tj
ιjκ for

j ∈ Θ. The value functions are then given by

Ω
(
{sιkυ}, {tk}

)
= Ω

(
πiιj1, πiιj2, {sι(k 6=j)υ}, {tk}

)
=

1

rι

(
C{tk}

ι

)σ
,

Ω
(
Πiιjκ, 0, {sι(k 6=j)υ}, tj + 1, {tk 6=j}

)
=

1

rι

(
C

tj+1,{tk 6=j}
ι

)σ
. (45)

Given this, we obtain

∂Ω
(
{sιkυ}, {tk}

)
∂S

tj
ιj

= 0. (46)
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From (19), (24), (44), (45), s
tj+1
ιjκ = Πi

tj
ιjκ for j /∈ Θ, and s

tj
ιjκ = πi

tj
ιjκ for j ∈ Θ

it follows that

∂s
tj+1
ιjκ

∂i
tj
ιjκ

= Π for j /∈ Θ,
∂s

tj
ιj0

∂i
tj
ιj0

= π for j ∈ Θ,
∂A

tj+1,{tk 6=j}
ι

∂s
tj+1
ιjκ

=
∂A

{tk}
ι

∂s
tj
ιjκ

= 1,

∂i
tj
ιj0

∂S
tj
ιj0

=
1

(1− τα)w{tk}l
{tk}
j0

for j ∈ Θ,
∂i

tj
ιjκ

∂S
tj
ιjκ

=
1

(1− τβ)w{tk}l
{tk}
jκ

for j /∈ Θ,

∂Ω
(
Πiιjκ, 0, {sι(k 6=j)υ}, tj + 1, {tk 6=j}

)
∂S

tj
ιjκ

=
σ

rι

(
C

tj+1,{tk 6=j}
ι

)σ−1 ∂C
tj+1,{tk 6=j}
ι

∂A
tj+1,{tk 6=j}
ι︸ ︷︷ ︸

hι/P
tj+1,{tk 6=j}

∂A
tj+1,{tk 6=j}
ι

∂s
tj+1
ιjκ︸ ︷︷ ︸
=1

∂s
tj+1
ιjκ

∂i
tj
ιjκ︸ ︷︷ ︸

=π

∂i
tj
ιjκ

∂S
tj
ιjκ

=
Πσhι

(
C

tj+1,{tk 6=j}
ι

)σ−1

rιP tj+1,{tk 6=j}

∂i
tj
ιjκ

∂S
tj
ιjκ

=
Πhισ

(
C

tj+1,{tk 6=j}
ι

)σ−1

(1− τβ)rιw{tk}P tj+1,{tk 6=j}l
{tk}
jκ

for j /∈ Θ,

(47)

∂Ω
(
πiιj1, πiιj2, {sι(k 6=j)υ}, {tk}

)
∂S

tj
ιj0

=
σ

rι

(
C{tk}

ι

)σ−1 ∂C
{tk}
ι

∂A
{tk}
ι︸ ︷︷ ︸

=hι/P {tk}

∂A
{tk}
ι

s
tj
ιj0︸ ︷︷ ︸
=1

s
tj
ιj0

∂itιj0︸ ︷︷ ︸
=π

∂itιj0
∂St

ιj0

=
πσhι

rιP {tk}

(
C{tk}

ι

)σ−1 ∂i
t
ιj0

∂St
ιj0

=
πhισ

(
C
{tk}
ι

)σ−1

(1− τα)rιw{tk}P {tk}l
{tk}
j0

for j ∈ Θ. (48)

I focus on a stationary equilibrium where the growth rate g and the

allocation of labor, (ljκ, x), are invariant across technologies. Given (2),

(10), (13) and (16), this implies

l
{tk}
jκ = ljκ, x{tk} = x = N − l, w{tk} = w = x/ϕ,

P {tk}

P tj+1,{tk 6=j}
=
C

tj+1,{tk 6=j}
ι

C
{tk}
ι

=
A

tj+1,{tk 6=j}
ι

A
{tk}
ι

=
ytj+1,{tk 6=j}

y{tk}
=
Btj+1,{tk 6=j}

B{tk}
= µ.

(49)

Inserting (14), (41), (44), (45), (49) and g
.
=

∫
j /∈Θ

ljdj into (40) yields

0 =
[
ρ+

∫
j /∈Θ

(Λj1 + Λj2)dj +

∫
j∈Θ

Γjdj
]
Ω

(
{sιkυ}, {tk}

)
−

(
C{tk}

ι

)σ

−
∫

j /∈Θ

∑
κ=1,2

ΛjκΩ
(
Πiιjκ, 0, {sι(k 6=j)υ}, tj + 1, {tk 6=j}

)
dj
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−
∫

j∈Θ

ΓjΩ
(
πiιj1, πiιj2, {sι(k 6=j)υ}, {tk}

)
dj

=
[
ρ+

∫
j /∈Θ

(Λj1 + Λj2)dj
](
C
{tk}
ι

)σ

rι

−
(
C{tk}

ι

)σ

−
∫

j /∈Θ

∑
κ=1,2

Λjκ

rι

(
C
{tj+1},{tk 6=j}
ι

)σ
dj

=
[
ρ+

∫
j /∈Θ

(Λj1 + Λj2)dj
](
C
{tk}
ι

)σ

rι

−
(
C{tk}

ι

)σ −
∫

j /∈Θ

∑
κ=1,2

Λjκ
µσ

rι

(
C{tk}

ι

)σ
dj

=
1

rι

(
C{tk}

ι

)σ
[
ρ+ (1− µσ)

∫
j /∈Θ

(Λj1 + Λj2)dj − rι

]
=

1

rι

(
C{tk}

ι

)σ
[
ρ− rι +

1− µσ

log µ
g
]
.

This equation is equivalent to

rι = ρ+
1− µσ

log µ
g. (50)

Because there is symmetry throughout all households ι, their propensity

to consume is equal, hι = h. This, (17), (18), (20), (22), (24) and (44) yield

wl −R = w

∫
j∈Θ

lj0dj + w

∫
j /∈Θ

(lj1 + lj2)dj −R

= (1− τα)w

∫
j∈Θ

lj0dj + (1− τβ)w

∫
j /∈Θ

(lj1 + lj2)dj

=
N∑

ι=1

[∫
j∈Θ

Sιj0dj +

∫
j /∈Θ

(Sιj1 + Sιj2)dj

]
=

N∑
ι=1

(Aι − PCι)

= (1− h)
N∑

ι=1

Aι = (1− h)(1 + wl −R).

Solving for the propensity to consume, we obtain

hι = h = (1 + wl −R)−1. (51)

Given (10) and (16), we obtain the wage

w = ϕ/x = ϕ(α, π)/(N − l). (52)
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I define the rate of return to imitative R&D by z
.
= πΓj/(wlj0). Inserting

this, (11), (12), (46), (47), (48) and (9) into (42) and (43), we obtain

Πhσµσ
(
C
{tk}
ι

)σ−1
λ

(1− τβ)
(
ρ+ 1−µσ

log µ
g
)
wP {tk}

=
σΠhιµ

σΛjκ

(
C
{tk}
ι

)σ−1

(1− τβ)rιwljκP {tk}

=
σΠhιΛjκ

(
C

tj+1,{tk 6=j}
ι

)σ−1

(1− τβ)rιwljκP
ttj+1,{tk 6=j}

= Λjκ
d

dSιjκ

Ω
(
Πiιj, {sι(k 6=j)}, tj + 1, {tk 6=j}

)
=

σ

P {tk}

(
C{tk}

ι

)σ−1
for j /∈ Θ and κ ∈ {1, 2}, (53)

πhσ
(
C
{tk}
ι

)σ−1
γl−ς

j0 `
ς
β

(1− τα)
(
ρ+ 1−µσ

log µ
g
)
wP {tk}

=
σh

(
C
{tk}
ι

)σ−1
z

(1− τα)rιwlj0P {tk}
=

σπhιΓj

(
C
{tk}
ι

)σ−1

(1− τα)rιwlj0P {tk}

= Γj
d

dSιj0

Ω
(
{πiιj1, πiιj2, {sιm(k 6=j)}, {tk}

)
=

σ

P {tk}

(
C{tk}

ι

)σ−1
for j ∈ Θ.

(54)

Given equations (53) and (54) and (9), we obtain

ljκ = `β for j /∈ Θ,
lj0 = `α for j ∈ Θ,

`α
`β

= ψ(π, τα, τβ)
.
=

[
(1− τβ)πγ/2

(1− τα)Πλµσ

]1/ς

,

∂ψ/∂π > 0, ∂ψ/∂τα > 0, ∂ψ/∂τβ < 0, [∂ψ/∂τ ]τα=τβ=τ = 0. (55)

Equations (2), (8), (11), (14), (15), (17), (51), (54) and (55) yield

l =

∫
j /∈Θ

(lj1 + lj2)dj +

∫
j∈Θ

ljdj = `β

∫
j /∈Θ

dj + `α

∫
j∈Θ

dj

= α`α + 2(1− α)`β = [αψ + 2(1− α)]`β,

`β = [αψ + 2(1− α)]−1l, `α = [αψ + 2(1− α)]−1ψl,

R = τα

∫
j∈Θ

wlj0dj + τβ

∫
j /∈Θ

(wlj1 + wlj2)dj

= ταw`α

∫
j∈Θ

dj + 2τβw`β

∫
j /∈Θ

dj = ταw`αα+ 2τβw`β(1− α)

=
[
τααψ + 2τβ(1− α)

]
wl[αψ + 2(1− α)]−1,

h =
Py∑
ιAι

=
1

1 + wl −R

=
1

1 +
{
1−

[
τααψ + 2τβ(1− α)

]
[αψ + 2(1− α)]−1

}
wl
, (56)

Λjκ = λ`β = λ[αψ + 2(1− α)]−1l for j /∈ Θ and κ ∈ {1, 2},
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g = (log µ)

∫
j /∈Θ

(Λj1 + Λj2)dj = (2 log µ)(1− α)Λjκ

=
(2λ log µ)(1− α)l

αψ + 2(1− α)
=

(2λ log µ)l

αψ/(1− α) + 2
, (57)

ρ+
1− µσ

log µ
g =

hµσΠΛjκ

(1− τβ)wljκ
=

λhµσΠ

(1− τβ)w
. (58)

Equations (52), (55), (56), (57) and (58) define (25)-(28).

B. Results (37)

Noting (34), the first-order conditions for g and α in the government’s

maximization are given by

∂F
∂g

= σcσ−1
(
B{tk}

)σ ∂c

∂g
+

1

(1− α) log µ

∫
j /∈Θ

[
Υ

(
tj + 1, {tk 6=j}

)
−Υ

(
{tk}

)]
dj

= 0, (59)

∂F
∂α

= σcσ−1
(
B{tk}

)σ ∂c

∂α
+

g

(1− α)2 log µ

∫
j /∈Θ

[
Υ

(
tj + 1, {tk 6=j}

)
−Υ

(
{tk}

)]
dj

= 0. (60)

I try the solution

Υ
(
{tk}

) .
= ϑcσ

(
B{tk}

)σ
, (61)

where ϑ is independent of the endogenous variables of the system. Noting

(13) and (61), we then obtain

Υ
(
tj + 1, {tk 6=j}

)
= ϑcσ

(
Btj+1,{tk}

)σ
= ϑµσcσ

(
B{tk}

)σ
= µσΥ

(
{tk}

)
. (62)

Inserting (61) and (62) into the Bellman equation (36), we obtain

0 = cσ
(
B{tk}

)σ
+
g/(1− α)

log µ

∫
j /∈Θ

[
Υ

(
tj + 1, {tk 6=j}

)
−Υ

(
{tk}

)]
dj − ρΥ

(
{tk}

)
= Υ

(
{tk}

)
[1/ϑ− ρ+ (µσ − 1)g/(log µ)]

and
1/ϑ = ρ− (µσ − 1)g/(log µ) < ρ. (63)

Given (34), (38)-(61), (62) and (63), we obtain

∂F
∂g

= σcσ−1
(
B{tk}

)σ ∂c

∂g
+
µσ − 1

log µ
Υ

(
{tk}

)
=

( σ

ϑc

∂c

∂g
+
µσ − 1

log µ

)
Υ

(
{tk}

)
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=
(µσ − 1

σ log µ
− l

ϑxg

)
σΥ

(
{tk}

)
=

[µσ − 1

σ log µ
−

(
ρ− µσ − 1

log µ
g
) l

xg

]
σΥ

(
{tk}

)
= 0, (64)

∂F
∂α

= σcσ−1
(
B{tk}

)σ ∂c

∂α
+

(µσ − 1)g

(1− α) log µ
Υ

(
{tk}

)
=

( σ

cϑ

∂c

∂α
+
µσ − 1

log µ

g

1− α

)
Υ

(
{tk}

)
=

(1

c

∂c

∂α
+
µσ − 1

σ log µ

ϑg

1− α

)σ
ϑ

Υ
(
{tk}

)
=

[
− η

α
+

l

(1− α)x

]σ
ϑ

Υ
(
{tk}

)
= 0. (65)

Noting (64), we obtain

g =
ρσ log µ

(µσ − 1)(σ + x/l)
.

Given (38) and (65), ∂c/∂α < 0, η > 0 and α
.
= η/(η + l/x) hold.

C. Proposition 6

Inserting α = α∗ and (37) into (29) and noting yields

γ/2

(λ+ γ)ψ + ξ
= α = α∗ =

η

η + l/x
.

From this and (25) it follows that

ξ

[
(1− τβ)πγ

(1− τα)Πµσ
− λ

]−1

= ψ =
1

λ+ γ

[
γ

2

(
1 +

1

η

l

x

)
− ξ

]
.

Solving for the ratio (1− τ ∗β)/(1− τα) and noting (16), we obtain

1− τ ∗β
1− τα

=

{
λ

γ
+

(λ
γ

+ 1
)
ξ

[
γ

2

(
1 +

1

η

l

x

)
− ξ

]−1}
µσ Π

π
.

References:

Aghion, P., Harris, C. and Vickers, J. (1997). Competition and growth
with step-by-step innovation: an example. European Economic Review 41,
771-782.

Aghion, P., Harris, C., Howitt, P. and Vickers, J. (2001). Competition,
Imitation and growth with step-by-step innovation. Review of Economic
Studies 68, 467-492.

24



Aghion, P. and Howitt, P. (1998). Endogenous Growth Theory. Cambridge
(Mass.): MIT Press.

Barro, R.J. and Sala-i-Martin, X. (1995). Economic Growth. New York:
MacGraw-Hill.

Cheng, L.K. and Tao, Z. (1999). The impact of public policies on innovation
and imitation: the role of R&D technology in growth models. International
Economic Review 40, 187-207.

Dixit, A. and Pindyck, K. (1994). Investment under Uncertainty. Princeton:
Princeton University Press.

Kanniainen, V. and Stenbacka, R. (2000). Endogenous imitation and impli-
cations for technology policy. Journal of Institutional and Theoretical Eco-
nomics 156, 360-381.

Mukoyama, T. (2003). Innovation, imitation, and growth with cumulative
technology. Journal of Monetary Economics 50, 361-380.

Segerstrom, P.S. (1998). Innovation, imitation, and economic growth. Jour-
nal of Political Economy 99, 807-827.

Segerstrom, P.S. (1991). Endogenous growth without scale effects. The
American Economic Review 88, 1290-1310.
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