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Abstract

The aim of this study is to evaluate some simulation schemes re-
cently suggested for the Heston model by examining their ability in re-
producing, on the simulated paths, the autocovariance function of the
generated model, when discretely observed. This is done by applying
the outcomes of previous research where, based on discrete equi-spaced
observations of the log-price, we determined an approximate confidence
band for the theoretical autocovariance function of the mean variance
process.

1 Introduction

It is now well-known that stochastic volatility models allow the volatility
to randomly change over time and appear to better resemble some stylized
facts in financial markets than simpler models as Black and Scholes (1973).
More precisely, such models are able to describe the leptokurtosis which is
typical of most financial returns and to explain the classical smile form in
the graphical representation of the Black-Scholes implied volatility against
the strike prices available in the market for the option. These empirical facts
are well documented, among others, in Cont (2001).

A renewed attention has been recently devoted to the Heston stochastic
volatility model (Heston, 1993) for which a quasi-closed formula is available
for computing the price of European plain vanilla options, making it possible
to calibrate model parameters to market option prices (see Duffie et al.,
2000); several numerical techniques have been also introduced to improve
further the computation of the quasi-closed formula of the Heston model
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and so its calibration to market data (e.g. Kahl, Jackel, 2005, and Lord,
Kahl, 2008).

However, the statistical estimation of the parameters involved in the Hes-
ton model, as well as in more general stochastic volatility models, is a difficult
issue due to the non-observability of the volatility process and it is still a
subject of on-going research. Many of the estimation methods recently ap-
plied to such models make extensive use of simulations (e.g. Andersen, Lund,
1997, Sorensen, 2003 and Zhang, Shu 2003), and the choice of a good and fast
scheme is crucial for doing inference on model parameters. In addition, the
Heston model has become a benchmark in the theory of stochastic volatility
models, hence new estimators for both spot and integrated volatility are of-
ten evaluated on simulated trajectories of the process (see, for istance, Renò,
2006, and Ogawa, Sanfelici, 2008). In order to achieve a reliable comparison
of such estimators, simulated paths should of course resemble the theoretical
properties of the generated model.

New simulations/dicretization schemes for stochastic volatility models
have been proposed by several authors in the last few years, with a special
attention to the Heston model (1993). As far as we know, the empirical
comparisons of existing simulation methods evaluate each scheme by means
of the Root Mean Squared Error (or a similar distance measure) between
plain vanilla option prices obtained with the quasi-closed formula and those
derived with the Monte Carlo method; the smaller this value, the better
the scheme. However, this measure only depends on the terminal value of
the simulated paths and not at all on the path properties of the trajectores
generated by one or the other procedure. We believe instead that properties
of the model trajectories may be of great interest for inference purposes on
parameters as well as for the pricing of some exotic path-dependent deriva-
tives.

One of the major issues when modelling financial returns is the serial
dependence structure for the log-returns and its powers. It is widely accepted
that the autocorrelation function of financial log-returns odd powers is not
significant while it is very high for even powers. One possible explanation of
this feature is the persistence in the volatility (variance) of financial stocks.

Since we are interested in applying the Heston model for financial pur-
poses (pricing, risk management) the aim of this paper is to evaluate the
performance of several discretization algorithms in reproducing the autoco-
variance structure of the simulated model. We focus our attention on the
Eulero-Maruyama classical scheme (see Kloeden, Platen, 1992) with the Full
truncation fix as suggested in Lord et al. (2008) and to the algorithms pro-
posed recently by Kahl, Jackel (2006) and Andersen (2008). The numerical
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results show a better performance, from our viewpoint, of the schemes by
Andersen (2008) and Lord et al. (2008).

In order to achieve our scope we use the outcomes of previous research
providing confidence bands for the autocovariance function of the mean vari-
ance process in the Heston model which are based on discrete observations
of the price process (see Figà-Talamanca, 2008). The discretization schemes
under analysis are then compared on the basis of several outcomes: the
graphical representation of the autocovariance functions of the sample paths,
superimposing the theoretical counterpart and confidence bands, the number
of violations of the confidence bands for each lag and a global RMSE mea-
suring the distance between the theoretical autocovariance and the empirical
autocovariance functions and, finally, the computational time.

Sections 2 and 3 sum-up the model specification, the expression for the
theoretical autocovariance function of the mean variance process for which
approximate confidence bands are derived, based on discrete equi-spaced ob-
servations of the log-price process. Section 4 is devoted to a brief description
of the discretization and simulation algorithms under consideration and Sec-
tion 5 describes the numerical results and how they are obtained. Concluding
remarks are finally reported in Section 6.

2 The Model

The Heston stochastic volatility model (Heston, 1993) describes the dynam-
ics of the price St of a given stock through the following bi-dimensional
stochastic differential equation (SDE):

dSt
St

= µdt+ σtdZt, (1)

dσ2
t = α(β − σ2

t )dt+ cσtdWt, (2)

where α and β are positive parameters representing respectively the mean-
reversion speed and the long-run mean for the instantaneous variance, c is the
so-called volatility of volatility and (B,W ) is a possibly correlated Brownian
motion in R2. This specification is a very interesting example in financial
literature since it provides a closed formula for computing European Option
Prices1. In the remainder of this paper we consider the following simplified
process for the log-price Yt = logSt:

1This is actually a quasi-closed formula since some integrals involved in the expression
are evaluated numerically.
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dYt = σtdZt, Y0 = 0 (3)
dσ2

t = α(β − σ2
t )dt+ cσtdWt, σ2

0 = ν. (4)

where (Z,W ) is a Brownian motion such that 〈dZt, dWt〉 = ρdt and ν is a
random variable, independent from (Z,W ), which has the stationary distri-
bution of the process.

Note that a strong solution exists for the above SDE if c > 0, and the
origin is unattainable if 2αβ ≥ c2; the process also admits aGamma(2αβ

c2
, 2α
c2

)
stationary distribution with finite moments of any order given by

E[νp] =
(
c2

2α

)p Γ(2αβ
c2

+ p)

Γ(2αβ
c2

)
.

As a special case,

E[σ2
0] = β, V ar(σ2

0) =
βc2

2α
.

3 Moments of the discretely observed process

Assume that Y1, Y2, ..., Yn are n equally spaced observations for the process
in the first equation of (3) and denote with ∆ the fixed observation step.
For i = 1, 2, ..., n, define the variables Ri = Yi − Yi−1 and Xi = Ri√

∆
. By ex-

tending the results of Genon-Catalot et al. (2000), Figà-Talamanca (2008)
prove that the process {Xi}i=1,2,...,n is stationary and ergodic. Moreover,
conditionally on the σ-algebra F generated by

{
σ2
s , s ≥ 0

}
, the distribution

function of (X1, X2, ..., Xn) is n-dimensional centered Gaussian with covari-
ance matrix Σ = diag(V1, V2, ...Vn), where

Vi =
1
∆

∫ i∆

(i−1)∆
σ2
sds, for i = 1, 2, ...n, (5)

is the mean variance in the interval [(i−1)∆, i∆[. If the process in (3) models
the dynamics of the log-price of a financial stock, then the quantities Ri, Xi

are respectively referred to as the log-returns and the scaled log-returns of
the stock; the integral part in (5) is often defined as the integrated or actual
volatility of the stock.

4



3.1 Second order structure of the mean variance

Under some technical assumptions it is possible to derive closed expressions
for the second order moments of the mean variance process in terms of model
parameters (see Genon-Catalot et al., 2000, Sorensen , 2000, and Barndorff-
Nielsen, Shephard, 2001, 2002) which write as

E[V1] = β,

E
[
V1

2
]

= β2 + V ar(σ2
0)

2(α∆− 1 + exp (−α∆))
α2∆2

, (6)

E
[
V1V1+h

]
= β2 + V ar(σ2

0) exp(−hα∆)
exp(α∆)(1− exp (−α∆))2

α2∆2
.

Given the above formulas, the theoretical autocovariance function γh of
the mean variance process is

γh =


V ar(σ2

0)
∆2α2 exp(−hα∆) exp(α∆)(1−exp(−α∆))2

α2∆2 , for h ≥ 1,

2
α2∆2V ar(σ2

0)(α∆− 1 + exp(−α∆)), for h = 0.
(7)

3.2 Limit results for sample moments of the scaled return

Let us introduce the following sample moments of the scaled log-returns
{Xi}i=1,2,...,n

β̂(n) =
1
n

n∑
1

X2
i ,

M
(n)
0 =

1
3n

n∑
1

X4
i (8)

M
(n)
h =

1
n− h

n−h∑
1

X2
iX

2
i+h, for h ≥ 1.

The empirical autocovariance, for h ≥ 0 , is thus defined as

γ̂
(n)
h = M

(n)
h − β̂2.
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A simple application of the outcomes in Figà-Talamanca (2008) gives,
for h ≥ 1,

β̂(n) a.s.→
n→+∞

β,

M
(n)
0

a.s.→
n→+∞

E
[
V

2
1

]
, (9)

M
(n)
h

a.s.→
n→+∞

E
[
V 1V 1+h

]
,

and

√
n

 β̂(n) − β
M

(n)
0 − E

[
V

2
1

]
M

(n)
h − E

[
V 1V 1+h

]
 Law−→ N (0,Σ(h)) . (10)

The detailed expressions of the entries of the covariance matrix Σ(h) is post-
poned to next subsection.

The following limits are a straightforward consequence of (9, 10) and of
the so-called delta-method (see Lehmann, 1998, Theorem 5.2.3 and Corollary
5.4.3.):

1. γ̂(n)
h

a.s.→
n→+∞

γh , for h ≥ 0;

2. if β̂ is known (β̂ ≡ β), then

√
n
(
γ̂

(n)
0 − γ0

)
law−→

n→+∞
N(0,Σ22),

√
n
(
γ̂

(n)
h − γh

)
law−→

n→+∞
N(0,Σ33(h)), for h ≥ 1,

otherwise

√
n
(
γ̂

(n)
0 − γ0

)
law−→

n→+∞
N(0, τ∗0 (β,E

[
V1

2
]
)),

√
n
(
γ̂

(n)
h − γh

)
law−→

n→+∞
N(0, τ∗h(β,E

[
V1V1+h

]
)),

where τ∗0 (u, v) = 4u2Σ11 − 4uΣ12 + Σ22(h) and τ∗h(u, v) = 4u2Σ11 −
4uΣ13(h) + Σ33(h).
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For a detailed derivation see Figà-Talamanca (2008).
Hence, for a given confidence level p, and given a large sample {xi}i=1,2,...,n

of scaled log-returns, the p-level approximate confidence bands for the sample
autocovariance function in h, respectively for β̂ ≡ β or else, are

[γ0 − z 1−p
2

√
Σ22/n, γ0 + z 1−p

2

√
Σ22/n], and

[γ0 − z 1−p
2

√
τ∗0 (β,E

[
V1

2
]
)/n, γ0 + z 1−p

2

√
τ∗0 (β,E

[
V1

2
]
)/n],

and, for h ≥ 1,

[γh − z 1−p
2

√
Σ33(h)/n, γh + z 1−p

2

√
Σ33(h)/n], and

[γh − z 1−p
2

√
τ∗h(β,E

[
V1V1+h

]
)/n, γh + z 1−p

2

√
τ∗h(β,E

[
V1V1+h

]
)/n],

with z 1−p
2

implicitly defined by Φ(z 1−p
2

) = 1−p
2 , where Φ is the survival

distribution function of a standard Gaussian random variable.

3.3 Computing the entries of matrix Σ(h)

Once parameter values are assigned, the entries of matrix Σ(h) can be com-
puted as a function of model parameters. Proposition 2 in Figà-Talamanca
(2008) leads to

Σ11 = 3E[V 2
1]− E[V 1]2 + 2

∞∑
i=1

(
E[V 1V 1+i]− E[V 1]2

)
,

Σ22 =
35
3
E[V 4

1]− E[V 2
1]2 + 2

∞∑
i=1

[
E[V 2

1V
2
1+i]− E[V 2

1]2
]
,

and

Σ33(h) = 9E[V 2
1V

2
1+h]− E[V 1V 1+h]2 + 4E[V 1V

2
1+hV 1+2h]

+ 2
∞∑
i=1

(E[V 1V 1+hV 1+iV 1+h+i]− E[V 1V 1+h]2).

Moreover,

Σ12 = 5E[V 3
1]−E[V 1]E[V 2

1]+
∞∑
i=1

(
E[V 1V

2
1+i]− 2E[V 1]E[V 2

1] + E[V 1+iV
2
1]
)
,
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Σ13(h) = 3E[V 2
1V 1+h] + 2E[V 1V

2
1+h]− E[V 1]E[V1V 1+h]

+
∞∑
i=1

(E[V 1V 1+iV 1+h+i]− 2E[V 1]E[V 1V 1+h] + E[V 1V 1+iV 1+h]),

and

Σ23(h) = 5E[V 3
1V 1+h] + 4E[V 1V

3
1+h]− 3E[V 2

1]E[V 1V 1+h]

+
∞∑
i=1

(E[V 2
1V 1+iV 1+h+i]− E[V 2

1]E[V 1V 1+h])

+
∞∑
i=1

(E[V 1V
2
1+iV 1+h]− E[V 2

1]E[V 1V 1+h]).

The numerical computation of the above asymptotic variances-covariances
involves the third and the fourth order structure of the mean variance pro-
cess. These moments and cross-moments can be calculated as definite third
order integrals of E[σ2

t σ
2
rσ

2
s ], for t < r < s and fourth order integrals of

E[σ2
t σ

2
rσ

2
sσ

2
w], for t < r < s < w (see Appendix A) which can be expressed

in terms of model parameters (see Appendix B). Thus, the third and fourth
order structure moments of the mean variance can also be numerically eval-
uated once parameters are assigned. Computations, performed with Mathe-
matica 5.1, lead to very long formulas which are not reported here.

4 Discretization Schemes

We want to generate a sample
{

(Y1, σ
2
1), (Y2, σ

2
2), ...(Yn, σ2

n)
}
of equi-spaced

observations, with time-step ∆, for the log-price Yt and its instantaneous
variance σ2

t according to the process in (3, 4); denote Yi = Yi∆ and σ2
i = σ2

i∆

for the sake of simplicity. In principle, any discretization of the process
may be avoided by applying the Exact Simulation Scheme introduced by
Broadie, Kaya (2006). However, this procedure introduces a non-negligible
numerical error due to the approximation of an Inverse Fourier transform for
which the integrand has a very oscillatory behaviour; in order to generate
n observations {Yt}t=1,2,...n of the log-price process, for m scenarios, the
Inverse Fourier Transform, the expression of which depends on the ratio of
Bessel functions of the first kind„ has to be computed n×m times and then
approximated (for instance with the trapeizoidal rule). Hence, this scheme
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is extremely costly in term of computational time as the authors themselves,
Smith (2007), Lord et al. (2008) and Andersen (2008) have also remarked
and is practically unfeasible for our purposes since n and m should be very
large; so we won’t apply it in our numerical experiment. The same remark
applies for the modification of this scheme given by Smith (2007).

We describe in what follows the Eulero-Maruyama scheme as well as those
by Kahl, Jackel (2006) and Andersen (2008). The former is an example of
a second order scheme and the latter of a moment-matching algorithm. We
also briefly introduce the simulation scheme by Zhu (2008) which is based
on a transformation of the variance process.

4.1 The Eulero-Maruyama scheme and the choice of the "fix-
ing method"

The Eulero-Maruyama discretization of the process in (3, 4) gives:

Yi = Yi−1 + σi−1

(
ρ (Wi −Wi−1) +

√
1− ρ2 (Bi −Bi−1)

)
,

σ2
i = σ2

i−1 + α(β − σ2
i−1) + cσi−1 (Wi −Wi−1) .

for a discretization interval of length ∆.
Note that we have no guarantees that the discretized process σ2

t remains
non-negative. If at step k the variance σ2

t becomes negative, it is not possible
to define the process at step k + 1 since its square root σt appears in both
equations for Yt and σ2

t . By following the approach in Lord et al. (2008) we
rewrite the discretization scheme as:

Yi = Yi−1 + f4(σi−1)
(
ρ (Wi −Wi−1) +

√
1− ρ2 (Bi −Bi−1)

)
,

σ2
i = f1(σ2

i−1) + α(β − f2(σ2
i−1))∆ + ϕ(f3(σi−1)) (Wi −Wi−1) .

Assuming f4 = f3, we report here Table 1 of Lord et al. (2008) to
describe different fixes.

Lord et al. (2008) conclude that the best choice in term of a trade-off
between accuracy and computational time is the Full-Truncation fix. In our
numerical examples we take advantage of these results by selecting the Full
Truncation fix for the application of the Eulero-Maruyama scheme.
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Fix Paper f1(x) f2(x) f3(x)
Absorption Unknown x+ x+ x+

Reflection Diop (03), Berkaoui et al. (05) |x| |x| |x|
Higham-Mao Higham, Mao (05) x x |x|

Partial Truncation Deelstra, Delbaen (98) x x x+

Full Truncation Lord et al. (068) x x+ x+

Table 1: Several ”fixes” for the Eulero-Maruyama discretization scheme (Lord
et al. 2008)

4.2 The Kahl-Jackel scheme

Kahl, Jackel (2006) examine in their study many discretization schemes for
univariate processes which include the instantaneous variance diffusion in
(4) as a special case.

In their study they claim that for the Heston model the best simula-
tion scheme is obtained by applying a second order scheme (the Balanced
Milstein Method) to the variance and what they call the IJK scheme to
the log-price process. The choice for the balancing functions make their
discretization scheme for the instantaneous variance essentially an Implicit
Milstein Method. More precisely, if δWi = Wi −Wi−1,

σ2
i =

σ2
i−1 + αβ∆ + cσi−1δWi + 1

4c
2δW 2

i − 1
4c

2∆
(1 + α∆)

,

and

Yi = Yi−1 +ρσi−1dW +
1
2

√
1− ρ2(σi+σi−1) (Bi −Bi−1) +

1
4
cρ
(
δW 2

i −∆
)
.

We refer to this scheme as the IJK- IMM algorithm. Note that this scheme
guarantees the positivity of the variance process if 4αβ > c2; when this con-
straint is not fulfilled and the discretized variance process becomes negative
we use the Full Truncation Eulero-Maruyama scheme to get the -step ahead
variance and insert the positive part of the variance in the the log-price
discretization as suggested in Andersen (2008).

4.3 The efficient schemes of Andersen

In the paper by Andersen (2008) the author proposes essentially two schemes,
the Truncated Gaussian (TG) and the Quadratic Exponential (QE) algo-
rithms which are both in the family of the moment-matching schemes (the
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parameters involved are obtained in order to match the first two moment of
the instantaneous variance). The former scheme is based on the observation
that the non central chi-squared distribution converges to a Gaussian distri-
bution if the non-centrality parameter is large. The latter arise from the fact
that a non central chi-squared random variables with a large non-centrality
parameter can be well represented by a power function of a Gaussian vari-
able (see Andersen, 2008, and the references therein); for small values of the
non-centrality parameter the author suggests a possible adjustment of the
scheme. A switching rule determines whether the adjusment is in order or
not.

4.3.1 Truncated-Gaussian (TG)

Define once and for all the function r(x) implicitly as

r(x)φ (r(x)) + Φ(r(x))(1 + r2(x)) = (1 + x) (φ (r(x)) + r(x)Φ(r(x))) ,

and set

fµ(x) =
r(x)

φ(r(x)) + r(x)Φ(r(x))
,

fυ(x) =
x−1/2

φ(r(x)) + r(x)Φ(r(x))
,

where Φ and ϕ are respectively the cumulative distribution function and the
density of a standard Gaussian random variable.

Using the fact that the distribution of σ2
i given σ2

i−1 is, up to a scale
factor δ, a non central chi-squared distribution (see Cox. et al, 1985) with
non centrality parameter λ and d degrees of freedom with

δ =
c2(1− e−α∆)

4α

λi =
e−α∆

δ
σ2
i−1, and (11)

d =
4αβ
c2

,

the procedure to obtain σ2
i from σ2

i−1 can be summarized as follows:

1. Given σ2
i−1, compute mi−1 and S2

i−1 as follows:

mi−1 = β + (σ2
i−1 − β)e−α∆,

S2
i−1 =

c2e−α∆t

α
(1− e−α∆t)σ2

i−1 +
βc2

2α
(1− e−α∆)2.
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2. Compute ψi−1 =
S2

i−1

m2
i−1
, µi−1 = fµ(ψi−1)mi−1 and υi−1 = fυ(ψi−1)Si−1.

3. Generate a Standard Gaussian random number ZV .

4. Set σ2
i = (µi−1 + υi−1ZV )+.

4.3.2 Quadratic-Exponential (QE)

This scheme is designed to take into account the behaviour of the distribution
of σ2

i also when σ2
i−1 approaches 0 making the non centrality parameter in

(11) small. It is based on a switching rule to obtain σ2
i that splits the scheme

in two different algorithms respectively applied for large and small values of
σ2
i−1. The scheme can be summarized as follows:

1. Given σ2
i−1, compute mi−1 and S2

i−1 as follows:

mi−1 = β + (σ2
i−1 − β)e−α∆,

S2
i−1 =

c2e−α∆

α
(1− e−α∆)σ2

i−1 +
βc2

2α
(1− e−α∆)2.

and set ψi−1 =
S2

i−1

m2
i−1
.

2. Generate a uniform random number on the unit interval, UV and fix a
value ψmax ∈ [1, 2] to determine the switching rule.

3. If ψi−1 ≤ ψmax, compute bi−1, ai−1such that

b2i−1 = 2ψ−1
i−1 +

√
2ψ−1

i−1(2ψ−1
i−1 − 1),

ai−1 =
mi−1

1 + b2i−1

.

Set ZV = Φ−1(UV ), where Φ is the cumulative distribution function of
a standard Gaussian variable, and σ2

i = ai−1(bi−1 + ZV )2.

4. If ψi−1 > ψmax, compute

pi−1 =
ψi−1 − 1
ψi−1 + 1

, and

ηi−1 =
1− pi−1

mi−1
.
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Set

H−1(u; p, η) =
{

0 if 0 ≤ u ≤ p
η−1 log 1−p

1−u if p < u ≤ 1
, and

σ2
i = H−1(UV ; pi−1, ηi−1).

4.3.3 Simulation of the log-price process

In Andersen (2008) the author points out some drawbacks in the application
of the Eulero-Maruyama discretization scheme for the log-price process Yt
and suggests to write the log-price process in integral form between time
(i− 1)∆ and i∆, as in Broadie, Kaya (2006), which gives

Yi = Yi−1 + ρ

∫ i∆

(i−1)∆
σsdWs +

√
1− ρ2

∫ i∆

(i−1)∆
σsdBs, (12)

σ2
i = σ2

i−1 + αβ∆− α
∫ i∆

(i−1)∆
σ2
sds+ c

∫ i∆

(i−1)∆
σsdWs. (13)

Then the following approximation is considered∫ i∆

(i−1)∆
σ2
udu = ∆Vi ' ∆(γ1σ

2
i−1 + γ2σ

2
i ),

where γ1 and γ2 are constant parameters. The Eulero-Maruyama setting is
recovered if γ1 = 1, γ2 = 0 while a central discretization is obtained if we set
γ1 = γ2 = 0.5. Since Bt is independent of Vt, then the stochastic integral∫ i∆

(i−1)∆ σudBu, conditional on Vi−1 and
∫ i∆

(i−1)∆ σ
2
udu, is centered Gaussian

with variance
∫ i∆

(i−1)∆ σ
2
udu. Hence,

Yi = Yi−1+
ρ

c
(σ2
i−σ2

i−1−αβ∆)+
ρα

c
∆(γ1σ

2
i−1+γ2σ

2
i )+

√
(1− ρ2)∆(γ1σ2

i−1 + γ2σ2
i )Z,

(14)
where Z is a standard Gaussian variable.

Andersen (2008) compares the methods he proposes with the IJK-IMM
scheme and with the FT scheme having in mind, as usual, the ability in
obtaining, via the Monte Carlo method, a good estimate of the plain vanilla
option prices available in closed form. His conclusions are towards a bet-
ter performance of the QE algorithm with respect to the competitors and
we exploit his results not considering the TG algorithm in our numerical
simulations.
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4.4 From variance to volatility: a look at Zhu scheme

Consider σt =
√
σ2
t . Applying Ito’s Lemma to the variance process in (4)

we obtain

dσt =
(

1
4σt

(4αβ − c2)− α

2
σt

)
dt+

c

2
dWt.

This transformation is obviously possible if the variance process stays
away of the origin in order to have the twice differentiability of the square-
root function needed for the application of Ito’s Lemma. The simulation
scheme of Zhu (2008) is essentially based on the discretization/simulation of
the volatility according to the above process. In Lord et al. (2008) we found
enough motivations to refrain us from applying this method in the remainder
of our analysis.

5 Numerical comparison of the discretization schemes

In order to check whether a simulation scheme matches the theoretical prop-
erties of the discretely observed original process we compute the autoco-
variance function of each path: if the scheme produces trajectories which
are consistent with the original data we expect this autocovariance function
to be next to its theoretical counterpart (the autocovariance of the mean
variance process). In addition, if we simulate m paths, we should not statis-
tically reject consistency, at a confidence level p, if the autocovariance of lag
h lies within the 1− p approximate confidence band for at least (1− p) ∗m
paths. Our analysis has been thus carried on looking at several outputs:

1. The graphical representation of the autocovariance functions for all
simulated trajectories as well as the theoretical autocovariance and its
approximate confidence bands, for lags between 0 and H.

2. The number of paths violating the confidence band, computed for each
lag h ≤ H.

3. The ”distance” between the theoretical autocovariance and the em-
pirical autocovariance, which is measured by the global Root Mean
Squared Error over all paths and for lags between 0 and H:

RMSE =

√√√√ 1
(H + 1)m

H∑
h=0

m∑
j=1

(γ̂h(j)− γh)2,

14



where γ̂h(j) is the empirical autocovariance of the squared scaled log-
returns at lag h for the jth−path.

We also measure the computational time required by each method to perform
our simulations, though this depends, of course, on the optimization of the
codes which is not the main concern of this study.

According to the results in the papers by Andersen (2008), Lord (2006)
and Kahl, Jackel (2006), we choose to apply, among the available choices,
the Full-Truncation Eulero-Maruyama, the Kahl-Jackel IJK-IMM and the
Andersen QE scheme. The algorithms are written as Matlab codes.

5.1 Simulation/Discretization program

We simulate m = 1000 paths of 3000 observations, the first 500 of which
are discarded to accomplish for the stationarity of the process. We used 10
parameter assignments, as detailed in Table 2, corresponding to three sets
(S1, S2, S3) for the variance process parameters (α, β, c) with three different
values for the correlation ρ, and to a fourth assignment S4 of the the whole
set of parameters which was also considered in Andersen (2008). Once S1 is
assigned, the sets S2 and S3 are designed to test respectively how the out-
comes of the analysis change with an increase in the mean reversion speed
or in the volatility of volatility parameter; the three possible values for the
correlation are those considered in Kahl, Jackel (2006). In addition, as An-
dersen (2008), among others, pointed out, parameter estimates for Heston
model often do not fulfill the constraint which guarantees the positivity of
the variance process; so, the set S3 and S4, where the origin is attainable,
are considered in order to verify the robustness of the properties of the sim-
ulation algorithms with respect to this constraint.

For each set of parameters, data are generated for an observation step
∆ ∈

{
1

3000 ,
1

250 ,
1
32 ,

1
8

}
where the first two values corresponds to half-an-hour

and daily observations, mostly used in financial applications; the other two
values are considered as a benchmark since the results of Andersen (2008),
Kahl-Jackel (2006) and Lord et al. (2008) are based on a similar scale of ∆.

5.2 Empirical evidence

Figures 1 and 2 plot the empirical autocovariance function for each of the
simulated paths for the parameter set S1 with correlation ρ = 0,−0.8 re-
spectively. Lags are between 0 and 20 and n = 2500. From left to right
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α 1 1 1 3 3 3 1 1 1 1
β 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.09
c 0.25 0.25 0.25 0.25 0.25 0.25 0.5 0.5 0.5 1
ρ 0 -0.4 -0.8 0 -0.4 -0.8 0 -0.4 -0.8 -0.3

Table 3: Parameter Assignments

the autocovariance is plotted for the trajectories simulated with the Eulero-
Maruyama FT scheme, with the IJK-IMM scheme and the QE algorithm
respectively. From top to bottom outcomes are shown for decreasing val-
ues of the observation step; the limit autocovariance and the approximate
confidence bands at a 5% level are superimposed. Confidence bands are
computed for each case with the formulas reported in Section 3.4 for the
case of β known. There is no evidence from the figures against one of the
discretization schemes since the majority of the paths lie within confidence
bands. It seems that the number of violations increases with the observation
step and with the absolute correlation value. The results for n = 500 are
analogous as well as those for the parameter set S2 .

In Figure 3 we report the graphs for parameter set S3 with ρ = −0.4
for which we observe a significant number of violations especially for the
Eulero-Maruyama and the IJK-IMM schemes. Besides, the outcomes for the
set of parameters S4 are summed up in Figure 4.

It is clear from our outcomes that, for all parameter assignments, the
number of violations of the confidence bands decreases with an increase in
the observation frequency while it increases with the absolute correlation
index as well as with the volatility of volatility parameter.

However, it becomes statistically significant only for parameters assign-
ments S3 and S4 and for the two higher values of ∆. In these cases the
Quadratic Exponential algorithm and the Full-Truncation fix for the Eulero-
Maruyama discretization scheme give more robust results with respect to
the IJK-IMM scheme of Kahl and Jackel (2006). In particular, all schemes
perform similarly for S4 while for the assignment S3 the best results are
achieved by the simple FT algorithm when ρ = −0.8 and by the QE scheme
when ρ = −0.4, ρ = 0. As an example we report in Table 3 the number of
violations in this latter case for h ≤ 10, n = 2500 and ∆ = 1

8 ,
1
32 .

Concerning our third point, in Figure 5 the Root Mean Squared Error is
reported according to assignments S2 (a), S3 (b) and S4(c). The RMSE value
is reported in blue circles for the Eulero-Maruyama scheme, in green stars
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Figure 1: The empirical autocovariance functions of simulated paths (solid
lines) and its theoretical value and confidence bands (white circles) for
SET 1 of assigned parameters with ρ = 0, for n = 2500 and for ∆ =
1
8 ,

1
32 ,

1
250 ,

1
3000 (from top to bottom). From left to right the Full truncated

Eulero-Maruyama scheme, the Kahl-Jackel implicit scheme and the Ander-
sen Quadratic-Exponential algorithm are used to perform simulations.
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Figure 2: The empirical autocovariance functions of simulated paths (solid
lines) and its theoretical value and confidence bands (white circles) for
SET 1 of assigned parameters with ρ = −0.8, for n = 2500 and for
∆ = 1

8 ,
1
32 ,

1
250 ,

1
3000 (from top to bottom). From left to right the Full trun-

cated Eulero-Maruyama scheme, the Kahl-Jackel implicit scheme and the
Andersen Quadratic-Exponential algorithm are used to perform simulations.
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Figure 3: The empirical autocovariance functions of simulated paths (solid
lines) and its theoretical value and confidence bands (white circles) for
SET 3 of assigned parameters with ρ = −0.4, for n = 2500 and for
∆ = 1

8 ,
1
32 ,

1
250 ,

1
3000 (from top to bottom). From left to right the Full trun-

cated Eulero-Maruyama scheme, the Kahl-Jackel implicit scheme and the
Andersen Quadratic-Exponential algorithm are used to perform simulations.
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Figure 4: The empirical autocovariance functions of simulated paths (solid
lines) and its theoretical value and confidence bands (white circles) for SET
4, n = 2500 and ∆ = 1

8 ,
1
32 ,

1
250 ,

1
3000 (from top to bottom). From left to

right the Full truncated Eulero-Maruyama scheme, the Kahl-Jackel implicit
scheme and the Andersen Quadratic-Exponential algorithm are used to per-
form simulations.
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Figure 5: Root Mean Squared Error computed globally for the FT scheme
(blue circles), the IJK-IMM scheme (green stars) and the QE algorithm (red
squares). RMSE values are given for 12 cases in S2 (a) and S3 (b) with
decreasing observation step and for all three values of the correlation index;
in (c) the RMSE value is plotted for parameter assignment S4with decreasing
observation step.

21



Lag 0 1 2 3 4 5 6 7 8 9 10

FT ∆ = 1
8

93 32 40 41 44 46 46 42 31 41 43

∆ = 1
32

71 59 50 44 56 53 52 51 53 54 56

IJK-IMM

∆ = 1
8

110 68 70 72 93 106 112 131 128 144 155

∆ = 1
32

64 58 47 48 54 53 54 50 53 55 58

QE

∆ = 1
8

73 42 34 44 40 42 36 41 39 40 37

∆ = 1
32

49 50 39 49 45 43 44 44 48 42 46

Table 4: Number of paths violating the autocovariance confidence bands for
lags between 0 and 10, n = 2500 and ∆ = 1

8 ,
1
32 . From top to bottom the

Full-Truncation, the IJK-IMM scheme and the QE algorithm for (α, β, c) =
(1, 0.05, 0.5) and ρ = 0.

for the IJK-IMM scheme and in red squares for the QE algorithm. In the
first two plots we have 12 points for each scheme: the first four correspond
to a decreasing observation step ∆ = 1

8 ,
1
32 ,

1
250 and 1

3000 in the ρ = 0 case.
The second and the third group of four values correspond to ρ = −0.4 and
ρ = −0.8 respectively. In plot (c) the RMSE is reported for S4 once again
according to decreasing values of ∆.

By looking at the minimum values of the RMSE in Figure 5, it seems that
for all the assignments the QE algorithm performs the best for n = 2500.
We do not show any result for n = 500 since we found no evidence for a
different performance of the considered simulation methods. Nevertheless, it
is worth noticing that in this latter case we observed an overall improvement
in the performance of the FT scheme for the high negative correlation case.

Computational time does not vary significantly across the different pa-
rameter sets considered and the overall fastest scheme is the Eulero-Maruyama
FT. For the IJK-IMM scheme the time needed is doubled and for the QE
algorithm the computational time is five times more than for the FT. How-
ever, let us remark that a proper optimization of the codes, on which we
have not focused our attention, may reduce substancially the time required
by the QE algorithm.
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6 Concluding remarks

In this paper we have given a comparison, based on the autocovariance func-
tion of the simulated paths, of some of the available and very recent simula-
tion algorithms for the Heston model. According to the results in the papers
by Andersen (2008), Lord et al. (2008) and Kahl, Jackel (2006), we have
chosen to apply, among the existing schemes, the Full Truncation Eulero-
Maruyama of Lord et al. (2008), the IJK-IMM procedure of Kahl, Jackel
(2006) and the Quadratic Exponential algorithm of Andersen (2008).

At first, the serial dependence of the original model, when discretely
observed, has been derived and consistent and an asymptotic normal esti-
mators of the mean variance autocovariance structure have been introduced
which are based on observations of the scaled log-returns. The asymptotic
properties of this estimator have been used to obtain an approximate confi-
dence band for the autocovariance structure of the squared scaled log-returns.
Then, we have compared the simulations schemes by looking at several out-
comes of our study: the graphical representation of the autocovariance func-
tions of the sample paths where the theoretical version and confidence bands
are superimposed, the number of violations of the confidence bands for each
lag and a global measure for the distance between the theoretical autoco-
variance and the sample autocovariance functions given by the Root Mean
Squared Error (for all lags and all paths). Of course, we have also computed
the computational time to perform our simulation study according to each
of the considered scheme.

If the parameter contraint that guarantees the positivity of the variance
is fulfilled we have found no evidence, from our simulation design, against
one of the discretization schemes; for all parameters assignments, observation
frequency and time series length we have considered hereby (48 cases) the
majority of the paths lie within confidence bands. We have also observed
that the number of violations of confidence bands decreases with an increase
in the observation frequency while it increases with the absolute correlation
index as well as with the volatility of volatility parameter.

Otherwise, when the origin is attainable, the number of violations be-
comes statistically significant especially for low-frequency data. In these
cases the Quadratic Exponential algorithm (Andersen, 2008) and the Full-
Truncation fix for the Eulero-Maruyama discretization scheme (Lord et al.,
2008) have given, in our analysis, more robust results with respect to the
IJK-IMM scheme of Kahl and Jackel (2006). For what concerns the RMSE,
it seems that the QE algorithm performs overall the best. Of course, the
QE algorithm is the most intensive from a computational viewpoint, though
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remaining rather fast and, if computational time is more important than
accuracy, the Full Truncation Eulero-Maruyama is the best compromise.
However, as already remarked, we have not focused on the optimization of
our codes which may improve further the computational time for the QE
algorithm.
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Appendix A

The third order structure of the mean variance process, for i > 1, is given
by

E[V1
3] = E

[
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∆3

∫ ∆

0

∫ ∆
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The fourth order structure, for i, h > 1with i 6= h, is given by

E[V1
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Other moments and cross-moments can be computed by using the same
technique.

Appendix B

Define Ut := eαtσ2
t . By applying Ito’s Lemma, we can write:

Ur = Ut + αβ

∫ r

t
exp(αs)ds+

∫ r

t
exp(αs)σsdWs,

where
Denote
A1 = E[UtUr],
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A2 = E[UtU2
r ],

A3 = E[UtU3
r ],

B1 = E[UtUrUs],
B2 = E[UtUrU2

s ]
C1 = E[UtUrUsUw],
and f(t, r) = α

∫ r
t exp(αs)ds.

We aim to compute the above expressions in terms of the raw moments
of the process Ut and of model parameters (α, β, c). The computation of A1

is straightforward

A1 = E[UtUr] = E[UtE[Ur|Ft]] = E[Ut(Ut+βf(t, r))] = E[U2
t ]+βf(t, r)E[Ut]

For the computation of the other quantities we needE[U2
r |Ft] andE[U3

r |Ft]
hence we need the dynamics of U2

r and U3
r . By applying Ito’s Lemma we

obtain

dU2
t = (2Utαβ exp(αt) + exp(2αt) exp(−αt)Ut) dt

+ 2Ut exp(αt)
√

exp(−αt)UtdWt), and
dU3

t = 3
(
U2
t αβ exp(αt) + 3Ut exp(2αt) exp(−αt)Ut

)
dt

+ 3U2
t exp(αt)

√
exp(−αt)UtdWt.

Hence,

A3 = E[UtU3
r ] = E[UtE[U3

r |Ft]] =

= E

[
Ut

(
U3
t + 3(αβ + c2)

(
1
α
U2
t f(t, r) + Ut(2β +

c2

α
)
∫ r

t
exp(αu)f(t, u)du

))]
+ E

[
Ut

(
3(αβ + c2)αβ2

∫ r

t
exp(αu)

∫ u

t
f(t, x)dxdu

)]
+ E

[
Ut

(
3(αβ + c2)c2β

∫ r

t
exp(αu)

∫ u

t
exp(αx)f(t, x)dxdu

)]
= E[U4

t ] + 3
(αβ + c2)

α
f(t, r)E[U3

t ]

+ 3(αβ + c2)(2β +
c2

α
)
∫ r

t
exp(αu)f(t, u)duE[U2

t ] +

+ 6(αβ + c2)αβ2

∫ r

t
exp(αu)

∫ u

t
f(t, x)dxduE[Ut]

+ 3(αβ + c2)c2β

∫ r

t
exp(αu)

∫ u

t
exp(αx)f(t, x)dxdu]E[Ut],
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B1 = E[UtUrUs] = E[UtUrE[Us|Fr]]
= E[UtUr(Ur + βf(r, s))] =
= E[UtU2

r ] + βf(r, s)E[UtUr] =
= A2 + βf(r, s)A1

B2 = E[UtUrU2
s ] = E[UtUrE[U2

s |Fr]] =

= E

[
UtUr

(
U2
r + Us(2β +

c2

α
)f(r, s) + 2αβ2

∫ s

r
f(r, u)du

)]
+ E

[
UtUrc

2β

∫ s

r
exp(αu)f(r, u))du

]
= E[UtU3

r ] + (2β +
c2

α
)f(r, s)E[UtUrUs]

+
[
2αβ2

∫ s

r
f(r, u)du+ c2β

∫ s

r
exp(αu)f(r, u))du

]
E[UtUr]

= A3 + (2β +
c2

α
)f(r, s)B1 +

[
2αβ2

∫ s

r
f(r, u)du+ c2β

∫ s

r
exp(αu)f(r, u))du

]
A1

C1 = E[UtUrUsUw] = E[UtUrUsE[Uw|Fs]] =
= E[UtUrUs(Us + βf(s, w))] =
= E[UtUrU2

s ] + βf(s, w)E[UtUrUs] =
= B2 + βf(s, w)B1

The quantities A1 to C1 are thus written as a function the moments of
order p ≤ 4 of the process Ut. Since Vt = e−αtUt, we can obtain E[σ2

t σ
2
r ] =

e−α(t+r)A1, E[σ2
t σ

2
rσ

2
s ] = e−α(t+r+s)B1 andE[σ2

t σ
2
rσ

2
sσ

2
w] = e−α(t+r+s+w)C1.

Numerical computations have been performed using Mathematica 5.1
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