

PATH PROPERTIES OF SIMULATION SCHEMES FOR THE HESTON STOCHASTIC VOLATILITY MODEL

Gianna FIGÀ-TALAMANCA

Quaderno n. 68 - Ottobre 2009

QUADERNI DEL DIPARTIMENTO
 DI ECONOMIA, FINANZA E STATISTICA

Path properties of simulation schemes for the Heston stochastic volatility model

Gianna Figà-Talamanca
Department of Economics, Finance and Statistics, University of Perugia, Via Pascoli 20, 06100 Perugia, ITALY

May 21, 2009

Abstract

The aim of this study is to evaluate some simulation schemes recently suggested for the Heston model by examining their ability in reproducing, on the simulated paths, the autocovariance function of the generated model, when discretely observed. This is done by applying the outcomes of previous research where, based on discrete equi-spaced observations of the log-price, we determined an approximate confidence band for the theoretical autocovariance function of the mean variance process.

1 Introduction

It is now well-known that stochastic volatility models allow the volatility to randomly change over time and appear to better resemble some stylized facts in financial markets than simpler models as Black and Scholes (1973). More precisely, such models are able to describe the leptokurtosis which is typical of most financial returns and to explain the classical smile form in the graphical representation of the Black-Scholes implied volatility against the strike prices available in the market for the option. These empirical facts are well documented, among others, in Cont (2001).

A renewed attention has been recently devoted to the Heston stochastic volatility model (Heston, 1993) for which a quasi-closed formula is available for computing the price of European plain vanilla options, making it possible to calibrate model parameters to market option prices (see Duffie et al., 2000); several numerical techniques have been also introduced to improve further the computation of the quasi-closed formula of the Heston model
and so its calibration to market data (e.g. Kahl, Jackel, 2005, and Lord, Kahl, 2008).

However, the statistical estimation of the parameters involved in the Heston model, as well as in more general stochastic volatility models, is a difficult issue due to the non-observability of the volatility process and it is still a subject of on-going research. Many of the estimation methods recently applied to such models make extensive use of simulations (e.g. Andersen, Lund, 1997, Sorensen, 2003 and Zhang, Shu 2003), and the choice of a good and fast scheme is crucial for doing inference on model parameters. In addition, the Heston model has become a benchmark in the theory of stochastic volatility models, hence new estimators for both spot and integrated volatility are often evaluated on simulated trajectories of the process (see, for istance, Renò, 2006, and Ogawa, Sanfelici, 2008). In order to achieve a reliable comparison of such estimators, simulated paths should of course resemble the theoretical properties of the generated model.

New simulations/dicretization schemes for stochastic volatility models have been proposed by several authors in the last few years, with a special attention to the Heston model (1993). As far as we know, the empirical comparisons of existing simulation methods evaluate each scheme by means of the Root Mean Squared Error (or a similar distance measure) between plain vanilla option prices obtained with the quasi-closed formula and those derived with the Monte Carlo method; the smaller this value, the better the scheme. However, this measure only depends on the terminal value of the simulated paths and not at all on the path properties of the trajectores generated by one or the other procedure. We believe instead that properties of the model trajectories may be of great interest for inference purposes on parameters as well as for the pricing of some exotic path-dependent derivatives.

One of the major issues when modelling financial returns is the serial dependence structure for the log-returns and its powers. It is widely accepted that the autocorrelation function of financial log-returns odd powers is not significant while it is very high for even powers. One possible explanation of this feature is the persistence in the volatility (variance) of financial stocks.

Since we are interested in applying the Heston model for financial purposes (pricing, risk management) the aim of this paper is to evaluate the performance of several discretization algorithms in reproducing the autocovariance structure of the simulated model. We focus our attention on the Eulero-Maruyama classical scheme (see Kloeden, Platen, 1992) with the Full truncation fix as suggested in Lord et al. (2008) and to the algorithms proposed recently by Kahl, Jackel (2006) and Andersen (2008). The numerical
results show a better performance, from our viewpoint, of the schemes by Andersen (2008) and Lord et al. (2008).

In order to achieve our scope we use the outcomes of previous research providing confidence bands for the autocovariance function of the mean variance process in the Heston model which are based on discrete observations of the price process (see Figà-Talamanca, 2008). The discretization schemes under analysis are then compared on the basis of several outcomes: the graphical representation of the autocovariance functions of the sample paths, superimposing the theoretical counterpart and confidence bands, the number of violations of the confidence bands for each lag and a global RMSE measuring the distance between the theoretical autocovariance and the empirical autocovariance functions and, finally, the computational time.

Sections 2 and 3 sum-up the model specification, the expression for the theoretical autocovariance function of the mean variance process for which approximate confidence bands are derived, based on discrete equi-spaced observations of the log-price process. Section 4 is devoted to a brief description of the discretization and simulation algorithms under consideration and Section 5 describes the numerical results and how they are obtained. Concluding remarks are finally reported in Section 6.

2 The Model

The Heston stochastic volatility model (Heston, 1993) describes the dynamics of the price S_{t} of a given stock through the following bi-dimensional stochastic differential equation (SDE):

$$
\begin{align*}
\frac{d S_{t}}{S_{t}} & =\mu d t+\sigma_{t} d Z_{t} \tag{1}\\
d \sigma_{t}^{2} & =\alpha\left(\beta-\sigma_{t}^{2}\right) d t+c \sigma_{t} d W_{t} \tag{2}
\end{align*}
$$

where α and β are positive parameters representing respectively the meanreversion speed and the long-run mean for the instantaneous variance, c is the so-called volatility of volatility and (B, W) is a possibly correlated Brownian motion in \mathbb{R}^{2}. This specification is a very interesting example in financial literature since it provides a closed formula for computing European Option Prices ${ }^{1}$. In the remainder of this paper we consider the following simplified process for the \log-price $Y_{t}=\log S_{t}$:

[^0]\[

$$
\begin{align*}
d Y_{t} & =\sigma_{t} d Z_{t}, & Y_{0}=0 \tag{3}\\
d \sigma_{t}^{2} & =\alpha\left(\beta-\sigma_{t}^{2}\right) d t+c \sigma_{t} d W_{t}, & \sigma_{0}^{2}=\nu \tag{4}
\end{align*}
$$
\]

where (Z, W) is a Brownian motion such that $\left\langle d Z_{t}, d W_{t}\right\rangle=\rho d t$ and ν is a random variable, independent from (Z, W), which has the stationary distribution of the process.

Note that a strong solution exists for the above SDE if $c>0$, and the origin is unattainable if $2 \alpha \beta \geq c^{2}$; the process also admits a $\operatorname{Gamma}\left(\frac{2 \alpha \beta}{c^{2}}, \frac{2 \alpha}{c^{2}}\right)$ stationary distribution with finite moments of any order given by

$$
E\left[\nu^{p}\right]=\left(\frac{c^{2}}{2 \alpha}\right)^{p} \frac{\Gamma\left(\frac{2 \alpha \beta}{c^{2}}+p\right)}{\Gamma\left(\frac{2 \alpha \beta}{c^{2}}\right)} .
$$

As a special case,

$$
E\left[\sigma_{0}^{2}\right]=\beta, \quad \operatorname{Var}\left(\sigma_{0}^{2}\right)=\frac{\beta c^{2}}{2 \alpha} .
$$

3 Moments of the discretely observed process

Assume that $Y_{1}, Y_{2}, \ldots, Y_{n}$ are n equally spaced observations for the process in the first equation of (3) and denote with Δ the fixed observation step. For $i=1,2, \ldots, n$, define the variables $R_{i}=Y_{i}-Y_{i-1}$ and $X_{i}=\frac{R_{i}}{\sqrt{\Delta}}$. By extending the results of Genon-Catalot et al. (2000), Figà-Talamanca (2008) prove that the process $\left\{X_{i}\right\}_{i=1,2, \ldots, n}$ is stationary and ergodic. Moreover, conditionally on the σ-algebra \mathcal{F} generated by $\left\{\sigma_{s}^{2}, s \geq 0\right\}$, the distribution function of $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is n-dimensional centered Gaussian with covariance matrix $\Sigma=\operatorname{diag}\left(\overline{V_{1}}, \overline{V_{2}}, \ldots \overline{V_{n}}\right)$, where

$$
\begin{equation*}
\overline{V_{i}}=\frac{1}{\Delta} \int_{(i-1) \Delta}^{i \Delta} \sigma_{s}^{2} d s, \text { for } i=1,2, \ldots n \tag{5}
\end{equation*}
$$

is the mean variance in the interval $[(i-1) \Delta, i \Delta[$. If the process in (3) models the dynamics of the log-price of a financial stock, then the quantities R_{i}, X_{i} are respectively referred to as the log-returns and the scaled log-returns of the stock; the integral part in (5) is often defined as the integrated or actual volatility of the stock.

3.1 Second order structure of the mean variance

Under some technical assumptions it is possible to derive closed expressions for the second order moments of the mean variance process in terms of model parameters (see Genon-Catalot et al., 2000, Sorensen , 2000, and BarndorffNielsen, Shephard, 2001, 2002) which write as

$$
\begin{gather*}
E\left[\overline{V_{1}}\right]=\beta, \\
E\left[{\overline{V_{1}}}^{2}\right]=\beta^{2}+\operatorname{Var}\left(\sigma_{0}^{2}\right) \frac{2(\alpha \Delta-1+\exp (-\alpha \Delta))}{\alpha^{2} \Delta^{2}}, \tag{6}\\
E\left[\overline{V_{1} V_{1+h}}\right]=\beta^{2}+\operatorname{Var}\left(\sigma_{0}^{2}\right) \exp (-h \alpha \Delta) \frac{\exp (\alpha \Delta)(1-\exp (-\alpha \Delta))^{2}}{\alpha^{2} \Delta^{2}} .
\end{gather*}
$$

Given the above formulas, the theoretical autocovariance function γ_{h} of the mean variance process is

$$
\gamma_{h}=\left\{\begin{array}{c}
\frac{\operatorname{Var}\left(\sigma_{0}^{2}\right)}{\Delta^{2} \alpha^{2}} \exp (-h \alpha \Delta) \frac{\exp (\alpha \Delta)(1-\exp (-\alpha \Delta))^{2}}{\alpha^{2} \Delta^{2}}, \text { for } h \geq 1, \tag{7}\\
\frac{2}{\alpha^{2} \Delta^{2}} \operatorname{Var}\left(\sigma_{0}^{2}\right)(\alpha \Delta-1+\exp (-\alpha \Delta)), \text { for } h=0 .
\end{array}\right.
$$

3.2 Limit results for sample moments of the scaled return

Let us introduce the following sample moments of the scaled log-returns $\left\{X_{i}\right\}_{i=1,2, \ldots, n}$

$$
\begin{align*}
\widehat{\beta}^{(n)} & =\frac{1}{n} \sum_{1}^{n} X_{i}^{2} \\
M_{0}^{(n)} & =\frac{1}{3 n} \sum_{1}^{n} X_{i}^{4} \tag{8}\\
M_{h}^{(n)} & =\frac{1}{n-h} \sum_{1}^{n-h} X_{i}^{2} X_{i+h}^{2}, \text { for } h \geq 1 .
\end{align*}
$$

The empirical autocovariance, for $h \geq 0$, is thus defined as

$$
\widehat{\gamma}_{h}^{(n)}=M_{h}^{(n)}-\widehat{\beta}^{2} .
$$

A simple application of the outcomes in Figà-Talamanca (2008) gives, for $h \geq 1$,

$$
\begin{gather*}
\widehat{\beta}^{(n)} \underset{n \rightarrow+\infty}{\text { a.s. }} \beta, \\
M_{0}^{(n)} \underset{\substack{\text { n.s. }}}{\underset{n \rightarrow+\infty}{a . s .}} E\left[\bar{V}_{1}^{2}\right], \tag{9}\\
M_{h}^{(n)} \underset{n \rightarrow+\infty}{\text { a.s. }} E\left[\bar{V}_{1} \bar{V}_{1+h}\right],
\end{gather*}
$$

and

$$
\sqrt{n}\left(\begin{array}{c}
\widehat{\beta}^{(n)}-\beta \tag{10}\\
M_{0}^{(n)}-E\left[\bar{V}_{1}^{2}\right] \\
M_{h}^{(n)}-E\left[\bar{V}_{1} \bar{V}_{1+h}\right]
\end{array}\right) \xrightarrow{\text { Law }} N(0, \Sigma(h)) .
$$

The detailed expressions of the entries of the covariance matrix $\Sigma(h)$ is postponed to next subsection.

The following limits are a straightforward consequence of $(9,10)$ and of the so-called delta-method (see Lehmann, 1998, Theorem 5.2.3 and Corollary 5.4.3.):

1. $\widehat{\gamma}_{h}^{(n)} \underset{n \rightarrow+\infty}{\text { a.s. }} \gamma_{h}$, for $h \geq 0$;
2. if $\hat{\beta}$ is known $(\hat{\beta} \equiv \beta)$, then

$$
\begin{gathered}
\sqrt{n}\left(\widehat{\gamma}_{0}^{(n)}-\gamma_{0}\right) \underset{n \rightarrow+\infty}{\text { law }} N\left(0, \Sigma_{22}\right), \\
\sqrt{n}\left(\widehat{\gamma}_{h}^{(n)}-\gamma_{h}\right) \underset{n \rightarrow+\infty}{l a w} N\left(0, \Sigma_{33}(h)\right), \text { for } h \geq 1,
\end{gathered}
$$

otherwise

$$
\begin{aligned}
& \sqrt{n}\left(\widehat{\gamma}_{0}^{(n)}-\gamma_{0}\right) \underset{n \rightarrow+\infty}{\stackrel{l a w}{\rightarrow}} N\left(0, \tau_{0}^{*}\left(\beta, E\left[{\overline{V_{1}}}^{2}\right]\right)\right), \\
& \sqrt{n}\left(\widehat{\gamma}_{h}^{(n)}-\gamma_{h}\right) \underset{n \rightarrow+\infty}{l a w} N\left(0, \tau_{h}^{*}\left(\beta, E\left[\overline{V_{1} V_{1+h}}\right]\right)\right),
\end{aligned}
$$

where $\tau_{0}^{*}(u, v)=4 u^{2} \Sigma_{11}-4 u \Sigma_{12}+\Sigma_{22}(h)$ and $\tau_{h}^{*}(u, v)=4 u^{2} \Sigma_{11}-$ $4 u \Sigma_{13}(h)+\Sigma_{33}(h)$.

For a detailed derivation see Figà-Talamanca (2008).
Hence, for a given confidence level p, and given a large sample $\left\{x_{i}\right\}_{i=1,2, \ldots, n}$ of scaled log-returns, the p-level approximate confidence bands for the sample autocovariance function in h, respectively for $\hat{\beta} \equiv \beta$ or else, are

$$
\begin{aligned}
& {\left[\gamma_{0}-z_{\frac{1-p}{2}} \sqrt{\Sigma_{22} / n}, \gamma_{0}+z_{\frac{1-p}{2}} \sqrt{\Sigma_{22} / n}\right], \text { and }} \\
& {\left[\gamma_{0}-z_{\frac{1-p}{2}} \sqrt{\tau_{0}^{*}\left(\beta, E\left[{\overline{V_{1}}}^{2}\right]\right) / n, \gamma_{0}+z_{\frac{1-p}{2}} \sqrt{\left.\tau_{0}^{*}\left(\beta, E\left[{\overline{V_{V}^{1}}}^{2}\right]\right) / n\right]}} .\right.}
\end{aligned}
$$

and, for $h \geq 1$,

$$
\begin{aligned}
& {\left[\gamma_{h}-z_{\frac{1-p}{2}} \sqrt{\Sigma_{33}(h) / n}, \gamma_{h}+z_{\frac{1-p}{2}} \sqrt{\Sigma_{33}(h) / n}\right], \text { and }} \\
& {\left[\gamma_{h}-z_{\frac{1-p}{2}} \sqrt{\tau_{h}^{*}\left(\beta, E\left[\overline{V_{1} V_{1+h}}\right) / n\right.}, \gamma_{h}+z_{\frac{1-p}{2}} \sqrt{\tau_{h}^{*}\left(\beta, E\left[\overline{V_{1} V_{1+h}}\right) / n\right]},\right.}
\end{aligned}
$$

with $z_{\frac{1-p}{2}}$ implicitly defined by $\bar{\Phi}\left(z_{\frac{1-p}{2}}\right)=\frac{1-p}{2}$, where $\bar{\Phi}$ is the survival distribution function of a standard Gaussian random variable.

3.3 Computing the entries of matrix $\Sigma(h)$

Once parameter values are assigned, the entries of matrix $\Sigma(h)$ can be computed as a function of model parameters. Proposition 2 in Figà-Talamanca (2008) leads to

$$
\begin{aligned}
\Sigma_{11} & =3 E\left[\bar{V}_{1}^{2}\right]-E\left[\bar{V}_{1}\right]^{2}+2 \sum_{i=1}^{\infty}\left(E\left[\bar{V}_{1} \bar{V}_{1+i}\right]-E\left[\bar{V}_{1}\right]^{2}\right), \\
\Sigma_{22} & =\frac{35}{3} E\left[\bar{V}_{1}^{4}\right]-E\left[\bar{V}_{1}^{2}\right]^{2}+2 \sum_{i=1}^{\infty}\left[E\left[\bar{V}_{1}^{2} \bar{V}_{1+i}^{2}\right]-E\left[\bar{V}_{1}^{2}\right]^{2}\right],
\end{aligned}
$$

and

$$
\begin{aligned}
\Sigma_{33}(h) & =9 E\left[\bar{V}_{1}^{2} \bar{V}_{1+h}^{2}\right]-E\left[\bar{V}_{1} \bar{V}_{1+h}\right]^{2}+4 E\left[\bar{V}_{1} \bar{V}_{1+h}^{2} \bar{V}_{1+2 h}\right] \\
& +2 \sum_{i=1}^{\infty}\left(E\left[\bar{V}_{1} \bar{V}_{1+h} \bar{V}_{1+i} \bar{V}_{1+h+i}\right]-E\left[\bar{V}_{1} \bar{V}_{1+h}\right]^{2}\right) .
\end{aligned}
$$

Moreover,
$\Sigma_{12}=5 E\left[\bar{V}_{1}^{3}\right]-E\left[\bar{V}_{1}\right] E\left[\bar{V}_{1}^{2}\right]+\sum_{i=1}^{\infty}\left(E\left[\bar{V}_{1} \bar{V}_{1+i}^{2}\right]-2 E\left[\bar{V}_{1}\right] E\left[\bar{V}_{1}^{2}\right]+E\left[\bar{V}_{1+i} \bar{V}_{1}^{2}\right]\right)$,

$$
\begin{aligned}
\Sigma_{13}(h) & =3 E\left[\bar{V}_{1}^{2} \bar{V}_{1+h}\right]+2 E\left[\bar{V}_{1} \bar{V}_{1+h}^{2}\right]-E\left[\bar{V}_{1}\right] E\left[\bar{V}_{1} \bar{V}_{1+h}\right] \\
& +\sum_{i=1}^{\infty}\left(E\left[\bar{V}_{1} \bar{V}_{1+i} \bar{V}_{1+h+i}\right]-2 E\left[\bar{V}_{1}\right] E\left[\bar{V}_{1} \bar{V}_{1+h}\right]+E\left[\bar{V}_{1} \bar{V}_{1+i} \bar{V}_{1+h}\right]\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\Sigma_{23}(h) & =5 E\left[\bar{V}_{1}^{3} \bar{V}_{1+h}\right]+4 E\left[\bar{V}_{1} \bar{V}_{1+h}^{3}\right]-3 E\left[\bar{V}_{1}^{2}\right] E\left[\bar{V}_{1} \bar{V}_{1+h}\right] \\
& +\sum_{i=1}^{\infty}\left(E\left[\bar{V}_{1}^{2} \bar{V}_{1+i} \bar{V}_{1+h+i}\right]-E\left[\bar{V}_{1}^{2}\right] E\left[\bar{V}_{1} \bar{V}_{1+h}\right]\right) \\
& +\sum_{i=1}^{\infty}\left(E\left[\bar{V}_{1} \bar{V}_{1+i}^{2} \bar{V}_{1+h}\right]-E\left[\bar{V}_{1}^{2}\right] E\left[\bar{V}_{1} \bar{V}_{1+h}\right]\right) .
\end{aligned}
$$

The numerical computation of the above asymptotic variances-covariances involves the third and the fourth order structure of the mean variance process. These moments and cross-moments can be calculated as definite third order integrals of $E\left[\sigma_{t}^{2} \sigma_{r}^{2} \sigma_{s}^{2}\right]$, for $t<r<s$ and fourth order integrals of $E\left[\sigma_{t}^{2} \sigma_{r}^{2} \sigma_{s}^{2} \sigma_{w}^{2}\right]$, for $t<r<s<w$ (see Appendix A) which can be expressed in terms of model parameters (see Appendix B). Thus, the third and fourth order structure moments of the mean variance can also be numerically evaluated once parameters are assigned. Computations, performed with Mathematica 5.1, lead to very long formulas which are not reported here.

4 Discretization Schemes

We want to generate a sample $\left\{\left(Y_{1}, \sigma_{1}^{2}\right),\left(Y_{2}, \sigma_{2}^{2}\right), \ldots\left(Y_{n}, \sigma_{n}^{2}\right)\right\}$ of equi-spaced observations, with time-step Δ, for the log-price Y_{t} and its instantaneous variance σ_{t}^{2} according to the process in $(3,4)$; denote $Y_{i}=Y_{i \Delta}$ and $\sigma_{i}^{2}=\sigma_{i \Delta}^{2}$ for the sake of simplicity. In principle, any discretization of the process may be avoided by applying the Exact Simulation Scheme introduced by Broadie, Kaya (2006). However, this procedure introduces a non-negligible numerical error due to the approximation of an Inverse Fourier transform for which the integrand has a very oscillatory behaviour; in order to generate n observations $\left\{Y_{t}\right\}_{t=1,2, \ldots n}$ of the log-price process, for m scenarios, the Inverse Fourier Transform, the expression of which depends on the ratio of Bessel functions of the first kind,, has to be computed $n \times m$ times and then approximated (for instance with the trapeizoidal rule). Hence, this scheme
is extremely costly in term of computational time as the authors themselves, Smith (2007), Lord et al. (2008) and Andersen (2008) have also remarked and is practically unfeasible for our purposes since n and m should be very large; so we won't apply it in our numerical experiment. The same remark applies for the modification of this scheme given by Smith (2007).

We describe in what follows the Eulero-Maruyama scheme as well as those by Kahl, Jackel (2006) and Andersen (2008). The former is an example of a second order scheme and the latter of a moment-matching algorithm. We also briefly introduce the simulation scheme by Zhu (2008) which is based on a transformation of the variance process.

4.1 The Eulero-Maruyama scheme and the choice of the "fixing method"

The Eulero-Maruyama discretization of the process in $(3,4)$ gives:

$$
\begin{aligned}
Y_{i} & =Y_{i-1}+\sigma_{i-1}\left(\rho\left(W_{i}-W_{i-1}\right)+\sqrt{1-\rho^{2}}\left(B_{i}-B_{i-1}\right)\right), \\
\sigma_{i}^{2} & =\sigma_{i-1}^{2}+\alpha\left(\beta-\sigma_{i-1}^{2}\right)+c \sigma_{i-1}\left(W_{i}-W_{i-1}\right) .
\end{aligned}
$$

for a discretization interval of length Δ.
Note that we have no guarantees that the discretized process σ_{t}^{2} remains non-negative. If at step k the variance σ_{t}^{2} becomes negative, it is not possible to define the process at step $k+1$ since its square root σ_{t} appears in both equations for Y_{t} and σ_{t}^{2}. By following the approach in Lord et al. (2008) we rewrite the discretization scheme as:

$$
\begin{aligned}
Y_{i} & =Y_{i-1}+f_{4}\left(\sigma_{i-1}\right)\left(\rho\left(W_{i}-W_{i-1}\right)+\sqrt{1-\rho^{2}}\left(B_{i}-B_{i-1}\right)\right), \\
\sigma_{i}^{2} & =f_{1}\left(\sigma_{i-1}^{2}\right)+\alpha\left(\beta-f_{2}\left(\sigma_{i-1}^{2}\right)\right) \Delta+\varphi\left(f_{3}\left(\sigma_{i-1}\right)\right)\left(W_{i}-W_{i-1}\right) .
\end{aligned}
$$

Assuming $f_{4}=f_{3}$, we report here Table 1 of Lord et al. (2008) to describe different fixes.

Lord et al. (2008) conclude that the best choice in term of a trade-off between accuracy and computational time is the Full-Truncation fix. In our numerical examples we take advantage of these results by selecting the Full Truncation fix for the application of the Eulero-Maruyama scheme.

Fix	Paper	$f_{1}(x)$	$f_{2}(x)$	$f_{3}(x)$
Absorption	Unknown	x^{+}	x^{+}	x^{+}
Reflection	Diop (03), Berkaoui et al. (05)	$\|x\|$	$\|x\|$	$\|x\|$
Higham-Mao	Higham, Mao (05)	x	x	$\|x\|$
Partial Truncation	Deelstra, Delbaen (98)	x	x	x^{+}
Full Truncation	Lord et al. (068)	x	x^{+}	x^{+}

Table 1: Several "fixes" for the Eulero-Maruyama discretization scheme (Lord et al. 2008)

4.2 The Kahl-Jackel scheme

Kahl, Jackel (2006) examine in their study many discretization schemes for univariate processes which include the instantaneous variance diffusion in (4) as a special case.

In their study they claim that for the Heston model the best simulation scheme is obtained by applying a second order scheme (the Balanced Milstein Method) to the variance and what they call the IJK scheme to the log-price process. The choice for the balancing functions make their discretization scheme for the instantaneous variance essentially an Implicit Milstein Method. More precisely, if $\delta W_{i}=W_{i}-W_{i-1}$,

$$
\sigma_{i}^{2}=\frac{\sigma_{i-1}^{2}+\alpha \beta \Delta+c \sigma_{i-1} \delta W_{i}+\frac{1}{4} c^{2} \delta W_{i}^{2}-\frac{1}{4} c^{2} \Delta}{(1+\alpha \Delta)}
$$

and

$$
Y_{i}=Y_{i-1}+\rho \sigma_{i-1} d W+\frac{1}{2} \sqrt{1-\rho^{2}}\left(\sigma_{i}+\sigma_{i-1}\right)\left(B_{i}-B_{i-1}\right)+\frac{1}{4} c \rho\left(\delta W_{i}^{2}-\Delta\right)
$$

We refer to this scheme as the IJK- IMM algorithm. Note that this scheme guarantees the positivity of the variance process if $4 \alpha \beta>c^{2}$; when this constraint is not fulfilled and the discretized variance process becomes negative we use the Full Truncation Eulero-Maruyama scheme to get the -step ahead variance and insert the positive part of the variance in the the log-price discretization as suggested in Andersen (2008).

4.3 The efficient schemes of Andersen

In the paper by Andersen (2008) the author proposes essentially two schemes, the Truncated Gaussian (TG) and the Quadratic Exponential (QE) algorithms which are both in the family of the moment-matching schemes (the
parameters involved are obtained in order to match the first two moment of the instantaneous variance). The former scheme is based on the observation that the non central chi-squared distribution converges to a Gaussian distribution if the non-centrality parameter is large. The latter arise from the fact that a non central chi-squared random variables with a large non-centrality parameter can be well represented by a power function of a Gaussian variable (see Andersen, 2008, and the references therein); for small values of the non-centrality parameter the author suggests a possible adjustment of the scheme. A switching rule determines whether the adjusment is in order or not.

4.3.1 Truncated-Gaussian (TG)

Define once and for all the function $r(x)$ implicitly as

$$
r(x) \phi(r(x))+\Phi(r(x))\left(1+r^{2}(x)\right)=(1+x)(\phi(r(x))+r(x) \Phi(r(x))),
$$

and set

$$
\begin{aligned}
f_{\mu}(x) & =\frac{r(x)}{\phi(r(x))+r(x) \Phi(r(x))} \\
f_{v}(x) & =\frac{x^{-1 / 2}}{\phi(r(x))+r(x) \Phi(r(x))}
\end{aligned}
$$

where Φ and φ are respectively the cumulative distribution function and the density of a standard Gaussian random variable.

Using the fact that the distribution of σ_{i}^{2} given σ_{i-1}^{2} is, up to a scale factor δ, a non central chi-squared distribution (see Cox. et al, 1985) with non centrality parameter λ and d degrees of freedom with

$$
\begin{align*}
\delta & =\frac{c^{2}\left(1-e^{-\alpha \Delta}\right)}{4 \alpha} \\
\lambda_{i} & =\frac{e^{-\alpha \Delta}}{\delta} \sigma_{i-1}^{2}, \text { and } \tag{11}\\
d & =\frac{4 \alpha \beta}{c^{2}}
\end{align*}
$$

the procedure to obtain σ_{i}^{2} from σ_{i-1}^{2} can be summarized as follows:

1. Given σ_{i-1}^{2}, compute m_{i-1} and S_{i-1}^{2} as follows:

$$
\begin{aligned}
m_{i-1} & =\beta+\left(\sigma_{i-1}^{2}-\beta\right) e^{-\alpha \Delta} \\
S_{i-1}^{2} & =\frac{c^{2} e^{-\alpha \Delta t}}{\alpha}\left(1-e^{-\alpha \Delta t}\right) \sigma_{i-1}^{2}+\frac{\beta c^{2}}{2 \alpha}\left(1-e^{-\alpha \Delta}\right)^{2}
\end{aligned}
$$

2. Compute $\psi_{i-1}=\frac{S_{i-1}^{2}}{m_{i-1}^{2}}, \mu_{i-1}=f_{\mu}\left(\psi_{i-1}\right) m_{i-1}$ and $v_{i-1}=f_{v}\left(\psi_{i-1}\right) S_{i-1}$.
3. Generate a Standard Gaussian random number Z_{V}.
4. Set $\sigma_{i}^{2}=\left(\mu_{i-1}+v_{i-1} Z_{V}\right)^{+}$.

4.3.2 Quadratic-Exponential (QE)

This scheme is designed to take into account the behaviour of the distribution of σ_{i}^{2} also when σ_{i-1}^{2} approaches 0 making the non centrality parameter in (11) small. It is based on a switching rule to obtain σ_{i}^{2} that splits the scheme in two different algorithms respectively applied for large and small values of σ_{i-1}^{2}. The scheme can be summarized as follows:

1. Given σ_{i-1}^{2}, compute m_{i-1} and S_{i-1}^{2} as follows:

$$
\begin{aligned}
m_{i-1} & =\beta+\left(\sigma_{i-1}^{2}-\beta\right) e^{-\alpha \Delta} \\
S_{i-1}^{2} & =\frac{c^{2} e^{-\alpha \Delta}}{\alpha}\left(1-e^{-\alpha \Delta}\right) \sigma_{i-1}^{2}+\frac{\beta c^{2}}{2 \alpha}\left(1-e^{-\alpha \Delta}\right)^{2}
\end{aligned}
$$

and set $\psi_{i-1}=\frac{S_{i-1}^{2}}{m_{i-1}^{2}}$.
2. Generate a uniform random number on the unit interval, U_{V} and fix a value $\psi_{\text {max }} \in[1,2]$ to determine the switching rule.
3. If $\psi_{i-1} \leq \psi_{\text {max }}$, compute b_{i-1}, a_{i-1} such that

$$
\begin{aligned}
b_{i-1}^{2} & =2 \psi_{i-1}^{-1}+\sqrt{2 \psi_{i-1}^{-1}\left(2 \psi_{i-1}^{-1}-1\right)} \\
a_{i-1} & =\frac{m_{i-1}^{2}}{1+b_{i-1}^{2}}
\end{aligned}
$$

Set $Z_{V}=\Phi^{-1}\left(U_{V}\right)$, where Φ is the cumulative distribution function of a standard Gaussian variable, and $\sigma_{i}^{2}=a_{i-1}\left(b_{i-1}+Z_{V}\right)^{2}$.
4. If $\psi_{i-1}>\psi_{\max }$, compute

$$
\begin{aligned}
p_{i-1} & =\frac{\psi_{i-1}-1}{\psi_{i-1}+1}, \text { and } \\
\eta_{i-1} & =\frac{1-p_{i-1}}{m_{i-1}}
\end{aligned}
$$

Set

$$
\begin{aligned}
H^{-1}(u ; p, \eta) & =\left\{\begin{array}{cc}
0 & \text { if } 0 \leq u \leq p \\
\eta^{-1} \log \frac{1-p}{1-u} & \text { if } p<u \leq 1
\end{array},\right. \text { and } \\
\sigma_{i}^{2} & =H^{-1}\left(U_{V} ; p_{i-1}, \eta_{i-1}\right) .
\end{aligned}
$$

4.3.3 Simulation of the log-price process

In Andersen (2008) the author points out some drawbacks in the application of the Eulero-Maruyama discretization scheme for the log-price process Y_{t} and suggests to write the log-price process in integral form between time $(i-1) \Delta$ and $i \Delta$, as in Broadie, Kaya (2006), which gives

$$
\begin{align*}
Y_{i} & =Y_{i-1}+\rho \int_{(i-1) \Delta}^{i \Delta} \sigma_{s} d W_{s}+\sqrt{1-\rho^{2}} \int_{(i-1) \Delta}^{i \Delta} \sigma_{s} d B_{s} \tag{12}\\
\sigma_{i}^{2} & =\sigma_{i-1}^{2}+\alpha \beta \Delta-\alpha \int_{(i-1) \Delta}^{i \Delta} \sigma_{s}^{2} d s+c \int_{(i-1) \Delta}^{i \Delta} \sigma_{s} d W_{s} \tag{13}
\end{align*}
$$

Then the following approximation is considered

$$
\int_{(i-1) \Delta}^{i \Delta} \sigma_{u}^{2} d u=\Delta \overline{V_{i}} \simeq \Delta\left(\gamma_{1} \sigma_{i-1}^{2}+\gamma_{2} \sigma_{i}^{2}\right)
$$

where γ_{1} and γ_{2} are constant parameters. The Eulero-Maruyama setting is recovered if $\gamma_{1}=1, \gamma_{2}=0$ while a central discretization is obtained if we set $\gamma_{1}=\gamma_{2}=0.5$. Since B_{t} is independent of V_{t}, then the stochastic integral $\int_{(i-1) \Delta}^{i \Delta} \sigma_{u} d B_{u}$, conditional on V_{i-1} and $\int_{(i-1) \Delta}^{i \Delta} \sigma_{u}^{2} d u$, is centered Gaussian with variance $\int_{(i-1) \Delta}^{i \Delta} \sigma_{u}^{2} d u$. Hence,
$Y_{i}=Y_{i-1}+\frac{\rho}{c}\left(\sigma_{i}^{2}-\sigma_{i-1}^{2}-\alpha \beta \Delta\right)+\frac{\rho \alpha}{c} \Delta\left(\gamma_{1} \sigma_{i-1}^{2}+\gamma_{2} \sigma_{i}^{2}\right)+\sqrt{\left(1-\rho^{2}\right) \Delta\left(\gamma_{1} \sigma_{i-1}^{2}+\gamma_{2} \sigma_{i}^{2}\right)} Z$,
where Z is a standard Gaussian variable.
Andersen (2008) compares the methods he proposes with the IJK-IMM scheme and with the FT scheme having in mind, as usual, the ability in obtaining, via the Monte Carlo method, a good estimate of the plain vanilla option prices available in closed form. His conclusions are towards a better performance of the QE algorithm with respect to the competitors and we exploit his results not considering the TG algorithm in our numerical simulations.

4.4 From variance to volatility: a look at Zhu scheme

Consider $\sigma_{t}=\sqrt{\sigma_{t}^{2}}$. Applying Ito's Lemma to the variance process in (4) we obtain

$$
d \sigma_{t}=\left(\frac{1}{4 \sigma_{t}}\left(4 \alpha \beta-c^{2}\right)-\frac{\alpha}{2} \sigma_{t}\right) d t+\frac{c}{2} d W_{t} .
$$

This transformation is obviously possible if the variance process stays away of the origin in order to have the twice differentiability of the squareroot function needed for the application of Ito's Lemma. The simulation scheme of Zhu (2008) is essentially based on the discretization/simulation of the volatility according to the above process. In Lord et al. (2008) we found enough motivations to refrain us from applying this method in the remainder of our analysis.

5 Numerical comparison of the discretization schemes

In order to check whether a simulation scheme matches the theoretical properties of the discretely observed original process we compute the autocovariance function of each path: if the scheme produces trajectories which are consistent with the original data we expect this autocovariance function to be next to its theoretical counterpart (the autocovariance of the mean variance process). In addition, if we simulate m paths, we should not statistically reject consistency, at a confidence level p, if the autocovariance of lag h lies within the $1-p$ approximate confidence band for at least $(1-p) * m$ paths. Our analysis has been thus carried on looking at several outputs:

1. The graphical representation of the autocovariance functions for all simulated trajectories as well as the theoretical autocovariance and its approximate confidence bands, for lags between 0 and H.
2. The number of paths violating the confidence band, computed for each lag $h \leq H$.
3. The "distance" between the theoretical autocovariance and the empirical autocovariance, which is measured by the global Root Mean Squared Error over all paths and for lags between 0 and H :

$$
R M S E=\sqrt{\frac{1}{(H+1) m} \sum_{h=0}^{H} \sum_{j=1}^{m}\left(\widehat{\gamma_{h}(j)}-\gamma_{h}\right)^{2}}
$$

where $\widehat{\gamma_{h}(j)}$ is the empirical autocovariance of the squared scaled logreturns at lag h for the $j^{t h}$-path.

We also measure the computational time required by each method to perform our simulations, though this depends, of course, on the optimization of the codes which is not the main concern of this study.

According to the results in the papers by Andersen (2008), Lord (2006) and Kahl, Jackel (2006), we choose to apply, among the available choices, the Full-Truncation Eulero-Maruyama, the Kahl-Jackel IJK-IMM and the Andersen QE scheme. The algorithms are written as Matlab codes.

5.1 Simulation/Discretization program

We simulate $m=1000$ paths of 3000 observations, the first 500 of which are discarded to accomplish for the stationarity of the process. We used 10 parameter assignments, as detailed in Table 2, corresponding to three sets (S_{1}, S_{2}, S_{3}) for the variance process parameters (α, β, c) with three different values for the correlation ρ, and to a fourth assignment S_{4} of the the whole set of parameters which was also considered in Andersen (2008). Once S_{1} is assigned, the sets S_{2} and S_{3} are designed to test respectively how the outcomes of the analysis change with an increase in the mean reversion speed or in the volatility of volatility parameter; the three possible values for the correlation are those considered in Kahl, Jackel (2006). In addition, as Andersen (2008), among others, pointed out, parameter estimates for Heston model often do not fulfill the constraint which guarantees the positivity of the variance process; so, the set S_{3} and S_{4}, where the origin is attainable, are considered in order to verify the robustness of the properties of the simulation algorithms with respect to this constraint.

For each set of parameters, data are generated for an observation step $\Delta \in\left\{\frac{1}{3000}, \frac{1}{250}, \frac{1}{32}, \frac{1}{8}\right\}$ where the first two values corresponds to half-an-hour and daily observations, mostly used in financial applications; the other two values are considered as a benchmark since the results of Andersen (2008), Kahl-Jackel (2006) and Lord et al. (2008) are based on a similar scale of Δ.

5.2 Empirical evidence

Figures 1 and 2 plot the empirical autocovariance function for each of the simulated paths for the parameter set S_{1} with correlation $\rho=0,-0.8$ respectively. Lags are between 0 and 20 and $n=2500$. From left to right

α	1	1	1	3	3	3	1	1	1	1
β	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.09
c	0.25	0.25	0.25	0.25	0.25	0.25	0.5	0.5	0.5	1
ρ	0	-0.4	-0.8	0	-0.4	-0.8	0	-0.4	-0.8	-0.3

Table 3: Parameter Assignments
the autocovariance is plotted for the trajectories simulated with the EuleroMaruyama FT scheme, with the IJK-IMM scheme and the QE algorithm respectively. From top to bottom outcomes are shown for decreasing values of the observation step; the limit autocovariance and the approximate confidence bands at a 5% level are superimposed. Confidence bands are computed for each case with the formulas reported in Section 3.4 for the case of β known. There is no evidence from the figures against one of the discretization schemes since the majority of the paths lie within confidence bands. It seems that the number of violations increases with the observation step and with the absolute correlation value. The results for $n=500$ are analogous as well as those for the parameter set S_{2}.

In Figure 3 we report the graphs for parameter set S_{3} with $\rho=-0.4$ for which we observe a significant number of violations especially for the Eulero-Maruyama and the IJK-IMM schemes. Besides, the outcomes for the set of parameters S_{4} are summed up in Figure 4.

It is clear from our outcomes that, for all parameter assignments, the number of violations of the confidence bands decreases with an increase in the observation frequency while it increases with the absolute correlation index as well as with the volatility of volatility parameter.

However, it becomes statistically significant only for parameters assignments S_{3} and S_{4} and for the two higher values of Δ. In these cases the Quadratic Exponential algorithm and the Full-Truncation fix for the EuleroMaruyama discretization scheme give more robust results with respect to the IJK-IMM scheme of Kahl and Jackel (2006). In particular, all schemes perform similarly for S_{4} while for the assignment S_{3} the best results are achieved by the simple FT algorithm when $\rho=-0.8$ and by the QE scheme when $\rho=-0.4, \rho=0$. As an example we report in Table 3 the number of violations in this latter case for $h \leq 10, n=2500$ and $\Delta=\frac{1}{8}, \frac{1}{32}$.

Concerning our third point, in Figure 5 the Root Mean Squared Error is reported according to assignments $S_{2}(\mathrm{a}), S_{3}(\mathrm{~b})$ and $S_{4}(\mathrm{c})$. The RMSE value is reported in blue circles for the Eulero-Maruyama scheme, in green stars

Figure 1: The empirical autocovariance functions of simulated paths (solid lines) and its theoretical value and confidence bands (white circles) for SET 1 of assigned parameters with $\rho=0$, for $n=2500$ and for $\Delta=$ $\frac{1}{8}, \frac{1}{32}, \frac{1}{250}, \frac{1}{3000}$ (from top to bottom). From left to right the Full truncated Eulero-Maruyama scheme, the Kahl-Jackel implicit scheme and the Andersen Quadratic-Exponential algorithm are used to perform simulations.

Figure 2: The empirical autocovariance functions of simulated paths (solid lines) and its theoretical value and confidence bands (white circles) for SET 1 of assigned parameters with $\rho=-0.8$, for $n=2500$ and for $\Delta=\frac{1}{8}, \frac{1}{32}, \frac{1}{250}, \frac{1}{3000}$ (from top to bottom). From left to right the Full truncated Eulero-Maruyama scheme, the Kahl-Jackel implicit scheme and the Andersen Quadratic-Exponential algorithm are used to perform simulations.

Figure 3: The empirical autocovariance functions of simulated paths (solid lines) and its theoretical value and confidence bands (white circles) for SET 3 of assigned parameters with $\rho=-0.4$, for $n=2500$ and for $\Delta=\frac{1}{8}, \frac{1}{32}, \frac{1}{250}, \frac{1}{3000}$ (from top to bottom). From left to right the Full truncated Eulero-Maruyama scheme, the Kahl-Jackel implicit scheme and the Andersen Quadratic-Exponential algorithm are used to perform simulations.

Figure 4: The empirical autocovariance functions of simulated paths (solid lines) and its theoretical value and confidence bands (white circles) for SET $4, n=2500$ and $\Delta=\frac{1}{8}, \frac{1}{32}, \frac{1}{250}, \frac{1}{3000}$ (from top to bottom). From left to right the Full truncated Eulero-Maruyama scheme, the Kahl-Jackel implicit scheme and the Andersen Quadratic-Exponential algorithm are used to perform simulations.

Figure 5: Root Mean Squared Error computed globally for the FT scheme (blue circles), the IJK-IMM scheme (green stars) and the QE algorithm (red squares). RMSE values are given for 12 cases in S_{2} (a) and S_{3} (b) with decreasing observation step and for all three values of the correlation index; in (c) the RMSE value is plotted for parameter assignment S_{4} with decreasing observation step.

Lag		0	1	2	3	4	5	6	7	8	9	10
FT	$\Delta=\frac{1}{8}$	93	32	40	41	44	46	46	42	31	41	43
	$\Delta=\frac{1}{32}$	71	59	50	44	56	53	52	51	53	54	56
IJK-IMM												
	$\Delta=\frac{1}{8}$	110	68	70	72	93	106	112	131	128	144	155
	$\Delta=\frac{1}{32}$	64	58	47	48	54	53	54	50	53	55	58
QE												
	$\Delta=\frac{1}{8}$	73	42	34	44	40	42	36	41	39	40	37
	$\Delta=\frac{1}{32}$	49	50	39	49	45	43	44	44	48	42	46

Table 4: Number of paths violating the autocovariance confidence bands for lags between 0 and $10, n=2500$ and $\Delta=\frac{1}{8}, \frac{1}{32}$. From top to bottom the Full-Truncation, the IJK-IMM scheme and the QE algorithm for $(\alpha, \beta, c)=$ $(1,0.05,0.5)$ and $\rho=0$.
for the IJK-IMM scheme and in red squares for the QE algorithm. In the first two plots we have 12 points for each scheme: the first four correspond to a decreasing observation step $\Delta=\frac{1}{8}, \frac{1}{32}, \frac{1}{250}$ and $\frac{1}{3000}$ in the $\rho=0$ case. The second and the third group of four values correspond to $\rho=-0.4$ and $\rho=-0.8$ respectively. In plot (c) the RMSE is reported for S_{4} once again according to decreasing values of Δ.

By looking at the minimum values of the RMSE in Figure 5, it seems that for all the assignments the QE algorithm performs the best for $n=2500$. We do not show any result for $n=500$ since we found no evidence for a different performance of the considered simulation methods. Nevertheless, it is worth noticing that in this latter case we observed an overall improvement in the performance of the FT scheme for the high negative correlation case.

Computational time does not vary significantly across the different parameter sets considered and the overall fastest scheme is the Eulero-Maruyama FT. For the IJK-IMM scheme the time needed is doubled and for the QE algorithm the computational time is five times more than for the FT. However, let us remark that a proper optimization of the codes, on which we have not focused our attention, may reduce substancially the time required by the QE algorithm.

6 Concluding remarks

In this paper we have given a comparison, based on the autocovariance function of the simulated paths, of some of the available and very recent simulation algorithms for the Heston model. According to the results in the papers by Andersen (2008), Lord et al. (2008) and Kahl, Jackel (2006), we have chosen to apply, among the existing schemes, the Full Truncation EuleroMaruyama of Lord et al. (2008), the IJK-IMM procedure of Kahl, Jackel (2006) and the Quadratic Exponential algorithm of Andersen (2008).

At first, the serial dependence of the original model, when discretely observed, has been derived and consistent and an asymptotic normal estimators of the mean variance autocovariance structure have been introduced which are based on observations of the scaled log-returns. The asymptotic properties of this estimator have been used to obtain an approximate confidence band for the autocovariance structure of the squared scaled log-returns. Then, we have compared the simulations schemes by looking at several outcomes of our study: the graphical representation of the autocovariance functions of the sample paths where the theoretical version and confidence bands are superimposed, the number of violations of the confidence bands for each lag and a global measure for the distance between the theoretical autocovariance and the sample autocovariance functions given by the Root Mean Squared Error (for all lags and all paths). Of course, we have also computed the computational time to perform our simulation study according to each of the considered scheme.

If the parameter contraint that guarantees the positivity of the variance is fulfilled we have found no evidence, from our simulation design, against one of the discretization schemes; for all parameters assignments, observation frequency and time series length we have considered hereby (48 cases) the majority of the paths lie within confidence bands. We have also observed that the number of violations of confidence bands decreases with an increase in the observation frequency while it increases with the absolute correlation index as well as with the volatility of volatility parameter.

Otherwise, when the origin is attainable, the number of violations becomes statistically significant especially for low-frequency data. In these cases the Quadratic Exponential algorithm (Andersen, 2008) and the FullTruncation fix for the Eulero-Maruyama discretization scheme (Lord et al., 2008) have given, in our analysis, more robust results with respect to the IJK-IMM scheme of Kahl and Jackel (2006). For what concerns the RMSE, it seems that the QE algorithm performs overall the best. Of course, the QE algorithm is the most intensive from a computational viewpoint, though
remaining rather fast and, if computational time is more important than accuracy, the Full Truncation Eulero-Maruyama is the best compromise. However, as already remarked, we have not focused on the optimization of our codes which may improve further the computational time for the QE algorithm.

References

[1] Andersen, L., 2008, Simple and efficient simulation of the Heston stochastic volatility model, Journal of Computational Finance, vol.11, n. 3 .
[2] Andersen, T.G., Lund, J., 1997. Estimating continuous-time stochastic volatility models for the short rate, Journal of Econometrics, 77 343377.
[3] Barndorff-Nielsen, O. E., Shephard, N., 2001, Non-Gaussian Ornstein-Uhlenbech-based models and some of their use in financial economics, Journal of the Royal Statistical Society B, 63(2): 167-241.
[4] Barndorff-Nielsen, O. E., Shephard, N., 2002, Econometric analysis of realized volatility and its use in estimating stochastic volatility models, Journal of the Royal Statistical Society B, n.64, vol. 2: 253-280.
[5] Berkaoui, A., Bossy, M., Diop, A., 2005, Eulero-Maruyama scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence. $R R$ 5637, INRIA.
[6] Black, F., Scholes, M., 1973, The Pricing of Options and Corporate Liabilities, Journal of Political Economy 81: 637-659.
[7] Broadie, M., Kaya, O., 2006, Exact simulation of stochastic volatility and other affine jump diffusion processes, Operations Research, 54 n.2: 217-231.
[8] Cont, R., 2001, Empirical properties of asset returns: stylized Facts and statistical issues, Quantitative Finance 1(2): 223-236.
[9] Cox, J.C., Ingersoll, J.E., Ross, S.A., 1985, A theory of the term structure of interest rates, Econometrica, vol. 53, n.2: 385-407.
[10] Deelstra, G., Delbaen, F., 1998, Convergence of discretized dtochastic (interest rate) processes with stochastic drift term, Applied Stochastic Models Data Analysis 14: 77-84.
[11] Diop, A., 2003, Sur la discrétisation et le comportement à petit bruit d'EDS multidimensionelles dont les coefficientes son à dérivées singulières, Ph.D. Thesis, INRIA, (available at http://www.inria.fr/rrrt/tu-0785.html)
[12] Duffie, D., Pan, J., Singleton, K., 2000, Transform analysis and asset pricing for affine jump-diffusions, Econometrica, vol. 5, n. 4: 13431376.
[13] Figà-Talamanca, G., 2008, Limit results for discretely observed stochastic volatility models with leverage effect, Quaderni del Dipartimento di Economia, Finanza e Statistica n. 63.
[9] Figà-Talamanca, G., 2009, Testing volatility autocorrelation in the constant elasticity of variance model, Computational Statistics and Data Analysis, 53: 2201-2218.
[14] Genon-Catalot, V., Jeantheau, T., Laredo, C., 2000, Stochastic volatility models as hidden markov models and statistical applications, Bernoulli, 6: . 1051-1080.
[15] Heston S.L., 1993. A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, 6: 327-343.
[16] Higham, D.J.,Mao, X., 2005, Convergence of the Monte Carlo simulations involving the mean-reverting square-root process, Journal of Computational Finance, vol 8. n.3: 35-62.
[17] Kahl, C. and Jackel, P., 2005: Not-so-complex logarithms in the Heston model, Wilmott Magazine, September 2005: 94-103.
[18] Kahl, C., Jackel, P., 2006, Fast strong approximation Monte-Carlo schemes for stochastic volatility models, Quantitative Finance, vol. 6, n. 6: 513-536.
[19] Kloeden P. E. Platen E., 1992, Numerical solution of SDE, Springer Verlag.
[20] Lehmann, E., L., 1998, Elements of Large-Sample Theory, SpringerVerlag.
[21] Lord, R., Kahl, C., 2008, Complex logarithms in Heston-like models, Mathematical Finance, forthcoming, available at SSRN: http://ssrn.com/abstract=1105998.
[22] Lord, R., Koekkoek, R., van Dijk, D., 2008, A comparison of biased simulation schemes for stochastic volatility models, Quantitative Finance, forthcoming, available at SSRN: http://ssrn.com/abstract=903116.
[23] Ogawa, S., Sanfelici, S, 2008, An Improved Two-Step Regularization Scheme for Spot Volatility Estimation, available at SSRN: http://ssrn.com/abstract=1328902.
[24] Renò, R., 2006, Nonparametric estimation of stochastic volatility models, Economics Letters 90(3): 390-395
[25] Smith, R., D., 2007, An almost exact simulation method for the Heston model, Journal of Computational Finance, vol.11, n.1.
[26] Sorensen, M., 2000, Prediction-based estimating functions, Econometric Journal, 3: 123-147
[27] Sorensen, H., 2003. Simulated likelihood approximations for stochastic volatility models, Scandinavian Journal of Statistics, 30 n.2: 257-276.
[28] Zhang, J.E., Shu, J., 2003, Pricing S\&P500 index options with Heston's model, IEEE Transactions.
[29] Zhu, J., (2008), A simple and exact simulation approach to heston model, available at SSRN: http://ssrn.com/abstract $=1153950$.

Appendix A

The third order structure of the mean variance process, for $i>1$, is given by

$$
\begin{align*}
E\left[\bar{V}_{1}^{3}\right]= & E\left[\frac{1}{\Delta^{3}} \int_{0}^{\Delta} \int_{0}^{\Delta} \int_{0}^{\Delta} \sigma_{t}^{2} \sigma_{r}^{2} \sigma_{s}^{2} d t d r d s\right]= \tag{15}\\
& \frac{3!}{\Delta^{3}} \int_{0}^{\Delta} \int_{t}^{\Delta} \int_{r}^{\Delta} E\left[\sigma_{t}^{2} \sigma_{r}^{2} \sigma_{s}^{2}\right] d r d t d s, \\
E\left[\bar{V}_{1} \bar{V}_{1+i}^{2}\right]= & E\left[\frac{2}{\Delta^{3}} \int_{0}^{\Delta} \int_{i \Delta}^{(i+1) \Delta} \int_{r}^{(i+1) \Delta} \sigma_{t}^{2} \sigma_{r}^{2} \sigma_{s}^{2} d t d r d s\right] \tag{16}\\
= & \frac{2}{\Delta^{3}} \int_{0}^{\Delta} \int_{i \Delta}^{(i+1) \Delta} \int_{r}^{(i+1) \Delta} E\left[\sigma_{t}^{2} \sigma_{r}^{2} \sigma_{s}^{2}\right] d t d r d s, \\
E\left[\bar{V}_{1}^{2} \bar{V}_{1+i}\right]= & E\left[\frac{2}{\Delta^{3}} \int_{0}^{\Delta} \int_{t}^{\Delta} \int_{i \Delta}^{(i+1) \Delta} \sigma_{t}^{2} \sigma_{r}^{2} \sigma_{s}^{2} d t d r d s\right]= \tag{17}\\
= & \frac{2}{\Delta^{3}} \int_{0}^{\Delta} \int_{t}^{\Delta} \int_{i \Delta}^{(i+1) \Delta} E\left[\sigma_{t}^{2} \sigma_{r}^{2} \sigma_{s}^{2}\right] d t d r d s .
\end{align*}
$$

The fourth order structure, for $i, h>1$ with $i \neq h$, is given by

$$
\begin{align*}
E\left[\bar{V}_{1}^{4}\right] & =E\left[\frac{1}{\Delta^{4}} \int_{0}^{\Delta} \int_{0}^{\Delta} \int_{0}^{\Delta} \int_{0}^{\Delta} \sigma_{t}^{2} \sigma_{r}^{2} \sigma_{s}^{2} \sigma_{w}^{2} d t d r d s d w\right]= \\
& =\frac{4!}{\Delta^{4}} \int_{0}^{\Delta} \int_{t}^{\Delta} \int_{r}^{\Delta} \int_{s}^{\Delta} E\left[\sigma_{t}^{2} \sigma_{r}^{2} \sigma_{s}^{2} \sigma_{w}^{2}\right] d r d t d s d w \\
E\left[\bar{V}_{1}^{2} \bar{V}_{1+h}^{2}\right] & =E\left[\frac{1}{\Delta^{4}} \int_{0}^{\Delta} \int_{0}^{\Delta} \int_{h \Delta}^{(h+1) \Delta} \int_{h \Delta}^{(h+1) \Delta} \sigma_{t}^{2} \sigma_{r}^{2} \sigma_{s}^{2} \sigma_{w}^{2} d t d r d s d w\right]= \\
& =\frac{2}{\Delta^{4}} \int_{0}^{\Delta} \int_{t}^{\Delta} \int_{h \Delta}^{(h+1) \Delta} \int_{s}^{(h+1) \Delta} E\left[\sigma_{t}^{2} \sigma_{r}^{2} \sigma_{s}^{2} \sigma_{w}^{2}\right] d t d r s d w \\
E\left[\bar{V}_{1} \bar{V}_{1+h} \bar{V}_{1+i} \bar{V}_{1+h+i}\right] & =\frac{1}{\Delta^{4}} \int_{0}^{\Delta} \int_{(h \wedge i) \Delta}^{(h \wedge i+1) \Delta} \int_{(h \vee i) \Delta}^{(h \vee i+1) \Delta} \int_{(i+h) \Delta}^{(i+h+1) \Delta} E\left[\sigma_{t}^{2} \sigma_{r}^{2} \sigma_{s}^{2} \sigma_{w}^{2}\right] d t d r d s d w, \tag{20}
\end{align*}
$$

$$
\begin{equation*}
E\left[\bar{V}_{1} \bar{V}_{1+h}^{2} \bar{V}_{1+2 h}\right]=\frac{2}{\Delta^{4}} \int_{0}^{\Delta} \int_{h \Delta}^{(h+1) \Delta} \int_{r}^{(h+1) \Delta} \int_{2 h \Delta}^{(2 h+1) \Delta} E\left[\sigma_{t}^{2} \sigma_{r}^{2} \sigma_{s}^{2} \sigma_{w}^{2}\right] d t d r s d w . \tag{21}
\end{equation*}
$$

Other moments and cross-moments can be computed by using the same technique.

Appendix B

Define $U_{t}:=e^{\alpha t} \sigma_{t}^{2}$. By applying Ito's Lemma, we can write:

$$
U_{r}=U_{t}+\alpha \beta \int_{t}^{r} \exp (\alpha s) d s+\int_{t}^{r} \exp (\alpha s) \sigma_{s} d W_{s}
$$

where
Denote
$A_{1}=E\left[U_{t} U_{r}\right]$,

$$
\begin{aligned}
& A_{2}=E\left[U_{t} U_{r}^{2}\right], \\
& A_{3}=E\left[U_{t} U_{r}^{3}\right] \\
& B_{1}=E\left[U_{t} U_{r} U_{s}\right], \\
& B_{2}=E\left[U_{t} U_{r} U_{s}^{2}\right] \\
& C_{1}=E\left[U_{t} U_{r} U_{s} U_{w}\right] \\
& \text { and } f(t, r)=\alpha \int_{t}^{r} \exp (\alpha s) d s .
\end{aligned}
$$

We aim to compute the above expressions in terms of the raw moments of the process U_{t} and of model parameters (α, β, c). The computation of A_{1} is straightforward

$$
A_{1}=E\left[U_{t} U_{r}\right]=E\left[U_{t} E\left[U_{r} \mid F_{t}\right]\right]=E\left[U_{t}\left(U_{t}+\beta f(t, r)\right)\right]=E\left[U_{t}^{2}\right]+\beta f(t, r) E\left[U_{t}\right]
$$

For the computation of the other quantities we need $E\left[U_{r}^{2} \mid F_{t}\right]$ and $E\left[U_{r}^{3} \mid F_{t}\right]$ hence we need the dynamics of U_{r}^{2} and U_{r}^{3}. By applying Ito's Lemma we obtain

$$
\begin{aligned}
d U_{t}^{2} & =\left(2 U_{t} \alpha \beta \exp (\alpha t)+\exp (2 \alpha t) \exp (-\alpha t) U_{t}\right) d t \\
& \left.+2 U_{t} \exp (\alpha t) \sqrt{\exp (-\alpha t) U_{t}} d W_{t}\right) \text {, and } \\
d U_{t}^{3} & =3\left(U_{t}^{2} \alpha \beta \exp (\alpha t)+3 U_{t} \exp (2 \alpha t) \exp (-\alpha t) U_{t}\right) d t \\
& +3 U_{t}^{2} \exp (\alpha t) \sqrt{\exp (-\alpha t) U_{t}} d W_{t} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
A 3 & =E\left[U_{t} U_{r}^{3}\right]=E\left[U_{t} E\left[U_{r}^{3} \mid F_{t}\right]\right]= \\
& =E\left[U_{t}\left(U_{t}^{3}+3\left(\alpha \beta+c^{2}\right)\left(\frac{1}{\alpha} U_{t}^{2} f(t, r)+U_{t}\left(2 \beta+\frac{c^{2}}{\alpha}\right) \int_{t}^{r} \exp (\alpha u) f(t, u) d u\right)\right)\right] \\
& +E\left[U_{t}\left(3\left(\alpha \beta+c^{2}\right) \alpha \beta^{2} \int_{t}^{r} \exp (\alpha u) \int_{t}^{u} f(t, x) d x d u\right)\right] \\
& +E\left[U_{t}\left(3\left(\alpha \beta+c^{2}\right) c^{2} \beta \int_{t}^{r} \exp (\alpha u) \int_{t}^{u} \exp (\alpha x) f(t, x) d x d u\right)\right] \\
& =E\left[U_{t}^{4}\right]+3 \frac{\left(\alpha \beta+c^{2}\right)}{\alpha} f(t, r) E\left[U_{t}^{3}\right] \\
& +3\left(\alpha \beta+c^{2}\right)\left(2 \beta+\frac{c^{2}}{\alpha}\right) \int_{t}^{r} \exp (\alpha u) f(t, u) d u E\left[U_{t}^{2}\right]+ \\
& +6\left(\alpha \beta+c^{2}\right) \alpha \beta^{2} \int_{t}^{r} \exp (\alpha u) \int_{t}^{u} f(t, x) d x d u E\left[U_{t}\right] \\
& \left.+3\left(\alpha \beta+c^{2}\right) c^{2} \beta \int_{t}^{r} \exp (\alpha u) \int_{t}^{u} \exp (\alpha x) f(t, x) d x d u\right] E\left[U_{t}\right]
\end{aligned}
$$

$$
\begin{aligned}
B 1 & =E\left[U_{t} U_{r} U_{s}\right]=E\left[U_{t} U_{r} E\left[U_{s} \mid F_{r}\right]\right] \\
& =E\left[U_{t} U_{r}\left(U_{r}+\beta f(r, s)\right)\right]= \\
& =E\left[U_{t} U_{r}^{2}\right]+\beta f(r, s) E\left[U_{t} U_{r}\right]= \\
& =A 2+\beta f(r, s) A 1
\end{aligned}
$$

$$
\begin{aligned}
B 2 & =E\left[U_{t} U_{r} U_{s}^{2}\right]=E\left[U_{t} U_{r} E\left[U_{s}^{2} \mid F_{r}\right]\right]= \\
& =E\left[U_{t} U_{r}\left(U_{r}^{2}+U_{s}\left(2 \beta+\frac{c^{2}}{\alpha}\right) f(r, s)+2 \alpha \beta^{2} \int_{r}^{s} f(r, u) d u\right)\right] \\
& \left.+E\left[U_{t} U_{r} c^{2} \beta \int_{r}^{s} \exp (\alpha u) f(r, u)\right) d u\right] \\
& =E\left[U_{t} U_{r}^{3}\right]+\left(2 \beta+\frac{c^{2}}{\alpha}\right) f(r, s) E\left[U_{t} U_{r} U_{s}\right] \\
& \left.+\left[2 \alpha \beta^{2} \int_{r}^{s} f(r, u) d u+c^{2} \beta \int_{r}^{s} \exp (\alpha u) f(r, u)\right) d u\right] E\left[U_{t} U_{r}\right] \\
& \left.=A 3+\left(2 \beta+\frac{c^{2}}{\alpha}\right) f(r, s) B 1+\left[2 \alpha \beta^{2} \int_{r}^{s} f(r, u) d u+c^{2} \beta \int_{r}^{s} \exp (\alpha u) f(r, u)\right) d u\right] A 1 \\
& \\
\quad C 1 & =E\left[U_{t} U_{r} U_{s} U_{w}\right]=E\left[U_{t} U_{r} U_{s} E\left[U_{w} \mid F_{s}\right]\right]= \\
& =E\left[U_{t} U_{r} U_{s}\left(U_{s}+\beta f(s, w)\right)\right]= \\
& =E\left[U_{t} U_{r} U_{s}^{2}\right]+\beta f(s, w) E\left[U_{t} U_{r} U_{s}\right]= \\
& =B 2+\beta f(s, w) B 1
\end{aligned}
$$

The quantities $A 1$ to $C 1$ are thus written as a function the moments of order $p \leq 4$ of the process U_{t}. Since $V_{t}=e^{-\alpha t} U_{t}$, we can obtain $E\left[\sigma_{t}^{2} \sigma_{r}^{2}\right]=$ $e^{-\alpha(t+r)} A 1, E\left[\sigma_{t}^{2} \sigma_{r}^{2} \sigma_{s}^{2}\right]=e^{-\alpha(t+r+s)} B 1$ and $E\left[\sigma_{t}^{2} \sigma_{r}^{2} \sigma_{s}^{2} \sigma_{w}^{2}\right]=e^{-\alpha(t+r+s+w)} C 1$. Numerical computations have been performed using Mathematica 5.1

QUADERNI DEL DIPARTIMENTO DI ECONOMIA, FINANZA E STATISTICA

Università degli Studi di Perugia

1	Gennaio 2005	Giuseppe CALZONI Valentina BACCHETTINI	Il concetto di competitività tra approccio classico e teorie evolutive. Caratteristiche e aspetti della sua determinazione
2	Marzo 2005	Fabrizio LUCIANI Marilena MIRONIUC	Ambiental policies in Romania. Tendencies and perspectives
3	Aprile 2005	Mirella DAMIANI	Costi di agenzia e diritti di proprietà: una premessa al problema del governo societario
4	Aprile 2005	Mirella DAMIANI	Proprietà, accesso e controllo: nuovi sviluppi nella teoria dell'impresa ed implicazioni di corporate governance
5	Aprile 2005	Marcello SIGNORELLI	Employment and policies in Europe: a regional perspective
6	Maggio 2005	Cristiano PERUGINI Paolo POLINORI Marcello SIGNORELLI	An empirical analysis of employment and growth dynamics in the italian and polish regions
7	Maggio 2005	Cristiano PERUGINI Marcello SIGNORELLI	Employment differences, convergences and similarities in italian provinces
8	Maggio 2005	Marcello SIGNORELLI	Growth and employment: comparative performance, convergences and comovements
9	Maggio 2005	Flavio ANGELINI Stefano HERZEL	Implied volatilities of caps: a gaussian approach
10	Giugno 2005	Slawomir BUKOWSKI	EMU - Fiscal challenges: conclusions for the new EU members
11	Giugno 2005	Luca PIERONI Matteo RICCIARELLI	Modelling dynamic storage function in commodity markets: theory and evidence
12	Giugno 2005	Luca PIERONI Fabrizio POMPEI	Innovations and labour market institutions: an empirical analysis of the Italian case in the middle 90 's
13	Giugno 2005	David ARISTEI Luca PIERONI	Estimating the role of government expenditure in long-run consumption
14	Giugno 2005	Luca PIERONI Fabrizio POMPEI	Investimenti diretti esteri e innovazione in Umbria
15	Giugno 2005	Carlo Andrea BOLLINO Paolo POLINORI	Il valore aggiunto su scala comunale: la Regione Umbria 2001-2003
16	Giugno 2005	Carlo Andrea BOLLINO Paolo POLINORI	Gli incentivi agli investimenti: un'analisi dell'efficienza industriale su scala geografica regionale e sub regionale

17	Giugno 2005	Antonella FINIZIA Riccardo MAGNANI Federico PERALI Paolo POLINORI Cristina SALVIONI	Construction and simulation of the general economic equilibrium model Meg-Ismea for the italian economy
18	Agosto 2005	Elżbieta KOMOSA	Problems of financing small and medium-sized enterprises. Selected methods of financing innovative ventures
19	Settembre 2005	Barbara MROCZKOWSKA	Regional policy of supporting small and medium-sized businesses
20	Ottobre 2005	Luca SCRUCCA	Clustering multivariate spatial data based on local measures of spatial autocorrelation
21	Febbraio 2006	Marco BOCCACCIO	Crisi del welfare e nuove proposte: il caso dell'unconditional basic income
22	Settembre 2006	Mirko ABBRITTI Andrea BOITANI Mirella DAMIANI	Unemployment, inflation and monetary policy in a dynamic New Keynesian model with hiring costs
23	Settembre 2006	Luca SCRUCCA	Subset selection in dimension reduction methods
24	Ottobre 2006	Sławomir I. BUKOWSKI	The Maastricht convergence criteria and economic growth in the EMU
25	Ottobre 2006	Jan L. BEDNARCZYK	The concept of neutral inflation and its application to the EU economic growth analyses
26	Dicembre 2006	Fabrizio LUCIANI	Sinossi dell'approccio teorico alle problematiche ambientali in campo agricolo e naturalistico; il progetto di ricerca nazionale F.I.S.R. M.I.C.E.N.A.
27	Dicembre 2006	Elvira LUSSANA	Mediterraneo: una storia incompleta
28	Marzo 2007	Luca PIERONI Fabrizio POMPEI	Evaluating innovation and labour market relationships: the case of Italy
29	Marzo 2007	David ARISTEI Luca PIERONI	A double-hurdle approach to modelling tobacco consumption in Italy
30	Aprile 2007	David ARISTEI Federico PERALI Luca PIERONI	Cohort, age and time effects in alcohol consumption by Italian households: a double-hurdle approach
31	Luglio 2007	Roberto BASILE	Productivity polarization across regions in Europe
32	Luglio 2007	Roberto BASILE Davide CASTELLANI Antonello ZANFEI	Location choices of multinational firms in Europe: the role of EU cohesion policy
33	Agosto 2007	Flavio ANGELINI Stefano HERZEL	Measuring the error of dynamic hedging: a Laplace transform approach

34	Agosto 2007	Stefano HERZEL Cătălin STĂRICĂ Thomas NORD	The IGARCH effect: consequences on volatility forecasting and option trading
35	Agosto 2007	Flavio ANGELINI Stefano HERZEL	Explicit formulas for the minimal variance hedging strategy in a martingale case
36	Agosto 2007	Giovanni BIGAZZI	The role of agriculture in the development of the people's Republic of China
37	Settembre 2007	Enrico MARELLI Marcello SIGNORELLI	Institutional change, regional features and aggregate performance in eight EU's transition countries
38	Ottobre 2007	Paolo NATICCHIONI Andrea RICCI Emiliano RUSTICHELLI	Wage structure, inequality and skillbiased change: is Italy an outlier?
39	Novembre 2007	The International Study Group on Exports and Productivity	Exports and productivity. Comparable evidence for 14 countries
40	Dicembre 2007	Gaetano MARTINO Paolo POLINORI	Contracting food safety strategies in hybrid governance structures
41	Dicembre 2007	Floro Ernesto CAROLEO Francesco PASTORE	The youth experience gap: explaining differences across EU countries
42	Gennaio 2008	Melisso BOSCHI Luca PIERONI	Aluminium market and the macroeconomy
43	Febbraio 2008	Flavio ANGELINI Marco NICOLOSI	Hedging error in Lévy models with a fast Fourier Transform approach
44	Febbraio 2008	Luca PIERONI Giorgio d'AGOSTINO Marco LORUSSO	Can we declare military Keynesianism dead?
45	Febbraio 2008	Pierluigi GRASSELLI Cristina MONTESI Paola IANNONE	Mediterranean models of Welfare towards families and women
46	Marzo 2008	Mirella DAMIANI Fabrizio POMPEI	Mergers, acquisitions and technological regimes: the European experience over the period 2002-2005
47	Marzo 2008	Bruno BRACALENTE Cristiano PERUGINI	The Components of Regional Disparities in Europe
48	Marzo 2008	Cristiano PERUGINI Fabrizio POMPEI Marcello SIGNORELLI	FDI, R\&D and Human Capital in Central and Eastern European Countries
49	Marzo 2008	Cristiano PERUGINI	Employment and Unemployment in the Italian Provinces
50	Marzo 2008	Sławomir I. BUKOWSKI	On the road to the euro zone. Currency rate stabilization: experiences of the selected EU countries
51	Aprile 2008	Bruno BRACALENTE Cristiano PERUGINI Fabrizio POMPEI	Homogeneous, Urban Heterogeneous, or both? External Economies and Regional Manufacturing Productivity in Europe

52	Aprile 2008	Gaetano MARTINO Cristiano PERUGINI	Income inequality within European regions: determinants and effects on growth
53	Aprile 2008	Jan L. BEDNARCZYK	Controversy over the interest rate theory and policy. Classical approach to interest rate and its continuations
54	Aprile 2008	Bruno BRACALENTE Cristiano PERUGINI	Factor decomposition of crosscountry income inequality with interaction effects
55	Aprile 2008	Cristiano PERUGINI	Employment Intensity of Growth in Italy. A Note Using Regional Data
56	Aprile 2008	Cristiano PERUGINI Fabrizio POMPEI	Technological Change, Labour Demand and Income Distribution in European Union Countries
57	Aprile 2008	Simona BIGERNA Paolo POLINORI	L'analisi delle determinanti della domanda di trasporto pubblico nella città di Perugia
58	Maggio 2008	Simona BIGERNA Paolo POLINORI	The willingness to pay for Renewable Energy Sources (RES): the case of Italy with different survey approaches and under different EU "climate vision". First results
59	Giugno 2008	Simona BIGERNA Paolo POLINORI	Ambiente operativo ed efficienza nel settore del Trasporto Pubblico Locale in Italia
60	Ottobre 2008	Pierluigi GRASSELLI Cristina MONTESI Roberto VIRDI	L'interpretazione dello spirito del dono
61	Novembre 2008	Antonio BOGGIA Fabrizio LUCIANI Gianluca MASSEI Luisa PAOLOTTI	L'impatto ambientale ed economico del cambiamento climatico sull'agricoltura
62	Novembre 2008	Elena STANGHELLINI Francesco Claudio STINGO Rosa CAPOBIANCO	On the estimation of a binary response model in a selected population
63	Dicembre 2008	Gianna FIGȦ-TALAMANCA	Limit results for discretely observed stochastic volatility models with leverage effect
64	Maggio 2009	Mirella DAMIANI Andrea RICCI	Factors behind performance-related pay: evidence from Italy
65	Giugno 2009	Alessandra RIGHI Dario SCIULLI	The Timing of the School-toPermanent Work Transition: a Comparison across Ten European Countries
66	Settembre 2009	Fabrizio LUCIANI	Economia agraria e pianificazione economica territoriale nel Parco nazionale del Sagarmatha (Everest, Nepal)
67	Settembre 2009	Valentina TIECCO	I regimi di protezione dell'impiego

68 Ottobre 2009 Gianna FIGÀ-TALAMANCA | Path properties of simulation schemes |
| :--- |
| for the Heston stochastic volatility |
| model | model

I QUADERNI DEL DIPARTIMENTO DI ECONOMIA Università degli Studi di Perugia

1	Dicembre 2002	Luca PIERONI:	Further evidence of dynamic demand systems in three european countries
2	Dicembre 2002	Luca PIERONI Paolo POLINORI:	Il valore economico del paesaggio: un'indagine microeconomica
3	Dicembre 2002	Luca PIERONI Paolo POLINORI:	A note on internal rate of return
4	Marzo 2004	Sara BIAGINI:	A new class of strategies and application to utility maximization for unbounded processes
5	Aprile 2004	Cristiano PERUGINI:	La dipendenza dell'agricoltura italiana dal sostegno pubblico: un'analisi a livello regionale
6	Maggio 2004	Mirella DAMIANI:	Nuova macroeconomia keynesiana e quasi razionalità
7	Maggio 2004	Mauro VISAGGIO:	Dimensione e persistenza degli aggiustamenti fiscali in presenza di debito pubblico elevato
8	Maggio 2004	Mauro VISAGGIO:	Does the growth stability pact provide an adequate and consistent fiscal rule?
9	Giugno 2004	Elisabetta CROCI ANGELINI Francesco FARINA:	Redistribution and labour market institutions in OECD countries
10	Giugno 2004	Marco BOCCACCIO:	Tra regolamentazione settoriale e antitrust: il caso delle telecomunicazioni
11	Giugno 2004	Cristiano PERUGINI Marcello SIGNORELLI:	Labour market performance in central european countries
12	Luglio 2004	Cristiano PERUGINI Marcello SIGNORELLI:	Labour market structure in the italian provinces: a cluster analysis
13	Luglio 2004	Cristiano PERUGINI Marcello SIGNORELLI:	I flussi in entrata nei mercati del lavoro umbri: un'analisi di cluster
14	Ottobre 2004	Cristiano PERUGINI:	Una valutazione a livello microeconomico del sostegno pubblico di breve periodo all'agricoltura. Il caso dell'Umbria attraverso i dati RICA-INEA
15	Novembre 2004	Gaetano MARTINO Cristiano PERUGINI	Economic inequality and rural systems: empirical evidence and interpretative attempts
16	Dicembre 2004	Federico PERALI Paolo POLINORI Cristina SALVIONI Nicola TOMMASI Marcella VERONESI	Bilancio ambientale delle imprese agricole italiane: stima dell'inquinamento effettivo

[^0]: ${ }^{1}$ This is actually a quasi-closed formula since some integrals involved in the expression are evaluated numerically.

