
BANACH FAMILIES AND THE IMPLICIT FUNCTION

THEOREM

JEAN-FRANÇOIS MERTENS† AND ANNA RUBINCHIK‡

Abstract. We generalise the classical implicit function theorem (IFT) for a
family of Banach spaces, with the resulting implicit function having derivatives
that are locally Lipschitz to very strong operator norms.

Notation. For Banach spaces X and Y , L(X,Y ) is the Banach space of continuous
linear maps from X to Y ; so L(X,X) is the Banach algebra of operators on X .
X × Y and1 X ∩ Y have by default the maximum norm.

Definition 1. Fix a pointed set A, i.e. a pair (A,α0) with α0 ∈ A. Fix also a class
of subsets A of A with α0 ∈ S ∀S ∈ A.

A Banach family (B,A), or shortly B, is a Banach space (B, ‖·‖) endowed with
a collection of pseudo-norms (‖·‖α)α∈A, s.t. ‖·‖α0

= ‖·‖, where we allow pseudo-
norms to take infinite values.2 Bα = {x ∈ B | ‖x‖α < ∞}.3,4

For 2 Banach families X and Y , and a linear map ϕ from X to Y , let ‖ϕ‖α =
sup{‖ϕ(x)‖α | ‖x‖α ≤ 1}, and, for S ∈ A, ‖ϕ‖S = supα∈S‖ϕ‖α; and let LA(X,Y ) =
{ϕ ∈ L(X,Y ) | ∀S ∈ A, ‖ϕ‖S < ∞}, endowed with the family of norms (‖·‖S)S∈A .

Remark 1. Nothing prevents to endow the same Banach space with 2 different
Banach family structures; those should however be distinguished notationally then.
E.g., Rn will denote denote this space with the constant family of pseudo-norms,
while (Rn, {0}) will be used when, for α 6= α0, Rn

α = {0}.

Remark 2. The main intent is to be able to view B also as some sort of Bα-manifold;
i.e., to speak of α-neighbourhoods of points in B.

Remark 3. As is clear from the definition, the purpose of constructing Banach
families is to get operator norms, later used to formulate the ift. One could, con-
ceivably, use a classical ift for each of the norms α ∈ A and get as final conclusion:
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1This will be used only when X and Y inject continuously and linearly into a common

Hausdorff topological vector space (e.g, the equivalence classes of measurable functions, with
convergence in measure on compact subsets), with the injections coinciding on X ∩ Y and
mapping it to the intersection of the images, ensuring X ∩ Y is a Banach space.

2Else it would basically amount to a locally convex space.
3If (Bα, ‖·‖α) is a Banach space it suffices for ‖·‖α ≥ εα‖·‖ that ‖xn‖α → 0 and ‖xn −x‖ → 0

implies x = 0 (closed graph theorem).
4All ‖·‖α used in [4] are l.s.c., and s.t. Bα is a Banach space under max{‖·‖, ‖·‖α}.
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∀α∃ neighbourhood of a point x0 on which there exists an “α-smooth” implicit func-
tion, however the intersection of those neighbourhoods can very well be reduced to
{x0}! Clearly, such a statement would be not be very useful.

Banach families allow to formulate a unified ift, thm. 1. Prop. 3 can be used to
prove by decomposition the required smoothness property of the underlying map.

The explicit operator norms for the Banach families used in [4, def. 7] are ob-
tained in that paper in sect. 5.5.3.

Remark 4. If #A = 1 or Xα = {0} for α 6= α0, LA(X,Y ) = L(X,Y ), so the
definitions reduce to the usual ones.

Lemma 1. For fi ∈ LA(Y, Z) and gi ∈ LA(X,Y ), fi ◦gi ∈ LA(X,Z) and, ∀S ∈ A,
‖f1 ◦ g1 − f2 ◦ g2‖S ≤ ‖f1‖S‖g1 − g2‖S + ‖g2‖S‖f1 − f2‖S .

Proof. Establish first ‖f ◦ g‖S ≤ ‖f‖S‖g‖S (the particular case where g2 = 0); use
then the triangle inequality. �

Definition 2. A map g : E → F between topological vector spaces is C-differen-

tiable [6] at x ∈ E, for a class C of subsets of E, iff there exists g′ ∈ L(E,F ), its
C-derivative at x, s.t. y 7→ 1

ε
[g(x+εy)−g(x)]−g′(y) −−→

ε→0
0 uniformly on all sets in C.

We use F -differentiable (Fréchet), resp. H - (Hadamard), sH - (strongly —), G-
(Gâteaux), when C is the class of bounded, resp. compact, weakly compact, finite
subsets (cf. e.g. [3, 6, 7, 2, 1] for background).

Definition 3. For Banach families (X,A) and (Y,A), and O open in X , F : O → Y

is S1 (or: S1
A

) if F is Gâteaux-differentiable at each x ∈ O, with derivative F ′
x ∈LA(X,Y ), and if, ∀‖·‖S (S ∈ A), x 7→ F ′

x is locally Lipschitz on O.

Remark 5. The local Lipschitz constant, ℓSF (x)
def
= infε>0 sup‖yi−x‖≤ε

‖ϕy1
−ϕy2

‖S

‖y1−y2‖
, is

by definition u.s.c. (upper semi-continuous).

Remark 6. We will need the “locally Lipschitz” aspect above only at 1 point, how-
ever crucial, in prop. 1, where we will use this ‘equi-Lipschitz’ aspect to get δ inde-
pendent of α ∈ S (‘equi’ refers to the comparability of norms for different α); all the
rest would go through one or other way with just e.g. ‘continuous for each α’ instead.

Remark 7. When F and F ′ have a priori values in some larger linear spaces, suf-
fices, if O is connected (thus: by piece-wise linear paths), to prove there is 1 point
mapped by F to Y and 1 by F ′ to LA(X,Y ): continuity of F ′ will then imply it is
everywhere in LA(X,Y ), next differentiability (prop. 1.i) will imply F (x) ∈ Y ∀x.

Lemma 2. If f : X → Y is locally Lipschitz, where X,Y are metric spaces, then
each compact subset of X has a neighbourhood on which f is Lipschitz.

Proof. Fix C ⊆ X compact. Let On denote a finite family of open subsets of X that
cover C and such that f is Lipschitz on each On, say with constant L. Consider
the (Lipschitz) function g(x) = maxn d(x, ∁On) on X ; since g > 0 on the compact
set C, ∃ε > 0 s.t. g(x) > ε on the open neighbourhood O = {x | d(x,C) ≤ ε} of
C: x, y ∈ O and d(x, y) ≤ ε ⇒ ∃n : (x, y) ∈ On × On. Thus on O we have that
d(x, y) ≤ ε ⇒ d(f(x), f(y)) ≤ Ld(x, y). Consider then the locally Lipschitz function

F (x, y) = d(f(x),f(y))
d(x,y) on {x, y ∈ O × O | d(x, y] ≥ ε: by continuity, it is bounded,

say by L′ ≥ L, on the compact set C×C. So, again by continuity and compactness
of C × C, ∃ε′ > 0, ε′ ≤ ε : F (x, y) ≤ L′ + 1 on the ε′-neighbourhood of C × C. �

Next proposition shows that S1 implies C1, and much more.

Proposition 1. For Banach families (X,A) and (Y,A), let F : O → Y be S1 with
O open in X . Then:
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(i) ∀S ∈ A and each compact subset C of O there exists a neighbourhood of
C, V ⊆ O, and ∃K, ε > 0 s.t., for any x ∈ V and α ∈ S, ‖δx‖ ≤ ε ⇒
‖F (x+ δx)− F (x) − F ′

x(δx)‖α ≤ K‖δx‖‖δx‖α.
(ii) Let, for x ∈ O, Vα be the ‖·‖-connected component of 0 in (O − x) ∩Xα.

Vα and its complement in (O−x)∩Xα have disjoint closures in (O−x, ‖·‖)
and Vα is connected via piecewise-linear paths, so, in any vector topology.

(iii) δx 7→ F (x+δx)−F (x) is Bα-differentiable from Vα to Yα with F ′
x+δx as de-

rivative at δx, Bα being the class of subsets bounded both in X and in Xα.
(iv) ∀S ∈ A, each point of O has a ‖·‖-neighbourhood U and ∃K s.t., ∀α ∈ S,

∀x, y ∈ U, ‖F (x)− F (y)‖α ≤ K‖x− y‖α.
(v) F is (Fréchet) C1.

Remark 8. Clearly e.g. point iii becomes much stronger and simpler when ∀α ‖·‖α ≥
εα‖·‖. But one verifies immediately that if one defines a new family ‖·‖′α

def
=

max{‖·‖α, ‖·‖} then ∀S ‖·‖′S ≤ ‖·‖S, so that all conclusions available from the S1

property with the new family are already so with the original family, plus some
more.

Proof. i: By lemma 2, there is a neighbourhood W ⊆ O of the compact set C s.t.
F ′ : X → LA(X,Y ) is Lipschitz on W w.r.t. ‖·‖S, say with constant K.

Each point of C has a convex neighbourhood U ⊆ W . Assume x ∈ U, x+δx ∈ U .
For t ∈ [0, 1] let f(t) = F (x + tδx) − F (x) − tF ′

x(δx): f ′
t = (F ′

x+tδx − F ′
x)(δx), so

‖f ′
t1
− f ′

t2
‖α ≤ ‖F ′

x+t1δx
−F ′

x+t2δx
‖S‖δx‖α ≤ K|t1− t2|‖δx‖‖δx‖α: f ′ has Lipschitz

constant L = K‖δx‖‖δx‖α. Since f(0) = f ′(0) = 0, this implies first ‖f ′
t‖α ≤ L,

next, by integration, ‖f(1)‖α ≤ K‖δx‖‖δx‖α.
Use now those neighbourhoods as in the proof of lemma 2 to construct an open

covering On of C, and then to find ε > 0 s.t. d(x,C) ≤ ε, d(x + δx, C) ≤ ε and
‖δx‖ ≤ ε imply ‖F (x + δx) − F (x) − F ′

x(δx)‖α ≤ K‖δx‖‖δx‖α. Halving this ε

yields then the statement, since d(x,C) ≤ ε
2 and ‖δx‖ ≤ ε

2 imply d(x+ δx, C) ≤ ε.
ii: Since F ′

x ∈ L(Xα, Yα), (i) implies first that F (x+δx)−F (x) ∈ Yα for δx ∈ Xα,
‖δx‖ sufficiently small. Re-applying this at each point of Wx = {δx ∈ (O−x)∩Xα |
F (x+ δx)− F (x) ∈ Yα} shows Wx is a ‖·‖-open neighbourhood of 0 in Xα.

V ′ = {z ∈ Vα | ∃m, ∃xi with i = 1 . . . 2m + 1: x1 = x, x2m+1 = x + z,
x2i±1 − x2i ∈ Wx2i

for i = 1 . . .m} is trivially open and closed in Vα, so V ′ = Vα.
Hence the second statement. For the first, let else z belong to both closures: a
‖·‖-ball around z is contained in O − x and intersects Vα and its complement, say
in z1 and z2. Then the segment from z1 to z2 lies in the ball, hence in O − x, and
also in Xα: z2 is connected to Vα, hence ∈ Vα: contradiction.

iii: Since F (x2i±1)− F (x2i) ∈ Y α, F (x+ z)− F (x) ∈ Y α ∀z ∈ Vα. Use then (i)
at each x+ z for z ∈ Vα.

iv: Intersect in (i) the ε
2 -neighbourhood of the compact set {x} with V ; restrict

still more if needed to ensure that ‖F ′
x‖S is bounded on U .

v: Take α = α0 in i. �

Corollary 1. If F : O → Y is S1 and O is either connected, with Xα dense in
X , or is convex, then z 7→ F (x + z) − F (x) is, ∀x ∈ O, Bα-differentiable from
(O − x) ∩Xα ⊆ Xα to Yα.

Lemma 3. f :
∏n

1 Xi → Y (Xi, Y metric spaces) is locally Lipschitz if it is so for
arguments that differ in a single coordinate.

Definition 4. For Banach families (Xi,A) (i = 1 . . . n) the product (X,A) is
defined by X =

∏

Xi, ‖x‖α = maxi‖xi‖i,α ∀α ∈ A.

Lemma 4. For S1 maps fi : (Y,A) → (Xi,A), f =
∏

fi : (Y,A) →
∏

(Xi,A) is S1.
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Proof. Let X =
∏

iXi. One checks immediately that f ′ def
= (f ′

1, . . . , f
′
n) ∈ LA(Y,X),

with ‖f ′‖S = maxi‖f ′
i‖S — which implies ℓSf = maxi ℓ

S
fi

. Finally, since f ′ ∈LA(Y,X), the differentiability of f follows straight from that of the fi. �

Remark 9. The analogue of this lemma for gi : (Yi,A) → (Xi,A) and g =
∏

gi :
∏

(Yi,A) →
∏

(Xi,A) will be an immediate corollary (of prop. 3), using fi =
gi ◦ proji with proji :

∏

(Yj ,A) → (Yi,A) (and a corollary of prop. 2 (with n = 1)
for proji).

Lemma 5. A map f :
∏

(Xi,A) → (Y,A) is S1 iff it is separately so and each partial
derivative is locally Lipschitz for arguments that differ in a single coordinate.

Proof. The condition is clearly necessary. Assume it holds; then the vector of
partial derivatives satisfies the Lipschitz condition (lemma 3); suffices thus to prove
it equals the Gâteaux differential. This follows from the same argument as in the
proof of prop. 1.i, using a path where 1 coordinate is changed at a time. �

Definition 5. A map ϕ between linear spaces is affine if ϕ(αx + (1 − α)y) =
αϕ(x) + (1− α)ϕ(y) for any x, y in the domain and any scalar α.

A map from a product of linear spaces to a linear space is multi-affine if it is
affine in each coordinate, for any fixed values of the other coordinates.

‖ϕ‖
def
= sup‖xi‖≤1∀i‖ϕ(x1, . . . , xn)‖ for a multi-affine map between normed spaces.

Lemma 6. Let ϕ be a multi-affine map between normed spaces. If ‖ϕ(x)‖ ≤ K in
the ε-ball around x̄, then ∀x ‖ϕ(x)‖ ≤ K

(‖x−x̄‖
ε

)n
, so ‖ϕ‖ < ∞, and ϕ has local

Lipschitz constant ≤ nmax{1, ‖x‖n−1}‖ϕ‖.

Proof. For the bound, one may assume by translation x0 = 0. Enlarge the ε-ball to
radius R one coordinate at a time: each time, by affinity, the bound on the norm
is multiplied by at most R

ε
. Hence the result.

For the Lipschitz aspect, deduce first that, for R ≥ 1, ‖x1‖ ≤ ε, ‖xi‖ ≤ R ⇒
‖ϕ(x1, . . . , xn)−ϕ(0, x2, . . . , xn)‖ ≤ εRn−1‖ϕ‖ (multiplying x1 by R

ε
). So ‖ϕ(x)−

ϕ(y1, x2, . . . , xn)‖ = ‖ϕ(x1−y1, x2, . . . , xn)−ϕ(0, x2, . . . , xn)‖ ≤ Rn−1‖x1−y1‖‖ϕ‖.
Applying this 1 coordinate at a time allows to pass in n steps from an arbi-
trary vector x to an arbitrary vector y, provided both are in the R-ball. Thus
‖ϕ(x)−ϕ(y)‖ ≤ Rn−1‖ϕ‖

∑

i‖xi−yi‖, so ≤ n
(

max{1, ‖x‖, ‖y‖}
)

n−1‖ϕ‖‖x−y‖. �

Next proposition, especially in the multi-linear case where ϕi = ϕ, might suggest
to look at tensor products, at least for #A = 2 (“Banach pairs”).

Proposition 2. For Banach families Xi (i = 1 . . . n) and Y , let ϕ :
∏

Xi → Y be
multi-affine. Let ϕi def

= δxi 7→ ϕ(δxi, x−i)−ϕ(0, x−i) (the ith partial derivative), and
let ‖ϕi‖α be its norm as a multi-affine map, equivalently from Xi,α×

∏

j 6=i Xj to Yα

or from
∏

j 6=i Xj to L(Xi,α, Yα). For S ∈ A, let |‖ϕ‖|S = maxi supα∈S‖ϕ
i‖α. Then:

(i) For O 6= ∅ open in
∏

Xi, ϕ is S1 on O iff |‖ϕ‖|S < ∞ ∀S ∈ A .
(ii) ℓSϕ ≤ n(n− 1)max{1, ‖x‖n−2}|‖ϕ‖|S .

Proof. Assume ϕ is S1somewhere. Its derivative there can only be ϕ′ =
∑

i ϕ
i : δx 7→

∑

i ϕ
i(δxi). Since ‖ϕ′

x‖α ≥ maxi sup‖δxi‖α≤1‖ϕ
i
x
−i
(δxi)‖α , ‖ϕ′

x‖S ≥ maxi supα∈S

sup‖δxi‖α≤1‖ϕ
i
x
−i
(δxi)‖α. Now ‖ϕ′

x‖S is locally bounded where ϕ is S1; thus ∃x̄,K, ε :

∀α ∈ S, ∀i, ‖x−i − x̄−i‖ ≤ ε, ‖δxi‖α ≤ 1 ⇒ ‖ϕi
x
−i
(δxi)‖α ≤ K. Hence, by lemma

6, viewing ϕi as a multi-affine function of x−i to L(Xi,α, Yα): ∀x, ‖δxi‖α ≤ 1 ⇒

‖ϕi
x
−i
(δxi)‖α ≤ K

(‖x−x̄‖
ε

)n−1
; so supα∈S‖ϕ

i‖α ≤ K
(‖x̄‖+1

ε

)n−1
. Thus |‖ϕ‖|S < ∞.
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Assume now |‖ϕ‖|S < ∞ ∀S ∈ A. Since the norm of ϕi :
∏

j 6=i Xj → L(Xi,α, Yα)

is ‖ϕi‖α, the norm of ϕi :
∏

j 6=i Xj → LA(Xi, Y ), when the latter space is en-

dowed with ‖·‖S, is ≤ |‖ϕ‖|S . Thus, by lemma 6, ϕi has local Lipschitz con-
stant ≤ (n − 1)max{1, ‖x−i‖n−2}|‖ϕ‖|S w.r.t. the ‖·‖S norm on its values: since
‖ϕ′‖ ≤

∑

i‖ϕ
i‖, ℓSϕ ≤ n(n − 1)max{1, ‖x‖n−2}|‖ϕ‖|S . So the local Lipschitz re-

quirement is satisfied. Hence the result by lemma 5. �

Remark 10. |‖ϕ‖| = 0 implies (lemma 6, using α = α0) that all partial derivatives
are identically 0, so ϕ is constant. In particular, |‖ϕ‖| is a norm on multilinear maps.

Remark 11. A polynomial map ϕ :
∏

Xi → Y is the composition of the diagonal
maps Xi →

∏

j∈Ij
Xi,j , where the Xi,j are copies of Xi, with a multiaffine map

from
∏

i,j Xi.j to Y (and the latter can always be chosen symmetric in each Ij).

Prop. 2 allows thus to prove the S1 property of adequate polynomial maps, using
prop. 3 for the composition and lemma 4 for the diagonal maps.

But is there a direct and natural extension of prop. 2 to polynomial maps?

Proposition 3. For O ⊆ X and U ⊆ Y both open, if g : O → U and f : U → Z

are S1, f ◦ g is so.

Proof. Lemma 1 implies f ′
gx

◦ g′x ∈ LA(X,Z) ∀x. By lemma 1.v it is the Fréchet

derivative, using the stability of C1maps under composition. Lemma 1 again yields
then the local Lipschitz aspect of x 7→ f ′

gx
◦ g′x, using the continuity of g (lemma

1.v) and the fact that locally Lipschitz functions are locally bounded. �

Corollary 2. S1maps from (X,A) to (Y,A) form a vector space, and an algebra
if Y is a Banach algebra s.t., ∀S, supα∈S sup‖y‖≤1,‖z‖α≤1 max{‖yz‖α, ‖zy‖α} < ∞

(so Yα is a 2-sided ideal). They are also a module on the algebra of S1 maps from
(X,A) to (R, {0}), where R stands for the base-field.

Proof. By prop. 2 the sum (n = 1, triangle inequality) [resp., product (n = 2)] and
the product with given scalars (n = 1) on (Y,A) are S1. Apply then prop. 3. For
the last sentence, argue similarly, this time for the product with scalars viewed as a
bilinear map, since the algebra-property of this set of maps is now established. �

The core of next proposition, consisting essentially of the beginning of the proof,
would not need the Lipschitz assumption (and not obtain the Lipschitz aspect in
the conclusion). Instead, it would suffice to assume a form of ‘equal continuity’
of the partial derivatives: that ∀ε > 0∃δ > 0: ‖(∂F

∂x
)x,y − (∂F

∂x
)x0,y0

‖α ≤ ε ∀α if
‖x− x0, y − y0‖ < δ. However, the only practical way we found to ensure such an
‘equal continuity’ of maps with values in a family of different spaces was using com-
putations of Lipschitz constants; further, continuity of ̟′

y on Y is very important.
Thus we use such assumptions, and draw the corresponding additional conclusions.

Theorem 1 (IFT). Given 2 Banach families (X,A) and (Y,A), let F : X×Y → X

vanish at (x0, y0), and be S1 in a neighbourhood V of (x0, y0). If (∂F
∂x

)x0,y0
is in-

vertible in LA(X,X), then ∀S ∈ A, ∃δ, δ′ > 0 and an S1
{S} map ̟ : {y | ‖y − y0‖ <

δ} → X s.t. x = ̟(y) is the unique solution of F (x, y) = 0 with ‖x− x0‖ ≤ δ′, and
s.t. ∀y, (∂F

∂x
)̟(y),y has an inverse in L{S}(X,X) which is a Lipschitz function of y.

Proof. Reduce V to ensure it is open, bounded, and that ℓSF is bounded on V ,

say by L; so ‖(∂F
∂y

)x,y‖S is also bounded, say by D. The theorem with C1, when

Xα = Yα = {0} ∀α, is classical [e.g. 5, theorems 25, 26, vol. 1]. Use it first, with
prop. 1.v, to obtain a C1 ̟, in a δ0-neighbourhood of y0 ∈ Y, s.t. the graph of ̟
above this δ0-neighbourhood belongs to V, and a δ′ > 0 s.t. uniqueness holds for
‖x− x0‖ ≤ δ′ and ‖y − y0‖ ≤ δ0. In particular, ̟ is Gâteaux-differentiable.
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Let M = (∂F
∂x

)x0,y0
, Y = M + Z, then Y −1 = M−1(1 + ZM−1)−1; so, since

(1−X)−1 exists and =
∑

n≥0 X
n, with norm ≤ 2 when ‖X‖ ≤ 1

2 , if ‖ZM−1‖S ≤ 1
2

then ‖Y −1‖S ≤ 2‖M−1‖S; i.e., with C = 2‖(∂F
∂x

)−1
x0,y0

‖S , and using lemma 1, if

‖Z‖S ≤ 1
C

, then ‖Y −1‖S ≤ C. Thus, if ‖(∂F
∂x

)x,y − (∂F
∂x

)x0,y0
‖S < 1

C
, then (∂F

∂x
)x,y

is invertible and ‖(∂F
∂x

)−1
x,y‖S ≤ C. This condition holds if ‖x − x0, y − y0‖ ≤ 1

LC
.

By continuity of ̟ at y0, ∃δ < δ0 : ‖y − y0‖ ≤ δ ⇒ ‖̟(y)− x0, y − y0‖ < 1
LC

. So

‖y − y0‖ ≤ δ ⇒ (∂F
∂x

)̟y ,y is invertible in LS(X,X) and ‖(∂F
∂x

)−1
̟y,y

‖S ≤ C.

Since ̟′
y = d̟

dy
= −

(

∂F
∂x

)−1 ∂F
∂y

at x = ̟y, ‖̟′(y)‖S ≤ CD, by lemma 1.

And since A−1 −B−1 = A−1(B−A)B−1, lemma 1 again yields ‖A−1 −B−1‖ ≤
‖A−1‖‖B−1‖‖A−B‖. Thus ‖(∂F

∂x
)−1
̟y1

,y1
−(∂F

∂x
)−1
̟y2

,y2
‖S ≤ C2L‖̟y1

−̟y2
, y1−y2‖.

So, ‖̟′
y1

− ̟′
y2
‖S = ‖(∂F

∂x
)−1
̟(y1),y1

(∂F
∂y

)̟(y1),y1
− (∂F

∂x
)−1
̟(y2),y2

(∂F
∂y

)̟(y2),y2
‖S ≤

C‖(∂F
∂y

)̟(y1),y1
− (∂F

∂y
)̟(y2),y2

‖S + D‖(∂F
∂x

)−1
̟(y1),y1

− (∂F
∂x

)−1
̟(y2),y2

‖S, by lemma 1;

≤ (CL+D(C2L))(1 + CD)‖y1 − y2‖: ℓS̟ ≤ LC(1 + CD)2. Thus ̟ is S1. �
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