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Abstract

An IPV 2-bidder second-price auction is preceded by two rounds of

bribing: prior to the auction each bidder can try to bribe his rival to

depart from the auction, so that he (the briber) will become the sole

participant and obtain the good for the reserve price. Bribes are offered

sequentially according to an exogenously given order—there is a first

mover and a second mover. I characterize the unique efficient collusive

equilibrium in monotonic strategies; in it, the second mover extracts

the entire collusive gain. This equilibrium remains an equilibrium even

when valuations are interdependent, and if they are separable then the

full surplus extraction result continues to hold. Additionally, a family

of pooling equilibria is studied, in which all the types of the first mover

offer the same bribe.
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1 Introduction

Collusion among participants in auctions is a serious and well-documented

problem.1 In the simplest collusive scenario, the cartel members meet prior

to the auction in order to decide on side-payments and on a representative

bidder, who will bid in the auction on behalf of the cartel. The very first

question an economist needs to address when modeling such scenarios is: what

is it that the cartel members do before the auction? What is the pre-auction

interaction?

In the existing literature, it is typically assumed that the cartel members

either play a revelation game or a “knockout auction.”2 In a revelation game,

each member reports a valuation, and the collusive agreement is determined

as a function of the profile of reports (and possibly further information, such

as the behavior of non-cartel-members). In a “knockout auction,” the cartel

members run an auction among themselves, for the right to participate in the

real auction.

Each of these games is a one-shot game. In reality, however, collusive

situations are a special kind of bargaining situations (once a surplus is ex-

tracted from the seller, there is the question how to divide the spoils), and

the latter, by their nature, are sequential. The colluding parties go through a

“face-to-face” negotiation process, that leads to a collusive agreement (or dis-

agreement). During such a negotiation phase there is signaling (the players’

moves are indirect signals of their private information), which gives rise to an

adverse selection problem. Static models, therefore, miss an important aspect

1See, for example, Baldwin et al. (1997), Cassady (1967), and Porter and Zona (1993).
2Leading examples include Graham and Marshall (1987), Mailath and Zemsky (1991),

Marshall and Marx (2007), and McAfee and McMillan (1992).
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of the strategic situation; this shortcoming leads me to study the following

game.

I consider an IPV 2-bidder second-price auction which is preceded by two

rounds of bribing; each bidder, in his turn, can offer his rival a bribe in ex-

change for the latter’s departure from the auction. Bribes are offered sequen-

tially according to an exogenously given order, and if both offers are rejected

then the pre-auction phase ends, and both bidders go on to compete against

one another in the auction. This game is an extension of the “take-it-or-leave-

it” (TIOLI) game of Esö and Schummer (2004, henceforth ES), which consists

of a second-price auction and a single pre-auction round, in which a designated

player has the opportunity to offer a bribe to his rival in exchange for the latter

to depart, and if it is rejected then the pre-auction phase ends. That is, the

present model is obtained by adding one round of bribing to that of ES.

My goal is to address the following questions in a setting that captures the

aforementioned sequential signaling: (i) is efficient collusion possible, and if

so, what collusive strategies lead to efficient allocation, (ii) what is the inter-

cartel distribution of gains, and (iii) what are the signaling properties of the

equilibrium (i.e., pooling versus signaling). The TIOLI game is a natural first

step for addressing these issues, but signaling in this game is rather limited,

because, effectively, only the briber can signal his type.3 Additionally, it is

highly asymmetric; many real-life situations, on the other hand, lack such

3Given an offer from the briber, low respondent types accept it and high respondent

types reject it, but in either case this (coarse) signaling by the respondent is irrelevant,

since either reaction effectively ends the game (a continuation game that follows a bribe’s

rejection is nontrivial—it is a noncooperative second-price auction—but the signal on the

respondent’s type is irrelevant, because it is a weakly dominant strategy for the briber to

bid his valuation, no matter what he thinks about the respondent).
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asymmetry. A setting where both parties play similar (though not identical)

roles is therefore more suited for modeling such situations. Contrasting the

current analysis with that of ES will clarify the differences between the case

where one side has all the bargaining power and the case where both parties

can initiate collusion.

1.1 Summary of the results

In a bribing game, the amount a briber offers depends on his valuation (type);

his behavior when he bribes is summarized by a bribing function, defined on his

type-space. Considering the TIOLI game, ES derived (under some regularity

conditions on the type distribution) the unique bribery-involving equilibrium

in which the bribing function is continuous. In this equilibrium, inefficiency

results with a positive probability, because all the types of the briber above a

certain threshold offer the same bribe, which is accepted by all the types of

the respondent. The reason for this “nonseparation at the top” is that it is

enough for a briber to signal that he is “sufficiently strong” in order to make

sure that his bribe is accepted.

In contrast to ES, I show that with two rounds of bribing, efficiency can

be achieved. Specifically, under the assumption that the type distribution of

the first mover is locally convex at the minimal type, there exists an efficient

equilibrium in monotonic strategies if and only if the expectation of the second

mover’s type is at least as large as one half of the maximal valuation. That

is, with the first and second mover being player 1 and player 2 respectively,

and with i’s valuation denoted by θi, the condition is E(θ2) ≥ 1
2
.4,5 When this

4Valuations are drawn from the unit interval. This is just a normalization.
5E(θ2) ≥ 1

2 is sufficient and necessary (for an equilibrium with all the above-mentioned

properties) provided that player 1’s type distribution, F1, satisfies F ′′1 (0) > 0. Otherwise, it
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condition is met (and the distribution of the first mover’s type is locally convex

at the minimal type), behavior in a monotonic efficient equilibrium is unique;6

it is described as follows.

First, player 1 offers the difference between his valuation and his expected

noncooperative payoff. More precisely, with the expected payoff in the nonco-

operative (dominant strategy) equilibrium of the second-price auction of type

θi of player i denoted by π∗i (θi), player 1’s bribe is given by b1(θ1) = θ1−π∗1(θ1).

Since b1 is strictly increasing, player 1 reveals his type perfectly on the path.

Seeing player 1’s revealed type, player 2 employs an efficient acceptance rule;

then, in case he rejects θ1’s offer, he responds with the counteroffer π∗1(θ1),

which player 1 accepts. In such an equilibrium, player 1’s ex post equilibrium

payoff equals his expected noncooperative payoff. The reason for the full sur-

plus extraction is player 2’s positional advantage: he moves second, does not

reveal any private information, and learns player 1’s private information before

making his move. This positional advantage translates to an expected payoff

of π∗2(θ2) +C, where C =
∫ 1

0
[θ1 − π∗1(θ1)]f1(θ1)dθ1 is the expected surplus ex-

tracted from player 1.

This result is robust in the following sense: even if the IPV assumption is

relaxed, and valuations are allowed to be interdependent, the game admits a

fully-revealing efficient equilibrium which is analogous to the above mentioned

one. Moreover, if the interdependent valuations satisfy a certain separability

condition, then the full surplus extraction result continues to hold: the second

mover extract the entire gain and the first mover’s payoff equals his noncoop-

erative payoff.

is only a sufficient condition.
6That is, there exist, strictly speaking, multiple efficient monotonic equilibria, but they

differ only in off-path information sets.
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I also describe a family of pooling equilibria. In these equilibria, all the

types of player 1 make the same strictly positive offer, to which player 2 re-

sponds with a simple threshold strategy: he accepts the offer if and only if

his type is below a certain threshold; otherwise, he rejects it and makes an

offer of his own; moreover, all the rejecting types of player 2 counter with

the same offer. In such equilibria, low types of player 1 offer a bribe which

exceeds their valuation, because there is a strictly positive probability that it

will be rejected and trigger a generous counteroffer. Thus, these equilibria can

be thought of as representing a “bluffing” phenomenon: low first-mover types

hide their identity by mimicking high types, hoping that player 2 will “take

the bait” and try to eliminate player 1 in exchange for a positive bribe.

Finally, I show that the following is an equilibrium provided that the types

distributions are log-concave: all the types of the first mover do not offer a

bribe, and the ES equilibrium is played starting at the second round.

1.2 Related literature

This paper contributes to a growing body of literature on collusion in one-shot

auctions.7 Most of this literature takes the mechanism-design approach to

collusion and studies direct revelation mechanisms which, in many cases, the

cartel operates with the help of an incentiveless third party. Seminal contri-

butions to this literature include Graham and Marshall (1987), Mailath and

Zemsky (1991), Marshall and Marx (2007), and McAfee and McMillan (1992).

These papers all take the standpoint of the cartel and seek to design mecha-

7A related branch of research considers collusion in a repeated-game setting. Contribu-

tors to this literature include Aoyagi (2002, 2007), Athey and Bagwell (2001, 2008), Blume

and Heidhues (2006), Hörner and Jamison (2007), Rachmilevitch (2009), and Skrzypacz and

Hopenhayn (2004).
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nisms that are desirable for the bidders.

The other side of the “mechanism-design coin” is to take the standpoint of

the seller, and look for auction formats that are immune to collusion. Che and

Kim (2009, henceforth CK) take this approach, and derive a collusion-proof

auction. It is important to note that the work in CK does not invalidate the

contribution of the current paper. First, the current paper assumes that the

seller is not strategic and that he employs a standard auction format (second-

price). CK considers a strategic seller who employs a nonstandard format.

More importantly, the focus of the current paper is on pre-auction signaling

among the bidders, an aspect which is absent from CK, since it models collu-

sion as a one-shot signaling-free stage.8

From the mechanism-design literature, the setting which is closest to the

one considered here is that of the informed-principal problem, which originated

in the pioneering work of Myerson (1983). For example, Maskin and Tirole

(1990, henceforth MT) studied the following extensive-form game. The princi-

pal (first mover) offers a mechanism to the agent (second mover), who updates

his belief about the principal’s type once having seeing his offer. Then, the

agent either accepts or rejects the mechanism, and the principal updates his

belief about the agent’s type upon seeing his response. If the mechanism is

accepted, then the players play the game it specifies, while if it is rejected,

the game ends, in which case they receive their reservation utilities.9 The MT

game resembles my game in that the first mover’s proposal conveys (poten-

tially, at least) information about his type, and the second mover’s response

8Dequiedt (2007) and Pavlov (2008) also study collusion-proof auctions. In both of these

papers, as in CK, there is no signaling among the bidders at the pre-auction stage.
9Similar extensive forms have also been utilized in more recent studies of the informed

principal problem, e.g., Severinov (2008).
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conveys (again, potentially) information about his type.

Finally, two works that consider ES-like models (i.e., an auction which is

preceded by a TIOLI stage) are Chen and Tauman (2006) and Kivetz and

Tauman (2010). The former considers a second-price auction in an environ-

ment where, in addition to the cartel members, there is a random population

from which the cartel members can hire shill bidders; the latter considers a

first-price auction where the bidders’ valuations are commonly known among

the bidders.

1.3 Organization

Section 2 lays down the model. Section 3, which is the main body of the

paper, considers efficient collusive equilibria. Section 4 studies a family of

equilibria with complete pooling, Section 5 shows that the ES equilibrium can

be embedded as an equilibrium in the two-round game, Section 6 deals with

interdependent valuations, Section 7 concludes, and the appendices collect

proofs and technical details.

2 Model

There are two risk-neutral expected-utility-maximizing players, player 1 and

player 2, who are about to attend a second-price auction for a single indivisible

good. Player i’s valuation for the good (his type) is an independent draw from

Fi, a full-support distribution on [0, 1] with a strictly positive and differentiable

density fi.

The reserve price is zero.10 The auctioneer, who owns the good initially, has

10This assumption can be relaxed; see Remark 6 below.
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no value for it (i.e., his valuation is zero). He awards the good at random, with

probability 1
2

to each player, in case the bids are tied.11 Each player’s utility

from nonparticipation (the outside option) is zero. Thus, given the bids (b1, b2),

the associated payoff for type θi of player i is 1{bi>bj}(θi−bj)+1{bi=bj}
1
2
(θi−bj).

Throughout the paper, whenever player i and player j are mentioned in the

same sentence, it is implicitly assumed that j 6= i.

Before the auction the players go through two rounds of alternating offers,

where each player can try to bribe his rival (if he wishes) so that the latter

will eliminate himself from the auction. Specifically, player 1 offers player 2

a nonnegative bribe, which player 2 can either accept or reject. Acceptance

effectively ends the game: player 1 pays player 2 the offered amount, and in

exchange player 2 eliminates himself from the auction.12 If player 2 rejects

player 1’s offer he counters with a nonnegative bribe offer of his own. Now,

player 1 can accept or reject this bribe, and in case of acceptance he eliminates

himself from the auction. Not offering a bribe is a feasible action for either

player, modeled as “offering zero.” If both offers are rejected, then the pre-

auction phase ends and the players turn to play the auction noncooperatively,

in which case it is assumed that they bid their valuations truthfully.13

A (pure) strategy for player 1 in this extensive form is a specification of (i)

a bribing function and (ii) a family of acceptance rules—one for every possible

continuation game. For player 2, a (pure) strategy is modeled as a family of

functions {b2(.|x)}x∈R+ , where b2(.|x) is the function prescribing behavior in

11The tie-breaking rule employed by the auctioneer is not important—the results of this

paper hold for any tie-breaking rule.
12The players can commit: once a player takes a bribe, he commits to staying out of the

auction.
13This is a reasonable assumption, because bidding truthfully is a weakly dominant

auction-strategy for a player independent of his information.
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the continuation game that follows the offer x. For each x, b2(.|x) : [0, 1] →

R+ ∪ {“accept”}, where r ∈ R+ is interpreted as “reject player 1’s offer and

make the counteroffer r.” I restrict my attention to pure strategies.

I employ the notation b1 to denote player 1’s bribing function in the first

round, and σ to denote a generic strategy profile. A strategy σ is monotonic

if (i) for player 1, the bribing function b1 is weakly increasing in θ1, and (ii) for

player 2, each function b2(.|x) is weakly increasing, where the action “accept”

is identified with the number −1.

2.1 Solution concept

Recall that a perfect Bayesian equilibrium (PBE) is a strategy-belief pair,

(σ, µ), such that σi prescribes a best-response for i against σj in each of i’s

information sets, and beliefs are derived from Bayes’ rule whenever possible.14

Consider the following refinement:

• (A) Whenever player 1 sees an unexpected offer x ≤ 1 from player 2,

any belief he may form assigns probability 1 to the event {θ2 ≥ x}.

(A) is found in equilibria that survive iterated deletion of weakly dominated

strategies. Unfortunately, however, iterative dominance presents substantial

problems. In Appendix C, I explain these problems and show that a weaker

version of iterative dominance—one round of deletion of weakly dominated

strategies—overcomes them and implies (A). An equilibrium in Sections 2-5

means an (A)-satisfying PBE. In Section 6 I depart from the IPV setting and

consider interdependent valuations; there, I drop the refinement and take PBE

14I do not introduce formal notation for beliefs (as a collection of probability distributions),

since it will not be needed in the sequel.
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to be the solution concept. The reasons for this slight inconsistency will be

explained there.

I will abuse language a little and call an equilibrium monotonic if its

strategy profile has the associated property. The idea behind (or justifica-

tion for) a monotonic equilibrium is that players who have a higher valuation

for the good also have a higher willingness to pay for their rival’s abstention.

Monotonic equilibria are those equilibria in which the behavior of a briber can

be interpreted as expressing (weakly) this willingness to pay. An equilibrium

is efficient if it leads to a Pareto efficient allocation conditional on every type-

realization.15 An equilibrium is bribery-involving if, under this equilibrium,

bribing occurs with a strictly positive probability.

Remark 1: Our game is a signaling game with a continuum of types. In such

games equilibria are typically insensitive to the behavior of a single (border-

ing) type. For example, suppose that there is an equilibrium in which all types

θ2 <
1
2

accept a certain bribe b∗, and all types θ2 >
1
2

reject that bribe and

counter it with the same offer. Then the threshold type θ2 = 1
2

is indifferent

between these two actions; either action can therefore be supported in equi-

librium. Throughout the paper, any statement of the form “σ is the unique

PBE profile such that...” means that it is unique up to the behavior of such

bordering types. Similarly, I will sometimes abuse language a little, as follows:

statements of the form “type θj accepts a bribe b if and only if b > x” should

15The results of this paper continue to hold if instead of the pointwise-requirement of

efficiency, an “efficient equilibrium” would only be taken to mean that it leads to a Pareto

efficient allocation with probability 1. Nothing essential would chance, except that the proof

of the main result would be much more detail-heavy. I therefore adopt the slightly stronger

notion of efficiency.
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be interpreted as saying only that bribes b > x are accepted and bribes b < x

are rejected.

Remark 2: I do not impose a condition, analogous to (A), that would restrict

player 2’s beliefs in case he sees an unexpected offer from player 1. As opposed

to player 2, who is the last mover and therefore has no reason to offer a bribe

in excess of his valuation, player 1 may offer such a bribe, and, in fact, such

behavior can occur in equilibrium (see Section 4 below).

3 Efficient monotonic equilibria

Recall that π∗i (θi) denotes θi’s expected payoff in the dominant-strategy equi-

librium of the noncooperative auction. It is readily verified (through integra-

tion by parts, for example) that π∗i (θi) =
∫ θi
0
Fj(t)dt. Let π̃1(θ1, x) denote

the expected payoff of type θ1 from competing in the auction against player

2 whose type is distributed on [x, 1] according to F2|{θ2≥x}.16,17 For stating

Theorem 1, we first need to define the following strategy profile, σ?:

• Player 1 offers bribes according to b1(θ1) = θ1 − π∗1(θ1). When player 2

sees an offer of the form x−π∗1(x) for some x ∈ [0, 1], he rejects it if and

only if θ2 > x, in which case he counters with π∗1(x); offers greater than

1− π∗1(1) are also accepted by player 2. Player 1’s acceptance policy of

counterbribes b is as follows: If player 1’s initial offer was of the form

x−π∗1(x) for some x ∈ [0, 1] and player 2 countered with b = π∗1(x), then

16Given a cdf F and an event A, F |A denotes the associated conditional distribution.
17Specifically, π̃1(θ1, x) = 0 for θ1 ≤ x and π̃1(θ1, x) =

∫ θ1
x

(θ1 − t) f2(t)
1−F2(x)

dt for θ1 > x.

Note that π̃(θ1, 0) = π∗1(θ1).
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player 1 accepts b if and only if b is weakly greater than π̃1(θ1, x); in any

other case, player 1 accepts a counterbribe b if and only if θ1 < 2b.

Theorem 1. (Characterization of efficient monotonic equilibria) (1) There

exist beliefs µ? such that (σ?, µ?) is an equilibrium if and only if E(θ2) ≥ 1
2
.

(2) If (σ, µ) is an efficient monotonic equilibrium and the density of F1, f1,

satisfies f ′1(0) > 0, then (i) E(θ2) ≥ 1
2
, and (ii) σ induces the same path of

play as σ?.

Remark 3: Suppose that we restrict attention to priors (F1, F2) such that

f ′1(0) > 0. Under this restriction, the condition E(θ2) ≥ 1
2

is sufficient and

necessary for the existence of an efficient and monotonic equilibrium. More-

over, such equilibrium, when exists, is unique (up to off-path behavior); it is

bribery-involving.

Remark 4: Without the condition f ′1(0) > 0, the fact that an equilibrium

is efficient and monotonic does not imply that it is bribery-involving (see the

Example below).

Remark 5: Even without the condition f ′1(0) > 0, the inequality E(θ2) ≥ 1
2

is

sufficient for σ? to be an equilibrium profile. However, it is an open question

whether E(θ2) ≥ 1
2

is necessary for the existence of an efficient monotonic equi-

librium (i.e., it is an open question whether there exists such an equilibrium

in a case where f ′1(0) ≤ 0 and E(θ2) <
1
2
).

Remark 6: One can generalize the model as to accommodate a general re-

serve price r ∈ (0, 1). Then a counterpart of Theorem 1 obtains, where the

collusive strategy is the “r-counterpart” of the aforementioned σ?: on its path,
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player 1 of type θ1 ≥ r offers the bribe θ1 − π∗1(θ1, r), where π∗1(., r) is the ex-

pected payoff function in the noncooperative auction with a reserve price r,

and player 2 employs an efficient decision rule and counters with π∗1(., r) fol-

lowing rejections. For uniqueness, a condition analogous to the local convexity

of F1 at the origin is needed. Proving the result for a general r adds no further

insight but entails substantially heavier notation.

In the equilibria described in Theorem 1, player 1 reveals his type by offering

his surplus (the difference between what he gets in a competition-free world and

what he gets under competition) and player 2 employs an efficiency acceptance

rule, which is possible because player 1’s surplus is a strictly increasing function

of his type. When player 2 rejects θ1’s offer, he reacts to it by making the

counteroffer π∗1(θ1), which player 1 accepts.18

The reason that E(θ2) ≥ 1
2

is necessary for σ? to be supported in equilibrium

is that it is equivalent to the following condition, which is necessary for this

purpose19

π∗1(θ1) ≤
θ1
2

∀θ1 ∈ [0, 1]

18The reader may suspect that once player 1 reveals his type and player 2 rejects his

offer—which, in an efficient equilibrium, is a signal that θ2 ≥ θ1—it must be the case that

player 2 counters with an arbitrarily small bribe, because player 1 would agree to any offer

from a stronger opponent. This cannot be a part of an equilibrium, however, because then

low types of player 2 would have an incentive to mimic higher types. In addition, note that

an unexpected bribe indicates that player 2 is not following the equilibrium and therefore

player 1’s beliefs are unrestricted in such an information set. In particular, player 1 need

not infer that player 2 is of a higher type, and therefore need not be willing to accept any

bribe.
19See Lemma 1 in Appendix A.
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To see this necessity, assume by contradiction that π∗1(θ1) >
θ1
2

for some θ1,

suppose that this θ1 is the type that was truthfully revealed through the first

offer, and suppose further that θ2 > θ1. In this case player 2 has profitable

deviation from the equilibrium action: to offer π∗1(θ1)− ε instead of π∗1(θ1), for

some small ε > 0. This offer is necessarily accepted by player 1, because he

assigns probability 1 to {θ2 ≥ π∗1(θ1)− ε} and will therefore accept the bribe if

π∗1(θ1)− ε ≥ θ1 − (π∗1(θ1)− ε), which is clearly satisfied for a sufficiently small

ε > 0.

The condition f ′1(0) > 0 rules out equilibria in which the event “no brib-

ing” occurs with a strictly positive probability. Without it, equilibria in which

the auction is played noncooperatively with a strictly positive probability are

possible. Here is an example of one such equilibrium; in this equilibrium, the

auction is played noncooperatively with probability 1. Namely, the bribing

stage is effectively skipped.

Example of a “no bribing” equilibrium: Suppose that Fi is uniform for

each i = 1, 2. Consider the strategy where player 1 offers zero independent of

his type, player 2 accepts a bribe b if and only if b > θ2, player 1 accepts a

counterbribe b if and only if 2b > θ1, and the rejections of player 2 are followed

by the counterbribe zero. Call this profile σN (the superscript N stands for

“no bribing”).

Proposition 1. If Fi is uniform for each i, then there exists a system of beliefs

µ such that (σN , µ) is an equilibrium.

To see the rule of the condition f ′1(0) > 0, consider the above-mentioned profile

σN . Suppose that player 1 adhered to this strategy and offered nothing, and it

is now player 2’s turn to move. If he deviates and offers some small ε ∈ (0, θ2
2

),
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then all types θ1 ≤ 2ε would accept it, because player 1 assigns probability

1 to {θ2 ≥ ε}. Suppose that player 1 is “as optimistic as possible,” and he

assigns probability 1 to {θ2 = ε} so only θ1 ≤ 2ε accept the counterbribe ε.

Let E = {θ1 > 2ε}. Conditional on E player 2’s payoff from the deviation

equals his payoff from the equilibrium strategy, because the auction is played

noncooperatively in either case. Conditional on the complement of E, these

payoffs are the same if F1 is uniform, because player 2 wins with certainty

and pays ε in expectation. However, if f ′1(0) > 0, then in a neighborhood of

0 strong types of player 1 are relatively more likely than weak types, so by

excluding them player 2 gains relatively “a lot.” Thus, he strictly prefers to

deviate to some small ε > 0, and the equilibrium unravels.

3.1 Payoffs

In the equilibria described in Theorem 1, player 1’s ex post payoff equals

his expected noncooperative payoff, π∗1(θ1). Player 2’s expected payoff can

be computed directly from the strategy σ?: it is
∫ θ2
0

[θ2 − π∗1(t)]f1(t)dt +∫ 1

θ2
[t− π∗1(t)]f1(t)dt ≡ Π2(θ2). Note that Π2(θ2) = π∗2(θ2) + C, where C =∫ 1

0
[t− π∗1(t)]f1(t)dt is the expected surplus extracted from player 1. The fact

that this is the expected payoff can also be seen in the following alterna-

tive way: we know, due to the classic result of Myerson (1981), that since

σ?—like the dominant strategies in the noncooperative second-price auction—

implements the efficient allocation, the expected payoff of player 2 of type θ2

under σ? equals π∗2(θ2) + C0, where C0 is the expected payoff of player 2’s

minimal type under σ?. Since under σ? the minimal type of player 2 accepts

the bribe of every θ1, C0 =
∫ 1

0
[t− π∗1(t)]f1(t)dt = C.
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3.2 Comparison with the inefficiency of the ES equilib-

rium

As was shown by ES, efficiency (with probability 1) is impossible in a bribery-

involving equilibrium when there is only one round of offers before a second-

price auction, because perfect signaling of the briber’s type is not incentive-

compatible for him. To see this, assume by contradiction that there is an

equilibrium in which the first mover reveals his type through a strictly in-

creasing bribing function, and consider type θ1 = 1; if he mimics type 1 − ε,

for some small ε > 0, then the lowered bribe will surely be accepted, because

player 2 cannot hope to obtain more than ε in the auction. This shows that

there must be pooling among all the types of player 1 above a certain thresh-

old.

This is no longer true with two rounds of bribing, because the second round

makes it possible for player 2 to reject an offer without triggering the nonco-

operative auction. Thus, it is not enough for player 1 to signal that his type is

“sufficiently high” in order to secure acceptance. One can think of the follow-

ing message being implied by player 2 when he rejects a relatively high offer:

“I know that your type is high, but mine is even higher, so you better accept

my counteroffer and not compete against me in the auction.”

Furthermore, the two-round game looks fundamentally different from the

TIOLI game also for the low types of player 1. In the TIOLI game, player 1

will never offer an amount which exceeds his valuation, but he may very well

do so in the two-round game, hoping that his bribe will be rejected and trigger

a generous counteroffer. Indeed, this consideration gives rise to equilibria in

which there is complete pooling in the first round, where all the types of player

1 offer the same strictly positive offer. Low types follow the equilibrium, de-
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spite the fact that they may end up with a negative ex post payoff, because

there is a positive probability that player 2’s type is high, in which case he

rejects the common bribe and counters it with a positive offer of his own. Such

equilibria are described formally below.

4 Equilibria with complete first-round pooling

Consider a cdf-pair (F1, F2) for which there exist y, c ∈ [0, 1] such that the

following conditions hold:

• (I) y − c ≥ F1(2β)(y − β) +
∫ y
2β

(y − t)f1(t)dt for all β ≥ 0,

• (II) c > max{1− E(θ2|θ2 ≥ y), F2(y)y}, and

• (III) F2(y)(1− y) + c ≥ 1− E(θ2).

When this is the case, say that (F1, F2) satisfies (I)-(III) with respect to the

parameters y and c.

Given these numbers y, c ∈ [0, 1], define the strategy profile σ?(y, c) as

follows. Player 1 offers b = y− c independent of his type, player 2 accepts b if

and only if θ2 ≥ y, and if he rejects it he counters with c. The counterbribe c is

accepted by all θ1. Any off-path offer β made by player 1 is accepted by player

2 if and only if θ2 ≤ β. Any off-path offer β made by player 2 is accepted by

player 1 if and only if θ1 ≤ 2β.

When the profile σ?(y, c) is followed, there is complete pooling among all

the types of player 1: they all offer b, to which player 2 responds with a simple

cut-off strategy: he accepts b if his type is below the threshold y, and rejects

it and counters it with c otherwise. If (F1, F2) satisfies (I)-(III) with respect

to the parameters y and c, then this behavior can be sustained in equilibrium.
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Proposition 2. If (F1, F2) satisfies (I)-(III) with respect to the parameters y

and c then there exist beliefs µ such that (σ?(y, c), µ) is an equilibrium.

Proposition 3. There exist y, c ∈ [0, 1], y > c, and cdf-pairs (F1, F2) that

satisfy (I)-(III) with respect to the parameters y and c.

5 Embedding the ES equilibrium in the two-

round game

The equilibria in Section 3 and 4 were obtained under certain distributional

assumptions. One may wonder whether the game has an equilibrium in the

absence of these assumptions, because equilibrium existence is a nontrivial

issue in games such as the one studied here. For example, in Rachmilevitch

(2011) I showed that in the game that consists of a first-price auction and a

TIOLI bribing protocol, there is a large class of (well-behaved) type distri-

butions given which that game does not have an equilibrium. This section

is dedicated to establishing the existence of an equilibrium in the two-round

second-price game under general conditions.

The following modification of the ES equilibrium comes to mind as a plau-

sible equilibrium candidate for the two-round game: let player 1 offer zero

independent of his type and let the ES equilibrium be played starting at the

second round, with player 2 as the briber and player 1 as the respondent.

Establishing that this path of play is sustainable as an equilibrium is an easy

task, because the only thing that requires verification is that player 1 does

not have an incentive to deviate to a positive bribe; the rest of the incentive

constraints follow form the fact that the continuation game that starts at the

second round is the ES game.
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Proposition 4. Suppose that for each i the distribution Fi is log-concave.

Then the following behavior can be sustained in equilibrium: player 1 offers

zero independent of his valuation, and the ES equilibrium is played in the

continuation game that starts at the second round.

Log-concavity is only needed in the continuation game that starts at the sec-

ond round, because, for technical reasons, it is needed in the equilibrium-

characterization result of ES. I view this technical assumption as a mild one;

most well-behaved distributions considered in the literature are log-concave.

In the equilibrium described in Proposition 4 the first round is skipped.

Recall that in Proposition 1 we saw a “no bribing” equilibrium, in which both

bribing rounds are skipped. As was explained, if f ′1(0) > then this equilibrium

unravels. Note, that f ′1(0) > 0 is allowed in Proposition 4. The reason for

the difference is that in the “no bribing” equilibrium player 2’s payoff equals

his noncooperative payoff, π∗2(θ2), and a small positive bribe can improve on

it, provided that f ′1(0) >. In the equilibrium from Proposition 4, by contrast,

player 2’s payoff is not π∗2(θ2)—it is the first mover’s payoff from the ES equi-

librium, which is greater than the competitive payoff. In this case, a deviation

to a positive bribe is nonprofitable.

6 Interdependent valuations

In this section I depart from the IPV assumption by assuming that a player’s

valuation does not coincide with his type; instead, valuations are functions

of both types, hence are interdependent. Player i’s valuation from obtaining

the good is v(θi, θj), and overall preferences, as before, are quasi-linear. The

function v satisfies v(0, 0) = 0 and it is strictly increasing in θi, given any
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fixed θj > 0. I assume that assigning the good to the maximal type is Pareto

efficient,20 and that the function V (x) ≡ v(x, x) is differentiable with V ′ > 0.

Call these valuations general indeterdependent valuations.

With these general preferences, the second-price auction does not have

weakly dominant strategies and bidding behavior needs to be specified af-

ter every leading-to-the-auction history. In particular, the game is, formally

speaking, a different extensive form from the one that was described in Section

2. I do not spell out the formalism of this enriched model, because it will not

be needed (also, it is obvious).

In this model, the equilibria described in Theorem 1 continue to be equilib-

ria. More precisely, there exist equilibria in which player 1 employs a strictly

increasing bribing function, player 2 employs an efficient acceptance rule, and

rejections by player 2 never lead to the auction—they result in an acceptance

by player 1 of a common counterbribe from player 2.

To define the equilibrium strategy, I first define the bribing and counter-

bribing functions, b and β, respectively.

b(θ) =

∫ θ

0

(1− F2(t))V
′(t)dt,

and

β(θ) = V (θ)− b(θ).

Note that for V (x) = x one obtain the bribing and counterbribing functions

from Theorem 1.

In order to support a path of play analogous to the one from Theorem 1,

one needs to check various deviations and therefore, in particular, to deal with

two kinds of off-path auctions. The two kinds correspond to whether player

20i.e., that a > b implies v(a, b) ≥ v(b, a).
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2 deviated after having seen player 1’s offer. If he did not, then the auction

to be addressed is a one in which player 1 deviates, by rejecting player 2’s

equilibrium counterbribe. This is an auction which is played under the fol-

lowing information: player 1’s type is the one he revealed, say x, and player

2’s type is distributed according to F2|{θ2≥x}. Similarly to Section 3, I de-

note player 1’s expected payoff in such an auction by π̃1(θ1, x). The other

kind of auction that needs to be addressed in a one in which player 2 re-

sponded to b(x) with a deviation—he reciprocated with a counter different

than β(x). In such an auction in which, in addition, player i believes with

probability one that the opponent’s type is θj, his expected payoff is denoted

by π̂i(θi, θj).
21 I assume that π̂1(x, 0) ≥ β(x), that π̃1(x, x) = π̂2(x, x) = 0,

and that ∂
∂θ2
v(θ2, x) ≥ ∂

∂θ2
π̂2(x, x) for all x, θ2 ∈ [0, 1].22

Let σ?? be the following strategy:

• Player 1 offers bribes according to b(θ1). When player 2 sees an offer

of the form b(x) for some x ∈ [0, 1], he rejects it if and only if θ2 > x,

in which case he counters with β(x); offers greater than b(1) are also

accepted by player 2. Player 1’s acceptance policy of counterbribes b

is as follows: If player 1’s initial offer was of the form b(x) for some

x ∈ [0, 1] and player 2 countered with β(x), then player 1 accepts β(x) if

21To be more precise, I assume that there is an equilibrium-selection mapping that gen-

erate the aforementioned functions π̃1 and (π̂i)i=1,2; in the IPV model this equilibrium-

selection mapping is trivial: it always prescribes the dominant-strategy equilibrium.
22For example, one can check that these assumptions are satisfied in the case where

v(θi, θj) = θi + λθj , where 0 < |λ| < 1. In this case the equilibrium-selection mapping

assigns type θi the bid (1 + λ)θi. It is easily verified that this behavior is supported by

appropriate beliefs as a Bayesian Nash equilibrium in the aforementioned off-path auctions.
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and only if it is weakly greater than π̃1(θ1, x); in any other case, player

1 accepts a counterbribe b if and only if π̂1(θ1, 0) < b.

Theorem 2. (Existence of efficient collusive equilibrium under general inter-

dependent valuations) Assume general interdependent valuations. Then there

exists beliefs µ?? such that (σ??, µ??) is a PBE.

Remark 7: Theorem 2, as opposed to Theorem 1, only addresses equilibrium

existence, not uniqueness. Establishing uniqueness requires elaborate argu-

ments, even in the IPV setting. Many of these arguments refer to off-path

auctions, and since they build on the existence of dominant strategies, they

do not have counterparts in the general interdependent case.

Remark 8: The solution concept in Theorem 2 is simply PBE, not an (A)-

satisfying PBE like in Theorem 1. The reason for not assuming refinement

(A) is that in order to prove that the minimal bribe that type θ1 is willing

to accept is β(θ1), one needs to prove that any smaller bribe will be rejected.

In Theorem 1, this is done by combining refinement (A) with the special

(and simple) payoff structure of the dominant strategy equilibrium of the IPV

second-price auction. This is no longer the case where player 1’s off-path pay-

offs are described by the function π̂1, so in order to guarantee the optimally

of such rejections, I allow player 1 to adopt the optimistic belief that his de-

viating opponent is of the minimal type, θ2 = 0. Note that the reason for

the unattractiveness of such off-path beliefs in the IPV model—the last mover

has no reason to offer more than his valuation—no longer have a bite in the

general interdependent case. This is because of two reasons: first, “valuation”

no longer equals “type”; second, deviations may be interpreted as signals of

intended bidding behavior—i.e., as an equilibrium-selection device.
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The (general interdependent) valuations are separable if v(θi, θj) = θi+φ(θj)

for some differentiable function φ. It turns out that under separability, the full

surplus extraction result from the IPV model continues to hold: the positional

advantage of the second mover enables him to keep the first mover’s payoff at

the competitive level, and extract the entire collusive gain.

Theorem 3. (Full surplus extraction under separable interdependent valua-

tions) If valuations are interdependent and separable, then in the equilibrium

described in Theorem 2, player 1’s expected payoff coincides with his expected

competitive payoff—namely, with his payoff in the symmetric Bayesian Nash

equilibrium of the noncooperative auction.

Theorem 3 refers to player 1’s expected payoff in the symmetric equilibrium

of the noncooperative auction. Interestingly, it turns out that this payoff is

independent of φ; in particular, it equals the one from the dominant strategy

equilibrium of the IPV model, the one corresponding to φ ≡ 0.

Proposition 5. Assume separable interdependent valuations. Then the non-

cooperative second-price auction has a unique symmetric Bayesian Nash equi-

librium; in it, the expected payoff of type θi of player i is π∗i (θi).

7 Conclusion

This paper has presented a sequential model of collusion via bribes: two play-

ers are about to attend a second-price IPV auction, prior to which each can

try, in his turn, to bribe his rival to drop out. This is a natural extension of

the “take-it-or-leave-it” (TIOLI) model.

The two models differ along several dimensions. First, whereas efficiency is
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possible with two rounds, it is impossible with one round. The reason is that in

the TIOLI game it is enough for the first mover to signal that he is “sufficiently

strong” in order to secure acceptance, hence perfect signaling is impossible in

equilibrium. Perfect signaling, however, is necessary for implementing the ef-

ficient allocation. With two rounds the aforementioned reasoning no longer

applies. It is no longer true that player 2 will accept player 1’s bribe whenever

he infers that the latter is “sufficiently strong,” because it is feasible for him

to decline the bribe without triggering the noncooperative auction. In partic-

ular, perfect signaling can be sustained in equilibrium, and efficiency can be

achieved.

The possibility of efficiency may seem surprising when contrasted with the

inefficiency result of Myerson and Satterthwaite (1983), who showed that (un-

der certain mild conditions) one cannot achieve ex post efficiency in a bilateral

trade problem by employing an incentive compatible, budget balanced, indi-

vidually rational mechanism. Stated a little differently, this impossibility is

about transforming the initial ownership structure, where the seller’s share

is one and the buyer’s share is zero, to a structure where the former is zero

and the latter is one. Cramton, Gibbons, and Klemperer (1987) extended the

Myerson-Satterthwaite setting and considered N agents with ownership shares

(α1, · · · , αN) (αi ≥ 0 for all i and
∑

i αi = 1), who face the task of transform-

ing it to some other ownership structure (α′1, · · · , α′N). They showed that

this transformation is achievable via a mechanism with all the aforementioned

properties, provided that the initial shares are sufficiently egalitarian—i.e.,

sufficiently close to ( 1
N
, · · · , 1

N
). The efficiency result of the current paper can

be thought of as corresponding to the case where both “ownership shares” are

zero.

The key point in moving from a TIOLI protocol to a two-round protocol is

25



that enlarging the set of possible responses of the second mover enlarges the

set of the game’s equilibria. Not only separating—pooling equilibria also come

into existence when a round of offers is added. By contrast, the equilibria of

the TIOLI game are “in between” these extremes—every TIOLI equilibrium

involves separation among low types and pooling among high types.23

An analysis analogous to the one presented in the current paper can be

carried out for other auction formats. The main feature that distinguishes the

second-price format is that the behavior in the auction—truthful bidding—is

independent of the pre-auction activity. This separation no longer exists with

other formats. For example, in Rachmilevitch (2011) I showed that when an

IPV first-price auction is preceded by a TIOLI stage, the information which is

inferred from the bribing stage necessarily affects the bidding behavior in the

auction; moreover, the link between the two unravels any bribery-involving

continuous equilibrium: the only equilibrium of the first-price TIOLI game in

which the bribing function is continuous is such that the bribing function is

identically zero. As for the two-round game, under a slight modification of

the solution concept, the path of the equilibria from Theorem 1 can also be

sustained in equilibrium under the first-price format.24

23As mentioned in subsection 1.1, ES derive the unique equilibrium of the TIOLI game in

which the bribing function is continuous; this function is strictly increasing up to a certain

threshold, and is constant from this threshold onwards. In addition, ES derive all the D1-

satisfying equilibria of the TIOLI game; the bribing function in each such equilibrium is

strictly increasing up to a threshold x < 1 and is constant on (x, 1]. Moreover, it coincides

with the bribing function of the unique continuous equilibrium on [0, x); the threshold x is

its unique discontinuity point.
24Instead of PBE, one needs to consider essentially perfect Bayesian equilibrium (EPBE)

when the format is first-price; EPBE is due to Blume and Heidhues (2006); see Rachmilevitch

(2010) for details.
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The following question remains, at present, open: I do not know whether

the two-round (IPV) game has fully-revealing equilibria other than the effi-

cient one. This turns out to be a difficult problem even in the special case

where both type distributions are uniform.
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8 Appendix A: Proof of Theorem 1

The following lemmas will be needed for the proof of Theorem 1.

Lemma 1. E(θ2) ≥ 1
2

if and only if π∗1(θ1) ≤ θ1
2
∀θ1 ∈ [0, 1].

Proof. Suppose that π∗1(θ1) ≤ θ1
2
∀θ1 ∈ [0, 1]. Taking θ1 = 1 gives 1−E(θ2) ≤

1
2
, or E(θ2) ≥ 1

2
. Conversely, suppose that E(θ2) ≥ 1

2
. We need to prove

that γ(θ1) ≥ 0, where γ(θ1) ≡ θ1
2
− π∗1(θ1). Note that γ′(θ1) = 1

2
− F2(θ1),

hence γ′′(θ1) = −f2(θ1) ≤ 0, so γ is concave. Also, γ(0) = 0 and γ(1) =

1
2
− (1 − E(θ2)) = E(θ2) − 1

2
≥ 0, where the inequality is by assumption.

Therefore, γ(θ1) ≥ θ1γ(1) + (1− θ1)γ(0) = θ1γ(1) ≥ 0.

Let:

Z(x, θ1) ≡ F2(x)(θ1 − x+ π∗1(x)) + (1− F2(x))max{π∗1(x), π̃1(θ1, x)}
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where π̃1(θ1, x) denotes θ1’s expected payoff in the noncooperative auction

against player 2 whose type is distributed on [x, 1] according to the conditional

distribution F2|{θ2≥x}.

Definition 1. The distribution function F2, defined on [0, 1], satisfies condi-

tion C1 if x = 1 is a maximizer of Z(., 1).

Condition C1 is simply the incentive compatibility constraint of the maximal

type of player 1 in the first information set in the game. As the following

lemma shows, if this constraint is satisfied for the maximal type (i.e., if C1

holds), then it is satisfied for all types.

Lemma 2. If C1 is satisfied, then x = θ1 is a maximizer of Z(., θ1) for all

θ1 ∈ [0, 1].

Proof. Suppose that C1 is satisfied. Assume by contradiction that x = θ1

does no maximize Z(., θ1) over [0, 1], for some θ1 ∈ [0, 1]. Clearly we can

assume that θ1 > 0. Since the objective is continuous and [0, 1] is compact, a

maximizer x∗ ∈ [0, 1] exists. First, I argue that x∗ < θ1. To see this, assume

by contradiction that x∗ ≥ θ1. Then, x∗ is a maximizer of Z(., θ1) over [θ1, 1].

On this sub-domain, the objective is

Z(x, θ1) = F2(x)(θ1−x+π∗1(x))+(1−F2(x))π∗1(x) = F2(x)(θ1−x)+π∗1(x). (1)

The FOC is f2(x)(θ1−x), which is negative on (θ1, 1], hence on this range the

maximum is at x∗ = θ1, a contradiction. Hence, as was argued, x∗ < θ1.

It is easy to see that there is a unique m = m(θ1) ∈ (0, θ1) such that the

objective satisfies (1) on [m, 1]. Since on that sub-domain θ1 is the unique

maximizer of Z(., θ1), we only need to consider [0,m], where the objective

takes the form
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Z(x, θ1) = F2(x)(θ1 − x+ π∗1(x)) +

∫ θ1

x

(θ1 − t)f2(t)dt.

Since x∗ gives the objective a higher value than θ1 does, it follows that

Z(x∗, θ1) = F2(x
∗)(θ1−x∗+π∗1(x∗))+

∫ θ1

x∗
(θ1 − t)f2(t)dt >

∫ θ1

0

(θ1 − t)f2(t)dt = Z(θ1, θ1),

and therefore

F2(x
∗)(θ1 − x∗ + π∗1(x∗)) >

∫ x∗

0

(θ1 − t)f2(t)dt.

Adding F2(x
∗)(1− θ1) =

∫ x∗
0

(1− θ1)f2(t)dt to both sides gives

F2(x
∗)(1− x∗ + π∗1(x∗)) >

∫ x∗

0

(1− t)f2(t)dt,

therefore

Z(x∗, 1) = F2(x
∗)(1−x∗+π∗1(x∗))+

∫ 1

x∗
(1− t)f2(t)dt >

∫ 1

0

(1− t)f2(t)dt = Z(1, 1),

in contradiction to C1.

The following lemma guarantees that the incentive constraint of the maximal

type, C1, is indeed satisfied.

Lemma 3. Evey distribution F2 satisfies condition C1.

Proof. Assume by contradiction that there exists an F2 such that there exists

an x < 1 such that Z(x, 1) > Z(1, 1) = π∗1(1). By Lemma 2, it must be that

this x is sufficiently small, so that π̃1(1, x) ≥ π∗1(x), and consequently the value

of the objective satisfies
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Z(x, 1) = F2(x)(1− x+ π∗1(x)) +

∫ 1

x

(1− t)f2(t)dt >
∫ 1

0

(1− t)f2(t)dt,

or

F2(x)(1− x+ π∗1(x)) >

∫ x

0

(1− t)f2(t)dt.

Since
∫ x
0

(1− t)f2(t)dt =
∫ x
0

[x− t+ (1− x)]f2(t)dt = π∗1(x)+
∫ x
0

(1−x)f2(t)dt =

π∗1(x) + F2(x)(1− x), we obtain

F2(x)(1− x+ π∗1(x)) > π∗1(x) + F2(x)(1− x),

and therefore

F2(x)π∗1(x) > π∗1(x),

a contradiction.

With the lemmas at hand, we can turn to the proof of the theorem.

Proof. (1). If E(θ2) ≥ 1
2
, then there exist beliefs µ such that (σ?, µ) is an

efficient monotonic equilibrium:25 Let µ be a system of beliefs such that (i)

when player 2 sees an offer of the form x−π∗1(x) for some x ∈ [0, 1], he assigns

probability 1 to the event {θ1 = x}, while when he sees an offer strictly greater

than 1− π∗1(1) he assigns probability 1 to the event {θ1 = 1}, and (ii) in the

information set following the rejection of the first offer b1 where player 2 offered

the counterbribe b2, player 1’s beliefs are the following: if b1 = x − π∗1(x) for

some x ∈ [0, 1] and b2 = π∗1(x), then 1 believes that θ2 is distributed according

25The “only if” statement follows (easily) from the combination of (i) Lemma 1, and (ii)

the explanation in the text that follows Remark 6.
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to F2|{θ2≥x}; otherwise, he believes that {θ2 = min{b2, 1}}.

It is easy to see that σ? is efficient and monotonic. We need to prove that

σ?i prescribes a best-response for i against σ?j , in each of i’s information sets

(given his belief µi).

Start with player 1. Suppose that he is of type θ1 ∈ [0, 1]. First, I argue

that he does not have a strictly profitable deviation in the first node in the

game tree. To see this, note that if there exists such a deviation to a different

bribe, then there exists such a deviation where he mimics a different type (be-

cause all offers above 1−π∗1(1) are accepted by player 2). But this contradicts

the fact that x = θ1 is a maximizer of Z(., θ1), which, in turn, is guaranteed

by Lemma 2 and Lemma 3.

Next, consider the information set where player 1 responds to player 2’s

counteroffer b2. Suppose first that player 1’s initial offer was of the form

x − π∗1(x) for some x ∈ [0, 1] and player 2 countered with b2 = π∗1(x). Then

clearly following σ?1—by definition—is a best-response. In any other case player

1 believes that {θ2 = min{b2, 1}}. If min{b2, 1} = 1 the obviously acceptance

of b2 is a best-response, and this is the response instructed by σ?1. If, on the

other hand, min{b2, 1} = b2, then since player 1’s belief assigns probability

1 to the event {θ2 = b2}, it follows that accepting the bribe if and only if

b2 ≥ θ1 − b2—as instructed by σ?1—is a best-response.

Consider now player 2 of an arbitrary type θ2 ∈ [0, 1]. In his first infor-

mation set in the game he responds to player 1’s offer. If this offer takes the

form x − π∗1(x) for some x ∈ [0, 1], he infers that θ1 = x. First, I argue that

any counter-offer b < π∗1(x) is rejected. To see this, assume by contradiction

that there exists a counter-offer b < π∗1(x) which is accepted by player 1. This

offer is accepted if and only if θ1 ≤ 2b, or x
2
≤ b. Combining these inequalities

we obtain x
2
< π∗1(x); however, since E(θ2) ≥ 1

2
, Lemma 1 guarantees that
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x
2
≥ π∗1(x).

Hence, player 2 has effectively three options: (a) to accept the bribe

x − π∗1(x), (b) to reject and counter with π∗1(x), which is accepted by player

1,26 and (c) to compete in the noncooperative auction against type θ1 = x.

Consider first θ2 < x. Here, we need to prove that acceptance is a

best-response. If player 2 rejects the bribe then the best he can obtain is

max{θ2 − π∗1(x), 0} < x − π∗1(x), and therefore adhering to σ?2 is a best-

response. Consider now θ2 ≥ x. Here, we need to prove that countering

with π∗1(x) is a best-response. First, note that doing so is weakly better than

accepting player 1’s offer, and is strictly better if θ2 > x. This follows from

θ2 − π∗1(x) ≥ x− π∗1(x). Secondly, this is also better than competing the auc-

tion, because θ2 − π∗1(x) ≥ θ2 − x.

Next, consider the case where player 2 sees an offer strictly greater than

1 − π∗1(1). Since he believes that θ1 = 1, acceptance of this offer is a best-

response.

Therefore, (σ?, µ) is an equilibrium.

(2). Suppose that f ′1(0) > 0 and let (σ, µ) be an efficient monotonic equilib-

rium. Then, E(θ2) ≥ 1
2
, and σ has the same path of play as σ?.

Let b1 denote player 1’s bribing function.

Claim 1: b1 is strictly increasing.

Proof of Claim 1: Assume by contradiction that there exists some nondegen-

26The counter-bribe π∗1(x) is accepted by player 1 of type θ1 = x because π∗1(x) ≥

π̃1(x, x) = 0.
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erate interval I on which b1 is constant, taking the value b∗.

Case 1: There exists such an I with b∗ > 0.

Let θ1 ≡ infI.

Case 1.1: θ1 > 0. Let (θ1, θ1 + ε) ≡ J , where ε ∈ (0, b∗). By efficiency, all

θ2 ∈ J reject b∗. Let β : J → R+ denotes player 2’s counterbribing function

on this domain.

Case 1.1.1: β is constant on a nondegenerate subinterval of its domain,

J ′ ⊂ J . Let b′ denote its level on J ′. Note that b′ > 0. To see this, assume

by contradiction that b′ = 0 and consider a type θ2 ∈ J ′. When he rejects b∗

and counters with b′ = 0, the offer b′ = 0 is rejected by player 1 with probabil-

ity 1;27 hence, this behavior gives θ2 a payoff which is bounded form above by

ε < b∗, and it therefore cannot be a part of an equilibrium. Thus, b′ > 0. Since

all θ1 arbitrarily close to θ1 reject b′, it follows that there exists a θ∗2 < θ1 who

rejects b∗ and counters with b′ (otherwise, if only θ2 ≥ θ1 offered the counter

b′ > 0, it would not be incentive compatible for types θ1 near θ1 to reject it ).

Therefore b′ is rejected with probability 1 by player 1; therefore, rejecting b∗

and countering with b′ is not a best-response for such a θ∗2 < θ1.

Case 1.1.2: There does not exist a subinterval J ′ ⊂ J on which β is

constant. Then, by monotonicity, every type θ2 ∈ J reveals himself via his

counter bribe β(θ2); namely, the following holds for every ε > 0: β(θ2 − ε) <

β(θ2) < β(θ2 + ε) (if one of these inequalities was an equality, then an in-

terval J ′ would have existed). Consider types θ1 ∈ I and θ2 ∈ J such that

β(θ2) > max{θ1− θ2, 0}. Conditional on this realization of types, play goes as

follows: player 1 offers b∗, which is rejected by player 2, who counters it with

27In equilibrium player 1 can accept the counter offer b′ = 0 only if he is certain that

θ2 ≥ θ1. Thus, only type θ1 = θ1 can accept it in equilibrium.
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the revealing offer β(θ2); it is the unique best-response of player 1 to accept

this counteroffer, in contradiction to efficiency.

Case 1.2: θ1 = 0. Here, b1 is constant at the level b∗ > 0 on an interval of

the form [0, x) for some x > 0. All θ2 < b∗ accept this bribe, in contradiction

to efficiency.

Case 2: b∗ = 0 for every interval I on which b1 is constant.

In this case b1 ≡ 0 on an interval of the form [0, x) for some x > 0. Wlog,

suppose that x is the supremum number for which this is true. Since all θ2 > 0

reject the offer 0, there is a probability F1(x) > 0 that play will go to the sec-

ond round, where the continuation game is a TIOLI game, played with the

following beliefs: the distribution of θ2 is given by F2 and the distribution of

θ1 is given by G ≡ F1|{θ1<x}. Let g ≡ G′. Let b2 ≡ b2(.|0) denote 2’s bribing

function in this continuation game.

I argue that b2 ≡ 0 on [0, x). To see this, assume by contradiction that

b2(θ2) > 0 for some θ2 < x. If there exists a θ′2 ∈ (θ2, x) such that b2(θ
′
2) =

b2(θ2) ≡ b∗, then b2 is constant at the level b∗ > 0 on some interval J . Wlog,

suppose that J is the maximal such interval (i.e. the union of all such inter-

vals). All types θ1 sufficiently close to infJ accept the bribe b∗, and therefore

the probability of inefficiency is positive. If, on the other hand, there does not

exist such a θ′2, then b2 is strictly increasing on (θ2, x), and again we conclude

that the probability of inefficiency is strictly positive (given each revealed type

θ′2 ∈ (θ2, x), all types above and close to him accept his bribe, because bidding

in the auction is truthful). Thus, b2 ≡ 0 on [0, x).

Let 0 < θ2 < x and let ε ∈ (0, θ2
2

). When player 1 is contemplating accep-

tance vs. rejection of ε (in the continuation game which follows the rejection

of 0), he compares the two associated payoffs. The payoff from acceptance
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is obvious, ε. The payoff from rejection is the expected payoff in the non-

cooperative auction, which is bounded from above by max{θ1 − ε, 0}. To see

why this is an upper bound, note that there are exactly two possibilities: (i)

ε constitutes a detectable deviation (i.e., there does not exists a θ2 ≥ x such

that b2(θ2) = ε), or (ii) there exists some θ2 ≥ x such that b2(θ2) = ε. In

case (i) the fact that max{θ1 − ε, 0} is an upper bound on the payoff player 1

expects follows from the fact that player 2 will bid his valuation truthfully in

the auction and player 1 believes that θ2 ≥ ε. As for case (ii), note that if θ2

offers ε in equilibrium then θ2 ≥ ε; otherwise, he would be better off offering

zero.

Therefore, a sufficient condition for acceptance of ε is θ1−ε < ε, or θ1 < 2ε.

Therefore, θ2’s expected payoff from the deviation ε is bounded from below by

G(2ε)(θ2 − ε) + (1−G(2ε))

∫ x

2ε

M(ε, t)
g(t)

1−G(2ε)
dt (2)

where M(ε, t) is defined as the minimum utility that player 1 of type θ1 = t

can impose on player 2 of type θ2 following the offer ε, given that the players

bid truthfully in the auction. Specifically, M(ε, t) is given by

M(ε, t) =

 min{θ2 − ε, θ2 − t} if t ≤ θ2

0 if t > θ2

Since M(ε, t) ≥ 0 and x > θ2, the expression in (2) is bounded from below by

G(2ε)(θ2−ε)+(1−G(2ε))

∫ θ2

2ε

M(ε, t)
g(t)

1−G(2ε)
dt = G(2ε)(θ2−ε)+

∫ θ2

2ε

(θ2 − t)g(t)dt

(3)

The equality in (3) follows from the fact that in the range 2ε ≤ t ≤ θ2 we have

M(ε, t) = min{θ2 − t, θ2 − ε} = θ2 − t, where the latter equality follows from

t ≥ 2ε > ε. Therefore, θ2’s expected payoff if he deviates to ε is bounded from
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below by the RHS of (3). Setting z ≡ 2ε, we see that his payoff is bounded

from below by

ψ(z) ≡ G(z)(θ2 −
z

2
) +

∫ θ2

z

(θ2 − t)g(t)dt.

Note that ψ(0) equals θ2’s equilibrium payoff.28 Therefore, it must be that ψ

is locally non-increasing in a neighborhood of 0. I will now prove that this

is not the case. Indeed, the first two derivatives of ψ are zero and the third

derivative is positive (all evaluated at 0).

ψ′(z) = g(z)
z

2
− G(z)

2
⇒ ψ′(0) = 0

ψ′′(z) =
1

2
g′(z)z ⇒ ψ′′(0) = 0

ψ′′′(z) =
1

2
(g′′(z)z + g′(z))⇒ ψ′′′(0) =

g′(0)

2
=

f ′1(0)

2F (x)
> 0

Thus, Claim 1 is proved—b1 is strictly increasing on [0, 1].

When θ1 offers b1(θ1) he reveals his identity. By efficiency, all θ2 > θ1 reject

this offer. Consider θ2 < θ1. If he rejects the bribe then the auction results

(because of efficiency), which gives him a zero payoff; we conclude then, that

on the equilibrium’s path, player 2 accepts b1(θ1) if and only if θ2 < θ1. More-

over, types θ2 > θ1 who reject b1(θ1) counter with an offer of their own. To see

this, note that such θ2’s who are sufficiently close to θ1 prefer b1(θ1) to the non-

cooperative auction and therefore they counter with a bribe offer that player

28In this equilibrium player 2 of type θ2 offers 0 (in this continuation game), which is

rejected. This leads to a noncooperative play of the auction against player 1 whose type is

distributed according to G, giving the expected payoff
∫ θ2
0

(θ2 − t)g(t)dt = ψ(0).

36



1 accepts. Moreover, they all counter with the same bribe. This is the case

because they players play pure strategies; two types θ2, θ
′
2 > θ1 cannot offer

different counterbribes in equilibrium, because such bribes—if offered on the

path—would both be accepted by player 1; this, in turn, means that offering

the higher counterbribe is not incentive compatible. Therefore, when θ1 reveals

himself through the bribe b1(θ1), all θ2 < θ1 accept it and all θ2 > θ1 reject it

and counter it with a common offer, β(θ1), which player 1 accepts. Since the

threshold type θ2 = θ1 is indifferent between acceptance and rejection,

b1(θ1) = θ1 − β(θ1). (4)

When player 1 of type θ1 makes the first move in the game, he can nonde-

tectably mimic any other type x; therefore, his objective is to maximize the

following

Π(x|θ1) = F2(x)(θ1 − b1(x)) + (1− F2(x))max{β(x), π̃1(θ1, x)}.

By Myerson’s result (see subsection 3.1 in the text above), Π(θ1|θ1) = π∗1(θ1)+

C∗, where C∗ is some constant. I argue that C∗ = 0. To see this, note

that Π(0|0) = max{β(0), π̃1(0, 0)} = β(0), and therefore, since π∗1(0) = 0,

C∗ = β(0). Then, C∗ = 0 follows from (4). Combining Π(θ1|θ1) = π∗1(θ1) with

(4) and π̃1(θ1, θ1) = 0 we obtain β(θ1) = π∗1(θ1).

Finally, I argue that E(θ2) ≥ 1
2
. By Lemma 1, this is equivalent to π∗1(θ1) =

β(θ1) ≤ θ1
2

for every θ1. To see this, assume by contradiction that there exists

some θ1 for which β(θ1) >
θ1
2

. Consider the case where player 1 of type θ1

reveled himself through the offer b1(θ1) and it is now player 2’s turn to respond,

and θ2 > θ1. I argue that 2 has a profitable deviation: to counter with θ1
2

+ ε,

where ε > 0 is sufficiently small, so that θ1
2

+ ε < β(θ1). To prove that this
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deviation is profitable, it is sufficient to prove that it will be accepted by player

1 with certainty. Note that this deviation by player 2 is a detectable deviation:

player 1 expects to see the offer β(θ1), but instead he sees a different offer.

Thus, he needs to revise his beliefs, and by assumption he assigns probability

1 to the event {θ2 ≥ θ1
2

+ ε}. Thus, if he rejects player 2’s offer he expects his

payoff in the auction to be no greater than θ1−( θ1
2

+ε) = θ1
2
−ε < θ1

2
+ε. Thus,

player 2’s offer is accepted and hence constitutes a profitable deviation.

9 Appendix B: Proof of Theorem 2

The following lemma will be needed for the proof.

Lemma 4. Under σ??, player 1 does not have an incentive to deviate when he

makes the first move in the game; i.e., the bribe b(θ1) is ex ante optimal.

Proof. Clearly there is no reason to offer more than b(1). When type θ1 mimics

a type x, his corresponding expected payoff is

F2(x)(

∫ x

0

v(θ1, t)
f2(t)

F2(x)
dt− b(x)) + (1− F2(x))β(x) =

=

∫ x

0

v(θ1, t)f2(t)dt+ (1− F2(x))V (x)− b(x).

The derivative of this expression is f2(x)(v(θ1, x)−v(x, x))+[(1−F2(x))V ′(x)−

b′(x)]. Since the bracketed term is zero, x = θ1 is an optimum.

We can now turn to the proof of the theorem.

Proof. Let µ?? be a system of beliefs such that (i) when player 2 sees an offer of

the form b(x) for some x ∈ [0, 1], he assigns probability 1 to the event {θ1 = x},

while when he sees an offer strictly greater than b(1) he assigns probability 1
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to the event {θ1 = 1}, and (ii) in the information set following the rejection of

the first offer b1 where player 2 offered the counterbribe b2, player 1’s beliefs

are the following: if b1 = b(x) for some x ∈ [0, 1] and b2 = β(x), then 1 believes

that θ2 is distributed according to F2|{θ2≥x}; otherwise, he believes that θ2 = 0.

We need to prove that σ??i prescribes a best-response for i against σ??j , in

each of i’s information sets (given his beliefs).

Start with player 1. Suppose that he is of type θ1 ∈ [0, 1]. The fact that he

does not have a profitable deviation when he makes the first move in the game

is established in Lemma 4. Next, consider the information set where player 1

responds to player 2’s counteroffer b2. Suppose first that player 1’s initial offer

was of the form b(x) for some x ∈ [0, 1] and player 2 countered with b2 = β(x).

Then clearly following σ??1 —by definition—is a best-response. It is easy to see

that the response that σ??1 assigns to him is optimal also in the complement of

this event.

Consider now player 2 of type θ2 ∈ [0, 1]. In his first information set in

the game he responds to player 1’s offer. If this offer takes the form b(x) for

some x ∈ [0, 1], he infers that θ1 = x. First, I argue that any counteroffer

b2 < β(x) is rejected. To see this, assume by contradiction that there exists a

counteroffer b2 < β(x) which is accepted by player 1. This offer is accepted if

and only if π̂1(x, 0) < b2, in contradiction to π̂1(x, 0) ≥ β(x).

Therefore, player 2 has effectively three options: (a) to accept the bribe

b(x), (b) to reject and counter with β(x), which is accepted by player 1,29 and

(c) to compete in the noncooperative auction against type θ1 = x.

Consider first θ2 < x. Here, we need to prove that acceptance is a

best-response. If player 2 rejects the bribe then the best he can obtain is

29The counterbribe β(x) is accepted by player 1 of type θ1 = x because β(x) ≥ π̃1(x, x) =

0.
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max{v(θ2, x) − β(x), 0} < v(x, x) − β(x) = b(x), and therefore adhering to

σ??2 is a best-response. Consider now θ2 ≥ x. Here, we need to prove that

countering with β(x) is a best-response. First, note that doing so is weakly

better than accepting player 1’s offer, and is strictly better if θ2 > x. This

follows from v(θ2, x)−β(x) ≥ v(x, x)−β(x) = b(x). Secondly, this is also bet-

ter than competing the auction, because v(θ2, x) − β(x) ≥ π̃2(θ2, x).30 Next,

consider the case where player 2 sees an offer strictly greater than b(1). Since

he believes that θ1 = 1, acceptance of this offer is a best-response. Therefore,

(σ??, µ??) is a PBE.

10 Appendix C: Deletion of weakly dominated

strategies

Condition (A) is satisfied by PBE that survive iterated deletion of weakly

dominated strategies. Unfortunately, however, this refinements is problematic

because of the following reasons. First of all, when deleting weakly dominated

strategies “order matters.” A natural remedy to this difficulty is to assume

that in every round all the weakly dominated strategies are deleted.31 Even if

we adopt this maximal deletion approach, one serious problem still remains:

it is not known how the entire deletion process looks like, and it is therefore

unknown whether there exist strategy profiles that survive this deletion. I

30To see that v(θ2, x) ≥ π̃2(θ2, x) + β(x), note (i) this inequality holds at θ2 = x, be-

cause π̃2(x, x) = 0 and v(x, x) = V (x) =
∫ x
0
V ′(t)dt ≥

∫ x
0
F2(t)V ′(t)dt = β(x), and (ii)

∂
∂θ2

v(θ2, x) ≥ ∂
∂θ2

π̃2(θ2, x).
31This is the common approach to deletion of weakly dominated strategies. See, for

example, Fudenberg and Tirole (1991, p. 461).
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therefore consider the following weaker version of this refinement—I will con-

sider a single round of deletion. That is, with i’s set of strategies in the game

denoted by Σi, keeping the entire Σi fixed, I delete all the weakly dominant

strategies for j; the resulting set is denoted Σ1
j . Let G denote the original

game—the one with strategy sets Σi, and let G′ denote the game which is the

same as G, except that the strategy sets are Σ1
i .

Lemma 5. If (σ, µ) is a PBE of G′ then it is an (A)-satisfying PBE of G.

Proof. First, I will prove that any strategy that instructs player 2 to counter

an offer with a bribe which is greater then his valuation is deleted, and is

therefore outside Σ1
2. Consider a strategy σ2 that instructs player 2 to counter

b∗ with some x > θ2 for some b∗ and θ2. Let σ′2 be identical to σ2 except

that it instructs player 2 to counter b∗ with zero whenever σ2 instructs him to

counter with an offer which exceeds his valuation. Clearly σ′2 does at least as

good as σ2 against any strategy that player 1 may play. Consider the strategy

for player 1 where all θ1 offer b∗ and accept any counterbribe (including zero)

if b∗ is rejected. Clearly, σ′2 does strictly better than σ2 against this strategy.

Therefore, player 2 does not have strategies in G′ that instruct him to counter

with offers which exceed his type. In particular, if (σ, µ) is a PBE of G′ then µ

assigns zero probability to such behavior (in any information set). Therefore,

if this is a PBE in G, then it is an (A)-satisfying PBE of G. I argue that indeed

(σ, µ) is a PBE of G. To see this, assume by contradiction that some player

i has a profitable deviation in some information set. Clearly we can assume

that the deviation is to an undominated strategy and is therefore feasible in

G′. But this contradicts the assumption that (σ, µ) is a PBE in G′.

Next, I prove that the efficient monotonic equilibria which were studied in the

paper survive one round of deletion.
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Lemma 6. There exist beliefs such that (σ?, µ) is a PBE of G′.

Proof. Since there exist beliefs µ such that (σ?, µ) is a PBE of G, it is enough

to prove that σ?i ∈ Σ1
i for each player i.

Start with i = 1. Suppose that σ?1 is weakly dominated by some other

strategy σ1. First, I argue that σ1 prescribes the same bribing function as

σ?1. To see this, let b1 be the bribing function under σ?1 and let B1 be the

one under σ1. Let θ1 ∈ [0, 1]. Let x ≡ b1(θ1) and y ≡ B1(θ1). I argue that

x = y. Consider the following strategy of player 2: the bribe x is rejected

(by all θ2) and followed by the counteroffer 1, and any other bribe is rejected

and countered with zero. Since σ1 needs to do at least as good as σ?1 against

any possible strategy of player 2, x = y. Next, I argue that σ1 instructs the

same acceptance policy of counterbribes, and therefore it coincides with σ?1.

To see this, suppose now that player 1 employs the bribing function b1, offers

θ1−π∗1(θ1), and his offer is rejected and countered with b. If b = π∗1(θ1) then σ1

must prescribe acceptance, because player 2 may be playing σ?2. If b 6= π∗1(θ1)

then σ1 must assign acceptance if and only if 2b > θ1, because it may be the

case that player 2 plays a strategy that instructs him to offer his valuation

following a rejection. Therefore, there does not exists a strategy that weakly

dominates σ?1.

Consider now i = 2. Bribes greater than 1−π∗1(1) must be accepted because

it may be the case that player 1 plays the following strategy: all θ1 < 1 offer

0 and θ1 = 1 offers the aforementioned bribe, and he rejects all counterbribes.

Since player 1 maybe playing σ?1, it follows from the proof of Theorem 1 that

if σ2 does at least as good against σ?1 as σ?2, then the responses it prescribes to

offers in [0, 1− π∗1(1)] coincide with the ones prescribed by σ?2.
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11 Appendix D: Additional proofs

Proof of Proposition 1: Consider player 1. The expected payoff correspond-

ing to a deviation x ≤ θ1 is x(θ1 − x) + (1 − x)( θ1−x
1−x )(θ1 − θ1+x

2
) =

θ21
2
− x2

2
,

which is clearly maximized at x = 0. It is straightforward that a deviation to

x > θ1 cannot be profitable. Next, consider player 2 who needs to respond to

a bribe b ≤ θ2. Assume by contradiction that he reacts to it with a deviation

to a positive counteroffer, x ∈ (0, 1]. Let player 1’s believes be such that he

assigns probability 1 to {θ2 = x}, hence accepting x if and only if θ1 ≤ 2x.

Thus, we can restrict our attention to deviations x ∈ (0, 1
2
]; each such x gives

an expected payoff of 2x(θ2−x)+(1−2x)( θ2−2x
1−2x )(θ2− θ2+2x

2
) =

θ22
2

, so adhering

to the equilibrium strategy is optimal. Therefore, σN can be supported in

equilibrium.

Proof of Proposition 2: Make the assumptions of the proposition. The

refinement (A) does not impose any restriction on player 2’s beliefs, so we can

chose any belief we like in order to support his acceptance rule as optimal when

he sees an unexpected offer β 6= b. Thus, when player 1 makes a detectable

deviation β, he obtains the expected payoff

F2(β)(θ2 − β) +

∫ θ1

β

(θ2 − t)f2(t)dt.

The derivative of this expression is −F2(β) and the corresponding value at

β = 0 is the noncooperative payoff, π∗1(θ1). Thus, it is sufficient to prove that

following the strategy gives a payoff weakly greater than the noncooperative

payoff. The expected payoff from following the strategy is F2(y)[θ1− b] + (1−

F2(y))c. Substituting b = y − c gives that this expected payoff is h(θ1) ≡

F2(y)(θ1 − y) + c. Thus, it suffices to prove that h(θ1) ≥ π∗1(θ1) for all θ1 ∈
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[0, 1]. Since both are increasing, h is linear and π∗1 is convex, it is sufficient

to show that h(x) ≥ π∗1(x) for x ∈ {0, 1}. The inequality h(0) ≥ π∗1(0),

or −F2(y)y + c ≥ 0, is guaranteed by (II); the inequality h(1) ≥ π∗1(1) is

guaranteed by (III). Next, consider player 1 who faces the offer c. By (II) it

is optimal for type θ1 = 1 to accept c, and therefore it is optimal for every

θ1 ∈ [0, 1].

Next, consider player 2. It will be convenient to define

Φ(β, θ2) ≡ F1(2β)(θ2 − β) +

∫ θ2

2β

(θ2 − t)f1(t)dt.

We need to establish that his response to the on-path offer b is optimal. Sup-

pose first that θ2 < y. Assume by contradiction that he has a strictly profitable

deviation. This deviation involves rejection and a counteroffer β. It must be

that β 6= c, because the payoff corresponding to β = c is θ2 − c < y − c =

b. Thus, the expected payoff corresponding to the deviation is Φ(β, θ2) ≤

Φ(β, y) ≤ b, where the first inequality follows from ∂
∂θ2

Φ(β, θ2) = F1(θ2) ≥ 0.

Suppose, on the other hand, that θ2 > y. Clearly acceptance is sub-optimal.

Suppose then that there exists a profitable deviation to a counteroffer β 6= c.

But this gives the payoff Φ(β, θ2), which obeys

Φ(β, θ2) = Φ(β, y)+

∫ θ2

y

∂

∂t
Φ(β, t)dt = Φ(β, y)+

∫ θ2

y

F1(t)dt ≤ (y−c)+(θ2−y) = θ2−c,

because Φ(β, y) ≤ y − c by (I), in contradiction to the profitability of the

deviation.

Proof of Proposition 3: I will prove that there exist an α ∈ (0, 1) such that

the following is true: If F1(t) = F2(t) = tα for some α ∈ [α, 1], then (F1, F2)

satisfies (I)-(III) with respect to y and c, for some y, c ∈ [0, 1]. Recall Φ(β, θ2)

from the proof of Proposition 2. For such Fi, Φ(β, y) = y1+α

1+α
+2αβ1+α[ 2α

1+α
−1].

For α ∈ (0, 1] the bracketed term is nonpositive, so (I) is implied by
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y − c ≥ y1+α

1 + α
. (5)

The conditional expectation E(θ2|θ2 ≥ y) is given by E(θ2|θ2 ≥ y) = α
1+α
·

1−y1+α
1−yα . Thus, the first inequality that (II) requires is

c > 1− α

1 + α
· 1− y1+α

1− yα
=

1− (1 + α)yα + αy1+α

(1 + α)(1− yα)
(6)

The second inequality that (II) requires is simply

c > y1+α. (7)

Finally, (III) is

yα(1− y) + c ≥ 1

1 + α
. (8)

Our task is to find y, c ∈ [0, 1] that satisfy (5)-(8) for all α > 0 sufficiently

close to 1.

Take y = (1
2
)

1
α and c = 2

3
y.

First, note that y1+α = y · [(1
2
)

1
α ]α = 1

2
y < 2

3
y = c, so (7) holds. Next, note

that plugging this chose of y and c into (5) gives 1
3
y ≥ y1+α

1+α
⇔ 1

3
≥

1
2

1+α
, and

the latter is satisfied as a strict inequality at α = 1. Similarly, (6) also boils

down to 1
3
≥ 1

4
at α = 1. Finally, (8) becomes 1

2
+ y

6
≥ 1

1+α
, which obviously

holds for all α near 1.

Proof of Proposition 4: In view of the argument in the beginning of the

proof of Proposition 2, it is enough to show that under the equilibrium which

is described in Proposition 4 player 1’s payoff is weakly greater than π∗1(θ1).
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Given a type θ2 let π∗1(θ1|θ2) be player 1’s payoff in the noncooperative auction

against θ2; similarly, given a set of types of player 2, A, let π∗1(θ1|A) be player

1’s noncooperative payoff conditional on θ2 ∈ A. Let bES be the bribing

function in the ES equilibrium and let θ2 be the unique point from which

onwards it is constant. Player 1’s expected payoff from the behavior described

in Proposition 4 is

F2(θ2)

∫ θ2

0

max{bES(t), π∗1(θ1|t)}
f2(2)

F2(θ2)︸ ︷︷ ︸
X

+(1− F2(θ2))b
ES(θ2)

Obviously, X ≥ π∗1(θ1|θ2 ≤ θ2); thus, it is enough to show that bES(θ2) ≥

π∗1(θ1|θ2 ≥ θ2). Note that since type θ1 = 1 accepts bES(θ2) in the ES equilib-

rium, bES(θ2) ≥ π∗1(1|θ2 ≥ θ2). The proof is now completed by the fact that

π∗1(1|θ2 ≥ θ2) ≥ π∗1(θ1|θ2 ≥ θ2).

Proof of Proposition 5: Suppose that player 2 employs the (increasing)

bidding function b. When player 1 of type θ1 mimics submit the bid of type

θ2 = x, his expected payoff is

F2(x)(θ1 +

∫ x

0

φ(t)
f2(t)

F2(x)
dt−

∫ x

0

b(t)
f2(t)

F2(x)
dt).

If x = θ1 is an optimum then b(t) = t + φ(t). The payoff for type θ1 from

adhering to this bidding function is therefore

F2(θ1)θ1 −
∫ θ1

0

[φ(t)− b(t)]f2(t)dt = F2(θ1)θ1 −
∫ θ1

0

tf2(t)dt = π∗1(θ1).

Proof of Theorem 3: To show that type θ1’s equilibrium payoff equals his

noncooperative payoff we need to show
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F2(θ1)θ1 +

∫ θ1

0

φ(t)f2(t)dt+ (1− F2(θ1))(θ1 + φ(θ1))− b(θ1) =

∫ θ1

0

F2(t)dt.

Note that both sides equal zero at θ1 = 0. The derivative of the LHS (wrt

θ1) is f2(θ1)θ1 + F2(θ1) + φ(θ1)f2(θ1) − f2(θ1)(θ1 + φ(θ1)) + (1 − F2(θ1)))(1 +

φ′(θ1))− b′(θ1) = F2(θ1), which equals that of the RHS.

12 References

[1] Aoyagi, M. (2002), “Bid rotation and collusion in repeated auctions,” Jour-

nal of Economic Theory, 112 79-105.

[2] Aoyagi, M. (2007), “Efficient collusion in repeated auctions with commu-

nication,” Journal of Economic Theory, 134, 61-92.

[3] Athey, S., and Bagwell, K. (2001), “Optimal collusion with private infor-

mation,” RAND Journal of Economics, 32, 428-465.

[4] Athey, S., and Bagwell, K. (2008), “Collusion with persistent cost shocks,”

Econometrica, 76, 493-540.

[5] Athey, S., and Bagwell, K. (2001), “Optimal collusion with private infor-

mation,” RAND Journal of Economics, 32, 428-465.

[6] Athey, S., and Bagwell, K. (2008), “Collusion with persistent cost shocks,”

Econometrica, 76, 493-540.

47



[7] Baldwin, L.H., Marshall, R.C., and Richard, J.-F. (1997), “Bidder collusion

at forest service timber sales,” Journal of Political Economy, 105, 657-699.

[8] Blume, A., and Heidhues, P. (2006), “Private monitoring in auctions,”

Journal of Economic Theory, 131, 179-211.

[9] Cassady, R. (1967), “Auction and auctioneering,” University of California

Press.

[10] Che, Y-K., and Kim, J. (2009), “Optimal collusion-proof auctions,” Jour-

nal of Economic Theory, 144, 565-603.

[11] Chen, C-L., and Tauman, Y. (2006), “Collusion in one-shot second price

auctions,” Economic Theory, 28, 145-172.

[12] Cramton, P., Gibbons, R., and Klemperer, P. (1987), “Dissolving a part-

nership efficiently,” Econometrica, 55, 615-632.

[13] Dequiedt, V. (2007), “Efficient collusion and optimal auctions,” Journal

of Economic Theory, 136, 302-323.
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