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Abstract

In order to develop statistical tests for the Lyapunov exponents of deter-
ministic dynamical systems, we develop bootstrap tests based on empirical
likelihood for percentiles and expectiles of strictly stationary processes. The
percentiles and expectiles are estimated in terms of asymmetric least deviations
and asymmetric least squares methods. Asymptotic distributional properties of
the estimators are established.
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1 Introduction

The goal of this paper is to develop tools for statistical inference for the Lya-
punov exponents of deterministic chaos. The need for such statistical techniques
is as follows.

Essentially, the Lyapunov exponent of a one-dimensional deterministic chaotic
system measures the exponential rate of divergence of pairs of trajectories which
are initially close. We discuss details in Section 3, and the reader is referred to
Ruelle (1989) for an elegant introduction to analytical and geometric properties
of chaotic systems, and to Tong (1990) for an elucidation in the context of non-
linear time series. For one-dimensional chaotic systems, Lyapunov exponents
have an important practical use: it is a necessary condition for the existence
of chaos that the Lyapunov exponent be positive. However, for a large class of
dynamical systems (the so-called `Axiom A' systems), it is generally accepted
as being a suÆcient condition. The presence of a positive Lyapunov exponent
indicates a phenomenon known as sensitive dependence upon initial conditions.
(The problem may similarly be expressed for higher-dimensional dynamical sys-
tems.)

While there exists a variety of point estimators for Lyapunov exponents, lit-
tle has been done to capture their second-order properties, essential for testing
hypotheses on them. In particular, to test for the presence of sensitive depen-
dence upon initial conditions, it must be that a Lyapunov exponent is positive.
(Strictly speaking, in the simplest scenario, one would pose a null hypothesis
that the Lyapunov exponent is zero and test against a one-sided alternative.)
Bailey et al. (1997) derived a central limit theorem for local Lyapunov expo-
nents, a quantity equivalent to a short-term version of the (global) Lyapunov
exponent and localised in the state space. Lu and Smith (1997) approached the
same problem using local regression methods. Both papers provide asymptotic
second order properties of the estimators. See also Nychka et al. (1992). Since
a collection of local Lyapunov exponents may be used to construct the global
Lyapunov exponent, their methods have implications for computing con�dence
intervals for, and tests of, hypotheses on Lyapunov exponents. As illustrated
in Wol� (1995), small-sample properties of estimators of invariants of chaotic
dynamical systems may di�er markedly from the asymptotics. In the present
context, �nite sample properties of gradient estimators, such as are required to
compute sample Lyapunov exponents, are impossible to obtain analytically.

To this end, we �rst develop bootstrap tests, based on empirical likelihood,
for percentiles and expectiles of general strictly stationary processes. We then
apply the methods to test the Lyapunov exponents and other indices of one-
dimensional deterministic systems.

In the same spirit as the broadly non-parametric approach which we take
here, we note that Shintani and Linton (2003) obtained a test for chaos using a
neural network methodology to estimate Lyapunov exponents, whereas Whang
and Linton (1999) obtained distributional properties of Lyapunov exponents
using non-parametric regression. Further, time domain resampling methods for
chaotic time series and Lyapunov exponent estimation have been presented by
Giannerini and Rosa (2001) and Golia and Sandri (2001).

The rest of the paper is organised as follows. In Section 2, we propose some
bootstrap tests for percentiles and expectiles based on asymmetric least absolute
deviations (ALAD) estimators and the asymmetric least squares (ALS) estima-
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tors, for a probability measure on R1 . The bootstrap methods involve utilising
constraints: see also Hall and Presnell (1999a, 1999b). Asymptotic properties of
those estimators are established. We then apply the tests in Section 3 for test-
ing hypotheses on the Lyapunov exponent of a one-dimensional deterministic
chaotic system. All technical proofs are given in Section 4.

2 Bootstrap Tests for Percentiles and Expectiles

Let fYi; �1 < i < 1g be a strictly stationary process. We assume that
E
�
Y 2
1

�
<1, and Y1 has the smooth probability density function f(:).

2.1 Percentiles and expectiles

For � 2 (0; 1), the 100�-th percentile of Y1 is a constant, say ��, for which
P (Y1 � ��) = �. Obviously, �0:5 is the median of Y1. We exclude the cases
that � = 0 or � = 1 because the percentiles (also expectiles) are not uniquely
determined and are of little practical interest there.

It is easy to see that

�� = argmin
jbj<1

EfR�(Y1 � b)g; (2.1)

where

R�(y) =

�
�jyj y > 0;
(1� �)jyj y � 0:

In fact, for small x, we have the asymptotic approximation

EfR�(Y1 � �� + x)g = EfR�(Y1 � ��)g+ 1

2
f(��)x

2 + o(x2): (2.2)

If we de�ne a loss function as

Q�(y) =

�
�y2 (y > 0)
(1� �)y2 (y � 0);

the 100�-th expectile of Y1 is de�ned as

�� = argmin
jbj<1

EfQ�(Y1 � b)g: (2.3)

Obviously, �0:5 = E(Y1). It can be shown that

� =
EfjY1 � ��jI (Y1 � ��)g

E (jY1 � ��j) ; (2.4)

which resamples the property of the percentile that

� = P (Y1 � ��) =
Ef1I (Y1 � ��)g

E(1)
;
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where I(A) denotes the indicator function of the event A. Hence, in a similar
way that the percentile �� speci�es the position below which 100�% of the
probability mass of Y1 lies, the expectile �� determines the point such that
100�% of the mean distance between it and Y1 comes from the mass below it.
Note that function Q� has continuous derivative. This can make theoretical
exploration for expectiles slightly easier than that for percentiles. Similarly to
(2.2), we have the approximation

EfQ�(Y1 � �� + x)g
= EfQ�(Y1 � ��)g+ f�P (Y1 > ��) + (1� �)P (Y1 � ��)gx2 + o

�
x2
�
:

For more information about expectiles, we cite Neway and Powell (1987), Efron
(1991), and Yao and Tong (1996).

From (2.1), an ALAD estimate for the percentile from sample fYi; 1 � i � ng
can be de�ned as b�� = argmin

b

nX
i=1

R�(Yi � b): (2.5)

Similarly, from (2.3) an ALS estimate for the expectile is de�ned as

b�� = argmin
b

nX
i=1

Q�(Yi � b): (2.6)

The above estimates will play a key role in constructing the bootstrap tests.
Theorems 1 and 2 below show that both estimates are consistent and asymp-
totically normal under some mixing conditions. The stationary process fYig is
said to be �-mixing if

�j � sup
i�1
f sup
U2Fi

1
;V 2F1

i+j

jCorr(U; V )jg ! 0;

where Fj
i is the �-�eld generated by fYi; : : : ; Yjg (j � i).

Theorem 1. Suppose that the stochastic process fYig is strictly stationary
and ergodic. We also assume that E(Y 2

i ) <1. Then, for � 2 (0; 1), b�� P�! ��

and b�� P�! �� as n!1.

Theorem 2. Suppose that the stochastic process fYig is strictly stationary
and �-mixing. Further, we assume that lim supn!1

Pn
i=1(1� i=n)�i <1. We

also assume that E(Y 4
i ) <1. Then, as n!1, for � 2 (0; 1),

(i)
p
n(b�� � ��)

d�! N(0; �(1� �)ff(��)g�2),
(ii)

p
n(b�� � ��)

d�! N(0; �2�)), where

�2� =
�2Ef(Y1 � ��)

2 I (Y1 > ��)g+ (1� �)2Ef(Y1 � ��)
2 I (Y1 � ��)g

f�P (Y1 > ��) + (1� �)P (Y1 � ��)g2 :

The assumption of �-mixing is for the brevity of proofs. Actually Theorem
2 still holds under the assumption of strong mixing (�-mixing). On the other
hand, a linear or non-linear (stochastic) autoregressive process satisfying some
mild conditions is �-mixing. However, any sequence generated by a deterministic
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equation such as Xt+1 = m(Xt) is not �-mixing, therefore is also not �-mixing.
See Section 2.6 of Fan and Yao (2003) for further discussion on di�erent mixing
conditions and their properties.

The proofs of the above theorems are given in Section 4.

2.2 Bootstrap tests

We start with simple null hypotheses H01 : �� = a and H02 : �� = a, for both
� 2 (0; 1) and a 2 (�1;1) given. The method can be easily adjusted to test
the hypotheses that �� � a or �� � a, and so on. We construct the tests along
the lines of Efron and Tibshirani (1993, Ch. 6). Note that when � = 0:5, we
test the hypotheses on the median (H01) and the mean (H02) of the distribution
of Yt.

Bootstrap test for H01.

1. Estimate �� by b�� of (2.5).

2. Construct an estimator for the density function f , say bfn, in such a way
that

R a
�1

bfn(y)dy = �.

3. Draw an independent sample Y �1 ; : : : ; Y
�
n from bfn, and calculate b��� using

(2.5) with the sample fY �1 ; : : : ; Y �n g instead of fY1; : : : ; Yng.
4. Repeat Step 3 B times, and the achieved signi�cance level is de�ned as

the relative frequency of the occurrence of the event fjb��� � aj � jb�� � ajg
among the B repetitions. See Efron and Tibshirani (1993, p. 232).

Remark 1. For testing the hypothesis that �� � a, the above test will
be changed as follows: the achieved signi�cance level is de�ned as the relative
frequency of the occurrence of the event fb��� � b��g.

Bootstrap test for H02.

1. Estimate �� by b�� of (2.6).

2. Construct an estimator for the density function f , say bfn, in such a way
that R a

�1(a� y) bfn(y)dyR1
�1

jy � aj bfn(y)dy = �:

3. Draw an independent sample Y �1 ; : : : ; Y
�
n from bfn, and calculate b��� using

(2.6) with the sample fY �1 ; : : : ; Y �n g instead of fY1; : : : ; Yng.
4. Repeat Step 3 B times, and the achieved signi�cance level is the relative

frequency of the occurrence of the event fjb��� � aj � jb�� � ajg.
We adapt the smoothed empirical likelihood method (Chen and Hall, 1993)

to construct the density estimators required in the above bootstrap tests.
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The estimator for testing hypothesis H0j (j = 1; 2) can be de�ned as

bfn(y) = 1

h

nX
i=1

bpiK �
y � Yi
h

�
; (2.7)

where

(bp1; : : : ; bpn) = argmax
p2Aj

nY
i=1

pi; (2.8)

and

A1 =

(
(p1; : : : ; pn)

�����pi � 0;

nX
i=1

pi = 1;

Z a

�1

1

h

nX
i=1

piK

�
y � Yi
h

�
dy = �

)
;

A2 =

(
(p1; : : : ; pn)

�����pi � 0;
nX
i=1

pi = 1;

R a
�1

1
h

Pn
i=1 pi(a� y)K

�
y�Yi

h

�
dyR1

�1
1
h

Pn
i=1 pija� yjK

�
y�Yi

h

�
dy

= �

9=; :

In the above expressions, h > 0 is a bandwidth and K is a density function.
It is easy to see that estimator (2.7) is the conventional kernel density esti-

mator except that we use the weights fbpig instead of the uniform weight n�1

to ensure hypothesis H01 or H02 holds under bfn.
If we choose K as Gaussian kernel, Aj (j = 1; 2) can be simpli�ed as

A1 =

(
(p1; : : : ; pn)

�����pi � 0;

nX
i=1

pi = 1;

nX
i=1

pi�

�
a� Yi
h

�
= �

)
;

A2 =

(
(p1; : : : ; pn)

�����pi � 0;

nX
i=1

pi = 1;

Pn
i=1 pi

�
(a� Yi)�

�
a�Yi

h

�
+ h'

�
a�Yi

h

�	Pn
i=1 piYi � a+ 2

Pn
i=1 pi

�
(a� Yi)�

�
a�Yi

h

�
+ h'

�
a�Yi

h

�	 = �

)
;

where ' and � denote, respectively, the standard normal density function and its
distribution function. Further, the bootstrap sample in Step 3 of the above tests
can be equivalently drawn by taking Y �i = Z�i + h�i (i = 1; : : : ; n), where f�ig
are independent standard normal random variables, and fZ�i g are independent
samples from the discrete distribution given by

Y1 Y2 : : : Yn
probability bp1 bp2 : : : bpn (2.9)

Alternatively we can use an unsmoothed empirical likelihood procedure to
estimate the density f (Owen, 2001), which corresponds to the limit of the above
procedure as h ! 0. In practice, this implies drawing the bootstrap sample
(Y �1 ; : : : Y

�
n ) directly from distribution (2.9), in which (bp1; : : : ; bpn) is determined

by (2.8) with Aj replaced by Bj for testing hypothesis H0j (j = 1; 2), where

B1 =
8<:(p1; : : : ; pn)

������pi � 0;

nX
i=1

pi = 1;
X

i:Yi�a

pi = �

9=; ;
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B2 =
(
(p1; : : : ; pn)

�����pi � 0;

nX
i=1

pi = 1;

P
i:Yi�a

jYi � ajpiPn
i=1 jYi � ajpi = �

)
:

3 Tests for Lyapunov Exponents of Determinis-

tic Systems

3.1 Lyapunov exponents

We consider the one-dimensional discrete time dynamical system

Xt+1 = F (Xt); (3.1)

where F is a di�erentiable and bounded function. When the system is chaotic
(Chan and Tong, 2001, Ch. 2), we need to take account of the sensitivity to the
initial condition. To quantify the sensitivity, let X0 and X 0

0 denote two nearby
initial values. Then, after n iterates,

Xn �X 0
n = F (n)(X0)� F (n)(X 0

0) �
�

d

dx
F (n)(X0)

�
(X0 �X 0

0)

=

(
n�1Y
t=0

_F (Xt)

)
(X0 �X 0

0) = � exp

(
1

n

n�1X
t=0

log j _F (Xt)j
)
(X0 �X 0

0);

(3.2)

where F (n) denotes the n-fold composition of F , and _F denotes the derivative
of F . If the limit �(X0) � limn!1

1
n

Pn�1
t=0 log j _F (Xt)j exists, we have a simple

approximation jXn�X 0
nj � exp fn�(X0)g jX0�X 0

0j. When �(X0) is a constant
over the attractor of F , � � �(X0) is called the Lyapunov exponent. The
existence of one positive Lyapunov exponent is a necessary condition for the
system being chaotic. See Eckmann and Ruelle (1985), and Chan and Tong
(2001).

For the dynamical system in (3.1), its attracting set gives a global picture
of its long-term behaviour. A more detailed picture is presented by the invari-
ant probability measures with supports in this attracting set. Among those
invariant measures, a class of ergodic (also called indecomposable) measures are
of particular interest. Essentially, an ergodic measure gives the proportions of
time, in the long term, that the system spends on di�erent parts of an attrac-
tor. Therefore, for any P being such an invariant ergodic measure and A a
measurable set,

P (A) = lim
n!1

1

n

n�1X
t=0

IfF (t)(X0) 2 Ag (a:s:� P ): (3.3)

This is an ergodic theorem for deterministic chaos; see, for example, Eckmann
and Ruelle (1985). The notation `a:s: � P ' implies that the equality holds for
all the initial values X0 in a set, with probability 1, with respect to the measure
P . A dynamical system can carry uncountably many distinct ergodic measures,
and all of them are mutually singular (that is, for any two ergodic measures,
P1 and P2, there exists a set A for which P1(A) = 1 and P2(A) = 0). Of
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practical interest are the ergodic measures which are de�ned on sets with positive
Lebesgue measures. Those measures are associated with the attractors with
positive Lebesgue measures. For more discussion on attractors and invariant
measures, see Eckmann and Ruelle (1985).

Suppose that P is an ergodic invariant probability measure of system (3.1).
Suppose further that P has a density function p (with respect to Lebesgue
measure). By (3.3), for this measure, the Lyapunov exponent can be expressed
as

� =

Z
log j _F (x)jP (dx) =

Z
log j _F (x)jp(x)dx = Eflog j _F (Xt)jg;

= lim
n!1

1

n

n�1X
t=0

log j _FfF (t)(X0)gj (a:s:� P ): (3.4)

As in the above expression, we can formally treat fXtg as a strictly stationary
stochastic process, and Xt has the marginal distribution P . The relation (3.3)
ensures that this process is ergodic.

3.2 Statistical tests

Based on a �nite observed time series fXt; 1 � t � ng from (3.1), a full
recovery of an attracting set and its associated invariant measures is a formidable
task. Instead, our primary interest is to detect whether the Lyapunov exponent
in the attractor in which trajectory fXt; t = 1; 2; : : :g (discarding transient
period) lives is positive. We assume that P is an ergodic invariant probability
measure on this attractor and P has a density function. Hence the Lyapunov
exponent can be expressed as in (3.4). Using the bootstrap tests developed in
Section 2.2, we are able to accomplish our goal. Furthermore, a scrutiny of
a relevant distribution helps us to describe the initial-value sensitivity of the
system in terms of other indices. Technically, the ALAD estimate (2.5) and
the ALS estimate (2.6) are the building blocks of the proposed tests. Under
the ergodicity of (3.3), those estimates are still consistent (see Theorem 1).
However, the asymptotic Normality stated in Theorem 2 is no longer relevant,
since the time series fXtg generated from deterministic model (3.1) is not even
�-mixing. The �ndings on the auto-dependence of logistic maps are reported in
Hall and Wol� (1995).

For a one-dimensional model (3.1), it is of little diÆculty to estimate function
F and its derivative _F numerically within the range of the given data. Therefore,
we assume that the data

Yt � log j _F (Xt)j (t = 1; : : : ; n)

are known. Since we may treat fXtg as a strictly stationary process with a
marginal distribution continuous with respect to Lebesgue measure, the process
fYtg is also strictly stationary, and its marginal distribution has a density func-
tion. It follows from (3.3) that � = E (Y1), which is the 50% expectile of Y1. In
order to �nd evidence of chaos or, more weakly, operational determinism, as in
Yao and Tong (1998), we test a necessary but not suÆcient condition, � > 0,
via the hypothesis H : �0:5 > 0, where �� is the 100�-th expectile of distribution
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Y1. The bootstrap tests for hypothesis H02 in Section 2.2 are readily applicable
here (see also Remark 1). Note that the test in this case is slightly easier to
implement since b�0:5 = n�1

Pn
t=1 Yt (refer to (2.3)). Tests for hypotheses that

� exceeds, equals, or is less than a, where a is a constant, can be carried out in
the similar way.

It is easy to see from (3.2) that the Lyapunov exponent o�ers a rough ap-
proximation of the divergence of trajectories, and is not necessarily to be a
unique exponent to utilise. The quantity

�0 � Pflog j _F (Xt)j > 0g

may be another important index, along with the Lyapunov exponent, to pro-
nounce chaotic behaviour of the system. For example, in the event that �0 � 1
the system would appear to diverge in every iterations. With the given data, a
natural estimate for �0 is

b�0 = #flog j _F (Xt)j > 0g=n:

Since, it is an estimate from a �nite sample, we would like to test whether the
above estimate is reliable. Mathematically, we need to test H : ��1 = 0 with
�1 = 1� b�0, which is a special case of hypothesis H01 in Section 2.2. Now ��
denotes the percentile of random variable Yt = log j _F (Xt)j. A general form of
hypothesis H01 corresponds to test whether Pflog j _F (Xt)j > ag = �.

On the other hand, is an expectile �� with � 6= 0:5 of any meaningful impli-
cation here? From (2.4), we have that

1� �

�
=

E
h
log
��� _F (Xt)

���� ��I
n
log
��� _F (Xt)

��� > ��

oi
E
n
�� � log

��� _F (Xt)
��� I log ��� _F (Xt)

��� � ��

o :

Therefore, �� is the level for which the ratio of the average `overshoot' in the
attractor of log j _F (Xt)j, to this level, to the average undershoot (or trajectory
convergence) in the attractor is 1�� to �. Further hypotheses can be considered
in terms of the above interpretation.

3.3 Numerical examples

To implement the maximisation in Section 2.2 in the case of expectiles, we pro-
ceed using Lagrange multipliers, as follows. Details for percentiles are obtained
similarly (and in a slightly less complicated way).

We wish to maximise
Qn

i=1 pi subject to
Pn

i=1 pi = 1 and
Pn

i=1 cipi = 0,
where, in the case of maximising over A using a Normal kernel,

ci = (1� 2�)

�
(a� Yi)�

�
a� Yi
h

�
+ h�

�
a� Yi
h

��
� �(a� Yi);

and in the case of maximising over B,

ci = jYi � ajfI(Yi � a)� �g
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Letting S =
Qn

i=1 pi � � (
Pn

i=1 pi � 1)� �
Pn

i=1 cipi,

@S

@pj
=
Y
i6=j

pi � �� �ci (j = 1; : : : ; n):

Since pj 6= 0 for all j, to ensure a maximum, setting the above collection of
partial derivatives equal to zero renders

pj
p1

=
�+ �c1
�+ �cj

) pj =
1 + �c1
1 + �cj

p1 (� = �=�):

Since
Pn

i=1 pi = 1, p1 = (1 + �c1)
�1
�Pn

i=1(1 + �ci)
�1
	�1

, whence

pj =
(1 + �cj)

�1Pn
i=1(1 + �ci)�1

(j = 1; : : : ; n):

To satisfy the remaining constraint, it is necessary to �nd � such thatPn
j=1 cj(1 + �cj)

�1Pn
i=1(1 + �ci)�1

= 0:

It can be problematic to �nd an initial condition for �: a poor choice | being a
long way from 0 | can lead to negative values for p1; : : : ; pn. In our numerical
experiments, we proceeded empirically and searched for a root close to � = 0.
Typically, due to the steep gradients locally in the objective function, Newton-
Raphson found roots a long way from � = 0, so we tended to constrain the
search. This ultimately enabled explicit values of p1; : : : ; pn to be found, and
thus we obtained the weights for the smoothed empirical bootstrap, or the
unsmoothed empirical bootstrap, as required.

We note that it is possible to treat this optimisation exercise as a linear
programming problem, and to base a solution on a feasible solution comprising
the vertices of the search region. We do not attempt this method in the present
paper.

Figures 3.1 and 3.2 are based on tests for expectiles for simulated standard
Normal data. In both cases, 100 experiments were performed for each value
of a in a test of H0 : �0:5 = a versus H1 : �0:5 6= a, each time simulating
an independent sample of size 30, and applying 500 bootstrap replications to
compute the achieved signi�cance level for the test on each sample.

Figure 3.1 displays boxplots of each of the 100 p-values for the test, where
a = ��1(�), for � = 0:50; 0:55; : : : ; 0:95, and where � is the standard Normal
cumulative distribution function. (The p-values are, of course, the achieved
signi�cance levels as discussed in Section 2.2.) In other words, we test the
\true" value of a, and we should each time retain H0. The horizontal dotted
lines at 0.05 and 0.10 are for reference. It is clear from this plot that the test
performs very well for these data in terms of achieved signi�cance.

Figure 3.2 displays the mean power for each of the 100 experiments, along
with experimental error limits at two standard errors, in tests of H0 : �0:5 = 0,
when the true value of the expectile is ��1(
), 
 = 0:5; 0:51; : : : ; 0:95. The
resulting power is quite acceptable for a non-parametric test, though with the
curious e�ect of diminishing at extreme values of the expectile.
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Figures 3.3 and 3.4 are based on tests for percentiles and expectiles, respec-
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tively, for simulated realisations of the logistic map, given by

Xt+1 = F (Xt) � �Xt (1�Xt) ; (3.5)

with � = 4. For this value of � alone in (3.5) can the Lyapunov exponent
be obtained analytically, and is known to be � = log 2 > 0. (In fact, while
other values of � < 4 appear to produce chaotic behaviour, it can not be shown
theoretically that the behaviour is indeed chaotic: see Hall and Wol�, (1995).)
In both cases, 100 experiments were performed, based on independent series of
length 30, and applying 1000 bootstrap replications to compute the achieved
signi�cance level for the test on each sample. The reason why a larger number
of bootstrap replications were used here than in the �rst two experiments was
because of the issue over mixing, as discussed in Section 2.1. In the case of
percentiles, we test the hypothesis ��1 = 0, and in the case of expectiles, we
test the hypothesis �0:5 > 0, as discussed in Section 3.2, and in which �1 is also
de�ned.

Figure 3.3 displays a boxplot of each of the 100 p-values for the test based on
the percentile. The horizontal dotted lines at 0.05 and 0.10 are for reference. It
can be seen that there is clear evidence of tendency for divergence of trajectories
in each experiment.

Figure 3.4 displays a boxplot of each of the 100 p-values for the test based
on the expectile. The horizontal dotted lines at 0.05 and 0.10 are once again
for reference. It can be seen that �ve of the 100 experiments render a p-value of
less than 0.05, in which cases the hypothesis of a positive Lyapunov exponent
would be rejected (wrongly).
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3.4 Some consequential issues

The present results are for one-dimensional, discrete time systems. Continuous
chaotic processes must evolve in at least three dimensions (so that trajecto-
ries do not cross, and thus enable unique images of the chaotic function at
each point). To generalise our method would require an estimate of the three-
dimensional map | or, more speci�cally, its derivatives | and the method of
Whang and Linton (1999) might be of use in this regard. Data requirements for
higher dimensional systems can be formidable, and it is not clear what sample
sizes might be required to give a bootstrap method integrity. In the alternative,
dimension reduction, such as a principal components approach, may help, par-
ticularly if the direction of greatest separation of trajectories can be identi�ed:
see Broomhead et al. (1992) for a possible solution to this problem.

An issue of broad interest is the e�ect of dynamic noise on a chaotic system;
that is, adjusting (3.1) to be

Xt+1 = F (Xt) + !t+1;

for some sequence of independent and identically distribution noise terms f!tg.
We are cautious about treatment of such a situation which uses a gradient
measure for a Lyapunov exponent: apart from the technical issue of the system
noise possibly leading a trajectory outside the dynamic range of the map F
and giving rise to an explosive time series, the main issue is in interpretation
of the Lyapunov exponent. For deterministic systems, it has a geometrical
interpretation, in the context of the system's deterministic attractor. In the
presence of noise, this interpretation is lost. It is for this reason that Yao
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and Tong (1994) and Fan et al. (1996) chose to generalise this concept to a
probabilistic sensitivity measure.

Finally, a natural question is to consider the power of the present test. While
results may be readily available for stochastic systems, it would be a very inexact
study for chaotic maps. Consider the possibly best understood chaotic map, the
logistic map, given by (3.5). It is tempting to consider values of � such that the
Lyapunov exponent, �, is close to zero, and thereby study the power of the test.
It is known that � < 0 and � > 0 for explicit values of �. Plots of � versus �
abound, and one is given in Hall and Wol� (1995), who further note that such
a plot may be highly discontinuous and that computational foibles most likely
mask the true character of the plot. Speci�cally, they show increasing numerical
accuracy leads to greater detail in such a plot, particularly identifying regions
where � < 0 may exist but where less accurate computations fail to reveal such
facts. Therefore, choosing values of � known to have values of � close to zero is
fraught with possibility for error, and is likely to confound a power study.

4 Proofs

We now prove Theorems 1 and 2. We use the same notation as in Section
2.1. Basically, the proofs are the application of the Convexity Lemma (Pollard,
1991). The proof of Theorem 1 is straightforward. The main idea of the proof
of Theorem 2 is to approximate the objective functions in (2.5) (or (2.6)) by
a quadratic function whose minimiser is asymptotically Normal, and then to
show that b�� (or b��) lies close enough to the minimiser to share the latter's
asymptotic behaviour. The Convexity Lemma plays a key role in the above
approximation.

Proof of Theorem 1. Let Hn(b) = n�1
Pn

i=1R�(Yi � b), and H(b) =
EfR�(Y1 � b)g. Then both Hn and H are convex functions. Since the process

fYig is ergodic, Hn(b)
P�! H(b) for any b 2 R1.

For any " > 0, let

A(") = fx 2 R1
�� " � jx� ��j � 1g:

Since �� is the unique minimiser of H , there exists a constant � > 0 for which
H(b) > H(��) + � for all b 2 A("). By the Convexity Lemma (Pollard, 1991),

Hn(b)
P�! H(b) uniformly for b 2 A("). Therefore, for all suÆciently large n,

min
b2A(")

Hn(b) > H(��) + �=2 > Hn(��):

This implies that for all suÆciently large n, the function Hn has a local min-
imiser in the interval (�� � "; �� + "). Since Hn is convex, its local minimiser is

also the global minimiser b��. Hence, Pfjb�� � ��j < "g ! 1. The proof for the
consistency of b�� is similar and omitted here.

Proof of Theorem 2. The proofs for (i) and (ii) are similar. We only prove
(i) since it is technically more involved.
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For � 2 R1, we de�ne

Gn(�) =

nX
i=1

�
R�

�
Yi � �� � �p

n

�
�R�(Yi � ��)

�
:

We express the function Gn as

Gn(�) = EfGn(�)g+ �p
n

nX
i=1

D(Yi � ��) +RRn(�); (4.1)

where

D(x) =

�
� (x > 0)
�(1� �) (x � 0);

RRn(�) =

nX
i=1

�
R�

�
Yi � �� � �p

n

�
�R�(Yi � ��)�D(Yi � ��)

�p
n

�

�
nX
i=1

E

�
R�

�
Yi � �� � �p

n

�
�R�(Yi � ��)

�
:

Note that EfD(Yi � ��)g = 0, therefore EfRRn(�)g = 0 also. The function D
plays the role of the derivative of R� in the sense that for and any x; y 2 R1,

jR�(x+ y)�R�(x) �D(x)yj � jyjI (jxj � jyj) :

Consequently,

Var (RRn(�))

�
nX
i=1

E

�
R�

�
Yi � �� � �p

n

�
�R�(Yi � ��)�D(Yi � ��)

�p
n

�2

+ 2
X

1�i<j�n

����Cov�R�

�
Yi � �� � �p

n

�
�R�(Yi � ��)�D(Yi � ��)

�p
n
;

R�

�
Yj � �� � �p

n

�
�R�(Yj � ��)�D(Yj � ��)

�p
n

�����
� �2PfjY1 � ��j < �=

p
ng
(
1 + 2

n�1X
i=1

(1� i=n)�i

)
;

which converges to 0. Therefore, RRn(�) = op(1). It follows from (2.2) that

EfGn(�)g = �2

2 f(��) + o(1). From (4.1), we have

Gn(�) =
1

2
f(��)�

2 +
�p
n

nX
i=1

D(Yi � ��) + op(1): (4.2)

It is easy to see that the minimiser of the �rst two terms on the RHS of the
above expression is b� = 1p

nf(��)

nX
i=1

D(Yi � ��);
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which is asymptotically Normal with mean 0 and variance �(1 � �)=ff(��)g2
(see Theorem 2.4 of Peligrad, 1986). By the Convexity Lemma, the convergence
of (4.2) is uniform on any compact set in R1. Using the same arguments as in
Pollard (1991, p. 193), we can show that

p
n(b�� � ��) = b� + op(1):

Therefore, (i) holds. The proof is completed.
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