
  

 
COVER SHEET 

 
 
 
This is the author-version of article published as: 
 
Nur, Darfiana and Mengersen, Kerrie L and Wolff, Rodney C (2005) 
Phase randomisation: a convergence diagnostic test for MCMC. 
Australian and New Zealand Journal of Statistics 47(3):pp. 309-323. 
 
Accessed from   http://eprints.qut.edu.au
 
© 2005 Blackwell 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6692931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/


PHASE RANDOMISATION : A CONVERGENCE
DIAGNOSTIC TEST FOR MCMC

Darfiana Nur †, Kerrie L. Mengersen ‡ and Rodney C. Wolff ‡

University of Newcastle †, Queensland University of Technology ‡

Summary

Most MCMC users address the convergence problem by applying diagnostic

tools to the output produced by running their samplers. Potentially useful

diagnostics may be borrowed from diverse areas such as time series. One

such method is phase randomisation. The aim of this paper is to describe

this method in the context of MCMC, summarise its characteristics, and

contrast its performance with those of the more common diagnostic tests for

MCMC. It is observed that the new tool contributes information about third

and higher order cumulant behaviour which is important in characterising

certain forms of nonlinearity and nonstationarity.

Keywords: convergence diagnostics; higher cumulants; Markov Chain

Monte Carlo; non-linear time series; stationarity ; surrogate series.

1 Introduction

Markov Chain Monte Carlo (MCMC) methods have revolutionised Bayesian

statistics, enabling evaluation of complex distributions and thus facilitating care-

ful modelling in a very wide range of disciplines. An important consideration in

the implementation of these methods, however, is whether the chain converges in

some formal sense to the target distribution and, if so, how quickly. Detailed con-

vergence properties have been established through Markov chain theory in specific

or general setups, with often stringent conditions on the sampler which are difficult

to verify in practice (Mengersen & Tweedie (1996), Robert, Ryden & Titterington

(1998)). On a more practical basis, convergence may also be assessed through a

suite of diagnostics borrowed from diverse areas such as time series, exploratory

data analysis, coupling theory and other probabilistic tools.

Cowles & Carlin (1996) presented a comprehensive review of thirteen conver-

gence diagnostics for MCMC. They compared their performance in two simple

models and concluded that all the methods can fail to detect the sorts of con-

vergence they were designed to identify. Mengersen & Robert (1999) reviewed
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MCMC convergence diagnostics based on three categories : exploration (or ’burn-

in’, time to reach the stationarity distribution in an average sense); stationarity

(adequate movement around the target distribution) and estimation (adequate

length of sampling for estimation, appealing to Central Limit Theorem proper-

ties). Those diagnostic tests that are comparable with the method proposed in

this paper include the diag command from Bayesian Inference Using Gibbs Sam-

pling (BUGS) (Spiegelhalter et al. (1994)), the tests proposed by Geweke (1992),

Raftery & Lewis (1992) and Heidelberger & Welch (1983), and the usual autocor-

relation test. The last four tests can be found in the Convergence Output and

Diagnostics Analysis (CODA) software (Best, Cowles & Vines, 1995).

The convergence diagnostics that are comparable with the method proposed

in this paper are briefly described here, in order to facilitate later discussion. A

spectral analysis approach is adopted by Heidelberger & Welch (1983) who use the

Crámer-von-Mises statistic to test the null hypothesis that the sampled values form

a stationary process. In contrast, the method of Raftery and Lewis (1996) applies

to a single chain to detect convergence to the stationary distribution. They reduce

the chain to a two-state Markov chain which can be analysed explicitly, although

there is some discussion about the appropriateness of this approach (see Mengersen

& Robert). Geweke (1992) proposes a different convergence diagnostic based on

comparing spectral density estimates of the first and last parts of the MCMC chain.

There remains a concern, however, that although the MCMC may satisfy first

order stationarity, it may exhibit nonstationary behaviour for higher moments.

This might be excarbated if the model is complex in terms of hierarchical structure

or non-standard distributions, or the required expectations are based on these

higher order moments. Alternatively, such behaviour might indicate insufficient

”burn-in” of the MCMC algorithm or poor mixing of the MCMC chain. Detection

of nonlinearity and/or nonstationarity in the higher cumulants is important for the

estimation phase, which assumes that the CLT is satisfied.

In this paper we consider the output of a MCMC simulation as a time series

for which nonlinear and dynamical properties may be investigated using classical

and modern analytical methods. A recently developed device used in analysis of

dynamical systems output is that of phase randomisation, which consists of taking

the Fourier transform of a given series, replacing the phase with a value sampled

uniformly on (0, 2π) and back-transforming to render a so-called surrogate series.

This procedure, variously known as a method of surrogate data (Theiler et al.

(1992)), phase scrambling (Davison & Hinkley (1997)), or Fourier bootstrap (Braun
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& Kulperger (1997)), is commonly used in non-linear time series analysis (Theiler

et al. (1992), Timmer (1998)).

Since the randomisation technique in phase randomisation leaves amplitudes

unaltered, second order structure is preserved in the surrogate series. Due to the

requirement of symmetry amongst the array of angles used in the Fast Fourier

Transform, it is important to determine which other features of the original distri-

bution, if any, are preserved under phase randomisation. It is shown in Nur, Wolff

& Mengersen (2001) that the higher cumulant estimates of the surrogate series can

be used to detect the stationarity of a time series graphically. If the smoothing

densities of higher cumulant estimates of surrogates are unimodal around zero then

stationarity can be concluded. In the present paper we take this a step further

and borrowing from Robert & Casella (1999), we evaluate the effectiveness of tra-

ditional tests of normality, namely Kolmogorov-Smirnov and Shapiro & Wilk, in

supporting the assertion of convergence. The asymptotic normality of the third

cumulant of the surrogate series has been established by Nur (2003) under certain

conditions using Edgeworth expansion. Using this theoretical result, which is fur-

ther described in Section 4, the third cumulant estimates might be constructed as

a statistical test to assess the convergence of MCMC.

The organisation of the paper is as follows. Section 2 presents a summary of

phase randomisation in time series and characteristics of the resultant bootstrap

chains in a time series context. Its application in MCMC is then proposed. In Sec-

tion 3, we apply the phase randomisation method and other convergence diagnostic

tests to well-known MCMC examples, namely the surgical example described in

BUGS (Spiegelhalter et al. (1994)) and another example using the Metropolis-

Hastings algorithm. Formal tests for convergence are presented in Section 4 and

finally, conclusions are drawn in Section 5.

2 Phase Randomisation

2.1 What is phase randomisation?

Suppose {Xt} is a time series and X= (X1, X2, ..., XN) is a data set. Let

E(Xt) = µ, γk = E ((Xt − µ)(Xt+k − µ))
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be the expectation and the autocovariances of {Xt} respectively. The method of

surrogate data generates fictitious data Y= (Y1, ..., YN), such that for N = 2m+1

Yt = X̄ +

√
2π

N

m∑

j=1

2
√

I(X, wj) cos(wtj + θj), (t = 1, ..., N), (1)

where I denotes the modified periodogram, wj are the angular frequencies such

that wj = 2πj/N and θ1, ..., θm are iid U(0, 2π). If N = 2(m + 1), then

Yt = X̄ +

√
2π

N

m∑

j=1

2
√

I(X, wj) cos(wtj + θj) +

√
2π

N
I(X, wm+1) cos(πt + θm+1),

where θ1, ..., θm are independent of θm+1, which is equal to 0 or π with proba-

bility 0.5 each.

By construction, the surrogate data Y preserve the observed sample mean

and periodogram, that is

Ȳ = X̄, I(Y , wj) = I(X, wj), (j = 1, ..., N) with probability 1.

As a consequence, Y preserves the sample circular auto-covariances, that is

1

N

N∑

t=1

(Yt − Ȳ )(Yt+k − Ȳ ) =
1

N

N∑

t=1

(Xt − X̄)(Xt+k − X̄)

where Yt+N = Yt and Xt+N = Xt for all t ≥ 0.

Let U = U(X) denote the sample mean X̄ and the periodogram values

I(X, wj), j = 1, ..., N. Assume that U = u is fixed and Y is generated according

to (1). Assume that N = 2m+1 is odd and let p ≥ q be two positive integers.

Then

E(Yt) = X̄,

cov(Yp, Yq) = E
(
(Yp − X̄)(Yq − X̄)

)
− X̄2,

since E (cos(wtj + θj)) = 0 and var (cos(wtj + θj)) = 1
2
.

Continuing for higher cumulants, we have the properties that C(Yp, Yq, Yr) =

E
(
(Yp − X̄)(Yq − X̄)(Yr − X̄)

)
= 0; odd cumulants of the surrogate series are

zero and even cumulants of the surrogate series are non-zero. This implies that

the surrogate series have a highly symmetric joint distribution.
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The algorithm for generating the bootstrap surrogates is given below (Theiler

et al., 1992).

Rescaling Surrogate algorithm

(i) Input the original data into an array x(t), t = 1, 2, ..., N.

(ii) Let yt = Φ−1 (rt/(n + 1)) where rt is the rank of xt among the original

series x1, ..., xN and Φ denotes the standard normal cumulative distribution

function.

(iii) Compute the Discrete Fourier Transform: z(t) = DFT(y(t)). Note that z(t)

has real and imaginary components.

(iv) Randomize the phases: z′(t) = z(t) exp (iφ(t)) , where φ(t) is uniformly

distributed between 0 and 2π.

(v) Symmetrize the phases such that

Re (z′′(t)) =
1

2
Re (z′(t) + z′(N + 1− t))

Im (z′′(t)) =
1

2
Im (z′(t)− z′(N + 1− t))

where Re and Im are the real and imaginary parts of a complex number

respectively.

(vi) Invert the DFT: y′(t) = DFT−1(z′′(t)).

(vii) Set the surrogate series X∗
t = x(r′t), where r′t is the rank of y′t among

y′1, ..., y
′
N .

2.2 Characteristics of phase randomisation in time series

For the purpose of testing for stationarity in a time series, the above phase ran-

domisation procedure was reviewed and modified, and applied to a wide range of

time series models by Nur et al (2001). The models include linear stationary, linear

non-stationary, non-linear stationary and non-linear non-stationary processes for

which the characterization of stationary or non-stationary is known theoretically

from the ergodicity condition. They computed the estimates of higher cumulants of

original and surrogate series respectively. One thousand surrogate series were con-

structed for each time series. Estimates of the functions in Table 1 were calculated

for each original and surrogate series.
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Table 1

Higher cumulants functions and estimates at lags k = 1, ..., 20

Mathematical forms Estimates

E((Xt − µ)r) , r = 2, ..., 7 1
N

∑N
t=1(Xt − X̄)r

E
(∏r

j=1(Xt+k+j − µ)
)
, r = 2, ..., 6 1

N−k−r

∑N−k−r
t=1

(∏r
j=1(Xt+k+j − X̄)

)

E((Xt − µ)r(Xt+k − µ)r) , r = 1, 2. 1
N−k−r

∑N−k−r
t=1

(
(Xt − X̄)r(Xt+k − X̄)r

)

The empirical density estimates of the higher cumulants estimates of the sur-

rogates were then visually assessed and stationarity was characterised as follows.

For each higher cumulant in Table 1:

(a) if the empirical densities of the cumulant estimates from the surrogates are

unimodal around zero with a small variance then the original process is linear

stationary or weakly nonlinear stationary,

(b) if the empirical densities of the cumulant estimates from the surrogates are

unimodal around zero with a large variance then the original process is

strongly nonlinear stationary,

(c) if the empirical densities of the cumulant estimates are multimodal or uni-

modal nonzero with a long tail then the original process is nonstationary.

2.3 Phase Randomisation in MCMC

We aim now to make use of phase randomisation applied to time series as

discussed above by treating an MCMC sequence as a time series and creating a

large number of replicate chains from the one MCMC chain in order to evaluate

linearity and stationarity properties of the original chain. Using the results above,

we expect that under stationarity, the behaviour of higher cumulant estimates of

the surrogates of the MCMC will be asymptotically normal as shown in Table 2.
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Table 2

Conclusion on the behaviour of higher cumulants for stationary

and non-stationary processes using the Rescaling method

Process Original Surrogate

Stationary Higher moments are non-zero Higher moments are non-zero

Higher cumulants around zero Higher cumulants are
or small around zero

Cross cumulants are small Cross cumulants
are around zero (odd)
or quite small (even)

Nonstationary Higher moments are non-zero Higher moments are non-zero

Higher cumulants are Higher cumulants are
very large quite large

Cross cumulants are Cross cumulants are
large quite large

Following the empirical results in Nur et al (2001) and theoretical results in

Nur (2003), we choose the third cumulant estimates as the statistic for MCMC

convergence. We summarise the steps for assessing the convergence of MCMC as

follows.

(i) Generate an original MCMC chain according to the chosen sampler (Gibbs,

Metropolis-Hastings or others).

(ii) Generate the surrogates of the original chain by applying the Rescaling al-

gorithm described in Section 2.1.

(iii) Plot the histogram or empirical densities of the third cumulant estimates of

surrogates in step (ii).

(iv) Use the result in 2.2 or Table 2 to visually assess convergence based on these

densities. For example, if the histogram is unimodal around zero either with

small or quite large variance, then the chain converges. The small variance

reflects the linearity and stationarity of the original chain whereas the large

variance reflects the nonlinearity and stationarity of original chain. If the

histogram is unimodal nonzero with a long tail or multimodal then we can

conclude that the chain has not converged yet.
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(v) Apply a Kolmogorov-Smirnov or Shapiro & Wilk test for normality in sup-

porting the assertion of convergence.

In the following section, we apply the above steps to two examples and compare

the inferences about convergence that can be made using phase randomisation with

those that are made using existing comparable MCMC diagnostics.

3 Applications

Two examples of MCMC chains arising from Bayesian analysis are presented

in this section. The first one are generated by a Gibbs algorithm which samples

directly from the posterior conditional distributions themselves and is thus ex-

pected to converge quickly. In fact, the example exhibits a very stable process.

The second series is generated by a Metropolis-Hastings algorithm which samples

from a proposal distribution and then accepts or rejects the proposed variable with

a defined probability. Although theoretically it is known to converge uniformly or

geometrically in special cases (Mengersen & Tweedie, 1996), it may be more awk-

ward to visually assess convergence of the chain in practice. See Besag et al (1995)

for details of these algorithms.

For comparison in the two examples, the diagnostics of Geweke (1992), Raftery

& Lewis (1996), Heidelberger & Welch (1983), and simple autocorrelation were cal-

culated using CODA. Default values were used for Geweke, Heidelberger & Welch

and autocorrelation, whereas for Raftery & Lewis the precision and probability

were set to 0.02 and 0.90 respectively to reflect the number of observations.

3.1 Surgical example

This example considers mortality rates in 12 hospitals performing cardiac surgery

in babies. The data are displayed in Spiegelhalter et al. (1994). It is of inter-

est to estimate the true underlying mortality rate in each hospital. The ran-

dom effects model proposed by Spiegelhalter et al. expresses the number of

deaths, ri, for hospital i with true failure probability pi, as with priors

ri
d
= Bi(pi, ni), (i = 1, ..., 12); log(pi) = bi, where bi

d
= N(µ, 1/τ 2); µ

d
=

N(0, 10−6); τ
d
= Ga(0.001, 0.001).
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Figure 1. Surgical example: traceplot of parameter µ, 5000 iterations
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Figure 2. Surgical example: traceplot of the first 200 iterations of the chain in Figure 1
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Figure 3. Surgical example: Histogram and smoothing density for the second, third,

fourth and cross cumulants of the distribution represented in Figure 2, obtained by

phase randomisation
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Figure 4. Surgical example: Normal QQ-plot for the third cumulant in Figure 3
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For our purposes we focus on the overall mean mortality rate µ. Given the

dataset, the form of the model and the Gibbs algorithm, we expect this MCMC

chain to be very stable and indeed this is confirmed by the traceplot in Figure 1.

Hence we consider whether we can assert convergence based on a very short run

of, say, 200 cycles.

Figure 2 exhibits a time plot of the first 200 cycles. By comparison with the

processes considered in Nur et al (2001), the MCMC run in Figure 2 appears to be

similar to AR stationary or weakly bilinear stationary. The smoothing densities of

the first four cumulants estimates in Figure 3 tend to be unimodal around zero with

small variance. Normality assesment of the third cumulant estimates is presented

visually in Figure 4 by the normal QQ-plot.

Our conclusion is that the MCMC series in Figure 2 is stationary. This is in

accord with the diag assessments from BUGS, Raftery & Lewis, and Heidelberger

& Welch, as well as the autocorrelation tests. However, Geweke’s test is failed in

this example, possibly because of not enough observations in the first 200 cycles.

In fact, if Geweke’s test is run on the first 1000 cycles, it is passed.

3.2 Metropolis-Hastings algorithm

In Robert & Casella (1999), a collection of Metropolis-Hastings algorithms is re-

viewed together with some examples. Two of the algorithms are the Random-Walk

and Independent Metropolis-Hastings (Robert & Casella, page 245). The Random-

Walk algorithm does not enjoy uniform ergodicity properties although it is possible

to have a geometric ergodicity (Mengersen & Tweedie, 1996). The Independent al-

gorithm converges if the tails of the proposal distribution are heavier than those of

the target distribution. The form of the target distribution itself is also important,

as discussed below.

The example considered here is taken from Mengersen & Tweedie (1996) in

order to evaluate the performance of phase randomisation in assessing convergence

where the theoretical convergence properties are known. Consider Random-Walk

and Independent algorithms for the generation of two functions:

(a) f ∝ e−
1
2
x2

(standard normal);

(b) f ∝ (1+ | x |)−3

For the purposes of illustration, proposal distributions of g the N(x, 1) pdf

with initial x = 3 and g the N(1, 1) pdf were adopted for the Random-Walk
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and Independent algorithms respectively. Applying the theorem of Mengersen

& Tweedie (1996), it can be shown that the Random-Walk algorithm for case

(a) is geometrically ergodic to the average, whereas for case (b) it is not. For

the Independent algorithm, neither (a) nor (b) are expected to converge to its

stationary distribution as the tail of proposal distribution is not heavier than the

target distribution.

We also consider two types of sampling practices. First, as in the previous

examples, we explore convergence of the above chains using all consecutive sampled

values. For this purpose we take an entire slice of the chain at an early stage of

iteration, as described below. Second, we consider the practice of ”thinning”, that

is, taking a systematic sample of a larger section of the chain. The commonly

acknowledged purpose of this practice is to reduce autocorrelation; however this

is at the cost of increasing the variance of the estimates. Thus, it is of interest

to consider the comparative impact on convergence by this practice, as assessed

through our proposed diagnostics.

For case (a), for each algorithm we run 1000 iterations or longer, apply the

phase randomisation method, compile the empirical densities, make corresponding

assertions about convergence and compare to other diagnostics in CODA. Figure 5

shows the traceplot of 1000 iterations of the Random-Walk algorithm. Convergence

assessment is undertaken separately for cycles 100-300 and a subchain of size 300

comprising every 8th cycle of the chain. Figure 6 exhibits the histogram and QQ-

plot of the third cumulant using phase randomisation for cycles 100-300 and the

subchain. Tables 3 presents the results of other diagnostic tests over these ranges.

In assessing convergence of cycles 100-300, the histogram in Figure 6(i) is al-

most unimodal but with a slight tail for the third cumulant, indicating that the

chain almost converges but more runs than just these 300 are needed as confir-

mation. This is supported by the variable conclusions reached by the Geweke,

Heidebelger & Welch, Raftery & Lewis and autocorrelation tests as summarised

in Table 3. Over the subchain of systematically sampled cycles, Figure 6(ii) shows

that the histogram of the third-cumulant is almost unimodal and symmetric, with

an improved normality approximation as shown in QQ-plot compared to that in

(i). Other diagnostic tests for the subchain are similar to the results of cycles

100-300 as shown in Table 3.
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Figure 5. Traceplot of parameter µ, 1000 iterations using Random-Walk algorithm for
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Figure 6. Histograms and QQ-plots for the third cumulant of (i) cycles 100-300 (top)

and (ii) the subchain (below) of Figure 5
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Table 3

Results of diagnostic tests for cycles 100-300 and subchain of the series in Figure

5

Tests 100-300 cycles Subchain

Geweke 0.189, passed 0.448, passed

Raftery&Lewis 3.98, failed 8.05, failed

Heidelberger&Welch 0.203, failed 0.0592, failed

Autocorrelations Failed Conditionally passed

Phase randomisation Failed Passed
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Figure 7. Traceplot of parameter µ, 1000 iterations using Independent algorithm for

case (a)
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Figure 8. Histogram and QQ-plots for the third cumulants of (i) cycles 800-1000 and

(ii) subchain of Figure 7

Table 4

Results of diagnostic tests for cycles 800-1000 and the subchain of the series in

Figure 7

Tests 800-1000 cycles Subchain

Geweke 2.44, failed 0.0713, passed

Raftery&Lewis 8.97, failed 66.1, failed

Heidelberger&Welch 0.226, failed 0.0536, passed

Autocorrelations High, failed Low, passed

Phase randomisation Bimodal, failed Unimodal but skew, failed
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Figure 9. Traceplot of parameter µ for case (b) of (i) the first 20000 iterations and (ii)

the subchains using Random-Walk algorithm (top) and Independent algorithm (below)
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Figure 10. Histogram and QQ-plots for the third cumulants of the subchain depicted in

Figure 9 by Random-Walk (top) and Independent (below) respectively
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Table 5

Results of diagnostic tests for the subchain of the series in Figure 16 by

Random-Walk and Independent algorithms

Tests Random-Walk Independent

Geweke -2.16, failed 1.09, passed

Raftery&Lewis 38.5, failed 116, failed

Heidelberger&Welch 0.45, failed 0.0803, failed

Autocorrelations High, Failed Low, passed

Phase randomisation Unimodal, conditionally passed Unimodal but skew, failed

Estimation of case (a) using the Independent Metropolis-Hastings algorithm is

depicted in Figure 7. The histogram and QQ-plots of the third cumulant estimates

for (i) cycles 800-1000 and (ii) the subchain are shown Figure 8. The histogram

of the third cumulant estimates for cycles 800-1000 shows that the chain is not

stable, as also confirmed by the normality plots in (i). A similar conclusion is

reached for the subchain, as supported by the QQ-plot in (ii). Table 4 presents

other diagnostic tests for cycles 800-1000 and the subchain in which all tests failed

to confirm the convergence for cycles 800-1000, but confirm the convergence for

the subchain except for the phase randomisation and Raftery & Lewis test.

For case (b), in which we expect convergence in the long run for the Random-

Walk algorithm but not convergence to its stationary distribution for the Indepen-

dent algorithm, we run 20000 iterations and then apply phase randomisation for

the subchain of every 50th iteration. The traceplots of the chains and subchain for

each algorithm are shown in Figure 9. The histogram of the third cumulant esti-

mates and corresponding QQ-plots of both algorithms are depicted in Figure 10.

It is apparent that approximate normality is achieved by the Random-Walk algo-

rithm, but not by the Independent algorithm. This is in line with other diagnostics

as in Table 5. All tests except phase randomisation fail to confirm convergence in

the long run for the Random-Walk algorithm, and all other tests except Geweke

failed for the Independent algorithm of case (b).
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4 Formal Tests for Convergence

As discussed in Section 1, Nur (2003) showed that the third cumulant esti-

mates are asymptotically normally distributed under the stationarity condition.

The proof follows by verifying conditions for the validity of formal Edgeworth

expansions for the distribution of third cumulants of stationary linear and nonlin-

ear processes that can be representated by a Volterra expansion. The conditions

are: the existence of the higher moments and uniform bounded properties; the

approximation of the random vectors by other random vectors; strong mixing;

conditional Crámer condition; approximation which satisfies a Markov type condi-

tion and finally the existence of a variance-covariance matrix. This work is based

on Götze and Hipp (1994) who presented verifiable conditions for the validity of

formal Edgeworth expansions for the distribution of sums of random variables of

more general processes which include linear processes as well as the nonlinear AR

processes. The results apply to many statistics in nonlinear time series models.

In Section 3 we considered visual convergence assessment using the proposed

phase randomisation method. By considering the results in Nur (2003), it is thus

interesting to consider whether we might formalise the assessment of convergence

by a test of normality of the third cumulant, for example through Kolmogorov-

Smirnov or Shapiro & Wilk tests. We consider this approach for the examples in

the previous section. This approach is also motivated by Robert et al (1998) in

which they use Kolmogorov-Smirnov and Shapiro & Wilk tests as a diagnostic by

appeal to the CLT.

For the surgical example of Section 3.1, the P -value of the Kolmogorov-Smirnov

test applied to the data displayed in Figure 4 is 0.091. It is apparent that the

QQ-plot and the Kolmogorov-Smirnov test favour the assertion of asymptotic nor-

mality. The Shapiro & Wilk test, on the other hand, is much more strict, giving

P = 0. However, by taking longer chains within each surrogate, normality is more

strongly verified. Indeed, when a chain length of 400 cycles was evaluated, the

P -value from Shapiro & Wilk changes to 0.004. By evaluating a longer chain, the

Shapiro & Wilk test is in favour of the assertion of asymptotic normality.

The Metropolis-Hastings algorithm seems to give rather different results which

may be due to the stronger correlation between iterations compared to the Gibbs

algorithm of previous examples. For the Random-Walk algorithm of case (a), the

Kolmogorov-Smirnov test of normality for the third cumulant based on iterations

100-300 (Figure 6 (i)) gives a P -value of 0. However, the same test applied to

the systematic subsampled chain (Figure 6 (ii)) produces a P -value of 0.0514.
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Interestingly, after subsampling, normality is more strongly verified asymptotically.

For the Random-Walk algorithm of case (b) using systematic subsampling, the

Kolmogorov-Smirnov test of the data in Figure 10 gives P = 0.0037, again a

marginal improvement from P = 0 obtained without systematic subsampling.

The P -values corresponding to the Independent algorithm for both cases (Figures

8 and 10 ) are zero, subsampling or not, leading to a strong conclusion of non-

normality.

In light of the above results, this phase randomisation test might also be used

to determine the thinning interval for MCMC chains. As the interval between the

systematic subsample increases, the P -value corresponding to the Kolmogorov-

Smirnov test of normality of the third cumulant also increases. For example, for

the Random-Walk algorithm of case (a), the P -values associated with thinning

intervals of 5 and 8 are 0.0144 and 0.0514, respectively. If the thinning interval

is identified when normality is accepted by this test, in this example, we would

take systematic subsampling of every 8th iteration. Using this approach, the ap-

propriate thinning interval using the Random-Walk algorithm for case (a) and (b)

respectively are 8 and 50. Using the Independent algorithm, no thinning interval

can be found to satisfy the test, further confirming lack of convergence. Of course,

this approach is computationally intensive and further research is being under-

taken to reduce this effort. Moreover, these advantages must be evaluated against

the known drawbacks of the practice, as discussed earlier.

5 Discussion

An interesting set of conclusions can be drawn from the three examples in

Section 3. First, the phase randomisation performs at least as well as other di-

agnostics tests and is more informative about the behaviour of third and higher

order cumulants which is important in characterising certain forms of nonlinear-

ity and nonstationarity. Furthermore, under the stationary assumption, the third

cumulant estimates obtained by phase randomisation are conjectured to be asymp-

totically normally distributed and can be visually and formally tested. It is thus

a valuable addition to the diagnostic toolbox. Second, this new tool has simi-

lar features to the autocorrelation test, Heidelberger & Welch test and Raftery

& Lewis test. These are quite sensitive to the measure of the dependence of the

data, that is, they are concerned with convergence to iid sampling. On the other
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hand, Geweke’s test is concerned with convergence to the mean. Third, the phase

randomisation diagnostic supports the result of Mengersen & Tweedie (1996) that

the Metropolis-Hastings algorithm results in a Markov chain which is geometrically

ergodic to the average when the target density is log-concave in the tails. The in-

vestigations of Section 4 have also suggested that phase randomisation may be used

to identify appropriate subsampling strategic for Metropolis-Hastings chains. The

disadvantages of this method were also identified in particular its computational

burden.

Although it is ideal and somewhat expected that all of the various diagnostics

are in agreement about convergence of a particular chain, disagreement is not

uncommon in practice. This is supported by the studies of Cowles and Carlin

(1996), who advocate the use of multiple diagnostics in any study of convergence.

The intention is that this might reveal different features of the chain and overcome

individual deficiencies in the individual diagnostic methods. Such disagreement

among diagnostics was indeed observed in the examples of Section 3.3. In this

light, the addition of a new diagnostic that reveals distinct features of a chain as

described above maybe welcome.

Because the phase randomisation method has a strong connection with boot-

strapping, then it would be possible to develop a diagnostic test for multiple chains

as well as a single chain. Moreover, the phase randomisation method could suggest

the number of iterations in the burn-period. Based on theoretical results of the

asymptotic distribution of third cumulant in time series, one could construct a

statistical test to obtain the number of iterations that should be run to ensure the

convergence of the MCMC chain.
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