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Summary 
 
Of much interest in financial econometrics is the recovery of joint distributional behaviour of 
collections of contemporaneous financial time series, e.g., two related commodity price series, 
or two asset returns series.  An approach to model their joint behaviour is to use copulas.  
Essentially, copulas are selected on the basis of a measure of correlation between the two series 
and are made to match their marginal properties.  Of course, generalisations exist for more than 
two series.  A possible limitation of this approach is that only linear correlations between series 
might be captured.  We consider incorporating more general dependence structures, through the 
use of the correlation integral (as in the BDS test), as a means to refine the choice of candidate 
copulas in an empirical situation. 
 
Some keywords.  Archimedean copula; copula; correlation integral; dependence; Poisson 
convergence. 
 
 

1.  Introduction 
 
The year 1959 was world-famous for the transit of the first living being – a Russian dog named 
Laika – in outer space orbit around the Earth.  Perhaps less conspicuously, but nevertheless 
famous in the statistical world, in and about that same year was the announcement of some 
important foundation results concerning dependence of random variables.  This knowledge – 
including other results accumulated in the thirty-odd years prior to that – laid the foundation for 
the theory of copulas.  In the bivariate case, one can envisage a copula as being the remainder 
factor after “dividing out” the marginal densities from the associated joint density: it is, in a 
sense, an algebraic term which “couples” two distributions together.  In this paper, we briefly 
review notions relating to dependence structures, and their bearing on copulas.  We point out 
how the choice of the right copula might be ambiguous, and proceed to illustrate how this 
choice might be improved if one adopts an approach from dynamical systems.  In a financial 
setting, the importance of this work is to help to understand how, for instance, returns from two 
stocks, or even returns on indices from two markets, depend on each other.  This is particularly 
of interest when one wishes to determine how shocks in one market might transfer to another, or 
how high-frequency events “drive” each other.  See Guégan and Ladoucette (2004) for an 
empirical study. 
 
 

2.  Dependence Structures 
 
Rényi (1959) established a framework, by means of an axiom set, for a measure of dependence, 

( )YXR , , between continuous random variables, X and Y, which we recite here as a preliminary 
to development of later observations. 

(a) ( )YXR ,  is defined for any X and Y. 

                                            
† School of Economics and Finance, Queensland University of Technology, GPO Box 2434, 
Brisbane QLD 4001, AUSTRALIA.  Fax: +61 7 3864 1500, email: r.wolff@qut.edu.au. This 
version: 20 November 2004. 



(b) ( ) ( )XYRYXR ,, = . 
(c) ( ) 1,0 ≤≤ YXR  
(d) ( ) 0, =YXR  if and only if X and Y are independent. 
(e) ( ) 1, =YXR  if and only if each of X and Y is almost surely a strictly monotone function 

of the other. 
(f) If 1m  and 2m  are strictly monotone functions almost surely on the range of X and the 

range of Y, respectively, then ( ) ( ){ } ( )YXRXmXmR ,, 21 = . 
(g) If the joint distribution of X and Y is bivariate Normal, with correlation coefficient ρ , 

then ( )YXR ,  is a strictly increasing function of ρ . 
(h) If ( )YX ,  and ( )nn YX ,  ( )K,2,1=n  are pairs of random variables with joint distribution 

functions H and nH , respectively, and if the sequence { }nH  converges weakly to H, 
then ( ) ( )YXRYXR nnn ,,lim =∞→ . 

As discussed in Schweizer and Wolff (1981), this set of axioms may be too strong.  Indeed, 
Rényi showed that only the maximal correlation coefficient, given by the expression 

( ) ( ){ }YmXmmm 21, ,corrsup
21

, satisfies all axioms (where the supremum is taken over all Borel-
measurable functions 21 , mm ; moreover, the maximal correlation coefficient has several 
drawbacks, such as attaining the value of unity “too often” (Hall, 1969).  What is important to 
note is that Rényi’s axioms admit a U-statistic-like structure for dependence measures (Lee, 
1990), which connects with discussion later in the present paper. 
 
 

3.  Copulas 
 
Further statistical contributions, contemporaneously with the space race, came from Kruskal 
(1958) and Sklar (1959), who accessed the notion of dependence through definition of a copula.  

Consider, in the general multivariate case, a random vector [ ]′nXX ,,1 L  which has a joint 
cumulative distribution function given by ( ) ( )nnn xXxXPxxF ≤≤= &&,, 111 LL .  Assume 
that each component random variable jX  ( )nj ,,1K=  has a continuous marginal cumulative 
distribution function given by ( ) ( )jjj xXPxF ≤= .  Sklar showed that the joint distribution 
function F can be written in terms of its marginals in the form 
 

( ) ( ) ( ){ }nnn XFXFCxxF ,,,, 111 LL =  
 
for a unique function C, called the copula of F (or the copula of X), so called because it 
“couples” the marginal distributions together with the joint distribution.  It is illuminating to 
note that, by differentiating the above expression, one obtains 
 

( ) ( ) ( ) ( ) ( ){ }nnnnn XFXFcXfXfxxf ,,,,, 11111 LKL = , 
 
where f is the probability density function corresponding to cumulative distribution function F, 

jf  is the probability density function corresponding to cumulative distribution function jF  
( )nj ,,1K= , and c is the derivative of the function C.  Now nXX ,,1 L  are independent if and 
only if ( ) ( ){ } 1,,11 =nn XFXFc L , which gives an immediate interpretation of c (or C) as a 
measure of departure from independence.  Note also that the function c (or C), having 
arguments being marginal cumulative distribution functions, is generically defined in terms of 
uniform marginals on the unit interval, since ( )jj XF  is a standard uniform random variable for 
any random variable jX . 



 
Either side of the contributions from the 1950s was the pioneering work in bivariate 
distributional modelling by Pretorius (1930) and, 40 years later, Mardia’s (1970) observation 
that very little progress had been made to that date in being able to identify and fit an 
appropriate bivariate distribution given marginal behaviour (and other statistics).  Archimedean 
copulas (Schweizer and Sklar, 1983, Ch 3; Genest and MacKay, 1986a, 1986b), to an extent, 
simplify some issues in fitting bivariate copulas, in that the functional form of the copula is 
restricted to take a particular form, given by 
 

( ) ( ) ( ){ } ( )1,0, 2121
1

21 <<+= − xxxxxxC ϕϕϕϕ , 
 
where ϕ  is a convex decreasing function with ( ) 01 =ϕ , and we take ( ) 01 =− xϕ  whenever 

( )0ϕ≥x .  These conditions are necessary and sufficient for ( )21 , xxCϕ  to be a cumulative 
distribution function (Schweizer and Sklar, 1983, Ch 5), and are equivalent to ( )x11 −−ϕ  being a 
unimodal cumulative distribution on [ )∞,0  with mode at 0.  Noting the inverse transformations 
 

( ) ( ) ( ){ } ( )2122111 ,, XXCUXXXU =+= ϕϕϕ , 
 
it can be shown that 1U  is distributed uniformly on ( )1,0 , independently of 2U  which is 
distributed as ( ) ( )222 uuu ϕϕ ′−  on ( )1,0 .  Genest and Rivest (1993) show that, in the special 
Archimedean case for 2U , it is possible to solve the resulting differential equation involving ϕ  
to obtain 
 

( ) ( )
( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ ′

= ∫
2

0

exp2

u

u

dt
t
tu

ϕ
ϕϕ , 

 
where 10 2 << u  is an arbitrarily chosen constant.  In some sense, it captures the “projection” of 
almost any dependence function C within the class of Archimedean copulas.  They then proceed 
to estimate the copula in a non-parametric (though unsmoothed) fashion. 
 
An example of a dependence function is Kendall’s tau, which is a generalised form of 
correlation; specifically, it is the difference between the probability of concordance and the 
probability of discordance, namely 
 

( ) ( )( ){ } ( )( ){ }0~~0~~, 2211221121 <−−−>−−= XXXXPXXXXPXXτ , 
 
where jX~  is an independent copy of the random variable jX  ( )2,1=j .  Kendal’s tau can be 
expressed as a double integral of the copula function C (Nelsen, 1999) but, for the special case 
of an Archimedean copula, it is given by 
 

( )
( )∫ ′

+=
1

0

41 dt
t
t

ϕ
ϕτ . 

 
 

4.  Copula Selection: Statement of the Problem 
 
Joe (1997) presents a catalogue of copulas from which one may choose one or several 
candidates for fitting a particular set of data.  Clearly, in data analysis, given only a sample from 
a bivariate or multivariate population, it may not – and is usually not – possible to select the 



“correct” copula: for instance, when restricting attention only to Archimedean copulas, one 
might still have several candidates (from several families) for a given estimate of Kendall’s tau.  
Therefore, an important issue remains over how to choose the “best” copula. 
 
Particularly when one moves to the time series case, computing simple correlations from data 
and comparing with the resulting correlations arising from the copula may not be adequate, in 
that such a calculation captures only linear dependence.  Thus, when two copulas render a 
similar theoretical correlation, and which is also close to the sample correlation from the data, 
choosing the copula which is the closer of the two may not suffice, particularly when there is no 
significance in the comparison. 
 
We propose to use a dependence measure the correlation integral, as discussed in the next 
section. 
 
 

5.  Correlation Integral 
 
The correlation integral is used in dynamical systems theory to estimate the correlation 
dimension of a dynamical system, based on the observation of a trajectory.  We do not consider 
aspects of dynamical systems here, and a full account is given in a very elegant introduction by 
Ruelle (1989). 
 
Consider a time series nXX ,,1 L  of length n.  A p-dimensional embedding of the time series is 
defined to be 
 

[ ] ( )1,,1,, 11 +−=′= −++ pnjXXXV pjjjj KL . 
 
Then the correlation integral is given by 
 

( ) ( )∑
<

−

≤−<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +−
=

ji
ji rVVI

pn
rpnK 0

2
1

,,
1

* , 

 
where I is an indicator function.  The limit 
 

( )
r

rpnK
rn log

,,loglim
*

0, ↓∞→
 

 
is called the correlation dimension of the dynamical system from which the original time series 
arose (assuming that the limit exists, and that the correct embedding dimension p has been 
selected). 
 
Consider the unscaled correlation integral 
 

( ) ( )∑
<

≤−<=
ji

ji rVVIrpnK 0,,  

 
and let ( )rVVII jiij ≤−<= 0 .  Then K is simply the sum of correlated Bernoulli random 

variables, each having mean ( ) ( )rVVPIE jiijij ≤−<== 0π .  Given a random sample (or, for 

that matter, a time series) nXX ,,1 L , the probabilities ijπ  can clearly be estimated consistently. 
 



Analogously to a binomial random variable with parameters m and π  converging in law to a 
Poisson random variable with parameter λ  as ∞→m , +→ 0π  and λπ →m , one may also 
prove Poisson convergence of correlated Bernoulli random variables – as in the function K – 
using the method of Chen (1975) and Stein (1972). 
 
Wolff (1995) establishes a Poisson law for the unscaled correlation integral under certain 
assumptions, chiefly M-dependence.  In that case, it is shown that 
 

( ) ( )0~ ijp
p

ij gvrIE , 
 
where pv  is the volume of the unit ball in p dimensions, and ijg  is the probability density 
function of the difference of embedding vectors ji VV − , which features in the mean of the 
attained Poisson law.  Corresponding to the ordinary convergence of the binomial to the 
Poisson, Wolff obtains the rate of convergence for the random variable ( )rpnK ,, : ∞→n , 

+→ 0r  and δ→prn2 , where δ  is a constant depending on the underlying density of the 
observations evaluated at the origin.  By estimating δ  from a sample, one can find the optimal 
value of r at which to evaluate ( )rpnK ,, , namely 
 

pnr 2−= δ , 
 
where optimality is in terms of closeness to the Poisson distribution for the unscaled correlation 
integral, and thus giving best calibration against that distribution. 
 
Finally, note that the correlation integral is a U-statistic, and is admissible under Rényi’s (1959) 
scheme as a dependence measure. 
 
 

6.  An Algorithm for Copula Selection 
 
We propose the following algorithm for copula selection, noting that, from the equation in 
densities 
 

( ) ( ) ( ) ( ) ( ){ }nnnnn XFXFcXfXfxxf ,,,,, 11111 LKL = , 
 
all information about dependence is contained in the function c, and so we may concentrate 
purely on the copula in order to assess the extent to which dependence has been captured in the 
modelling process. 
 
Our algorithm is as follows, and assumes that time series data are available. 
 

(i) Compute sample values of the marginal densities underlying the observed data, after 
Wolff’s (1995) calculations, and thus determine the optimal value of r at which to 
evaluate the correlation integral, as well as fitting the Poisson parameter. 

(ii) Compute the sequence ( )rpnK ,,data  for the data, indexed by p. 
(iii) For a proposed copula which is claimed to fit the data, generate a very large number 

simulated observations using stochastic simulation (such as by an appropriate Monte 
Carlo method, such as given by Hammersley and Handscombe, 1964). 

(iv) Compute a corresponding sequence ( )rpnK ,,cop  from the simulated observations. 
(v) Treating ( )rpnK ,,cop  as a constant – by virtue of the large volume of simulated 

observations – measure its closeness to ( )rpnK ,,data , calibrating appropriately from the 
fitted underlying Poisson distribution for it. 



(vi) Repeat for all candidate copulas, and choose the one which gives the closest calibrated 
match between ( )rpnK ,,data  and ( )rpnK ,,cop . 

 
The efficacy of the method will be demonstrated in the conference presentation, and in 
forthcoming developments based on this paper. 
 
 

7.  Some Final Remarks 
 
The only ambiguity in the preceding algorithm lies in choosing an appropriate embedding for 

the data.  For the bivariate time series case, the natural embedding is given by [ ]′tt XX ,2,1 , , 
where indexing refers to the group and time epoch.  This can be compared naturally with the 

marginal (with respect to time) dependence structure from the copula, simply via [ ]′21 ,UU . 
 
In order to capture time dependence, one may construct such embedding vectors as 

[ ]′−− 1,2,21,1,1 ,,, tttt XXXX  in order to capture within-group correlation and cross-correlation, thus 
leading to a 4-variate copula problem.  (This appeals to the dynamical system notion of delays 
within embeddings: see, again, Ruelle, 1989). 
 
There is clearly a trade-off here between expanding the temporal range of the time series 
embedding and the rapidly diminishing loss of accuracy in calibrating the correlation integral 
through lack of data, namely, having exponentially growing “emptiness” in the multivariate 
space chosen for the embedding, the so-called curse of dimensionality.  While the optimal 
situation is clearly to have the smallest sized embedding possible, a detailed understanding of 
the curse of dimensionality for this problem might shed light on the limits of how sophisticated 
a time-dependent copula model might be constructed. 
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