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Abstract

We bring together some recent advances in the literature on vec-
tor autoregressive moving-average models creating a relatively simple
specification and estimation strategy for the cointegrated case. We
show that in the cointegrated case with fixed initial values there exists
a so-called final moving representation which is usually simpler but not
as parsimonious than the usual Echelon form. Furthermore, we proof
that our specification strategy is consistent also in the case of cointe-
grated series. In order to show the potential usefulness of the method,
we apply it to US interest rates and find that it generates forecasts
superior to methods which do not allow for moving-average terms.

Keywords: Cointegration, VARMA Models, Forecasting

1 Introduction

In this paper, we propose a relatively simple specification and estimation
strategy for the cointegrated vector-autoregressive moving-average (VARMA)
models using the estimators given in Yap & Reinsel (1995) and Poskitt
(2003) and the identified forms proposed by Dufour & Pelletier (2008). In
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order to show its potential usefulness, we apply the procedure in a forecast-
ing exercise for US interest rates and find promising results.

Existing specification and estimation procedures for cointegrated VARMA
models can be found in Yap & Reinsel (1995), Lütkepohl & Claessen (1997),
Poskitt (2003, 2006) and also Poskitt (2009). Common to these papers is
the use of the reverse “Echelon-Form”, a set of parameter restrictions which
make sure that the remaining coefficients are identified with respect to the
likelihood function. A related but different approach uses so-called “scalar-
component” representations originally proposed by Tiao & Tsay (1989) and
embedded in a complete estimation procedure by Athanasopoulos & Vahid
(2008). While both structures can be quite parsimonious representations of
a given process, they can display relatively complex structures. Instead, we
extend the simpler identified representations of Dufour & Pelletier (2008) to
the cointegrated case with fixed initial values. Furthermore, we propose to
specify the model using Dufour & Pelletier’s (2008) order selection criteria
applied to the model estimated in levels. We proof a.s. consistency of the
estimated orders in this case. While we believe that our proposed specifica-
tion and estimation procedure for this class of models stands out because of
its simplicity and robustness, this is not to say that our procedure should
be preferred to the alternative methods mentioned above under all circum-
stances. It is likely, that the method of choice depends on the type of data
at hand and the sample size. This is therefore an empirical question that
goes beyond the scope of this paper.

Finally, we apply the methods to the problem of predicting U.S. treasury
bill and bond interest rates with different maturities taking cointegration as
given. We find quite promising results relative to a multivariate random walk
and the standard vector error correction model (VECM). An investigation
of the relative forecasting performances over time shows that the VARMA
model delivers consistently good forecasts apart from a period stretching
from the mid-nineties to 2000.

The motivation for looking at this particular model class stems from
the well-known theoretical advantages of VARMA models over pure vector-
autoregressive (VAR) processes; see e.g. Lütkepohl (2005). In contrast to
VAR models, the class of VARMA models is closed under linear transforma-
tions. For example, a subset of variables generated by a VAR process is typi-
cally generated by a VARMA, not by a VAR process (Lütkepohl 1984a,b). It
is well known that linearized dynamic stochastic general equilibrium (DSGE)
models imply that the variables of interest are generated by a finite-order
VARMA process. Fernández-Villaverde, Rubio-Ramı́rez, Sargent & Watson
(2007) show formally how DSGE models and VARMA processes are linked.
Cooley & Dwyer (1998) claim that modeling macroeconomic time series sys-
tematically as pure VARs is not justified by the underlying economic theory.
A comparsion of structural identification using VAR, VARMA and state
space representations is provided by Kascha & Mertens (2009).
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Our particular application is part of a vast literature on the term struc-
ture of interest rates and serves therefore as an ideal framework in which
to compare different modeling strategies. The cointegration approach has
become a widespread tool for term structure analysis, following the seminal
paper of Campbell & Shiller (1987). If the rational expectation hypothesis
of the term structure holds (REHTS) then the spread of two interest rates is
stationary. Accordingly, there should exist K − 1 cointegration relations in
a system of K (nonstationary) interest rates. While there is strong empir-
ical evidence for K − 1 cointegration relations among money market rates
and medium-term bond yields, see e.g. Hall, Anderson & Granger (1992),
Engsted & Tanggaard (1994), Cuthbertson (1996), Hassler & Wolters (2001),
a smaller number of cointegration relations is usually found if long-term in-
terest rates are considered in addition. This has been found e.g. by Shea
(1992), Carstensen (2003) and Cavaliere, Rahbek & Taylor (2010).

Starting with Campbell & Shiller (1987), many studies have also ana-
lyzed whether the spreads help to predict individual interest rates by clas-
sical regression models including the spread or the use of vector autore-
gressive models. Given the widespread use of cointegration techniques to
test for the REHTS, it is, however, surprising that only a few papers apply
corresponding multivariate models for cointegration like the VECM for pre-
dicting interest rates; see Hall et al. (1992), Hassler & Wolters (2001) and,
more recently, Clarida, Sarno, Taylor & Valente (2006)

The results on the forecasting performance of (cointegrated) VARMA
models are even more sparse. Using an identified form different from ours,
Yap & Reinsel (1995) apply a cointegrated VARMA model to U.S. interest
rates but do not evaluate its forecasting performance. An interesting con-
tribution is the one by Feunou (2009). He uses a VARMA model for model-
ing the whole yield curve imposing no-arbitrage restrictions in a stationary
model instead of cointegration restrictions. Another study is provided by
Monfort & Pegoraro (2007) using switching VARMA term structure mod-
els, again in a stationary context. The applied part of our paper adds to
this literature.

The rest of the paper is organized as follows. Section 2 presents the
paper’s contribution and the application. Section 3 gives details on the
proposed methodology. Section 4 concludes. Programs and data can be
found on the homepages of the authors.

2 Cointegrated VARMA models

This section summarizes the model framework and the results of the paper.
The technical details are given in section 3 and the proofs are provided in
the appendix.

This paper mainly assembles and extends elements of the articles of
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Yap & Reinsel (1995), Poskitt (2003) and Dufour & Pelletier (2008) in order
to construct a reasonably easy and fast strategy for the specification and
estimation of cointegrated VARMA models. The considered model for a
time series of dimension K, yt = (yt,1, . . . , yt,K)′, is

yt = µ0 +

p∑
j=1

Ajyt−j + ut +

q∑
j=1

Mjut−j for t = 1, . . . , T (1)

given fixed initial values y0, . . . , y−p+1. The error terms ut are assumed to
be i.i.d. with mean zero and positive definite covariance matrix, Σu, and
at least finite second moments (Poskitt 2003, Assumptions A.2, A.3). Let
us define the autoregressive and moving-average polynomials by A(L) =
IK −A1L− . . .−ApL

p and M(L) = IK +M1L+ . . .+MqL
q, respectively,

where L denotes the lag operator. M(L) is assumed to be invertible. We
are interested in the case in which the process has s unit roots such that
|A(z)| = ast(z)(1 − z)s for 0 < s ≤ K and |ast(z)| ̸= 0 for z ≤ 1, where
| · | refers to the determinant. Then it is said that the cointegration rank
of yt is r = K − s and we can decompose Π :=

∑p
j=1Aj − IK as Π = αβ′,

where α and β are (n× r) matrices with full column rank r. Furthermore,
the constant is assumed to take the form µ0 = −αρ such that a trend in the
differences is ruled out and one can write

∆yt = αβ′(yt−1 − ρ) +

k∑
j=1

Γj∆yt−j + ut +

q∑
j=j

Mjut−j (2)

Now, it is well known, that one has to impose certain restrictions on the
parameter matrices in order to achieve uniqueness. That is, given a series
(yt), there is generally more than one pair of finite polynomials [A(z), M(z)]
such that (1) is satisfied. Therefore, one has to restrict the set of consid-
ered pairs [A(z), M(z)] to a subset such that every process satisfying (1) is
represented by exactly one pair in this subset.

Poskitt (2003) proposes a complete modelling strategy using the Ech-
elon form which is based on so-called Kronecker indices. Here, we use
the much simpler final moving-average (FMA) representation proposed by
Dufour & Pelletier (2008) in the context of stationary VARMAmodels. This
representation imposes restrictions on the moving-average polynomial only.
More precisely, we consider only polynomials [A(z), M(z)], such that

M(L) = m(L)IK , m(L) = 1 +m1L+ . . .+mqL
q. (3)

is true.1 As already noted by Dufour & Pelletier (2008), this identification
strategy is valid despite A(z) having roots on the unit circle. The reason
is that the polynomial M−1(L)A(L) can be uniquely related to M(L) and

1 Dufour & Pelletier (2008) also propose another representation that restricts attention
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A(L) (Dufour & Pelletier 2008, Lemma 3.8 and Theorem 3.9). What is left,
is only to show the definition of the FMA form in the non-stationary context
with fixed initial values. Analogous to the results in Poskitt (2006), we can
show that in this particular case the resulting pair of polynomials does not
have to be left-coprime anymore.

Prior to estimation and specification, we subtract the sample mean from
the observations, that is, we actually apply the methods to yt−T−1

∑T
s=1 ys

in the VARMA case. However, the notation will not distinguish between raw
and adjusted data and we simply write

yt =

p∑
j=1

Ajyt−j + ut +

q∑
j=1

Mjut−j , (1’)

for example. The used estimation methods remain valid, provided the con-
stant can indeed be absorbed in the cointegrating relation; see Yap & Reinsel
(1995, section 6.) and Poskitt (2003, section 2, p. 507).

Dufour & Pelletier (2008) also propose an information criterion for spec-
ifying stationary VARMA models identified via (3). In their setting, the
unobserved residuals are first estimated by a long autoregression and then
used to fit models of different orders p and q via generalized least squares
(GLS). The orders which minimize their information criterion are then cho-
sen. We modify their procedure by replacing the GLS regressions by OLS
regressions which are applied to the cointegrated VARMA model in levels.

Having determined the orders p and q, we use the algorithm described
in Poskitt (2003) to obtain an initial estimate of the cointegrated model.
The estimator basically amounts to an OLS regression in the VECM repre-
sentation. This estimate is then updated using the algorithm described in
Yap & Reinsel (1995) in order to obtain an efficient estimate in a Gaussian
setting. The last step is another GLS regression.

The complete procedure for a given cointegrating rank is:

1. Subtract the sample mean from the yt and estimate a long autoregres-
sion using the de-meaned data.

2. Estimate (1’) by OLS for different orders p and q imposing the FMA
form. The order estimate (p̂, q̂) is the pair which minimizes the infor-
mation criterion in (13).

3. Get a preliminary estimate via Poskitt’s method.

to pairs with diagonal moving-average polynomials such as

M(L) =

K⊕
k=1

mk(L), mk(L) = 1 +mk,1L+ . . .mk,qkL
qk

where the mk(z) are scalar polynomials. This form actually delivered results similar to
the ones for the FMA form and will therefore not be discussed in the paper.
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4. Update the preliminary estimates by the method described by Yap
and Reinsel.

For the proofs and the forecasting exercise, we take the cointegrating rank as
given. However, one might use the results Yap & Reinsel (1995) to specify
the cointegrating rank at the last two steps of the procedure.

We show that this modeling strategy is potentially interesting by ap-
plying it to a prediction exercise for US interest rates and comparing the
resulting forecasts to those of the random walk (RW) model and a VECM
that has only autoregressive terms and whose order is chosen by minimizing
the BIC. The VECM is estimated via reduced rank regression (Johansen
1988, 1991, 1996).

We take monthly averages of interest rate data for treasury bills and
bonds from the FRED database of the Federal Reserve Bank of St. Louis.
The used data are the series TB3MS, TB6MS, GS1, GS5 and GS10 with ma-
turities, 3 months, 6 months, 1 year, 5 years and 10 years, respectively. Our
vintage starts in 1970:1 and ends in 2010:1 and comprises T = 482 data
points. Denote by Rt,mk

the annualized interest rate for the k-th maturity
mk. Throughout we analyze yt,k := 100 ln(1 +Rt,mk

).
Both the VAR as well as the VARMA models are specified and estimated

using the data that is available at the forecast origin. Then, forecasts for
horizon h are obtained iteratively. As the sample expands, both models are
re-specified and re-estimated, forecasts are formed and so on - until the end
of the available sample is reached. In order to have sufficient observations
for estimation, the first forecasts are obtained at Ts = 200. Thus we are left
with 282 observations for evaluating 1-month ahead forecasts, for example.

Hence, we compare two modeling strategies rather than two models: one,
which allows for nonzero moving average terms and includes the special case
of a pure VAR and one, which exclusively considers the latter case.

Table 1 and Table 2 contain the main results for the RW model, the
VECM, the cointegrated VARMA estimated via Poskitt’s (2003) initial es-
timator (VARMA) and the the cointegrated VARMA with estimates up-
dated by one iteration via the algorithm presented in Yap & Reinsel (1995)
(VARMA YP). The first table gives the mean square prediction errors
(MSPEs) series by series for different systems and horizons. The MSPE
is defined in a standard way. The second table gives results for the deter-
minant of the MSPE matrix for different horizons and systems; that is,

|MSPEh| =

∣∣∣∣∣ 1

T − Ts − h+ 1

T−h∑
t=Ts

(yt+h − ŷt+h|t)(yt+h − ŷt+h|t)
′

∣∣∣∣∣ ,
using an obvious notation and omitting the dependence on the specific model
and system. The last criterion serves as a criterion to measure joint forecast-
ing precision as we do not want to enter the discussion of how to obtain the
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best density forecast. In Table 1, the maturities of the systems are given on
the left column; that is, the first two columns stand for the bivariate system
with interest rates for maturities 3 and 6 months. The forecast horizons are
1, 3, 6 and 12 months. Table 2 is structured similarly. For both tables, the
entries for the RW model are absolute while the entries for the other models
are always relative to the corresponding entry for the RW model. For exam-
ple, the first entry in the first row tells us that the random walk produces
a one-step-ahead MSPE of 0.042 which corresponds to

√
0.042 ≃ 0.205 per-

centage points. In the same row, the entry for the VECM at h = 1 tells us
that this model produces one-step-ahead forecasts of the 3-month interest
rate that have a MSPE which is roughly 20 % lower than the MSPE of the
RW model.

Table 1 shows that the cointegrated models are more advantageous rela-
tive to the RW model for the bivariate systems than for the larger systems.
Apparently, cointegrated VAR or VARMA models can be very advantegous
at one-month and three-month horizons while the RW becomes more com-
petitive for longer horizons and longer maturities - at least when individual
MSPEs are considered. The cointegrated models also work better when
maturities which are close to each other are grouped together. When com-
paring the MSPE figures for the VECM and VARMA model (VARMA and
VARMA YP) one can see that the VARMA model is generally performing
better than the VECM model, sometimes quite clearly. To give an exam-
ple, the gain in forecasting precision can amount to more than 20% for the
bivariate systems at short horizons. Typically, a VARMA(1,1) model is pre-
ferred by the information criterion over pure VAR models, while the BIC
usually picks two autoregressive lags. An exception is the system consisting
of five variables. Here, the lag selection criterion almost always chooses no
moving-average terms and thus the “VARMA results” are actually results
for the pure VECM model when estimated with the algorithm by Poskitt
(2003) or Yap & Reinsel (1995), respectively. Therefore, the comparison for
the five-variable system amounts to a comparison of different estimation al-
gorithms for the same model and it turns out that in this case reduced rank
regression is largely preferable to the approximative methods in terms of
the MSPE measure. Note that the forecasting performance of VARMA and
VARMA YP are typically quite similar.

The results in Table 2 largely reflect those in Table 1. That is, the
cointegrated models’ forecasts are usually more precise than the forecasts
generated by the random walk and the VARMA predictions are usually
more accurate than the VAR predictions apart from the special case of the
five-dimensional system as discussed above. However, in contrast to the
single MSPE results, the forecasts generated by the cointegrated models are
superior - in terms of joint criterion - to those of the random walk even at
longer horizons, in particular for h = 12.

To get a complete picture of the performance of the cointegrated models
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vis-a-vis the RW for h-step-ahead forecasts for the k-th series in the system
we compute cumulative sums of squared prediction errors as defined as

t∑
s=T s+h

e2s,RW,k,h − e2s,M,k,h t = T s + h, . . . , T (4)

where M stands for either the VECM or the cointegrated VARMA model
(VARMA YP) and êt,RW,k,h, êt,M,k,h are the forecast errors from predicting
yt,k based on information up to t−h, i.e. et,M,k,h = yt,k− ŷt,k|t−h,M. Ideally,
we should see the above sum steadily increasing over time if forecasting
method M is indeed preferable to the RW. The pictures are given in Figure
2 for the system with maturities 3 months and 1 year and forecast horizons
h = 1, 6, 12.

First, Figure 2 of course mirrors the results of Table 1 as the Table
contains the end-of-sample results. Second, the forecasting advantage of
both models is relatively consistent through time. While there are occasional
“jumps” when the cointegrated models perform much better than the RW
model, these jumps do not appear to dominate the results in Table 1. The
forecasting advantage of the VARMA model appears however marginally
more stable over time. Third, there is also a period roughly from the mid
nineties to 2000 when the RW model performed better than the cointegrated
multivariate models. Interestingly, a similar finding is also obtained by
de Pooter, Ravazzolo & van Dijk (2010) in a different context. In sum, the
pictures support the view that the forecasting advantage of both the VECM
and VARMA model over the RW is systematic.

3 Methodological Details

3.1 VARMA Modelling

We start discussing the general VARMA process

A0yt =
m∑
j=1

Ajyt−j +M0ut +
m∑
j=1

Mjut−j , for t = 1, . . . , T, (5)

where, for simplicity, m denotes the maximum of the autoregressive and
moving average lag order in this section. Using the notation from Poskitt
(2006) with minor modifications, we define deg[A(z), M(z)] as the maximum
row degree max1≤k≤K degk[A(z), M(z)] where degk[A(z), M(z)] denotes the
polynomial degree of the kth row of [A(z), M(z)]. Then we can define a class
of processes by {[AM ]}m := {[A(z), M(z)]|deg[A(z), M(z)] = m}.

For the moment we just assume
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Assumption 3.1 The K-dimensional series (yt)
T
t=1−m admits a VARMA

representation as in (5) with A0 = M0, A0 invertible, [A(z), M(z)] ∈
{[AM ]}m and fixed initial values y1−m, . . . , y0;

but impose additional restrictions of the general model as needed. The
proofs are given in the appendix.

Identification

The identification of the parameters of the FMA form follows from the ob-
servation that any process that satisfies (5) can always be written as

yt =
t+m−1∑
s=1

Πsyt−s + ut + nt, t = 1−m, . . . , T, (6)

where it holds, by construction of the sequences Πi and nt, that

0 =

m∑
j=0

MjΠi−j , i ≥ m+ 1 (7)

0 =

m∑
j=0

Mjnt−j , t = 1, . . . , T. (8)

On the other hand, given a process satisfying (6) and existence of matri-
ces M0, M1, . . . , Mm such that conditions (7) and (8) are true, the process
has a VARMA representation as above. These statements are made precise
in the following theorem which is just a restatement of the corresponding
theorem in Poskitt (2006).

Theorem 3.1 The process (yt)
T
t=1−m admits a VARMA representation as

in (5) with [A(z), M(z)] ∈ {[A M ]}m and initial conditions y0, . . . , y1−m if
and only if (yt)

T
t=1−m admits an autoregressive representation

yt =
t+m−1∑
s=1

Πsyt−s + ut + nt, t = 1−m, . . . , T,

in which the conditions (7) and (8) are satisfied.

Now, one assigns to the autoregressive representation a unique VARMA
representation. Although not necessary for the derivations that follow im-
mediately, we assume that M(z) is invertible

Assumption 3.2 |M(z)| ̸= 0 for |z| ≤ 1.
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Because of the properties of the adjoint, Mad(z)M(z) = |M(z)|, equa-
tions (7) and (8) imply

0 =

q̄∑
j=0

m̄jΠi−j , i ≥ q̄ + 1 (9)

0 =

q̄∑
j=0

m̄jnt−j , t = q̄ −m+ 1, . . . , T. (10)

Here, |M(z)| ≡ m̄(z) = m̄0 + m̄1z + . . . + m̄q̄z
q̄ is a scalar polynomial and

q̄ = m ·K is its maximal order.
Therefore, one can define a pair in final moving-average form as in (3)

[A(z), m̄(z)IK ], provided the stated assumptions and that T ≥ q̄ −m + 1.
This representation, however, is not the only representation of this form. To
achieve uniqueness, we select the representation of the form [A(z), m(z)IK ]
with the lowest possible degree of the scalar polynomial m(z) such that the
first coefficient is one and (9) and (10) are satisfied.

Theorem 3.2 Assume that the process (yt)
T
t=1−m satisfies Assumptions 3.1

and 3.2. Then for T ≥ q̄ − m + 1 there exists a unique, observationally
equivalent, representation in terms of a pair [A0(z), m0(z)IK ] with orders
p0 and q0, respectively, commencing from some t0 ≥ 1−m.

In contrast to the discussion in Dufour & Pelletier (2008), the special
feature in the non-stationary case with fixed initial values is that the FMA
representation does not need to be left-coprime, in particular the autore-
gressive and moving average polynomial can have the same roots. This is a
consequence of condition (10) and is not very surprising given the results of
Poskitt (2006) on the Echelon form representation in the same setting.

Now, if we assume normality and independence, i.e. ut ∼ i.i.d.N(0,Σu)
with Σu positive definite, and under our assumptions, the parameters of the
model are identified via the Gaussian partial likelihood function

f(yTt0 |y
t0−1
1−m, λ)

where yTt0 = (y′t0 , . . . , y
′
T )

′, yt0−1
1−m = (y′1−m, . . . , y′t0−1)

′ and λ being the pa-
rameter vector of the final moving average form. This just follows from
Poskitt (2006, section 2.2) and the observation that assumptions 2.1 and 2.2
of this paper are satisfied in the present case.

For the cointegrated case, we make the following assumption.

Assumption 3.3 |A(z)| = ast(z)(1 − z)s for 0 < s ≤ K where ast(z) ̸= 0
for |z| ≤ 1. The number r = K − s is called the cointegrating rank of the
series.
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Then the corresponding error-correction representation

yt = Πyt−1 +

p0−1∑
i=1

Γj∆yt−j +m(L)ut (11)

with the same initial conditions as above is identified as there exists a one-
to-one mapping between this representation and the presentation in levels
(cf. Poskitt 2006, section 4.1).

Specification

Since a legitimate critique of VARMA modeling is the increased specification
uncertainty, we think that a serious forecast comparison has to involve mod-
eling uncertainty. Therefore, we chose to select the orders data-dependent
in our forecast study as described in the following.

First, the sample mean is subtracted from the observations as justified
above. In order to determine the lag orders p and q of the VARMA model
(1) with the FMA structure in (3) we apply a two-step approach similar
to Dufour & Pelletier (2008) and use the information criterion they have
suggested. Our procedure works as follows.

1. Fit a long VAR regression with hT lags to the mean-adjusted series as

yt =

hT∑
i=1

ΠhT
i yt−i + uhT

t . (12)

Denote the estimated residuals from (12) by ûhT
t .

2. Regress yt on ϕhT
t−1(p, q) = [y′t−1, . . . , y

′
t−p, û

hT ′
t−1, . . . , û

hT ′
t−q]

′, t = sT +
1, . . . T , imposing the FMA restriction in (3) for all combinations of
p = k + 1 ≤ pT and q ≤ qT with sT = max(pT , qT ) + hT using OLS.
Denote the estimate of the corresponding covariance error matrix by
Σ̂T (p, q) = (1/N)

∑T
sT+1 zt(p, q)z

′
t(p, q), where zt(p, q) are the OLS

residuals. Compute the information criterion

DP (p, q) = ln |Σ̂T (p, q)|+ dim(γ(p,q))
(lnN)1+ν

N
, ν > 0 (13)

where N = T − sT and dim(γ(p,q)) is the dimension of the vector of
free parameters of the corresponding VARMA(p, q) model in levels.

3. Choose the AR and MA orders by (̂p, q)IC = argmin(p,q)DP (p, q),
where the minimization is over {1, 2, . . . , pT } × {0, 1, . . . , qT }.

In order to show consistency we make the following assumption which is
equivalent to Assumption A.2 in Poskitt (2003).

11



Assumption 3.4 The true error term vectors ut = (u′t,1, u
′
t,2, . . . , u

′
t,K), t =

1−p, . . . , 0, 1, . . . , T , form an independent, identically distributed zero mean
white noise sequence with positive definite variance-covariance matrix Σu.
Furthermore, the moment condition E

(
||ut||δ1

)
< ∞ for some δ1 > 2, where

|| · || denotes the Euclidean norm, and growth rate ||ut|| = O
(
(log t)1−δ2)

)
almost surely (a.s.) for some 0 < δ2 < 1 also hold.

Using Assumption 3.4 we obtain the following theorem on the consistency
of the order estimators.

Theorem 3.3 If Assumptions 3.1-3.4 hold, if hT = [c(lnT )a] is the integer
part of c(lnT )a for some c > 0, a > 1, and if max(pT , qT ) < hT , then the
orders chosen according to (13) converge a.s. to their true values.

Theorem 3.3 is the counterpart to Dufour & Pelletier (2008, Theorem 5.1),
dealing with the stationary VARMA setup, and, to some extent, to Poskitt
(2003, Proposition 3.2), referring to cointegrated VARMA models identi-
fied via the echelon form. Note, that we can use the same penalty term
CT = (lnN)1+ν , ν > 0, as in the stationary VARMA case. However,
the assumptions on the error terms have to be strengthened. In partic-
ular, an i.i.d. assumption is needed in contrast to the strong mixing as-
sumption employed by Dufour & Pelletier (2008). Existing formal results of
Poskitt & Lütkepohl (1995) and Huang & Guo (1990) show that weakening
Assumption 3.4, e.g. making an appropriate martingale difference sequence
assumption on ut, leads to too low convergence orders for the estimators
obtained in steps 1. and 2.. As a consequence, the penalty term needs to be
stronger, e.g. one may set it to C ′

T = hTCT . Nevertheless, Poskitt (2003)
argues that it is likely that the needed convergence orders can be obtained
under weaker conditions than those stated in Assumption 3.4.

The practitioner has to chose values for ν, hT , pT , and qT satisfy-
ing the conditions contained in Theorem 3.3. We set ν = 0.2 following
Dufour & Pelletier (2008). As pointed out by Poskitt (2003) and Lütkepohl
(2005, Chapter 14) no clear guideline exists on how to select hT for the non-
stationary case. We adopt the rule hT = max

(
max(pT , qT ) + 1, (lnT )1.25

)
from Poskitt (2003) with pT = qT = 4. Choosing larger values for pT and
qT left the results virtually unchanged. Alternatively, one may use Akaike’s
information criterion (AIC) to determine hT resulting in the estimator ĥAIC

T ,

say. While Poskitt (2003) conjectures that ĥAIC
T satisfies the condition on

hT given in Theorem 3.3, the latter has only been proven for the BIC by
Bauer & Wagner (2005, Corollary 1).

Estimation

Given the estimated orders and residuals of the long autoregression (12) we
obtain Poskitt’s (2003) initial estimator as follows.
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The cointegrated VARMA model (2) can be conveniently written as

∆yt = Π′yt−1 + [Γ M]Zt−1 + ut, (14)

where Γ = vec[Γ1, . . . ,Γk], M = vec[M1, . . . ,Mq] and
Zt−1 = [∆y′t−1, . . . ,∆y′t−k, u

′
t−1, . . . , u

′
t−q]

′.

Let ZhT
t be the matrix obtained from Zt by replacing the ut by ûhT

t . Let
γ1 be the vector of free parameters in vec[Γ M] and the augmented vector
γ2 = (vec(Π)′, γ′1)

′. Identification restrictions are imposed by defining suit-
able matrices R,R2 such that vec([Γ M]) = Rγ1 and vec([Π Γ M]) = R2γ2,
respectively. Equipped with these definitions, one can write

∆yt =
(
y′t−1 ⊗ IK , ZhT

t−1

′)
vec([Π Γ M]) + ut

=
(
y′t−1 ⊗ IK , ZhT

t−1

′)
R2γ2 + ut

= Xtγ2 + ut. (15)

Poskitt’s (2003) initial estimator is the feasible GLS estimator

γ̂2 =

 T∑
hT+1

X ′
t(Σ̂∆,T )

−1Xt

−1
T∑

hT+1

X ′
t(Σ̂∆,T )

−1∆yt, (16)

which is strongly consistent (Poskitt 2003, Propositions 4.1 and 4.2) given
Assumptions 3.1-3.4 and Σ̂∆,T is an estimate of Σu obtained from OLS

estimation of (15).2 The estimated matrices are denoted by Π̂, Γ̂, M̂ . To
exploit the reduced rank structure in Π = αβ′, β is normalized such that
β = [Ir, β

∗′]′. Then α is estimated as the first r rows of Π̂ such that

α̂ = Π̂[., 1 : r], (17)

β̂∗ =

(
α̂′
(
M̂(1)Σ̂T M̂(1)′

)−1
α̂

)−1

×
(
α̂′
(
M̂(1)Σ̂T M̂(1)′

)−1
Π̂[., r + 1 : K]

)
. (18)

These estimates are taken as starting values for one iteration of a conditional
maximum likelihood estimation procedure as in Yap & Reinsel (1995). De-
fine the vector of free parameters, given the cointegration restrictions, as
δ := (vec((β∗)′)′, vec(α)′, γ′1)

′ and its value at the jth iteration as δ(j). The
elements of the initial vector δ(0) = δ̂ correspond to (16) - (18). Compute

u
(j)
t and Σ

(j)
u according to

M (j)(L)u
(j)
t = ∆yt − α(j)(β(j))′yt−1 − Γ(j)(L)∆yt−1, (19)

Σ(j)
u =

1

T

T∑
t

u
(j)
t (u

(j)
t )′ (20)

2Our formulation differs from his because we formulate the models in differences
throughout. The procedures yield identical results.
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For the calculation, it is assumed yt = ∆yt = ut = 0 for t ≤ 0. Only

W
(j)
t := −∂u

(j)
t

∂δ
′
t

is needed for computing one iteration of the proposed

Newton-Raphson iteration. Also W
(j)
t can be calculated iteratively as

(W
(j)
t )′ =

[
(y′t−1H ⊗ α), (y′t−1β ⊗ IK), ((Z

(j)
t−1)

′ ⊗ IK)R
]
−

q∑
i=1

Mi(W
(j)
t−i)

′

where H ′ := [0((K−r)×r), IK−r]. The estimate is then updated according to

δ(j+1) − δ(j) =

(
T∑
t=1

W
(j)
t (Σ(j)

u )−1(W
(j)
t )′

)−1 T∑
t=1

W
(j)
t (Σ(j)

u )−1
u u

(j)
t ,

which amounts to a GLS estimation step. The estimates of the residuals
and their covariance can be updated according to (19) and (20). The one-
step iteration estimator δ(1) is consistent and fully efficient asymptotically
according to Yap & Reinsel (1995, Theorem 2) given the strong consistency
of the initial estimator γ̂2 in (16).

Given estimates of the parameters and innovations, forecasts are ob-
tained by using the implied VARMA form in levels. Finally, the sample
mean, which was subtracted earlier, is added to the forecasts.

3.2 Benchmark Models

There are two benchmark models in the forecasting exercise. The first is
the multivariate random walk yt = yt−1 + ut, ut ∼ i.i.d.(0K ,Σu), where
the notation means that ut is an independent white noise process. Point
forecasts are obtained in a standard way.

The second benchmark model is the VECM

∆yt = µ0 +Πyt−1 +
k∑

j=1

Γj∆yt−j + ut, t = k + 2, . . . , T, (21)

with the assumptions on the initial values, parameters and the ut are analo-
gous to the assumptions made for the VARMA (1). The lag length is chosen
by using the Bayesian information criterion, p̂BIC = argminpBIC(p), where

the minimization is over p = 1, . . . , pT and k̂BIC = p̂BIC − 1. From the re-
sults in Bauer & Wagner (2005), we take pT = [(T/ log T )1/2]. Paulsen
(1984) shows that the standard order selection criteria are consistent for
multivariate autoregressive processes with unit roots. The BIC is

BIC(p) = ln |Σ̂(p)|+ lnN
(pK + 1)K

N
, (22)

where N = T −pT , Σ̂(p) =
∑T

t=pT+1 ûtû
′
t/N is an estimate of the error term

covariance matrix Σ and the ût are obtained by estimating an unrestricted
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VAR model of order p using ypT+1−p, . . . , yT by OLS. After that, the param-
eters of (21) are estimated by reduced rank maximum likelihood estimation
(Johansen 1988, 1991, 1996). Forecasts are obtained iteratively by using the
implied estimated VAR form.

4 Conclusion

In this paper, we tie together some recent advances in the literature on
VARMA models creating a relatively simple specification and estimation
strategy for the cointegrated case. In order to show its potential usefulness,
we applied the procedure in a forecasting exercise for US interest rates and
found promising results.

There are a couple of issues which could be followed up. For example,
the intercept term in the cointegrating relation is treated by subtracting
the sample mean from the series and it would be desirable to have a more
efficient method in this case. Also, it would be good to augment the model
by time-varying conditional variance. Finally, the development of model
diagnostic tests appropriate for the cointegrated VARMA case would be of
interest.
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Appendix

Proof of Theorem 3.1:

⇒: Suppose (yt)
T
t=1−m satisfies (5) given initial conditions. One can view

the sequence (ut)
T
t=1−m as a solution to (5) viewed as system of equations

for the errors and given initial conditions u0, . . . , u1−m. Then we know
that (ut)

T
t=1−m is the sum of a particular solution and the appropriately

chosen solution of the corresponding homogeneous system of equations, ut =
uPt + (−nt), say.

Define the sequence (Πi)i∈N0 by the recursive relations A0 = −M0Π0

and

Ai =
i∑

j=0

MjΠi−j , for i = 1, . . . ,m (23)

0 =

p∑
j=0

MjΠi−j , for i ≥ m+ 1 (24)

Define now (uPt )
T
t=1−m by uPt := yt−

∑t+m−1
s=1 Πsyt−s, where

∑0
s=1Πsyt−s :=

0. Then, (uPt )
T
t=1−m is indeed a particular solution as for t ≥ 1

p∑
j=0

Mju
P
t−j =

m∑
j=0

Mj

(
yt−j −

t−j+m−1∑
s=1

Πsyt−s−j

)

= A0yt −
m∑
j=1

Ajyt−j .

Further, define (nt)
T
t=1−m by nt = uPt − ut for t = 1 − m, . . . , 0 and 0 =∑m

i=0Mjnt−i, for t = 1, . . . , T .
By construction of nt, yt =

∑t+m−1
s=1 Πsyt−s+ut+nt for t = 1−m, . . . , 0.

Then, we also have ut = uPt −nt for t ≥ 1 as (−nt)
T
t=1−m represents a solution

to the homogeneous system.

⇐ : Conversely, suppose (yt)
T
t=1−m admits an autoregressive representation

as in (6) and there exist (K × K) matrices Mj j = 0, . . . ,m such that
0 =

∑m
j=0MjΠi−j for i ≥ m + 1 and 0 =

∑m
j=0Mjnt−j , for t = 1, . . . , T..

Then, for t = 1, . . . , T , it holds that

m∑
j=0

Mjyt−j =

m∑
j=0

Mj

t−j+m−1∑
s=1

Πsyt−j−s +

m∑
j=0

Mjut−j +

m∑
j=0

Mjnt−j
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Which leads to

−
t+m−1∑
v=0

min(v,m)∑
j=0

MjΠv−jyt−v = −
m∑
v=0

v∑
j=0

MjΠv−jyt−v

= A0yt −
m∑
v=1

Avyt−v = M(L)ut

where the last line defines the Av’s.

Proof of Theorem 3.2:

From Theorem 3.1, (yt)
T
t=1−m has a autoregressive representation. One can

express conditions (9) and (10) for a suitable pair [A(z), m(z)IK ] by defining
the polynomials Π(z) = −(Π0 + Π1z + . . .) and n(z) = n1−m + n−pz + . . ..
One also defines the (stochastic) polynomial o(z) = o0 + o1z + . . . + ot0z

t

which captures that
∑max(q,t−m+1)

j=0 mjnt−j ̸= 0 for t ≤ t for some t.

A(z) = m(z)Π(z) (25)

o(z) = m(z)n(z) (26)

Then, for given polynomials (Π(z), n(z)) one defines the set of all scalar poly-
nomialsm(z) with the first coefficient normalized to one for which there exist
finite polynomials A(z) and o(z) such that the (25) and (26) are satisfied.
Denote this set by S. Since the (normalized) determinant of M(z) satisfies
the above conditions, S is not empty. Denote one solution to

min
m(L)∈S

deg(m(L)),

by m0(z) with degree q0, where deg : S → N is the function that assigns
the degree to every polynomial in S. Denote the associated polynomials by
A0(z), o0(z) with degrees p0, t0, respectively.

Suppose, there is another solution of the same degreem1(z) = 1+m1,1z+
. . .+m1,q0z

q0 with

A1(z) = m1(z)Π(z)

o1(z) = m1(z)n(z)

Since both polynomials are of degree q0, a = m0,q0/m1,q0 exists and one gets

(A0(z)− aA1(z)) = (m0(z)− am1(z))Π(z)

(o0(z)− ao1(z)) = (m0(z)− am1(z))n(z)

Then, normalization of the first non-zero coefficient of (m0(z) − am1(z))
would give a polynomial in S with degree smaller than q0, a contradiction.
Thus m0(z) is unique.

Then, condition (25) alone would imply left-coprimeness of [A0(z), m0(z)IK ]
but if n(z) ̸= 0 the minimal orders p0, q0 might well be above those of the
left-coprime solution to (25).
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Proof of Theorem 3.3:

Similar to Guo, Chen & Zhang (1989), we proof (p̂T , q̂T ) → (p0, q0) a.s. by
showing that the only limit point of (p̂T , q̂T ) is indeed (p0, q0) with proba-
bility one, where p0 and q0 are the true lag orders. Thus, the convergence
of p̂T and q̂T follows, which is equivalent to joint convergence. In order to
show this, we demonstrate that the events “(p̂T , q̂T ) has a limit point (p, q)
with p + q > p0 + q0 ” (assuming p ≥ p0, q ≥ q0) and “(p̂T , q̂T ) has a limit
point (p, q) with p < p0 or q < q0 ” both have probability zero.

Following Huang & Guo (1990) we rely on the spectral norm in order to
analyze the convergence behaviour of various sample moments; that is, for a
(m×n) matrix A, ||A|| :=

√
λmax(AA′), where λmax(·) denotes the maximal

eigenvalue. Lütkepohl (1996, Ch. 8) provides a summary of the properties
of this norm. The stochastic order symbols o and O are understood in the
context of almost sure convergence.

Case 1: p ≥ p0, q ≥ q0, p+ q > p0 + q0

For simplicity, write T instead of N in our lag selection criterion (13). Then

DP (p, q)−DP (p0, q0) = ln det Σ̂T (p, q)/det Σ̂T (p0, q0) + c
(lnT )1+v

T
,

where c > 0 is a constant.
We have to show that DP (p, q) − DP (p0, q0) has a positive limit for

any pair p, q with p0 ≤ p ≤ pT , q0 ≤ q ≤ qT , and p + q > p0 + q0.
Similar to Nielsen (2006, Proof of Theorem 2.5), it is sufficient to show that
T (Σ̂T (p0, q0) − Σ̂T (p, q)) = O{g(T )} such that (lnT )1+v/g(T ) → ∞ in this
case.

Let us introduce the following notation:

ϕ0
t (p, q) = [y′t, . . . , y

′
t−p+1, u

′
t, . . . u

′
t−q+1]

′

ϕhT
t (p, q) = [y′t, . . . , y

′
t−p+1, (û

hT
t )′, . . . , (ûhT

t−q+1)
′]′

YT = [y′1, . . . , y
′
T ]

′

UT = [u′1, . . . , u
′
T ]

′

x0t (p, q) = [(ϕ0
t−1(p, q)

′ ⊗ IK)R]′

xhT
t (p, q) = [(ϕhT

t−1(p, q)
′ ⊗ IK)R]′

X0
T (p, q) = [x01(p, q), . . . , x

0
T (p, q)]

′

XT (p, q) = [xhT
1 (p, q), . . . , xhT

T (p, q)]′

γ(p, q) = [vec(A1, A2, . . . , Ap)
′,m1,m2, . . . ,mq]

′,

where γ(p, q) is the (K2 · (p + q) × 1) vector of true parameters such that
Ai = 0 and mj = 0 for i > p0, j > q0, respectively.
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Then, one can write

yt =

p∑
i=1

Aiyt−i + ut +

q∑
i=1

Miut−i

= [A1, . . . , Ap,M1, . . .Mq]ϕ
0
t−1(p, q) + ut

= (ϕ0
t−1(p, q)

′ ⊗ IK)vec[A1, . . . , Ap,M1, . . .Mq] + ut

= (ϕ0
t−1(p, q)

′ ⊗ IK)Rγ(p, q) = x0t (p, q)
′γ(p, q) + ut

in order to summarize the model in matrix notation by

YT = X0
T (p, q)γ(p, q) + UT

= XT (p, q)γ(p, q) + [X0
T (p, q)−XT (p, q)]γ(p, q) + UT

= XT (p, q)γ(p, q) +RT + UT , (27)

where
RT := [X0

T (p, q)−XT (p, q)]γ(p, q).

RT does not depend on p, q for p ≥ p0, q ≥ q0 and can be decomposed
as RT = [r′0, r

′
1, . . . , r

′
T−1]

′, where rt, t = 0, 1, . . . , T − 1, is a K × 1 vector.
Let ZT (p, q) = [z1(p, q)

′, . . . , zT (p, q)
′]′ be the OLS residuals obtained from

regressing YT on XT (p, q), i.e.

ZT (p, q) = YT −XT (p, q)
[
XT (p, q)

′XT (p, q)
]−1

XT (p, q)
′YT

= XT (p, q)γ(p, q) +RT + UT −XT (p, q)
[
XT (p, q)

′XT (p, q)
]−1

XT (p, q)
′

×(XT (p, q)γ(p, q) +RT + UT )

= [RT + UT ]−XT (p, q)
[
XT (p, q)

′XT (p, q)
]−1

XT (p, q)
′[RT + UT ].

The estimator of the error covariance matrix Σ in dependence on p and
q is given by Σ̂T (p, q) = T−1

∑T
t=1 zt(p, q)zt(p, q)

′. Furthermore, note that

Σ̂T (p0, q0)− Σ̂T (p, q) is positive semidefinite since p ≥ p0 and q ≥ q0 in the
current setup. Hence, we have

∥ Σ̂T (p0, q0)− Σ̂T (p, q) ∥= λmax

(
Σ̂T (p0, q0)− Σ̂T (p, q)

)
≤ tr

(
Σ̂T (p0, q0)− Σ̂T (p, q)

)
= tr

(
Σ̂T (p0, q0)

)
− tr

(
Σ̂T (p, q)

)
= T−1ZT (p0, q0)

′ZT (p0, q0)− T−1ZT (p, q)
′ZT (p, q) (28)

= T−1[RT + UT ]
′XT (p, q)

[
XT (p, q)

′XT (p, q)
]−1

XT (p, q)
′[RT + UT ]

− T−1[RT + UT ]
′XT (p0, q0)

[
XT (p0, q0)

′XT (p0, q0)
]−1

XT (p0, q0)
′[RT + UT ]

We have for the terms on the right-hand side (r.h.s.) of the last equality
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in (28)

[RT + UT ]
′XT (p, q)

[
XT (p, q)

′XT (p, q)
]−1

XT (p, q)
′[RT + UT ]

= O
(
||
[
XT (p, q)

′XT (p, q)
]−1/2

XT (p, q)
′[RT + UT ]||2

)
= O

(
||
[
XT (p, q)

′XT (p, q)
]−1/2

XT (p, q)
′RT ||2

)
+O

(
||
[
XT (p, q)

′XT (p, q)
]−1/2

XT (p, q)
′UT ||2

)
,

(29)

where the result holds for all p ≥ p0 and q ≥ q0.
As in Poskitt & Lütkepohl (1995, Proof of Theorem 3.2), we obtain from

Lai & Wei (1982, Theorem 3) for any m = max(p, q)

||
[
XT (p, q)

′XT (p, q)
]−1/2

XT (p, q)
′UT ||2

= O

(
max

{
1, ln+

(
s∑

n=1

∑
t

||yt−n||2 + ||ûhT
t−n||2

)})
(30)

= O(ln m) +O

(
ln

(
O

{∑
t

||yt||2 + ||ûhT
t ||2

}))
a.s.,

where ln+(x) denotes the positive part of ln(x). Moreover, we have that∑
t ||yt||2 = O(T g) due to Assumption 3.3, where the growth rate is inde-

pendent of m, see Poskitt & Lütkepohl (1995, Proof of Theorem 3.2, Proof
of Lemma 3.1). Therefore, the second term on the r.h.s. of (30) is O(lnT )
for all m. Hence, the left-hand side (l.h.s.) of (30) is O(lnT ) a.s. since
m ≤ sT ≤ hT = [c(lnT )a], c > 0, a > 1.

Similar to Poskitt & Lütkepohl (1995, Proof of Theorem 3.2) we obtain
from a standard result in least squares

||
[
XT (p, q)

′XT (p, q)
]−1/2

XT (p, q)
′RT ||2 ≤

T−1∑
t=0

K∑
i=1

r2i,t

≤ ||γ(p, q)||2 ·
q∑

n=1

∑
t

||ut−n − ûhT
t−n||2 (31)

= O(lnT ) a.s.,

where the last line follows from Poskitt (2003, Proposition 3.1) due to As-
sumption 3.3, our choice of hT and since ||γ(p, q)|| = constant < ∞ indepen-
dent of (p, q). Hence, we have T−1[RT +UT ]

′XT (p, q) [XT (p, q)
′XT (p, q)]

−1×
XT (p, q)

′[RT + UT ] = O(lnT/T ) a.s. uniformly in (p, q).
Using (29 - 31), we have ∥ Σ̂T (p0, q0)− Σ̂T (p, q) ∥= O (lnT/T ) such that

T (Σ̂T (p0, q0)− Σ̂T (p, q)) = O{ln(T )}, the desired result, and therefore

DP (p, q)−DP (p0, q0) > 0 a.s.

for sufficently large T .
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Case 2: (p, q) with p < p0 or q < q0

For (p, q) with p < p0 or q < q0, write

D(p, q)−D(p0, q0) = ln |IK + (Σ̂T (p, q)− Σ̂T (p0, q0))Σ̂
−1
T (p0, q0))|+ o(1)

As in Nielsen (2006), it suffices to show that lim inf λmax(Σ̂T (p, q)−Σ̂T (p0, q0)) >
0. To do so, let us introduce some further notation:

γ̂T (p, q) =
[
X ′

T (p, q)XT (p, q)
]−1

X ′
T (p, q)YT (32)

= [vec(Â1, Â2, . . . , Âp)
′, m̂1, m̂2, . . . , m̂q]

′.

and, defining sp = max(p, p0) and sq = max(q, q0),

γ̂0T (p, q) = [vec(Â1, Â2, . . . , Âsp)
′, m̂1, m̂2, . . . , m̂sq ]

′ (33)

with Âi = 0 for i > p and m̂i = 0 for i > q. Then, we get

ZT (p, q) = YT −XT (p, q)γ̂T (p, q) = YT −XT (sp, sq)γ̂
0
T (p, q)

= YT −XT (sp, sq)γ(sp, sq) +XT (sp, sq)[γ(sp, sq)− γ̂0T (p, q)]

= UT + X̃Tγ(sp, sq) +XT (sp, sq)γ̃T (p, q),

where γ(p, q) is defined as above in Case 1,

X̃T := (X0
T (sp, sq)−XT (sp, sq)), (34)

and γ̃T (p, q) = γ(sp, sq)− γ̂0T (p, q).
Let x̃′t and x′t(sp, sq) be the typical K × (pK2 + q) (sub)matrices of the

TK × (pK2 + q) matrices X̃T and XT (sp, sq), respectively, i.e. the partition
of X̃T and XT (sp, sq) is analogous to XT (p, q) above. Then, for p < p0 or
q < q0, the residual covariance matrix can be written as

Σ̂T (p, q) =
1

T

T∑
t=1

zt(p, q)zt(p, q)
′

=
1

T

T∑
t=1

x′t(sp, sq)γ̃T (p, q)γ̃
′
T (p, q)xt(sp, sq)

+
1

T

T∑
t=1

(
x′t(sp, sq)γ̃T (p, q)

) (
ut + x̃′tγ(sp, sq)

)′
+

1

T

T∑
t=1

(
ut + x̃′tγ(sp, sq)

) (
x′t(sp, sq)γ̃T (p, q)

)′
+

1

T

T∑
t=1

(
ut + x̃′tγ(sp, sq)

) (
ut + x̃′tγ(sp, sq)

)′
= D1,T + (D2,T +D′

2,T ) +D3,T ,
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where D1,T , D2,T , and D3,T are equal to the square products and cross
products in the above equations, respectively.

Similarly, the residual covariance matrix based on the true orders p0 and
q0 can be expressed by

Σ̂T (p0, q0) =
1

T

T∑
t=1

zt(p, q)z
′
t(p, q)

=
1

T

T∑
t=1

x′t(p0, q0)γ̃T (p0, q0)γ̃
′
T (p0, q0)x

′
t(p0, q0)

+
1

T

T∑
t=1

(
x′t(p0, q0)γ̃T (p0, q0)

) (
ut + x̃′tγ(p0, q0)

)′
+

1

T

T∑
t=1

(
ut + x̃′tγ(p0, q0)

) (
x′t(p0, q0)γ̃T (p0, q0)

)′
+

1

T

T∑
t=1

(
ut + x̃′tγ(p0, q0)

) (
ut + x̃′tγ(p0, q0)

)′
= D0

1,T + (D0
2,T + (D0

2,T )
′) +D0

3,T ,

where D0
1,T , D

0
2,T , and D0

3,T are defined analogously. Then,

Σ̂T (p, q)− Σ̂T (p0, q0) = D1,T +
(
D2,T +D′

2,T −D0
1,T −D0

2,T − (D0
2,T )

′)
+
(
D3,T −D0

3,T

)
. (35)

It is easily seen that D3,T and D0
3,T both converge to Σu a.s.. Therefore,

the third term in (35) is o(1). We will further show that D2,T , D
0
1,T , and

D0
2,T are o(1) a.s. and that lim inf λmax(D1,T ) > 0 while noting that D1,T is

p.s.d. by construction, showing lim inf λmax(Σ̂T (p, q) − Σ̂T (p0, q0)) > 0, the
desired result.

D1,T : Since D1,T is positive semidefinite by construction, it has at least
one nonzero eigenvalue if

λmax(D1,T ) = λmax

(
1

T

T∑
t=1

x′t(sp, sq)γ̃T (p, q)γ̃
′
T (p, q)xt(sp, sq)

)

= λmax

(
Γ̃T (p, q)

(
1

T

T∑
t=1

ϕt(sp, sq)ϕ
′
t(sp, sq)

)
Γ̃′
T (p, q)

)

≥ λmin

(
1

T

T∑
t=1

ϕt(sp, sq)ϕ
′
t(sp, sq)

)
||Γ̃T (p, q)||2,

> 0,
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where Γ̃T (p, q) = [Ã1, . . . , M̃q] is γ̃(p, q) augmented to matrix form. Then,
according to Poskitt & Lütkepohl (1995, Proof of Theorem 3.2) one gets
limT→∞ inf T−1λmin(

∑T
t=1 ϕt(sp, sq)ϕ

′
t(sp, sq)) > 0 a.s. and we also have

||Γ̃T (p, q)||2 = constant > 0 from Huang & Guo (1990, p. 1753). This gives
lim inf λmax(D1,T ) > 0.

D0
1,T : We have

γ̃T (p0, q0) = γ(p0, q0)− γ̂0T (p0, q0) (36)

= −
[
X ′

T (p0, q0)XT (p0, q0)
]−1

X ′
T (p0, q0)

[
X̃Tγ(p0, q0) + UT

]
due to (27), (32), (33), and (34). Therefore,

|| 1
T

T∑
t=1

x′t(p0, q0)γ̃T (p0, q0)γ̃T (p0, q0)
′xt(p0, q0)||

≤ 1

T

T∑
t=1

||x′t(p0, q0)γ̃T (p0, q0)γ̃T (p0, q0)′xt(p0, q0)||

=
1

T

T∑
t=1

γ̃T (p0, q0)
′xt(p0, q0)x

′
t(p0, q0)γ̃T (p0, q0)

=
1

T
γ̃T (p0, q0)

′

(
T∑
t=1

xt(p0, q0)x
′
t(p0, q0)

)
γ̃T (p0, q0)

=
1

T
γ̃T (p0, q0)

′ (X ′
T (p0, q0)XT (p0, q0)

)
γ̃T (p0, q0),

and, using the above result on γ̃T ,

=
1

T

[
X̃Tγ(p0, q0) + UT

]′
XT (p0, q0)

[
X ′

T (p0, q0)XT (p0, q0)
]−1

× X ′
T (p0, q0)

[
X̃Tγ(p0, q0) + UT

]
=

1

T
O(lnT ) a.s.,

where the last line follows from (29-31) of the first part of the proof; compare
also Huang & Guo (1990, pp. 1754).
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D2,T : For D2,T , we have

∥ 1

T

T∑
t=1

(x′t(sp, sq)γ̃T (p, q))(ut + x̃′tγ(sp, sq))
′ ∥

=∥ 1

T

T∑
t=1

Γ̃T (p, q)ϕt(sp, sq)(ut + x̃′tγ(sp, sq))
′ ∥

=∥ 1

T
Γ̃T (p, q)(Φ

′
TΦT )

1/2(Φ′
TΦT )

−1/2
T∑
t=1

ϕt(sp, sq)(ut + x̃′tγ(sp, sq))
′ ∥,

where ΦT := [ϕ0(sp, sq), . . . , ϕT−1(sp, sq)]
′ is a T×(sp+sq)·K matrix. Then,

similar to the approach in Huang & Guo (1990),

|| 1
T

T∑
t=1

(x′t(sp, sq)γ̃T (p, q))(ut + x̃′tγ(sp, sq))
′||

≤ 1

T
||Γ̃T (p, q)(Φ

′
TΦT )

1/2|| ||(Φ′
TΦT )

−1/2Φ′
T (U

T +XT )||,

where UT := [u1, . . . , uT ]
′, XT := [x̃′1γ(sp, sq), . . . , x̃

′
Tγ(sp, sq)]

′. Now, te-
dious but straightforward calculations lead to

1

T
||Γ̃T (p, q)(Φ

′
TΦT )

1/2|| ||(Φ′
TΦT )

−1/2Φ′
T (U

T +XT )||

≤
(
1

T
Γ̃T (p, q)(Φ

′
TΦT )Γ̃

′
T (p, q)

)1/2

(37)

×
(
1

T
(UT + X̃Tγ)

′(ΦT ⊗ IK)((Φ′
TΦT )

−1 ⊗ IK)(Φ′
T ⊗ IK)(UT + X̃Tγ)

)1/2

= [O(1)]1/2
[
O

(
1

T
lnT

)]1/2
= o(1) a.s.

following from the results on D1,T and again from (29-31) of the first part
of the proof. Note in this respect that the results in (30) and (31) also hold
when using the regressor matrix ΦT ⊗ IK appearing in (37). This is due
to the fact that the relevant properties of linear projections and OLS do
not depend on whether the restricted or unrestricted form of the regressor
matrix is used.
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D0
2,T : Similar to the arguments used for D2,T , we can write

|| 1
T

T∑
t=1

(x′tγ̃T (p0, q0))(ut + x̃′tγ(p0, q0)||

≤ 1

T

T∑
t=1

||(x′tγ̃T (p0, q0))(ut + x̃′tγ(p0, q0)
′||

≤ 1

T

T∑
t=1

[γ̃′T (p0, q0)xt(p0, q0)x
′
t(p0, q0)γ̃T (p0, q0)]

1/2

× [(ut + x̃′tγ(p0, q0))
′(ut + x̃′tγ(p0, q0))]

1/2

≤ 1

T
[γ̃T (p0, q0)

′(X ′
T (p0, q0)XT (p0, q0))γ̃T (p0, q0)]

1/2

× [(UT + X̃ ′
Tγ(p0, q0))

′(UT + X̃ ′
Tγ(p0, q0))]

1/2

=

[
O

(
1

T
lnT

)]1/2
[O(1)]1/2 = o(1) a.s.,

using arguments identical to those used to evaluate D0
1,T and noting that

T−1(UT + X̃ ′
Tγ(p0, q0))

′(UT + X̃ ′
Tγ(p0, q0)) = T−1U ′

TUT + o(1) = O(1) a.s.
due to the results of Poskitt & Lütkepohl (1995, Proof of Theorem 3.2) and
applying Poskitt (2003, Proposition 3.1). This completes the proof.
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Figure 1: US treasury bills and bonds yields. See text for definitions.
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(a) Forecasting horizon: 1 month

(b) Forecasting horizon: 6 month

(c) Forecasting horizon: 12 month

Figure 2: Cumulative squared prediction errors of the VECM and VARMA
model for different horizons.
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