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ABSTRACT

This paper shows how models of insurance markets with asymmetric information can be calibrated
and solved to yield quantitative estimates of the consequences of government regulation. We
estimate the impact of restricting gender-based pricing in the United Kingdom retirement annuity
market, a market in which individuals are required to annuitize tax-preferred retirement savings but
are allowed considerable choice over the annuity contract they purchase. After calibrating a lifecycle
utility model and estimating a model of annuitant mortality that allows for unobserved heterogeneity,
we solve for the range of equilibrium contract structures with and without gender-based pricing.
Eliminating gender-based pricing is generally thought to redistribute resources from men to women,
since women have longer life expectancies.  We find that allowing insurers to offer a menu of
contracts may reduce the amount of redistribution from men to women associated with gender-blind
pricing requirements to half the level that would occur if insurers were required to sell a single
pre-specified policy. The latter "one policy" scenario corresponds loosely to settings in which
governments provide compulsory annuities as part of their Social Security program. Our findings
suggest that recognizing the endogenous structure of insurance contracts is important for analyzing
the economic effects of insurance market regulations.  More generally, our results suggest that
theoretical models of insurance market equilibrium can be used for quantitative policy analysis, not
simply to derive qualitative findings.
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Restrictions on the use of characteristics such as race or gender in pricing are ubiquitous in private 

insurance markets. These restrictions are likely to become even more important as the advent of genetic 

tests enriches the information set that insurers might use to price life and health insurance policies. 

Several theoretical studies, including Hoy (1982) and Crocker and Snow (1986), have analyzed this form 

of regulation and shown qualitatively that they have unavoidable negative efficiency consequences.  

Empirical work such as Buchmueller and DiNardo (2002) and Simon (forthcoming) has confirmed the 

existence of such efficiency costs by documenting declines in insurance coverage when characteristic-

based pricing is banned in health insurance markets.  However, there have been few if any attempts to 

develop quantitative estimates of the efficiency costs or the distributional impacts of restrictions on 

characteristic-based pricing.  One of the few studies in this vein is Blackmon and Zeckhauser’s (1991) 

analysis of automobile insurance regulation.  It frames questions similar to the ones we study but does not 

analyze how the structure of insurance contracts may respond to regulatory restrictions or how this affects 

distributional or efficiency effects.   

In this paper, we take a first step toward developing quantitative estimates of the effects of 

endogenous contract responses to insurance market regulation. We extend existing theoretical models and 

adapt them to provide quantitative estimates of both the efficiency and redistributive effects of a unisex 

pricing requirement for pension annuities. Restrictions on characteristic-based pricing are usually thought 

to transfer resources from individuals in lower-risk categories to those with greater risks. Women are 

longer-lived than men, so unisex pricing restrictions in the pension marketplace redistribute from men to 

women. Some might argue for such policies on redistributive grounds, since elderly women have higher 

poverty rates than elderly men.  Viewed from the ex-interim perspective once individual characteristics 

are known, the transfers from men to women generate redistribution akin to the redistribution associated 

with uniform pricing regulations in industries such as telephone and electricity distribution, where 

individuals have different costs of service.  Posner (1971) labeled such redistribution “taxation by 

regulation.”  Alternatively, from an ex-ante perspective before individual characteristics are known, the 
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redistribution may be viewed as a form of insurance against drawing a high-cost characteristic, in this 

case being female, as in Hirshleifer (1971).  

In addition to providing a tractable setting for illustrating our techniques, the pension annuity market 

is an interesting setting in its own right because of its size, its importance for retiree welfare, and the 

salience of unisex pricing regulations in this market. Private annuity arrangements, typically the payouts 

from defined benefit pension plans, represent an important source of retirement income for many elderly 

households.  Employers in the United States were once free to offer different pension annuity payouts to 

men and women, but litigation in the 1970s and early 1980s eliminated this practice. The European Union 

is currently debating regulatory reforms that may eliminate gender-based pricing in insurance markets, 

including pension annuity markets. Our analysis may also have broader implications for the design and 

regulation of annuitized payout structures associated with defined contribution Social Security systems. 

We are not aware of any previous attempts to calibrate and solve stylized theoretical models of 

insurance market equilibria.  Doing so requires adapting these models to account for a number of features 

that are observed in actual insurance markets.  One that has quantitatively important implications is our 

relaxation of the assumption that individuals have no recourse to an informal, if inefficient, substitute for 

insurance.  Our analysis recognizes that individuals may save against the contingency of a long life, and 

that insurance companies many not observe savings by their policyholders. If we do not allow for 

unobservable savings, the informational asymmetries created by a ban on gender categorization may have 

neither efficiency nor distributional effects.  

We focus on the retirement annuity market in the United Kingdom, where we have obtained a rich 

micro-data set that facilitates our calibration.  A critical feature of this market is that workers who have 

accumulated tax-preferred retirement savings must purchase an annuity. They cannot choose whether or 

not to participate in the annuity market, which eliminates one margin on which unisex pricing regulations 

could potentially affect individual behavior. Participants do have substantial flexibility with regard to 

contract choice. Empirical evidence, such as that presented in Finkelstein and Poterba (2004), suggests 

that this choice is affected by private information about risk type.  



 3

Our main finding is that recognizing the endogenous response in the structure of insurance contracts 

when regulations change may reduce by as much as fifty percent the amount of redistribution away from 

men and toward women that would be associated with a ban on gender-based annuity pricing in a fully 

compulsory annuity market with no scope for this response; this latter setting in which insurers are 

required to sell a single pre-specified policy loosely corresponds to settings in which governments provide 

compulsory annuities as part of their Social Security program.  Our findings highlight the importance of 

recognizing the endogenous structure of insurance contracts when analyzing the economic effects of 

insurance market regulation, and they indicate that theoretical models of insurance market equilibrium 

can be adapted to offer quantitative predictions on regulatory issues. Even accounting for the endogenous 

contract response, however, we find that a ban on gender-based pricing in the U.K. retirement annuity 

market would have substantial distributional consequences, in most cases redistributing at least three 

percent of retirement wealth from men to women. We also estimate that the efficiency costs associated 

with this redistribution would be very small. However, since individuals do not have a choice of whether 

or not to participate in this market, our estimates of the efficiency costs of unisex pricing restrictions are 

likely to substantially underestimate the cost of such restrictions in voluntary annuity markets.  

Our analysis is divided into six sections. The first briefly reviews the qualitative impact of uniform 

pricing requirements in insurance markets with asymmetric information. Based on the assumption that 

annuity markets operate in a constrained-efficient manner, section two develops a model of the range of 

possible contracts offered and purchased in equilibrium.  It also describes results concerning equilibrium 

contract structure and our algorithm for solving for these contracts.  It is supplemented by a technical 

appendix.  In the third section we calibrate the model and describe our estimates of a two-type mixture 

model for mortality rates.  Section four describes the measures that we use for evaluating the efficiency 

and distributional effects of policy interventions in insurance markets.  The fifth section presents our 

quantitative results.  We describe the range of possible distributional and efficiency effects of restrictions 

on gender based pricing under different assumptions concerning the constraints on consumers and 
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producers.  A brief conclusion discusses how our results bear on a number of ongoing policy debates and 

describes possible generalizations of our approach to other insurance markets.  

 

1.  A Framework for Analyzing Regulation in Insurance Markets    

This section reviews the qualitative efficiency and distributional effects of a ban on categorization in 

a standard two-state, two-type model of competitive insurance markets with asymmetric information.  

This framework considers two distinct types of individuals who are indistinguishable to an insurance 

company but who face different risks of a loss. Individuals can insure themselves against loss by 

purchasing a single insurance contract from firms in a competitive market. 

1.1 Qualitative Analysis of Banning Categorization in the “Perfect Categorization” Case 

There is little consensus concerning the proper equilibrium concept for insurance markets with 

asymmetric information, as Hellwig (1987) explains. We therefore follow the approach taken by Crocker 

and Snow (1986) in their analysis of the efficiency impacts of bans on categorization and focus on 

constrained efficient outcomes.  In focusing on these outcomes, we implicitly assume that the private 

market achieves efficient outcomes, within the scope of their ability to do so, without explicitly modeling 

equilibrium behavior.  We note, however, that the so-called Miyazaki (1977)-Wilson (1977)-Spence 

(1978) (hereafter MWS) equilibrium provides an example of a model of equilibrium behavior that results 

in a constrained efficient outcome. We will describe this MWS outcome in more detail after 

characterizing the entire efficient frontier, as it will play an important role in our analysis.  

To characterize the frontier, denote the high risk and low risk types by H and L, respectively. Let 

)(AV i  denote the indirect utility achieved by type i when she has purchased insurance contract A, and let 

)(AiΠ  denote the expected profits a firm earns by selling contract A to type i. With this notation, points 

on the Pareto frontier solve the following program, where λ is the proportion of H types:  



 5

 (1)         

,0)()()1()(
)()(

)()()(

)()()(

)(max
,

≥Π+Π−

≥

≥

≥

HHLL

HHH

HLLL
L

LHHH
H

LL

AA

AABC
VAVMU

AVAVIC

AVAVIC
tosubject

AV
HL

λλ

 

where (ICi) is the incentive compatibility constraint stating that i types must be willing to choose the 

contract designed for them, (BC) is a budget constraint that requires that on average policies break even, 

and (MU) is a minimum utility constraint for the H types.  

Crocker and Snow (1985) characterize this constrained Pareto frontier in the standard two period 

(one-accident) setting by varying the Lagrange multiplier on constraint (MU) in (1). In Figure 1, we 

characterize the frontier in the same two-period setting by varying the value of HV . Insurance contracts 

can be written as state-contingent consumption vectors ),( 10 aaA = , where the subscript 0 refers to the 

“no accident” state and the subscript 1 refers to the “accident” state.  Insurance providers supply these 

consumption promises A  in exchange for a buyer’s state-contingent endowment wealth vector 

),( 00 l−= wwW .  H  types have a higher probability of experiencing state 1 and the types are otherwise 

identical expected utility maximizers with a strictly concave utility function.   

For low values of HV , (MU) may be slack.  For example, if  
{ }

)(max
0)(:

AVV H

AA

H
H =Π

=  so that (MU) 

says that H types have to be at least as well off as they would be with their full insurance actuarially fair 

consumption point, then (MU) will be slack precisely when the Rothschild and Stiglitz (1976) equilibrium 

either fails to exist or exists but fails to be constrained efficient.  Such a situation is depicted at point M in 

Figure 1.  At point M, L types consume the constrained efficient allocation that is best for them; this 

corresponds to the MWS equilibrium.  Figure 1 shows that even this best-for-L allocation can involve 

positive cross subsidies from the Ltypes to the H types.   
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The dark curve connecting points M and F in Figure 1 depicts a portion of the locus of the L type 

consumption points that correspond to constrained Pareto optimal outcomes. The point labeled F is the 

unique “pooling” outcome on the frontier – i.e., the unique constrained efficient outcome with HL AA = .  

It is on the 45-degree line and therefore provides full insurance.  Point F involves substantially larger 

cross subsidies from L types to H types than does M.  There are additional constrained efficient outcomes 

not depicted in Figure 1 which involve even larger cross subsidies from L type to H types than those at 

point F. Such outcomes involve the L types being fully insured and the H types being overinsured, which 

Crocker and Snow (1985) note is a feature absent from standard models of equilibrium in insurance 

markets. As a result, we do not consider this portion of the frontier. The set of outcomes we consider is 

thus captured in the region of the frontier bounded by F and M; we do not try to select any particular 

constrained efficient outcome from this set.   

Because (1) permits – and, as in the case of Figure 1, may even require – the market to implement a 

contract pair involving cross subsidies across types, bans in characteristic-based pricing can have both 

distributional and efficiency consequences.  This is illustrated in Figure 2, which depicts a constrained 

efficient pair of contracts. When type is observable and can be used in pricing, the competitive 

equilibrium will provide each type with her actuarially fair full insurance contract.  In Figure 2, *HA  and 

*LA  depict the full insurance actuarially fair contracts that we assume emerge when type is observable 

and can be contracted upon. Consumption for each type is independent of the realized state of nature.   

When type-based pricing is banned, our assumption is that the market implements a pair of contracts, 

labeled HA  and LA , which is constrained efficient given the informational restrictions of the ban.  Note 

that as depicted this contract pair involves positive cross subsidies between types.  As a result, H types are 

better off when categorization is banned, and L types are worse off. This illustrates how a ban on 

categorical-based pricing may have distributional consequences.  The ban is efficiency reducing in this 

example as well.  Since type is, in fact, observable, it is in principle possible to make L types as well off 

as with LA  via contract LA′ , which is also actuarially cheaper to provide to the L types.   



 7

1.2 Residual Private Information 

The foregoing discussion assumes that type is observable.  A ban on characteristic-based pricing 

therefore moves the economy from perfect information to imperfect information.   In practice, information 

such as gender or the outcome of a genetic test may be related to risk type, but even conditional on this 

information, insurers are unlikely to be able to completely determine the risk of potential policy buyers.    

The relevant comparison is therefore between imperfect information and more imperfect information.    

Our study builds on previous analyses of bans on characteristic-based pricing, such as Hoy (1982) 

and Crocker and Snow (1986), which use the most parsimonious model that can capture the presence of 

residual uncertainty.  There are still two risk types, but risk type is not directly observable.  Instead, 

insurers only observe a signal that is correlated with risk type.  There are two possible signals, X and Y.  

We henceforth refer to individuals as falling in category X or category Y.   A fraction kλ  of category k 

individuals are high risk types, with  .10 <<< YX λλ   Thus, category Y is the high-risk category, but 

there are still low-risk types within that category.  We denote by θ  the fraction of category Y individuals 

in the population. 

For our analysis, we continue to assume that markets will operate in a constrained efficient manner 

given the information which is both available and legal for use in pricing.  When characteristic-based 

pricing is permitted, we further assume that the market will not implement contracts involving cross-

subsidies across observable categories, just as we did in Figure 2 by assuming that the contracts *HA  and 

*LA  emerge when type-based pricing was allowed.  A ban on categorical pricing in this imperfect-

information setting will have the same qualitative effects as it does in the perfect information setting 

described above.   

 

2. Modeling Restrictions on Gender-Based Pricing in the U.K. Pension Annuity Market 

The preceding discussion illustrates the qualitative impact of a ban on categorization on efficiency 

and redistribution. To develop quantitative estimates, we consider a particular ban on categorization in a 
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particular market, namely the imposition of unisex pricing requirements in the U.K. annuity market. 

Individuals in the United Kingdom with defined contribution private pension plans that have benefited 

from tax deferral on investment income—the analogues of IRAs and 401(k)’s in the United States—face 

compulsory annuitization requirements for a substantial share of the balance accumulated by retirement. 

In 1998, data from the Association of British Insurers (1999) suggest that annual annuity payments in this 

market totaled £5.4 billion.  

Although annuitization is compulsory, annuitants in the U.K. retirement annuity market have some 

scope for self-selection across contract choice.  Finkelstein and Poterba (2004, 2006) find that such self-

selection appears to reflect private information about mortality risk.  Note that, from the perspective of an 

insurance company, high-risk annuitants are those who are likely to live longer than the characteristics 

used in pricing, such as age and gender, would suggest.  There are currently no regulations in the U.K. 

annuity market limiting the characteristics used in pricing annuities. In practice, annuities are priced 

almost exclusively on age at purchase and gender.  Several small firms entered the annuity market after 

the end of our sample with discounted annuities for heavy smokers, but those products were not available 

during the period that we study.  

While the two-state model discussed above suffices for the understanding the qualitative impacts of 

interventions that ban categorical pricing, it is too stylized to plausibly measure the quantitative impact of 

regulatory interventions.  Since an individual can live for many years after the purchase of their annuity, 

we extend the analysis to 35 periods. Boadway and Townley (1988) is the only other contract theoretic 

model we have found that includes more than three periods in an analysis of an annuity market with 

asymmetric information, but the contracts under consideration have a particular and restrictive form that 

we relax.  This extension to many periods is essential for a plausible calibration.   

Our baseline model also allows for unobservable savings. Eichenbaum and Peled (1987), Brunner and 

Pech (2005), and others note that allowing annuitants to engage in unobservable saving limits the ability 

of insurers to screen different types of observationally equivalent annuity buyers. In our context, we show 

that when insurance companies can observe savings, the informational asymmetries created by a ban on 
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gender categorization can have neither efficiency nor distributional consequences.  The process of 

deriving and solving the model, which we discuss below, provides insight into why accounting for 

unobservable savings is critical for any plausible calibration. It also demonstrates why this extension 

makes the model substantially more difficult to solve. We show that it is nevertheless possible to solve for 

the contracts on the constrained Pareto frontier, and we sketch our computational algorithm.   

2.1 Defining Annuity Market Outcomes  

Our model applies to any number of periods Nt ,,0 L= , where we interpret t as the number of years 

after retirement, which we take to be at age R=65. In practice, we take N=35, thereby assuming 

individuals do not live past age 100. To capture the compulsory purchase requirement, we assume that 

individuals must use their retirement wealth W to purchase an annuity. They exponentially discount the 

future at rate r+= 1
1δ  per year, where r is the interest rate, and by their (cumulative) probability tS  of 

living to a given age R+t. The two risk types, H and L, differ only in their survival probabilities. There is 

a continuum of individuals, with a fraction λ  of H types. We assume L
t

L
t

H
t

H
t

S
S

S
S 11 ++ >  for each t; in other 

words, the ratio of the cumulative survival probabilities of the two types must be monotone in age.  This 

is satisfied if the higher longevity type has a lower mortality hazard at every age. 

The direct utility of a consumption stream ( )Ncc ,,0 L=Γ  for type σ  is given by: 
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where γ  is the risk-aversion parameter.  Annuity streams, which are denoted by A, specify a life-

contingent payment ta  in each of the N +1 periods.  In our baseline model, we impose no structure on the 

annuity payments ta ; we later restrict the time profile of possible annuity payments.   

Individual savings earn an interest rate r. Individuals have no bequest motive, and they cannot borrow 

against their annuity. This means that individuals with an annuity stream A can obtain any consumption 
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Because individuals discount the future at the rate of interest, “full insurance” annuities have level real 

payouts.  Let  )(XV σ  denote the utility that type σ  gets by consuming the full insurance annuity A  

with XAC =)(σ .  Let λA  denote the pooled-fair full insurance annuity – i.e., the full insurance annuity 

satisfying WACAC LH =−+ )()1()( λλ λλ .  In a constrained efficient market, the two risk types 

purchase a pair of annuities HA and LA that solve: 
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for some HV .  We further assume that )()( λAVVWV HHH ≤≤ , so that H types are at least as well 

off as they would be if they revealed their type, and are no better off than they would be under a pooled-

fair full insurance outcome.  This range corresponds with the portion of the efficient frontier in Figure 1.  

Solving (6) is non-trivial:  it involves solving for the N +1 year-specific annuity payments for each of the 

two types.  Furthermore, the functions )(AV σ  are themselves implicitly defined via (4), which is an 

optimization problem over N +1 variables. Nevertheless, (6) is computationally tractable. 
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Several factors help us solve (6).  First, the assumption that  )( λAVV HH ≤  implies that the L type 

incentive compatibility constraint will be slack at the solution.  We therefore drop this constraint while we 

are solving (6), and later verify that it is indeed satisfied.  Likewise, the budget constraint (BC) trivially 

binds at the optimum. Second, once the type-L (IC) constraint is dropped, it is easy to see that HA  will be 

a full insurance annuity.  Any allocation with an HA  that does not offer full insurance can improved upon 

by replacing HA with the full insurance bundle HA~ for which )()~( HHHH AVAV = , as this replacement 

affects (6)  (sans (ICL)) only by making (BC) slack.  Since HA  is a full insurance annuity, we can 

parameterize it by )( LL ACWT −≡ , the size of the cross-subsidy from L types to H types expressed in 

per L type terms.  For a given T, ( )TWVAV HHH
λ
λ−+= 1)( , which means that the solution to (6) must 

have TT ≥ , where T  solves ( )TWVV HH
λ
λ−+= 1 .  This permits us to write (6) in the simpler form: 
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In practice, we solve this program for a given T and then perform a search over different values of T to 

find the optimum.  In discussing (7), we therefore treat T as given.   

Third, we observe that neither type chooses to save at an efficient contract pair.  This is obvious for H 

types since HA  is a full insurance annuity.  The L types have no incentive to save in a constrained 

efficient market because saving is an inherently inefficient mechanism for transferring income forward in 

time when there is no bequest motive.  It is more efficient to use life-contingent payments so that 

resources are not “wasted” at death.  If an L type receives an annuity LA that induces her to save at some 

age, then her consumption stream, say LA~ ,  would differ from the annuity stream.  That same 

consumption stream could be achieved directly via an annuity at a lower actuarial cost to the annuity 
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provider.  There is therefore some surplus to be created by reducing the annuity’s payouts in its early 

years and raising its payouts in later years.  Insurers in an efficient market will take advantage of such 

opportunities to repackage the timing of cash flows until the surplus is eliminated and L types no longer 

wish to save from the annuity. Formally, consider replacing LA  with LA~  in (7).  L types would be 

exactly as well off as before, but when LL AA ~
≠  the budget constraint would be made strictly looser.  

Furthermore, the incentive compatibility constraint will be no tighter, and possibly strictly looser, as a 

result of the replacement.  Therefore, LA  can only solve (7) when LL AA ~
= . 

The observation that neither type chooses to save means that, in equilibrium, )()( LLLL AUAV =  and 

)()( HHHH AUAV = , so both can be computed directly instead of by solving the non-trivial (4).  The 

only part of (7) that is difficult to compute is )( LH AV , the utility that H types get if they deviate to 

purchasing the L type annuity and saving optimally.  The structure of (7) in fact allows us to evaluate 

)( LH AV in solving for equilibrium without explicitly solving (4). In particular, with the parametric forms 

we assume on the survival probabilities and preferences,  );(~)( *nAVAV LHLH =  at any solution to (7) 

for some n*, where 
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Equations (8) and (9) describe the utility achieved by an H type with an annuity stream LA  when she 

consumes the payments before period n*, and thereafter follows the consumption pattern she would 
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follow if the remaining annuity stream ( )L
N

L
n

aa ,,* L   were a bond against which she could save and 

borrow at the constant rate r.  Hence, saying that );(~)( *nAVAV LHLH =  for some n* at a solution to (7) 

is tantamount to saying that that the optimal consumption pattern of H types who deviate and buy annuity 

stream LA  is of this form.  Note that for their utility to be given by a consumption pattern of this form, the 

stream LA must be such that this consumption pattern of deviating H types does not involve borrowing.  

The formal proof that annuity stream LA  has the property that deviating H types will optimally 

consume in accord with (9) is shown in the appendix.  The intuition is relatively straightforward, 

however, and it offers insights into the critical importance of saving in determining the optimum annuity 

streams.  Suppose that annuitants could not save. Then we could find the solution to (7) by simply 

replacing )( LH AV  with )( LH AU .  This modified program could be solved using first order conditions. 

To illustrate such a solution, Figure 3 plots the annuity streams LA and HA  for a special case of the 

general problem, corresponding to the 0=T  extreme (i.e. the MWS equilibrium) and to the male 

population in the baseline parameterization of our model, as developed below.  The special case also 

assumes 3=γ  and r = .03.  Figure 3 shows that HA is a full insurance annuity, and LA  is an annuity 

which is almost a full insurance annuity with significantly higher annuity payments. The payments 

provided by LA  decline with time, but this decline is only significant at late ages – indeed, the decrease is 

negligible until age 97. The payments fall off sharply thereafter, but the AL annuity payment only falls 

below the AH  annuity payment at age 100 – the oldest age considered. Between ages 99 and 100, 

however, the payment falls off so sharply that the incentive compatibility constraint is nevertheless 

satisfied.  Qualitatively similar plots would hold for less extreme values of .T  

The reason the annuity stream LA  falls off so steeply and at such an advanced age is because this is 

when H
L

S
S  is smallest. Low annuity payments translate directly into low consumption when savings is 

impossible; this hurts H types much more than L types at old ages, since H types are relatively much 
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more likely to still be alive.  In other words, the best way from the perspective of L types to satisfy 

incentive compatibility for H types involves providing a downward tilt at extreme old ages, when the 

relative probability of L types being alive, compared to H types, is lowest.   

When savings is possible, such a steep drop-off is far less useful as a self-selection device because it 

can always be undone – albeit inefficiently – by saving.  Indeed, Figure 3 also shows the optimal 

consumption pattern H
tc~ and bond-wealth holding of H types who receive annuity LA  but who can also 

save.  These H types optimally choose to consume the annuity payments until age 96, after which they use 

their savings to smooth out the sharp drop-off in the annuity stream.  Because such saving reduces the 

power of downward-sloping payout schedules as a selection device, when savings is possible, the 

extremely sharp fall-off of payments LA  will no longer be optimal.  However, the incentive for positive 

saving by deviating H types will still be as in (9). 

2.2 Optimal Structure of Contracts 

A central contribution of our modeling is finding the optimal structure of annuity contracts when 

annuitants can save.  This involves solving (7).  We cannot offer general analytic solutions, so our 

findings necessarily require assumptions about the underlying functional forms of the utility function, the 

mortality rates, and other parameters. Using the same baseline parameters that we used in Figure 3, and 

the same assumption that 0=T , Figure 4 plots the solution to (7) and shows the actuarially fair full 

insurance annuities for both H type and L type individuals, as well as the optimal consumption stream of 

an H type who deviates and purchases annuity LA .  Again, qualitatively similar graphs would obtain for 

other values of .T   

Several features of Figure 4 are worthy of note.  First, the solution involves substantial cross-

subsidies.  This is clear from the comparison of the level of the H type fair level annuity and the H type 

optimum annuity HA , as HA offers strictly higher payouts.  Second, while LA  provides a downward 

sloping annuity stream, it declines much more gradually than the annuity stream shown in Figure 3, 

which corresponded to the case in which annuitants could not save.  Third, comparison of the optimal 
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consumption stream of an H type deviating to LA  reveals that the deviating H type who purchases LA  

will immediately begin to save. In the notation above, this means 0* =n  in (8) and (9).  

Comparison of Figures 3 and 4 shows the important effect of allowing for unobservable saving on the 

structure of the optimal annuity streams.  Though it is more difficult to find the optimal annuities with 

unobservable saving than without, the evident realism that allowing for such saving provides leads us to 

choose this as our benchmark case.  Indeed, the results in Figure 3 suggest that if unobservable saving is 

not possible, asymmetric information is essentially irrelevant because the optimal annuity streams are 

virtually identical to the annuity streams that would obtain with symmetric information.  The findings 

more generally suggest caution in using applied contract theoretic models for quantitative purposes when 

there are inefficient and unobservable behaviors the insured can undertake as a substitute for formal 

insurance.   

2.3 Discussion of Key Assumptions  

The importance of unobservable savings highlights one of several extensions we have made to the 

standard stylized model of insurance markets with asymmetric information.  These extensions provide a 

more realistic framework for analyzing the impact of a ban on gender-based pricing.  Nonetheless, the 

model that we develop in (6) and (7), and then solve, makes a number of assumptions for tractability.  

Some – such as the use of constant relative risk aversion utility or the assumption that individuals 

discount the future at the rate of interest – are standard.  It is worth, however, briefly commenting on 

several that are more specific to this application.   

First, we have not incorporated bequest motives into our model. The importance of bequests in 

explaining saving behavior has been widely debated, for example by Kotlikoff and Summers (1981), 

Hurd (1987, 1989), Bernheim (1991), and Brown (2001), but no consensus has emerged.  Conceptually, 

the presence of bequest motives can easily be incorporated into our framework.  We would simply add 

utility from consumption in states when the consumer is dead.  Since our solution algorithm relies heavily 

on the shape of preferences, however, this extension can pose practical issues of computational 
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tractability.  In part for this reason, we have addressed the analytically more convenient setting without 

bequests, while recognizing that this limits the applicability of our findings if actual consumption 

decisions are substantially affected by bequest motives.   

Second, we have followed previous theoretical models, notably Hoy (1982) and Crocker and Snow 

(1986), in modeling mortality heterogeneity via two risk types. The computational challenge of finding 

optimal contracts is much more difficult in a many-type setting, although similar solution algorithms to 

the ones we developed here would, in principle, also apply. We show below that our data cannot reject 

this parsimonious model in favor of one which allows the underlying types to differ by gender.   

Finally, we emphasize more generally that while our model incorporates some important features of 

the U.K. annuity market, it does not capture many others. For example, we focus on single life annuities, 

and we ignore individuals’ option to purchase limited term guarantees of their contracts. We also ignore 

the presence of wealth outside the retirement accounts. We abstract from the possible presence of risks 

other than longevity risk, such as liquidity risks or health shocks; Crocker and Snow (2005) discuss how 

the existence of such “background risks” can affect the insurance market equilibrium. Finally, our model 

does not allow for the possibility of individuals learning over time about their risk type; Polborn et al. 

(2004) show that allowing for such dynamic considerations in a model in which individuals have 

flexibility in the timing of their insurance purchases can have important qualitative effects for the impact 

of restrictions on characteristic-based pricing. In part because of these and other abstractions, the optimal 

annuity contracts we compute do not match the actual contracts observed in the data; we discuss this in 

more detail below. 

 

3.  Model Calibration  

Calibrating our model to yield quantitative estimates of the efficiency and distributional consequences 

of mandating unisex prices requires the constant relative risk aversion parameter γ; the real interest rate r; 

the fraction of high risk individuals among men ( Mλ ) and among women ( Fλ ); the fraction θ  of women 
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in the relevant population; and the survival curves for each risk type ) and ( LH SS .  We present results 

for risk aversion coefficients of 1, 3 and 5.  We assume the interest rate r is equal to 0.03 and set the 

discount rate r+= 1
1δ .  We set 5.0=θ in our baseline case, but we also report results for other values. 

We jointly estimate the remainder of the parameters using micro-data on a sample of compulsory 

annuitants who bought annuities from a large U.K. life insurance company between 1981 and 1998.  We 

have information on their survival experience through the end of 1998. These data, which are described in 

more detail in Finkelstein and Poterba (2004), appear to be reasonably representative of the U.K. annuity 

market.  We restrict our attention to annuities that insure a single life, as opposed to joint life annuities 

that continue to pay out as long as one of several annuitants remains alive. In addition, we focus on 

individuals who purchased annuities at the modal age for men (age 65). We exclude annuitants who died 

before their 66th birthday and consider only mortality after age 66, so that we have a uniform entry age. 

Our final sample consists of 12,160 annuitants of whom 1,216 are women; this represents about a third of 

the single-life sample of all ages analyzed in Finkelstein and Poterba (2004). 

We estimate the survival curves for two underlying, unobserved risk types H and L. Our approach, in 

the spirit of Heckman and Singer (1984), is to assume a parametric form for the baseline mortality hazard, 

and to jointly estimate the parameters of the baseline and the two multiplicative parameters that capture 

the unobserved heterogeneity. We follow the actuarial literature on mortality modeling, such as Horiuchi 

and Coale (1982), and assume a Gompertz functional form for the baseline hazard. This is particularly 

well suited to our context because our data are sparse in the tails of the survival distribution.  Formally, 

for a given risk typeσ , the mortality hazard at age ix  is given by: 

(10)     ))(exp()( bxx ii −⋅= βασμ σ , 

where b is the base age, 65 in our case.  We assume that the growth parameter β is common to both risk 

types and to both genders.  This means that β  determines the shape of the mortality curves for both types, 
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which differ only in the values of σα .  Using the notation bxt ii −= , this form of the hazard implies 

risk-type-specific survival function of the form: 

(11)     
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When the two underlying risk types are the same for males and females, so that only the mix of these two    

risk types is allowed to differ across genders, our stochastic model depends on a parameter vector Θ = 

{ Lα , Hα , β , fλ , mλ }. The likelihood function in this case will be:         
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In (12), the variable id  is an indicator for whether the individual observation is censored and 1m and 

1f are indicator variables for whether an individual is male or female respectively.  An individual’s 

contribution to the likelihood function is a weighted average of the likelihood function of a high risk and 

low risk type, with the weights equal to the gender-specific fraction of high and low risk individuals. 

Eighty-one percent of the observations in our sample are censored because the annuitant is still alive at 

the end of the sample period, December 31, 1998.  

Table 1 presents our estimates of the mortality model in (11) and (12).  Our estimates yield aggregate 

mortality statistics that are similar to those published by the Institute of Actuaries (1999) for all 65 year-

old U.K. pensioners in 1998.  For example, the life expectancies implied by our model differ from those 

in the aggregate tables by only 0.26 years for women and 0.45 years for men.  The estimates of the 

mortality rates for the high risk and the low risk types are quite far apart, implying large differences in life 

expectancies. For example, the estimates in Table 1 imply that life expectancy at 65 is only 8.8 years for 

low risk types, compared to 23.2 for high risk types. Column 5 indicates that over 80 percent of women 

are classified in the high risk (long-lived) group, compared to only about 60 percent of men (column 4). 

As a result, the estimates imply a 3-year difference in life expectancy at 65 for men compared to women. 
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Survival differences this substantial imply the potential for unisex pricing restrictions to accomplish 

considerable redistribution toward the longer-lived women.   

We investigated whether the five-parameter model that we estimate is unnecessarily restrictive by 

estimating a more flexible eight parameter model that allows for the types to differ across gender.   Here, 

in addition to having a gender specific fraction of high risk types, λ , the parameters Lα , Hα , and β  are 

also permitted to be gender specific.  Table 2 shows the results. For men, the estimates of the mortality 

parameters look qualitatively quite similar to the estimates in Table 1.  This is not surprising, since most 

of the sample is male.  The estimates for women indicate a single underling type for women is the best fit 

for the data.  In this case, however, the likelihood function for women varies very little as the model 

parameters are changed.  This explains why we cannot reject the validity of the implicit parameter 

restrictions involved in using the 5-parameter instead of the 8-parameter model, as indicated by the a 

likelihood ratio test shown in Table 1, column 7 (p=.59).  In light of these results, we use the parameter 

estimates from our more parsimonious model.    

 

4. Measuring the Efficiency and Distributional Effects of Banning Gender-Based Pricing  

This section briefly describes the measures that we use to quantify the efficiency and distributional 

effects of a ban on gender-based pricing in the model described above.  Standard measures of the 

distributional effects of and the efficiency costs of regulatory policies, such as compensating variation, 

equivalent variation, and their corresponding measures of deadweight burden, do not naturally extend to 

settings with asymmetric information.  It is not clear what it means to estimate the transfer that a 

consumer of a given type requires to be as well off after a policy intervention as beforehand when it is not 

possible for the government to identify this consumer and carry out the transfer.  With this consideration 

in mind, we develop a measure of inefficiency that is in the spirit of Debreu (1951, 1954). It is also the 

natural quantification of the efficiency notion used by Crocker and Snow (1986) when they demonstrate 

that restrictions on categorical pricing in insurance markets are efficiency reducing.  
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To construct our efficiency and distribution measures, we use the “actuarial cost function” )(ACσ  

from (5), which gives the expected cost to an insurance company of honoring contract A when it is owned 

by an individual of risk type σ .  The actuarial cost of honoring a vector σ,iA  of contracts for each type 

},{ YXi∈  and category },{ LH∈σ   is given by the total actuarial cost function:  

(13) 
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where the total cost functions for each category, XTC and YTC , are defined implicitly, and σ,YA  and 

σ,XA denote category-specific vectors of contracts.  The minimum expenditure function is defined by:   
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The minimum expenditure function maps a proposed allocation σ,iA  of contracts to each type within 

each category into the minimum total actuarial cost of ensuring that each type within each category is at 

least as well off as with σ,iA , while respecting the inherent informational constraints in the economy.  

These inherent constraints are captured by (IC) in (14), which requires that within each category, 

individuals need to be willing to choose the contract A~   designed for them.  Because category is 

observable, however, incentive compatibility does not have to be satisfied across categories.   

An efficient allocation σ,iA  solves (14).  Any other informationally feasible contract set σ,~ iA  that 

makes each individual as well off as σ,iA has at least as high a total actuarial cost.  Other allocations are 

inefficient, and a measure of  the inefficiency is )()( ,, σσ ii AEATC − .  If σ,
1
iA  and σ,

2
iA  denote any two 

vectors of contracts, the efficiency cost of moving from former to the latter, ),( ,
2

,
1

σσ ii AAEC  is given by 
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For our analysis of the policy of banning the use of categorical pricing, this expression simplifies because, 

by assumption, the market outcome prior to the ban is efficient.  Hence, the efficiency cost of a ban is 

exactly the  inefficiency of the equilibrium contract set that obtains after the ban.   

Both )(⋅TC  and )(⋅E decompose by category, so the efficiency cost of a ban on characteristic-based 

pricing can be decomposed into category-specific efficiency costs. That is, we can write 

)()()( ,,, σσσ iiiiii AcyInefficienAEATC += .  This decomposes the actuarial cost, or the resource use, of 

a given category into two components: the minimum resources needed to make the types that well off, 

and the resources that are wasted because of an inefficient allocation.  We interpret the former as a 

money-metric measure of the well being of the category, since the wasted resources do not contribute to 

well being.  We can therefore quantify redistribution at the category level from a policy that changes the 

contract set from σ,
1
iA  to σ,

2
iA as the increase in this money metric measure.  Redistribution towards 

category Y is therefore given by ( ) ( ))()(, ,
1

,
2

,
2

,
1

iYYiYYiiY AEAEAAR −≡σσ .  There is a similar expression 

for the redistribution towards category X.   

When a policy change has efficiency consequences, the weighted sum across categories of the 

redistributions will not be zero, even when the policy change leaves the total actuarial cost unchanged. 

This is because some of the redistribution away from category X can be dissipated via an increase in the 

inefficiency of the allocations and might never reach category Y.  It is perhaps more appealing to have a 

redistribution measure in which the entire amount redistributed away from one group is, in fact, 

redistributed to the other group. We therefore focus on the re-centered measure:   
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This measure expresses the re-centered redistribution per member of category Y.   

Figure 2 can be used to qualitatively illustrate the efficiency and distributional measures when 

category is perfectly predictive of type (i.e., YX λλ −== 10 ). In this setting, the efficiency metric boils 

down to summing the certainty equivalent consumptions across types.  Prior to the ban, the competitive 
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market gives actuarially fair full insurance contracts *LA  and *HA to the two types; this allocation, which 

entails state-independent consumption, is efficient.  When categorical pricing is banned, the market 

implements a pair of contracts labeled LA  and HA  which is as efficient as it can be, given the 

government imposed pricing constraints.  This set of allocations is nevertheless inefficient because LA  

could, in principle, be replaced by the state independent (full insurance) consumption contract LA′  which 

makes L types equally well off, while saving resources.  The efficiency cost of the ban is precisely the 

difference in the actuarial costs of LA  and LA′ , scaled by the number of L types in the market.  

The policy also re-distributes resources from L types to H types.  The amount redistributed to each of 

the H types, computed without re-centering, is the actuarial difference between HA  and *HA  computed 

using mortality risks for H types.  We measure the amount redistributed away from each of the L types 

via the actuarial difference between *LA  and LA′ , in this case computed using the mortality rates for 

type L.  The change in actual resource use or in the actuarial cost of the L types’ contract is measured by 

the actuarial difference between *LA  and LA , again using L type mortality rates.   

When categorization is imperfect, the same sort of analysis applies, but summing certainty 

equivalents across individuals is no longer a valid measure of efficiency.  Because contract outcomes are 

constrained efficient when categorical pricing is allowed (by assumption), we need only consider the 

inefficiency of the post-ban equilibrium.  Figure 5 illustrates this.  The post-ban allocation is given by the 

contract pair HHYHX AAA ≡= ,,  and LLYLX AAA ≡= ,, .  This allocation is inefficient because of the 

inefficient allocation within the X category.  Having fewer H types within that category means that 

additional (break even) cross subsidies from L types to H types within that category can make both X 

category types better off.  Hence, both X category types could be made at least as well off with fewer 

resources, for example via the pair of contracts indicated in Figure 5.  On the other hand, because the Y 

category has a greater fraction of H types, additional cross subsidies within that category do not yield 

Pareto improvements – the original contracts are, in fact, the efficient way for Y category types to achieve 
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their original level of well being.  The efficiency cost of the ban is measured by the difference in the 

actuarial costs of the market allocations and the associated efficient allocations.  

Because we consider the set of constrained Pareto efficient market outcomes, there is a range of 

possible market allocations both prior to and subsequent to a ban in gender-based pricing.  As a result, 

there is a range of possible estimates of the consequences of a ban.  The efficiency and distributional 

measures developed above have the nice property that we can summarize all possible efficiency and 

distributional effects of a ban via a single-parameter family of consequences.  This family ranges from a 

“high efficiency cost, low redistribution” end-member to a “low efficiency cost, high redistribution” end-

member.  To see this, note that prior to a ban in gender based pricing, the market is, by assumption, 

efficient.  The efficiency cost of a ban is therefore equal to the inefficiency of the post-ban allocation.  

Moreover, because the market does not implement across gender cross-subsidies in the absence of a ban, 

the total “welfare” (viz (14)) of each gender prior to the ban is equal to W.  The distributional 

consequences can be measured via the “welfare” of each gender in the allocation which obtains when a 

ban is implemented, regardless of the specifics of the market allocation in the absence of a ban. 

The range of possible efficiency and distributional consequences of a ban in gender-based can 

therefore be computed from the range of possible market outcomes when a ban is in place – i.e., by the 

solutions to (6) as HV varies from the utility )(WV H  they get from their full insurance actuarially fair 

contract to the utility ( )λAV H  they get from a pooled (across gender and type) fair full-insurance 

contract.  Furthermore, one can show that the redistribution towards women is monotone increasing in 

HV and that the efficiency cost is strictly decreasing in HV until the efficiency cost reaches zero and 

remains there.  Hence, bounding the possible efficiency and distributional consequences of a ban amounts 

to computing the solution to (6) at the two endpoints, where the lower end of this range corresponds 

precisely with the MWS equilibrium, and the upper end corresponds with the pooled-fair full-insurance 

outcome. While this leaves a potentially large range of consequences, it has the advantage of 

characterizing the full set of feasible constrained-efficient outcomes. Readers who are willing to choose a 
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particular equilibrium concept – such as the MWS equilibrium – can narrow the range of possible 

consequences to a single point. 

 

5.  Estimates of the Efficiency and Distributional Consequences of Banning Gender-Based Pricing 

We begin by reporting findings for our baseline model, in which firms have full flexibility in 

designing the payment profile of the annuities they offer, individuals can save out of their annuity income, 

and insurance companies cannot observe saving.  After presenting these baseline results, we consider 

results in several restricted models and then evaluate the sensitivity of our findings to changing several 

key parameters in our analysis.   

 

5.1 Baseline Model Results  

 To characterize the entire range of possible consequences of a ban in gender based pricing, we need 

only to compute two possible post-ban allocations: the MWS equilibrium and the pooled-fair full 

insurance outcome.  Without loss of generality, we normalize retirement wealth to W = 1 for these 

calculations.  

Table 3 summarizes the results associated with both the MWS and the pooled-fair outcome, with the 

latter labeled SS.  The first six columns of Table 3 present the minimum expenditure functions for 

women, men, and the total population at each of the two extreme contracts which may obtain when 

categorization is banned.  These are FE , ME , and E , in the notation used above (see (14)).  They denote 

the minimum per person resources needed to ensure that each type is at least as well off as in the 

equilibrium while respecting the inherent informational constraints of the model.  Since each person in 

endowed with one unit of resources, the difference between the fifth and sixth columns and 1.0 gives the 

efficiency cost of the ban when the post-ban contracts are given by the MWS and are given by the pooled 

fair outcomes, respectively.  This difference is reported, in percentage terms, in the seventh and eight 

columns. For a risk aversion coefficient of 1, the high-end (MWS-end) efficiency cost is 0.04 percent of 

retirement wealth W.  For risk aversion coefficients of 3 and 5, the comparable costs are about 0.02 
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percent.  If, subsequent to a ban, the market implements the pooled fair endpoint outcome, then there are 

no associated efficiency costs.  It is important to recognize that the small upper bound on the efficiency 

costs is largely due to our focus on a compulsory annuity market, and that the efficiency costs of 

eliminating characteristic-based pricing in voluntary insurance markets could be many times greater than 

our estimates suggest.   

The eleventh and twelfth columns of Table 3 report our summary statistics for redistribution from 

men to women.  This is the re-centered redistribution per woman defined in (16).  For a risk aversion of 1, 

we estimate that 2.1 percent of the endowment is redistributed when the market implements the MWS 

endpoint outcome subsequent to a ban in gender-based pricing.  For risk aversion coefficients of 3 and 5, 

the comparable numbers are 3.4 percent and 4.1 percent, respectively.  The last column of Table 3 reports 

the efficiency costs as a percentage of the amount of redistribution for the high-end MWS case.  This ratio 

varies from 3.6 percent for a risk aversion of 1 to under 1 percent for a risk aversion of 5.  

When the market implements the pooled-fair outcome instead, it redistributes a total of 7.14% of 

resources towards women. This is between 1.8 and 3.4 times more redistribution than the low-end 

redistribution estimates of Table 3.  In addition to providing an endpoint for the possible consequences of 

a ban in gender-based pricing in our setting, the 7.14 percent redistribution and zero-efficiency cost 

endpoint is also interpretable as the effect of banning gender-based pricing in a compulsory full-insurance 

setting such as the U.S. Social Security system. In such a setting individuals are, in effect, required to 

purchase level inflation-protected annuities with their retirement accumulations W.  If categorization by 

gender is allowed and pricing is actuarially fair, men get larger per-period annuity payouts than women 

for a given initial premium.  If categorization is not allowed, all buyers receive the same full insurance 

annuity with an intermediate payout level.  Because there is no scope for insurers to adjust the menu of 

policies that they offer in response to the ban, such a ban would not have any efficiency costs.  The 

consequences in such a setting are thus identical to the high-distribution endpoint calculations in Table 3. 

The smaller redistributive effect of eliminating gender-based pricing in the MWS-endpoints in Table 

3, relative to the “Social Security” setting, is a result of the endogenous adjustment of optimal annuity 
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profiles, not of reduced demand for annuities by men, since annuitization is mandatory even in our 

benchmark setting.  The reduction in redistribution results from the fact that firms can sell annuity 

contracts that vary in the time profile of their payout stream and that, by using these profiles for screening 

purposes, they can partially undo the transfers that take place as a result of the ban on gender-based 

pricing.  This highlights how recognition of the endogenous structure of insurance contracts to 

government regulation can have important effects on analyses of the regulatory policy. 

5.2 Results in Restricted Models  

We compare the results from our baseline model with those from two alternative models. The first 

restricts the behavior of annuity buyers by disallowing saving, and the second restricts the behavior of 

annuity providers by limiting the space of contracts they can offer. These exercises serve two related 

purposes.  First, they help to expand our understanding of how various provisions in our model affect our 

results.  Second, they illustrate the importance of extending the basic model to account for such real-

world features as access to savings or limits on the set of contracts insurers can offer.  In both cases, we 

focus exclusively on the high-efficiency cost low-redistribution endpoint, since the other endpoint is 

unaffected by these changes.    

Table 4 summarizes the results of with each of these generalizations.  We explained earlier that if 

annuitants cannot save, or if their saving can be observed and contracted upon by insurance companies, 

then the MWS equilibrium annuities of short-lived types are characterized by contracts that are level until 

very old ages, at which point payments fall off quite rapidly.  Because long-lived types have a substantial 

chance of being alive at those old ages, relative to the short-lived types, this shape enforces self-selection 

at very little cost to the short-lived types.  In practice, this means that the MWS equilibrium contracts 

offered to each sub-population, whether males alone, females alone, or the pooled population, involve 

zero cross-subsidies from the short-lived to the long-lived types, and the MWS equilibrium coincides with 

the RSR equilibrium.  Bans in categorization have neither efficiency nor distributional consequences in 

this setting.   
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In contrast, restricting the set of contracts that insurers can offer can increase the efficiency costs of a 

ban on gender-based pricing while reducing the amount of redistribution.  This restriction is imposed to 

more closely accord with the payment profiles of policies actually observed in the U.K. annuity market. 

While annuity companies appear to use the time-profile of annuity payments to screen individuals 

according to their risk type in the United Kingdom, Finkelstein and Poterba (2002, 2004) report that 

insurers offer only a limited number of simple alternative payment profiles. Most policies involve level 

nominal payments; the majority of the remainder involve nominal payments that escalate at a constant 

rate over time. The declining annuities generated by our baseline model do not have this feature.  It is 

possible that a richer and more realistic model might yield annuities with a structure that more closely 

accords with observed policies.   Another possibility is that there are some implicit restrictions on the 

form of annuities that can be offered by insurance firms.  Such limitations might arise, for example, if 

there are fixed costs of offering different insurance products, explicit or implicit regulations on legal 

pension payment profiles, or costs to either the consumer or producer from product complexity.  

The particular restriction we consider limits firms to offering only policies which provide benefits 

that rise or fall at a constant real rate: tt aa η=+1 for some constant η and for all t.  Subject to this 

additional requirement, market outcomes are still characterized by (6).  As in the unrestricted program, 

the long-lived types purchase a full-insurance annuity, and short lived types purchase a declining annuity.  

For the baseline parameters and a risk aversion of 3, the MWS equilibrium rate of decline is 12.1 percent 

per annum when gender-based pricing is banned, and is 9.5 percent and 13.3 percent for short-lived males 

and females, respectively, when gender-based pricing is allowed.  Table 4 indicates that for a risk 

aversion of 3, a ban in gender-based pricing in this redistricted contract model redistributes approximately 

2.25 percent of retirement wealth towards women, at an efficiency cost of 0.136 percent of retirement 

wealth. Compared with the results in the baseline model without contract restrictions the maximum 

amount of redistribution achievable by a ban on gender-based pricing falls by about one-third in a model 

with contract restrictions; the efficiency costs, while still modest on an absolute scale, rise by an order of 
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magnitude. These findings highlight how the nature of the contracting environment and the potential 

endogenous response to regulation can have substantial effects on the consequences of regulation. 

These results also provide insight into why the efficiency costs are so small in the baseline model.  

There are two mechanisms for satisfying self-selection constraints in an MWS equilibrium.  First, the 

short-lived (L) types can be offered a highly distorted contract, such as a contract with front loading.  This 

distortion makes the L type contract less attractive to both types, but it is a distortion which is 

differentially more unattractive for the H types.  Second, there can be cross-subsidies from the L types’ 

contracts to the H types’ contracts.  These help satisfy self-selection by making the H type annuity 

contracts more desirable and the L type annuity contracts less desirable.  The efficiency costs will tend to 

be large when a change in the mix λ of H and L types has substantial effects on the optimal amount of 

distortion in the contract space.   

When it is not possible to save, there is essentially no tradeoff between efficiency and redistribution.  

Distortions can be used to enforce self selection at virtually no costs, so the equilibrium never relies on 

cross-subsidies.  This in turn means that there is no change in the distortion when a ban is put in place, 

and therefore no efficiency cost.  More generally, whenever the marginal costs of distortion are very small 

for low distortions, and very high at high distortions – with a sharp transition between these two regions – 

the efficiency costs of a ban will tend to be low, as the optimal mix of distortion and cross-subsidization 

will take place near the transition, irrespective of the relative fraction of low and high-risk types.   

Restricting the contract space raises the efficiency cost of a ban on gender-based pricing because the 

transition is not as sharp in the restricted contracts case.  With an unrestricted contract space, it is possible 

to target an optimal distortion, for example, by making the L type annuity more downward sloping at old 

ages than at young ages.  This flexibility means that the first bit of distortion is the most useful, and 

additional distortions quickly become less and less useful.  In contrast, with the restricted contract spaces 

we consider, the distortion cannot be targeted: the size of the distortion is fully captured by the downward 

tilt of the L type annuity.  Relative to the unrestricted space, the tradeoff between distortion and cross-

subsidy is therefore flatter, making the efficiency cost of banning category-based pricing higher.   
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5.3 Comparative Statics 

To provide some insight into the sensitivity of our results to various parameters, we computed the 

amount of redistribution and the efficiency cost of banning categorization under three alternative sets of 

parameter vectors.  Table 5 reports the results, again for the high-efficiency low-redistribution endpoint.  

First, we vary the fraction θ of women in the population. Our base case in Table 3 assumed a 50-50 

gender split.  Decreasing θ,  to reflect the fact that most participants in the compulsory U.K. annuity 

market are male, increases the per-woman distributional effects of banning categorization.  When there 

are relatively more men, women gain more by being pooled with the men.  

The efficiency cost of a ban, however, is non-monotonic in θ .   A change in θ  has two offsetting 

effects on efficiency.  First, the efficiency costs mechanically fall as the relative size of the male 

population decreases, since the efficiency costs of a ban in categorization in the MWS framework are 

entirely due to the inefficiency of the post-ban allocation amongst the low risk category, which in this 

case is men.  Second, as the number of women increases, the non-categorizing equilibrium payout moves 

away from the men’s categorizing payout and toward the women’s.  This raises the efficiency cost per 

male, and thus creates an effect that operates against the mechanical first effect.  Finkelstein and Poterba 

(2004, 2006) suggest that about 70 percent of U.K. annuitants are male.  The results in Table 5 suggest 

that this raises the amount of redistribution to women and decreases the efficiency cost per dollar of 

redistribution by about 40 percent compared to our baseline estimates based on the 50-50 gender split. 

The second comparative static we consider involves varying the pair Hα  and Lα , the mortality 

hazard at retirement for the two different risk types.  We vary these two in a way that keeps the 

population average mortality hazard approximately constant at retirement age.  The gap between the two 

risks types in our baseline parameterization may be too large, since, at best, our estimates describe the 

differences in actual risks across types, as opposed to the private information individuals have when they 

make annuity purchases. As the hazard rates move closer together, the amount of redistribution that takes 

place as a result of the ban decreases.  The total efficiency cost, however, appears to be robust to the gap 
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in the mortality rates. As a result, the efficiency cost per dollar of redistribution rises as the relative hazard 

declines.  

The final variation we consider is jointly varying Hα  and Lα  – the age 65 mortality hazards for the 

two types – and the gender-specific fractions of each risk type, Mλ  and Fλ , in such a way that life 

expectancies of the two genders remains constant and the aggregate fraction of high risk and low risk 

types remains unchanged.  This is accomplished by first varying Hα  and Lα so as to keep aggregate life 

expectancy constant, and then by adjusting the gender-specific type fractions to keep the life expectancy 

of each gender unchanged.  Thus, like the previous variation, the thought experiment implicit in this 

variation is to change the mortality gap; this way of doing so may be more reasonable than the one above.  

Like the previous variation, this has small but non-zero effects on our estimates of the distributional 

consequences.  With a smaller gap, the distributional consequences are smaller.  In contrast with the 

previous type of mortality gap variation, however, we see that the efficiency consequences can be 

substantially increased by a lowering of the mortality gap.  Indeed, for the smallest gap considered, the 

efficiency consequences are approximately six times larger than in the baseline case.   

 

6. Conclusion 

This paper investigates the economic effects of restricting the set of individual characteristics that can 

be used in pricing insurance contracts.  It moves beyond the qualitative observation that such regulations 

may entail efficiency costs to explore quantitatively both the distributional and efficiency effects of such a 

policy.  To do so, we develop, calibrate, and solve an equilibrium contracting model for the compulsory 

retirement annuity market in the United Kingdom.    

Our findings underscore the importance of considering the endogenous response of insurance 

contracts to regulatory restrictions when assessing the impact of regulation. Our central estimate suggests 

that allowing for such endogenous response may reduce estimates of the amount of redistribution from 

men to women under a ban on gender-based pricing by as much as fifty percent.  This estimate contrasts 
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the endogenous response case with an alternative in which the menu of policies is fixed, as it is when 

governments provide compulsory annuities with fixed payout structures in Social Security programs.   

The redistribution associated with a unisex pricing requirement, even accounting for the endogenous 

contract response, remains substantial.  Our baseline estimates suggest that at least 3.4 percent of 

retirement wealth is redistributed from men to women. We also estimate that in the compulsory annuity 

setting, unisex pricing rules would impose only a modest efficiency cost, approximately 0.02 percent of 

retirement wealth. Recall, however, that our analysis focuses only on the set of individuals who are 

already covered by retirement plans that require annuitization of account balances at some point, so non-

participation in the annuity market is not an option for them.  Our efficiency estimates almost certainly 

understate the efficiency costs of unisex pricing in voluntary annuity markets, since they do not consider 

consumer decisions about whether or not to participate in the market. 

Our estimates also fail to capture the potential long-run behavioral responses to unisex pricing 

regulations. For example, a change in annuity pricing could affect the savings and labor supply decisions 

of those who will subsequently face compulsory annuitization requirements. Annuity companies might 

also respond to unisex pricing requirements by conditioning annuity prices on other observables that are 

not currently used in pricing policies, such as occupation or location of residence.  Discussions of gender-

neutral pricing in insurance markets also raise interesting questions that range far beyond our study, such 

as why a society might wish to carry out transfers between men and women, the extent to which gender-

based transfers in the marketplace are simply undone within the household, and why insurance markets 

rather than, say, the tax system, are a natural locus for such transfers.  These are all interesting avenues to 

explore in future work. 

Restrictions on the use of gender in pricing retirement annuities are just one of many examples of 

regulatory constraints on characteristic-based pricing in private insurance markets.  Many states in the 

United States, for example, restrict insurers’ use of information on the individual’s gender, race, 

residential location, or past driving history, in setting automobile insurance rates. Similar restrictions 

apply in homeowner’s insurance markets and in many small-group and non-group health insurance 
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markets.  Moreover, the growing field of medical and genetic testing promises to create new tensions 

between insurers and regulators, as medical science provides new information that insurers could 

potentially use to predict the future morbidity and mortality of potential clients for life and health 

insurance policies.   

The framework we have developed provides a natural starting point for evaluating the efficiency and 

distributional consequences of current or potential future restrictions on characteristic based pricing in 

these other markets. Such evaluations also raise several new issues which we did not have to confront in 

the case of unisex pricing requirements for annuities. In the setting we analyze there is scope for choice 

and self-selection on some of the dimensions of the annuity contract but not on the extensive margin of 

whether or not to annuitize at all.  In addition, while moral hazard is likely to be relatively unimportant in 

the annuity market, the moral hazard effects of automobile or health insurance may be more pronounced, 

and will need to be considered in analyzing the efficiency consequences of regulatory restrictions. Finally, 

gender is an immutable characteristic, unlike geographic location or past driving records, and will 

therefore not change endogenously in response to the pricing regime. The endogenous adjustment of 

characteristics to the pricing regime is another interesting issue that future work should consider. 



 33

REFERENCES 

Bernheim, B. Douglas (1991).  “How Strong are Bequest Motives?  Evidence Based on Estimates of 
the Demand for Life Insurance and Annuities.”  Journal of Political Economy 99, 899-927. 

Blackmon, B. Glenn, Jr., and Richard J. Zeckhauser (1991). “Mispriced Equity: Regulated Rates for 
Auto Insurance in Massachusetts,” American Economic Review 81, 65-69. 

Boadway, Robin, and Peter Townley (1988), “Social Security and the Failure of Annuity Markets.” 
Journal of Public Economics 35, 75-96.   

Brown, Jeffrey R. (2001).  “Private Pensions, Mortality Risk, and the Decision to Annuitize.” Journal 
of Public Economics 82, 29-62.  

Brunner, Johann K. and Susanne Pech (2005). “Adverse Selection in the Annuity Market when 
Payoffs Vary over the Time of Retirement.”  Journal of Institutional and Theoretical 
Economics 161, 155-183. 

Buchmueller, Thomas and John DiNardo (2002). “Did Community Rating Induce an Adverse 
Selection Death Spiral? Evidence from New York, Pennsylvania and Connecticut.” American 
Economic Review 92, 280-294. 

Crocker, Keith J. and Arthur Snow (1985). “The Efficiency of Competitive Equilibria in Insurance 
Markets with Asymmetric Information.” Journal of Public Economics 26, 207-219. 

Crocker, Keith J. and Arthur Snow (1986), “The Efficiency Effects of Categorical Discrimination in 
the Insurance Industry,” Journal of Political Economy 94, 321-344. 

Crocker, Keith and Arthur Snow. 2005. “Screening in Insurance Markets with Adverse Selection and 
Background Risk.” Mimeo. 

Debreu, Gerard. (1951). “The Coefficient of Resource Allocation.” Econometrica 19 (3), 273-292. 
Debreu, Gerard. (1954). “A Classical Tax-Subsidy Problem.” Econometrica 22, 14-22. 
Eichenbaum, Martin S. and Dan Peled (1987).  “Capital Accumulation and Annuities in an Adverse 

Selection Economy.” Journal of Political Economy, 95, 334-54. 
Finkelstein, Amy and James Poterba (2002).  “Selection Effects in the Market for Individual 

Annuities: New Evidence from the United Kingdom,” Economic Journal 112, 28-50. 
Finkelstein, Amy and James Poterba (2004).  “Adverse Selection in Insurance Markets: Policyholder 

Evidence from the U.K. Annuity Market,” Journal of Political Economy 112, 183-208. 
Finkelstein, Amy and James Poterba. (2006). “Testing for Adverse Selection with Unused 

Observables” Unpublished mimeo. 
Heckman, James and Burton Singer (1984).  “Econometric Duration Analysis,” Journal of 

Econometrics 24, 63-132. 
Hirshleifer, Jack (1971).  “The Private and Social Value of Information and the Reward to Inventive 

Activity,” American Economic Review 61, 561-574.  
Horiuchi, Shiro and Ansley Coale (1982). “A Simple Equation for Estimating the Expectation of Life 

at Old Ages,” Population Studies 36, 317-326. 
Hoy, Michael (1982).  “Categorizing Risks in the Insurance Industry,” Quarterly Journal of 

Economics 96 , 321-336. 
Hurd, Michael (1987).  “Savings of the Elderly and Desired Bequests.”  American Economic Review 

77, 298-312. 
Hurd, Michael (1989). “Mortality Risk and Bequests.”  Econometrica 57, 779-814. 
Institute of Actuaries. 1999. Continuous Mortality Investigation Reports Numbers 16 and 17. 
Kotlikoff, Laurence and Lawrence Summers (1981).  “The Role of Intergenerational Transfers in 

Aggregate Capital Formation” The Journal of Political Economy 89, 706-732. 
Miyazaki, Hajime (1977), “The Rate Race and Internal Labor Markets,” Bell Journal of Economics 

8, 394-418. 



 34

Polborn, Mattias, Michael Hoy, and Asha Sadanand (2006). “Advantageous Effects of Regulatory 
Adverse Selection in the Life Insurance Market.” Economic Journal 116, 327-354. 

Posner, Richard (1971), “Taxation by Regulation,” Bell Journal of Economics 2 (1), 22-50. 
Rothschild, Michael and Joseph E. Stiglitz (1976), “Equilibrium in Competitive Insurance Markets: 

An Essay on the Economics of Imperfect Information,” Quarterly Journal of Economics 90, 
630-649. 

Simon, Kosali. (Forthcoming). “Adverse Selection in Health Insurance Markets: Evidence from State 
Small-group health insurance reforms.” Journal of Public Economics 

Spence, Michael (1978), “Product Differentiation and Performance in Insurance Markets,” Journal of 
Public Economics 10 (3), 427-447 

Wilson, Charles (1977).  “A Model of Insurance Markets with Incomplete Information,” Journal of 
Economic Theory 16, 167-207. 

 



 35

 

Figure 1: Stylized constrained Pareto frontier.   
 
The dark curve connecting M to F depicts a portion of the locus of the L-type 
consumption points at constrained Pareto optimal outcomes.  Specifically, it depicts the 
L-type consumptions consistent with:  

(i) H-types receiving full insurance consumption;  
(ii) The H-types incentive compatibility constraint binding;  
(iii) Firms breaking even on aggregate, and  
(iv) H-types being no better off than at F.  

 
A symmetric portion of this frontier (corresponding with even larger cross-subsidies from 
L- to H-types) lies on the other side of the full insurance locus.  
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Figure 3: MWS Equilibrium Annuities if 
Savings is Impossible (Male population, 3=γ ) 
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Figure 4: MWS Equilibrium Annuities if Unobservable Savings 
is Possible (Male population, 3=γ ) 
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Table 1: Estimates of Two-Type Gompertz Mortality Hazard Model, Same Types for Both Genders 
Sample Multi-

plicative 
factor on 
hazard 
for high 
risk (αH) 

Multi-
plicative 
factor on 
hazard for 
low risk 
(αL) 

Common 
growth 
factor in 
hazard 
model 
(β) 

Fraction of 
men who 
are high 
risk (λM) 
 

Fraction of 
women 
who are 
high risk 
(λF) 

log(L) 
 
 
 
 

χ2(3) 
(P-
value) 
 

65 Year Olds 
(N=12160) 

0.0031 
(0.0003) 

0.0405 
(0.0013) 

0.1485 
(0.0056) 

0.6051 
(0.0096) 
 

0.8192 
(0.0231) 

-10347.45 1.94 
(0.59) 

Notes:  Results are based on estimating equation (12) using micro-data on annuitant mortality patterns. Standard 
errors are in parentheses.  Column 6 contains the total log likelihood.  Column 7 reports the χ2

 (3) statistic (P-value) 
for the Likelihood Ratio test of this restriction relative to the more flexible specification in Table 2.  
 
Table 2: Estimates of Two-Type Gender-Specific Gompertz Mortality Model 
Sample Multiplicative 

factor on 
hazard for high 
risk (αH,m / αH,f) 

Multiplicative 
factor on hazard 
for low risk 
(αL,m / αL,f) 

Common 
growth factor 
in hazard 
model (βm / βf) 

Fraction  
who are 
high risk 
(λm /λf) 

log(L),  
by gender 
 

log(L) 
 
 

65 Year Old 
Males (m) 
(N=10944) 

0.0030 
(0.0003) 

0.0423 
(0.0014) 

0.1566 
(0.0058) 

0.6305 
(0.0091) 
 

-9568.59 

65 Year Old 
Females (f) 
(N=1216) 

0.0111 
(0.0009) 

NA 
 

0.0882 
(0.0228) 

NA -777.89 

 
 
-1036.4 

Notes:  Results are based on estimating equation (12) separately for each gender using the same data as in Table 1 
Standard errors are in parentheses.  The estimation for females led to a single type model.  The final column reports 
the total log likelihood.    
 
Table 3: Range of Efficiency and Distributional Consequences of Unisex Pricing  

Required Per-Person Endowment Needed to Achieve Utility Level from 
Non-Categorizing Equilibrium When Categorization is Allowed 

Women ( WE ) 
 

Men ( ME ) Total  
Pop’n ( E ) 

Eff’cy Cost as 
% of Total 
Endowment 

Redistribution to 
Women ( WR~ ), 
Per Woman, as a 
% of Endowment 

Eff’cy 
Cost 
Per 
Dollar  
Redistn 
 

Coef’ 
of 
Rel’ve 
Risk 
Aver-
sion 

MWS SS MWS SS MWS SS MWS SS MWS  SS MWS 

γ=1 1.0205 1.0714 0.9788 0.9286 0.9996 1 0.0381% 0% 2.084% 7.14% 3.66% 
γ=3 1.0336 1.0714 0.9659 0.9286 0.9998 1 0.0246 0 3.387 7.14 1.45 
γ=5 1.0404 1.0714 0.9593 0.9286 0.9998 1 0.0180 0 4.055 7.14 0.89 

Notes: Estimates are based on the model and algorithm described in the text.  Columns labeled MWS refer to the 
high efficiency cost/low redistribution end of the range of possible consequences which obtains when the market 
implements the Miyazaki-Wilson-Spence equilibrium when gender-based pricing is banned.  Columns labeled SS 
refer to the zero efficiency cost/high redistribution end of the range which obtains when the market implements a 
pooled-fair full insurance “Social Security-like” outcome when gender based pricing is banned.   The MWS 
contracts are computed using Equation (6) and the risk type-distributions estimated in Table 1, pooled across 
genders. Columns (1)-(6) are computed using Equation (15) and columns (9)-(10) are computed using Equation 
(16). 
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Table 4: Efficiency and Distributional Effects of Ban on Gender Based Pricing in Restricted Models 
 Redistribution to Women ( WR~ ), Per 

Woman (as % of Endowment) 
Efficiency Cost as % of 
Endowment 

 MWS SS MWS SS 
 γ=1 

Unrestricted (Baseline) Model 2.0838 7.14 0.0381 0 
No Savings Model 0 7.14 0 0 
Restricted Contracts Model 1.3326 7.14 0.1000 0 

 γ=3 
Unrestricted (Baseline) Model 3.3874 7.14 0.0246 0 
No Savings Model 0 7.14 0 0 
Restricted Contracts Model 2.2504 7.14 0.1358 0 

 γ=5 
Unrestricted (Baseline) Model 4.0549 7.14 0.0180 0 
No Savings Model 0 7.14 0 0 
Restricted Contracts Model 2.8690 7.14 0.1352 0 
Notes: Unrestricted (Baseline) Model calculations are as in Table 3.  The Restricted Contracts Model calculations 
are described in Section 5.2: in this model, firms can only offer contracts with constant escalation or declination 
rates.  In the No Savings Model, individuals are assumed to have no access to savings technology, as described in 
Section 5.2.  
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Table 5:  Sensitivity Analysis for Redistribution and Efficiency Cost Calculations, (γ = 3) 
Parameter Being Varied and 
New Value 

Redistribution to 
Women ( WR~ ), Per 
Woman (as % of 
Endowment) 

Efficiency Cost as % of 
Endowment 
 

Efficiency Cost Per Dollar 
of Distribution 
 
 

 MWS SS MWS SS MWS SS 

θ (fraction women) 
0.1 6.37% 13.63% 0.00% 0% 0.32% 0%
0.3 4.84 10.30 0.01 0 0.89 0
0.5 3.39 7.14 0.02 0 1.45 0
0.7 2.00 4.17 0.03 0 1.97 0
0.9 0.66 1.35 0.01 0 2.40 0

Hα , Lα = Mortality hazard at age 65 for low-risk and high-risk type 
.001, .046 4.72% 8.63% 0.02% 0% 0.91% 0%
.002, .043 3.98 7.85 0.02 0 1.18 0

.0031, .041 3.39 7.14 0.02 0 1.45 0
.005, .036 2.62 6.01 0.03 0 1.97 0
.008, .028 1.65 4.16 0.03 0 3.27 0

( Hα , Lα ),( λm, λf ): Age 65 mortality hazards and type fractions 
(0.0021,0.2492),(0.6445,0.7798) 4.69% 7.89% 0.01% 0% 0.38% 0%
(0.0026,0.0793),(0.6275,0.7968) 3.82 7.45 0.02 0 0.82 0
(0.0031,0.0405),(0.6051,0.8192) 3.39 7.14 0.02 0 1.45 0
(0.0036,0.0248),(0.5738,0.8505) 3.09 6.92 0.04 0 2.58 0
(0.0041,0.0169),(0.5268,0.8976) 2.86 6.78 0.07 0 4.90 0
(0.0046,0.0122),(0.4477,0.9770) 2.64 6.62 0.14 0 10.72 0
Note: Same calculations as in Table 3 with varying parameters. Results for baseline parameters from Table 3 appear 
in bold.  The mortality hazards for high and low risk types at age 65 are varied while keeping the aggregate 
mortality rate at age 65 constant.  The mortality hazards and type fractions in the bottom panel are varied to keep 
aggregate type fractions and gender-specific life expectancies constant. 
 

 

 

 

 



Appendix: Solution Algorithm for Program (7)

This appendix describes and proves the validity of our procedure for solv-
ing Program (7) in the text. The difficult part of solving (7) stems from the
need to compute V H(AL), the utility H types achieve when they purchase
the annuity contract designed for the L types and save optimally. We deal
with this difficulty by identifying the structure of the optimal saving pattern
of deviating H types at the solution to (7).

There are two key features to this structure. First, deviating H types have
an incentive to save only at old ages. There is some period n∗ before which
deviating H types consume the annuity stream. We can therefore solve for
V H(AL) by examining the savings behavior in periods n ≥ n∗ only. Second,
deviating H types will optimally carry strictly positive wealth forward at
every date n ≥ n∗. Intuitively, absent savings the (IC ′) constraint in (7)
could be satisfied with an annuity stream AL which drops off very steeply at
very old ages. Such an annuity would provide H types with an incentive to
save at old ages, undermining the effectiveness and desirability of the steep
drop off. The ability of H types to save therefore pushes the “drop off” in
the annuity AL to earlier dates than would otherwise be optimal. For this
reason, deviating H types never have incentive to borrow at the optimal AL:
if they did, AL could be improved by pushing the “drop off” back towards
later ages.

The first feature is important for us: at the heart of our solution procedure
is an algorithm to find the n∗ after which the deviating H type’s begin to do
something other than just consume the annuity stream. The second feature
is important because it makes (7) analytically tractable. To see why, contrast
the indirect utility of deviating H types in two situations. In both, take their
behavior before n to involve the direct consumption of the annuity stream
AL prior to n. The two situations only differ in the potential behavior after
n.

In the first situation, we know nothing about the post-n savings behavior
of H types, so we must solve:

V H(A; n) ≡





max
Γ ≡ {c0, · · · , cN} UH(Γ)

subject to
(it) ct = at ∀t < n

(iit)
∑t

s=n δs (cs − as) ≤ 0 ∀t ≥ n





(17)
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to find their utility from a given consumption stream. In the second situation,
we know that H types will always choose to carry positive wealth after n.
This means that we can instead solve:

Ṽ H(A; n) ≡





max
(c0, · · · , cN)

UH(c0, · · · , cN)

subject to

(̃it) ct = at ∀t < n

(ĩi)
∑N

s=n δs (cs − as) ≤ 0





. (18)

Programs (17) and (18) differ in the constraints (iit) and (ĩi). The former
involves one “no borrowing” constraint for each period t ≥ n: the total re-
sources consumed through period t cannot exceed the total resources received
up to that point. In contrast, the latter only has a single “lifetime” resource
constraint. When we know that H types will always choose to carry positive
wealth after n, we know that the no borrowing constraints are slack, and we
can drop all of them except the whole-life no borrowing constraint.

Program (18) is easily solved using first order methods. With constant
relative risk aversion utility, this solution yields a closed-form expression for
Ṽ H(A; n) and its derivatives. This allows us to solve (7) using first order
methods once we have identified the cutoff value n∗. We will present our
algorithm for constructing n∗ below.

Before presenting our algorithm, let us formalize the preceding intuition.
Suppose we knew that deviating H types would consume the entire annuity
payment in each period prior to n. Fix a Lagrange multiplier ν on constraint
(IC ′) in (7), fix a T̄ for which constraint (MU ′) binds, let V̄ = V̄ H(W +
1−λ

λ
T̄ ), and let W̄ = W − T̄ . Then solving (7) for this fixed ν and T̄ would

be equivalent to solving the program

(Pn)

max
AL

{
V L(AL)− ν

(
V H(AL; n)− V̄

)}

subject to
(BC ′) CL(AL) ≤ W̄

.

Solving (7) is always equivalent to solving (P0) for the proper value of ν and
T̄ . When we know that deviating H types will consume the entire annuity
payment in each period prior to n, solving (Pn) is equivalent to solving (P0)
as well. If we additionally knew that H types would carry strictly positive
wealth in every period after n, solving (Pn) would also be equivalent to solving
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the program:

(P̃n)

max
AL

{
V L(AL)− ν

(
Ṽ H(AL; n)− V̄

)}

subject to
(BC ′) CL(AL) ≤ W̄

.

When we know the two features of deviating H type’s consumption patterns
are satisfied and we know the cutoff n∗, solving (P̃n∗) will therefore also solve
(7). This is important, because the closed, tractable form of Ṽ H(A; n) allows
us to solve (P̃n) using first order methods.

We will now present Algorithm 1, which we use to construct n∗. The
remainder of the appendix will be devoted to showing that the solutions to
(P0) and (P̃n∗) coincide for this n∗. This is formally stated in Proposition 1
below, but we will need to establish several lemmas before we can prove it.
Once we have proved it, we will know that applying Algorithm 1 to find n∗

and then solving (P̃n∗) will solve (7) for the given ν, and we will be done.
First we define a parameter n∗max which will play an important role in

Algorithm 1. To motivate it, imagine solving (PN) for AL∗ = (aL∗
0 , · · · , aL∗

N ).
If it happens that

SH
n (aL∗

n )−γ ≥ SH
n+1(a

L∗
n+1)

−γ for n = 0 · · · , N − 1, (19)

then H types will have no incentive to save when given annuity AL∗. Hence,
AL∗ will also solve the tighter program (P0). To see when (19) is possible,
consider the first order conditions for aL∗

n and aL∗
n+1. These imply

(aL∗
n )−γ

(
1− ν

SH
n

SL
n

)
≥ (aL∗

n+1)
−γ

(
1− ν

SH
n+1

SL
n+1

)
. (20)

Combining (19) and (20) yields

ν ≤
( 1

SH
n+1

− 1
SH

n

1
SL

n+1
− 1

SL
n

)
. (21)

Therefore, (19) will only be possible—and AL∗ can only solve (P0)—when ν is

sufficiently low. For higher ν, there will be some t for which ν >

(
1

SH
n+1

− 1

SH
n

1

SL
n+1

− 1

SL
n

)
,
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and we will need to solve (P0) using some other method. This motivates the
following definition:

n∗max ≡ min

{
{N} ∪

{
n ∈ {0, · · · , N − 1} : ν ≥

( 1
SH

n+1
− 1

SH
n

1
SL

n+1
− 1

SL
n

)}}
, (22)

so that n∗max = N if and only if (19) is possible. If n∗max < N , then we need
some other method for solving (P0). This is is purpose of Algorithm 1.

Algorithm 1

1. Start with n = n∗max.

2. If n = 0 or if SH
n−1

(
c̃n
n−1

)−γ
> SH

n (c̃n
n)−γ, stop, n∗ = n. Otherwise, take

n = n− 1 and repeat step 2.

Algorithm 1 starts with n = n∗max and solves (P̃n∗max
) for Ãn∗max . It checks

if H types have a (weak) incentive to save at n∗max−1 given their optimal con-
sumption pattern when given Ãn∗max—i.e., the consumption vector Γ̃ solving
(17) defining Ṽ H(Ãn∗max ; n∗max). If not, stop. If so, decrement n and repeat
using n instead of n∗max, continuing to decrement n until either there is no
incentive to save at n− 1, or until n = 0.

Our first lemma shows that the date n∗max is the cutoff n between ν >(
1

SH
n+1

− 1

SH
n

1

SL
n+1

− 1

SL
n

)
and ν <

(
1

SH
n+1

− 1

SH
n

1

SL
n+1

− 1

SL
n

)
. This plays a key role in assuring that

the algorithm works correctly.

Lemma 1 For the Gompertz mortality curves we consider,

(
1

SH
n+1

− 1

SH
n

1

SL
n+1

− 1

SL
n

)
is

declining in n.

Lemma 1 is easily verified by numerical computations for our particular para-
metrization of the Gompertz mortality curves. A formal proof of the lemma
for any pair of Gompertz mortality curves involves tedious algebra and a
limiting argument. It is omitted here but is available upon request from the
authors.

Our second lemma characterizes the consumption patterns Γn = (cn
0 , · · · , cn

N)
which solve (17) for a given solution An = (an

0 , · · · , an
N) to (Pn). Note that,

by assumption, any such consumption pattern has cn
t = an

t for t ≤ t0.
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Lemma 2 If An = (an
0 , · · · , an

N) solves (Pn), and Γn = (cn
0 , · · · , cn

N) solves
the program defining V H(An; n), then ∃ an integer k ≥ 0 and a set T =
{t0, · · · , tk, tk+1} of integers ti, with t0 ≡ n−1, ti < ti+1, and tk+1 = N , such
that:

• For t0 < t < t′: SH
t (cn

t )−γ ≥ SH
t′ (cn

t′)
−γ , with equality iff ∃i such that

ti < t and t′ ≤ ti+1; and

• For each i ≤ k,
t̄∑

t=ti+1

δn (cn
t − an

t ) ≤ 0,

for each ti + 1 ≤ t̄ ≤ ti+1, with equality if t̄ = ti+1.

Lemma 2 states that the dates after n − 1 can be broken up, by some set
of cutoff values T, into a series of intervals [ti + 1, · · · , ti+1]. Within each
interval, H types consume in such a way that they have no incentive to save
or borrow. At the upper end ti of an interval, the H type’s consumption is
such that they have a strict incentive to shift consumption from ti + 1 back
to ti; they cannot do so, because they cannot borrow and they do not carry
positive wealth between ti and ti + 1. The “proof” involves simply looking
at Cn and An and defining the appropriate set T.

Lemmas 3, through 6 below characterize the cutoff values T for solutions
to (Pn). Specifically, Lemma 3 presents some first order necessary conditions
for solving (Pn). Lemma 4 uses these first order conditions to establish
some properties of the annuity and consumption streams associated with the
solution to (Pn), taking the set of cutoffs T as given. Lemma 5 establishes
that when the solution to (Pn) involves the cutoffs T = {n− 1, N}, it is also
a solution to (P̃n). Lemma 6 then uses the properties of Lemmas 3 and 4 to
show that the only set T consistent with solving (Pn) when n∗ ≤ n ≤ n∗max is
the (minimal) set {n− 1, N}. Together, these will tell us that the solutions
to (Pn∗) and (P̃n∗) coincide, which enables us to prove Proposition 1.

Lemma 3 Let An ≡ (an
0 , · · · , an

N) solve (Pn), let Γn = (cn
0 , · · · , cn

N) solve the
program defining V H(An, n), and let T = {t0, · · · , tk, tk+1} be the associated
set of integers from Lemma 2. Let µ be the Lagrange multiplier associated
with the constraint (BC ′). Then the following must hold:

µ = (an
t )−γ − (cn

t )−γ ν
SH

t

SL
t
, ∀t ∈ {0, · · · , N}, (23)
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an
t = cn

t , ∀t < N, (24)

SH
t (cn

t )−γ = SH
t′ (cn

t′)
−γ, ∀t, t′ ∈ {ti + 1, · · · , ti+1} ∀i ∈ {0, · · · , k}, (25)

∑ti+1

t=ti+1 δt(cn
t − an

t ) = 0, ∀i ∈ {0, · · · , k}. (26)

Proof. Since ∂V H(An;n)
∂an

t
= SH

t (cn
t )−γ, (23) is the first order necessary con-

dition for an
t in (Pn). Conditions (24)-(26) characterize necessary conditions

for Γn to solve the program defining V H(An; n). Condition (24) follows from
the definition of that program. Both (25) and (26) follow from Lemma 2:
(25) states that H type’s consumption is such that they have no incentive
to borrow or save within an interval and (26) states that individuals do not
carry positive wealth from one interval to the next.

By Lemma 3, conditions (23)-(26) are necessary for a solution to (Pn).
Lemma 4 shows that for any fixed set of cutoffs T, these four conditions are
satisfied only for a unique annuity and consumption pair. The lemma further
examines how this unique pair varies with the Lagrange multiplier µ: since
µ can be interpreted as a marginal utility of resources and u′(x) = x−γ, the

pair varies with µ as µ−
1
γ .

Lemma 4 Fix µ > 0 and T. Then there is a unique annuity and con-
sumption pair, (a′n0 , · · · , a′nN) ≡ A′n and (c′n0 , · · · , c′nN) = Γ′n, that solves

(23) through (26). Viewed as a function of µ, a′nt (µ) = a′nt (1)µ−
1
γ and

c′nt (µ) = c′nt (1)µ−
1
γ .

Proof. Fix a ti. Condition (25) determines
c′nt
c′n
t′

for any t, t′ in the interval

[ti+1, · · · , ti+1]. (c′nti+1, · · · , c′nti+1
) is therefore determined up to a scalar multi-

ple. To pin down this scalar multiple, fix a W̃i ∈ R and generate the unique
vector (c′nti+1, · · · , c′nti+1

) consistent with (25) and with W̃i =
∑ti+1

t=ti+1 δtc′nt .
Next, define the function M1 : R→ Rti+1−ti by M1(ā

n
ti+1) ≡ (ān

ti+1, · · · , ān
ti+1

),
where ān

t is defined implicitly via

(ān
t )−γ − (c′nt )

−γ
ν
SH

t

SL
t

=
(
ān

ti+1

)−γ − (
c′nti+1

)−γ
ν
SH

ti+1

SL
ti+1

,

as required by (23). Similarly, define the function M2 : Rti+1−ti → R via
M2(ā

n
ti+1, · · · , ān

ti+1
) ≡ ∑ti+1

t=ti
δtān

t . Then M2(M1(āti+1)) is strictly increasing
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in āti+1; hence there is a unique āti+1 such that M2(M1(āti+1)) = W̃i. There-

fore, for any W̃i, there is a unique pair of vectors
(
a′nti+1(W̃i), · · · , a′nti+1

(W̃i)
)

and
(
c′nti+1(W̃i), · · · , c′nti+1

(W̃i)
)

consistent with

W̃i =

ti+1∑
t=ti+1

δta′nt (W̃i) =

ti+1∑
t=ti+1

δtc′nt (W̃i)

and with

(
a′nt (W̃i)

)−γ

−
(
c′nt (W̃i)

)−γ

ν
SH

t

SL
t

=
(
a′nti+1(W̃i)

)−γ

−
(
c′nti+1(W̃i)

)−γ

ν
SH

ti+1

SL
ti+1

for all t ∈ {ti + 1, · · · , ti+1}.
Clearly, if

{(
a′nt (W̃i)

)ti+1

t=ti+1
,
(
c′nt (W̃i)

)ti+1

t=ti+1

}
is the unique pair consis-

tent in this sense with W̃i, then

{(
βa′nt (W̃i)

)ti+1

t=ti+1
,
(
βc′nt (W̃i)

)ti+1

t=ti+1

}
is

uniquely consistent in this sense with βW̃i for any β > 0. Via µ, (23) then

pins down a unique W̃i and corresponding
(
a′nti+1(W̃i), · · · , a′nti+1

(W̃i)
)

and(
c′nti+1(W̃i), · · · , c′nti+1

(W̃i)
)

consistent with (23), (25) and (26) for the inter-

val i, and shows that c′nt and a′nt vary with µ as µ−
1
γ in this interval.

This argument holds for each ti, and hence for each t ≥ n. For t < n, a
similar argument using (24) instead of (25) establishes the same uniqueness
result, completing the proof.

Lemma 4 shows that there is a unique pair An and Γn that satisfies the
necessary conditions for a given fixed T. That is, for any T there is a unique
“candidate” for solving (Pn). We will now establish two lemmas about this
candidate solution. First, Lemma 5 shows that if the candidate associated
with cutoffs T = {n − 1, N} is indeed a solution to (Pn), then it is also a
solution to (P̃n). Second, Lemma 6 shows that, when n∗ ≤ n ≤ n∗max, the
candidate for any other T = {n−1, N} cannot solve (Pn) for T = {n−1, N}.
Together, they imply that the solution to (Pn∗) solves (P̃n∗) as well.

Lemma 5 Consider a solution An to (Pn) and the corresponding Γn solving
(17) defining V H(An; n). If the cutoff values T given by Lemma 2 at this
solution are given by T = {n− 1, N}, then An solves (P̃n).
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Proof. When T = {n − 1, N}, Lemma 2 implies that Γn also satisfies the
first order conditions associated with the program defining Ṽ H(An; n), and
therefore solves that program. An is therefore feasible in (P̃n). (P̃n) is a
tighter program than (Pn), so An solves (P̃n).

Lemma 6 Assume n∗ ≤ n ≤ n∗max. Let A′n = (a′n0 , · · · , a′nN) and Γ′n =
(c′n0 , · · · , c′nN) solve (Pn) and the program defining V H(A′n; n), respectively,
and let T be the associated cutoffs from Lemma 2. Then T = {n− 1, N}.

Proof. If T 6= {n − 1, N}, take the largest tk ∈ T less than N . For A′n

and Γ′n to solve (Pn) with cutoffs T and the program defining V H(A′n; n),
respectively, Lemma 2 requires:

a′ntk ≤ c′ntk
and

a′ntk+1 ≥ c′ntk+1.
(27)

First suppose, by way of contradiction, that tk ≥ n∗max, where n∗max is
defined in Algorithm 1. Then combining (27) with the necessary condition
(23), we observe:

(c′ntk)
−γ

(
1− ν

SH
tk

SL
tk

)
≤ (c′ntk+1)

−γ

(
1− ν

SH
tk+1

SL
tk+1

)
. (28)

Lemma 2 also requires:

SH
tk

(c′ntk)
−γ > SH

tk+1(c
′n
tk+1)

−γ. (29)

Combining (28) and (29) yields:

SH
tk+1

SH
tk

(
1− ν

SH
tk

SL
tk

)
<

(
1− ν

SH
tk+1

SL
tk+1

)
or ν <




1
SH

tk+1
− 1

SH
tk

1
SL

tk+1
− 1

SL
tk


 .

This contradicts Lemma 1 when tk ≥ n∗max by Lemma 1.
When T = {n− 1, N} at the solution to (Pn), the solutions to (P̃n) and

(Pn) coincide by Lemma 5. Having ruled out tk ≥ n∗max, we conclude that
(Pn∗max

) is uniquely solved with cutoffs Tn∗max
= {n∗max − 1, N} and that the

solutions to (P̃n∗max
) and (Pn∗max

) coincide.
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Proceeding by induction, suppose that for some ñ ≥ n∗, (Pn) is uniquely
solved with cutoffs Tn = {n − 1, N} for each n ≥ ñ + 1. By Lemma 5, the
solutions to (P̃n) and (Pn) must then coincide for n ≥ ñ + 1. We will prove
that Tñ = {ñ − 1, N} by contradiction: suppose there is a solution to (Pñ)
involving cutoffs T = {ñ−1, · · · , tk, N} 6= {ñ−1, N}. From above, tk < n∗max

must hold.
Fix µ = 1 (without loss of generality by Lemma 4), and take Γ′ñ and

A′ñ as in Lemma 4 for n = ñ and cutoffs T. Take Γ′′tk+1 and A′′tk+1 as in
Lemma 4 for n = tk + 1 and cutoffs {tk, N}; then Γ′′tk+1 = Γtk+1 = Γ̃tk+1

and A′′tk+1 = Atk+1 = Ãtk+1 by the inductive hypothesis. By the argument
in the proof of Lemma 4, c′ñt = c′′tk+1

t for t = tk + 1, · · · , N : having fixed µ,
there is a unique solution within each interval, and the top intervals for the
two problems coincide.

By Lemma 2, c′ñtk ≥ a′ñtk , whereby (23) yields µ ≡ 1 ≥ (
a′ñtk

)−γ
(

1− ν
SH

tk

SL
tk

)
.

Similarly, since a′′tk+1
tk

= c′′tk+1
tk

we conclude that 1 =
(
a′′tk+1

tk

)−γ
(

1− ν
SH

tk

SL
tk

)
.

Therefore, a′′tk+1
tk

≤ a′ñtk and c′′tk+1
tk

≤ c′ñtk .
To complete the proof, note that if A′n solves (Pn) then Lemma 2 requires

SH
tk

(c′ñtk)
−γ > SH

tk+1(c
′ñ
tk+1)

−γ. Since c′′tk+1
tk

≤ c′ñtk and c′′tk+1
tk+1 = c′ñtk+1, this implies

SH
tk

(c′′tk+1
tk

)−γ > SH
tk+1(c

′′tk+1
tk+1 )−γ. Noting that Γ′′tk+1 = Γtk+1 = Γ̃tk+1, Algo-

rithm 1 implies n∗ ≥ tk + 1, since Algorithm 1 would have stopped at tk + 1,
if not before. Since ñ ≥ n∗ and ñ ≤ tk, we have reached our contradiction,
completing the proof.

We are now ready to state and prove Proposition 1. Proposition 1 states
that the solution to (P̃n∗) solves (P0). This means that (P̃n∗) can be used
to solve (7) in the text—all that is additionally required is a search for the
proper value of the multiplier ν. Since (P̃n) is easily solved, we will be done
once we have proved Proposition 1.

Proposition 1 If Ãn∗ solves (Pn∗), then An∗ solves (P0) and (P̃n∗) where n∗

is the outcome of Algorithm 1.

Proof. A solution Ãn∗ = (an∗
0 , · · · , an∗

N ) to (Pn∗) must exist, since the
set of A satisfying the constraints is compact and the objective function is
continuous. Lemmas 4 and 6 together imply that this solution is unique
and involves the cutoff values T = {n − 1, N}. By Lemma 5, this solution
also solves (P̃n∗). Examination of the first order conditions shows that this
solution to (P̃n∗) is unique.
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Since V H(A; n) ≤ V H(A; 0) for every A, the value of Program (Pn∗)
is at least as large as the value of Program (P0). It therefore suffices to
show that V H(Ãn∗ ; n∗) = V H(Ãn∗ ; 0). Let Γn∗ = (cn∗

0 , · · · , cn∗
N ) solve the

program defining V H(Ãn∗ ; n∗). Γn∗ must also solve the program (18) defining
Ṽ H(Ãn∗ ; n∗), or else Ãn∗ couldn’t solve both (Pn) and (P̃n). We need only
to check that Γn∗ also solves the program (17) defining V H(Ãn∗ , 0). Since
(17) is a globally concave program and Γn∗ satisfies all of the constraints, it

suffices to show that SH
t

(
cn∗
t

)−γ ≥ SH
t+1

(
cn∗
t+1

)−γ
for each t, with equality for

any t at which
∑t

s=0 δs(cn∗
s − an∗

s ) < 0.

For t ≥ n∗, SH
t

(
cn∗
t

)−γ
= SH

t+1

(
cn∗
t+1

)−γ
. This is a necessary condition for

Γn∗ to solve the program defining Ṽ H(Ãn∗ ; n∗). If n∗ = 0, we are done.
Otherwise, for t < n∗, we have cn∗

t = an∗
t , so

∑t
s=0 δs(cn∗

s − an∗
s ) = 0,

and we need only verify that SH
t

(
cn∗
t

)−γ ≥ SH
t+1

(
cn∗
t+1

)−γ
. By Algorithm

1, SH
n∗−1

(
cn∗
n∗−1

)−γ
> SH

n∗
(
cn∗
n∗

)−γ
. We are therefore done if n∗ = 1.

If n∗ > 1, suppose, by way of contradiction, that

SH
t

(
cn∗
t

)−γ
< SH

t+1

(
cn∗
t+1

)−γ
(30)

for some t < n∗ − 1. Since cn∗
t = an∗

t for t < n∗,

(
an∗

t

)−γ
(

1− ν
SH

t

SL
t

)
=

(
an∗

t+1

)−γ
(

1− ν
SH

t+1

SL
t+1

)
(31)

by Lemma 3. (30) and (31) can be used to show that ν >

(
1

SH
t+1

− 1

SH
t

1

SL
t+1

− 1

SL
t

)
. But

since t < n∗ ≤ n∗max, this is impossible given Algorithm 1 and Lemma 1.

This contradiction shows that SH
t

(
cn∗
t

)−γ ≥ SH
t+1 for each t < n∗ − 1, which

completes our proof.
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