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Two-Person Dynamic Equilibrium: Trading in the Capital Market

ABSTRACT

When several investors with different risk aversions trade competitively

in a capital market, the allocation of wealth fluctuates randomly between them

and acts as a state variable against which each market participant will want

to hedge. This hedging motive complicates the investors' portfolio choice and

the equilibrium in the capital market. Although every financial economist is

aware of this difficulty, to our knowledge, this issue has never been analyzed

in detail. The current paper features two investors, with the same degree of

impatience, one of them being logarithmic and the other having an isoelastic

utility function. They face one risky Constant-return-to-scale stationary

production opportunity and they can borrow and lend to and from each other.

The behavior of the allocation of' wealth is characterized, along with the

behavior of the rate of interest and that of the security market line. The

two main results are: (1) investors in equilibrium do revise their portfolios

over time so that some trading takes place, (2) provided some conditions are

satisfied, the allocation of wealth admits a steady-state distribution at an

interior point; this is in contrast to the certainty case, where one investor

in the long run holds all the wealth. The existence of trading opens the way

to a theory of capital flows and market trading volume.

Bernard Dumas
Department of Finance
Wharton School

University of Pennsylvania
Philadelphia, PA 19104-6367



1. Introduction

The question of dynamic asset pricing has been addressed so far, only

under the assumption that all investors are alike (Lucas (1978), Cox,

Ingersoll and Ross (1985)). The asset prices so obtained are then purely

virtual prices, since no trading takes place in the capital market. The

finance profession, that is, has no theory to offer to account for trading

volume and capital flows between capital market participants, under conditions

of rational symmetric information. The present paper aims to fill this gap.

Since our aim is to generate trading in the capital market, we must avoid

circumstances which are known to induce constancy of the investors' ownership

shares in the various assets, even though investors are not identical to each

other. The work of Rubinstein (19714) has outlined these circumstances: jf

investors all have Hyperbolic-Absolute_Risk_Aversion (HARA) utility functions,

with the same impatience parameter and the same cautiousness parameter (but

are otherwise different from each other), they forever hold a fixed share of

the market portfolio, and a fixed amount of a consol bond offering riskless

payments. Such portfolio policies obviously require no trading: investors

Just live off the income generated by their constant portfolio.

There are several ways in which we can choose to deviate from the

Rubinstein base case. Investors may differ in their impatience parameter.

The question has been examined by Becker (1980) under conditions of certainty;

the result is that the least impatient investor will hold all the wealth in

the long run. It seems unlikely that new insights would be gained by the

introduction of risk into Becker's analysis. We therefore retain the

Rubinstein assumption of equal rates of impatience across investors.

Instead, we examine investors whose utility function is isoelastic with

differing levels of relative risk aversion. Isoelastic utility functions



belong to the HARA class of utility functions, and in their case, the

cautiousness parameter of Rubinstein is simply equal to the relative risk

aversion. In this way, the investors considered here differ in their

cautiousness parameter, and we can expect that a constant portfolio policy

will not be optimal for them.

The balance of this paper will show that this conjecture is correct.

Along with some trading volume, our paper will produce a variable distribution

of wealth across investors, but one which does not necessarily converge to

100% ownership by one of them; and it will also produce a variable rate of

interest. The stochastic process for the short—term rate of interest will be

shown to have several stable points.

The model is described in section 2. The equilibrium of the capital

market is characterized in section 3. Section 1 provides a derivation of the

dynamics of the distribution of wealth between investors. Section 5

quantifies the amount of trading in the market and derives asset prices, with

special emphasis on bond prices and the term structure of interest rates.

2. The model

The capital market of our model economy is populated with but two

investors, with the same rate of impatience , but different risk aversions.

The analysis is greatly simplified and does not lose its illustrative power if

we restrict one investor to have a logarithmic utility function, while the

other one exhibits any degree of' risk aversion l-y where y is the power of his

isoelastic utility function:1

Note that the horizon is infinite.
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C —pt 1 r(1) MaxEj e —cdt; y<1,
0

and c is his finite rate of consumption of a single good.

Recall (Merton (1971)) that the logarithmic case can be obtained as the

limit of the above case for y + 0; we shall therefore simply write the

optimizing equations for the investor with the power utility function.

The two investors consume a single good and have access to two investment

opportunities:

- they can buy shares in one constantreturn-to-scale production

activity, whose random output per unit of capital has a constant

gaussian distribution with fixed parameters and a;

- they can borrow and lend to and from each other at the equilibrium

riskless2 rate r, which varies over time in an endogenous fashion.

Other notations are as follows:

W: wealth of the non-logarithmic investor;

W*: wealth of the logarithmic investor;

x, x*: share of each investor's wealth invested in the risky

production opportunity;

c, c*: consumption rates of' the two investors;

(2) w W/(W + W*): the non—logarithmic investor's share of total wealth.

The dynamics of an investor's wealth for a given investment decision x

and a given consumption decision c are well known:

(3) dW {W[r + x(a — r)J - c}dt + Wxadz

where dz is the random white noise affecting production. In this equation,

the rate of interest r is the market rate. It is not constant over time. In

2Endogenous default is left for future research.



fact, we can reasonably postulate that it is a function of the distribution of

wealth w: r r(w). The formulation of the two investors' optimization

problem must, therefore, incorporate the behavior of the distribution of

wealth.

Applying Ito's lemma to the definition (2) of and using the equation

for the dynamics of wealth (3), as well as the analogous equation for the log

investor, we obtain:

(14) d w(1 - w)[(X - x*)(cL — r) - +

- (x - x*)(Jx + (1 - w)x)a2]dt + (x - x*)adz}

Not surprisingly, the allocation of wealth would be constant if the two

investors were to hold the same portfolio (x x*) and the allocation of

wealth also admits two absorbing barriers at w = 0 and w = 1: if one investor

comes to hold all the wealth, he thereafter holds all the wealth forever.

The maximization of (1) subject to (3) and (14) with respect to c and x

(but taking the behavior of w as given in a pure competitive fashion) is a

standard dynamic program. The partial differential equation for its

(undiscounted) value function J(W, w) is a Hamilton-Jacobi equation which can

be written easily. One can proceed in two steps, optimizing consumption

first, and then the portfolio. The optimality condition with respect to

consumption is:

(5) c'1

Substituting the optimal consumption decision into the original Hamilton—

Jacobi equation, one can verify that a function of the form:

(6) J(W, w) 1 W1I(w)
Y



is a solution, i.e., that the W variable does cancel out.3 This being done,

one is left with the second problem of optimization, with respect to the

portfolio x:

(7) 0 — + (1 —

1 22 I'+ Max y{r + x(a — r) + — 1)x a + — xaw}

1 2+ (ii + Cu

where and w are the drift and the diffusion coefficients of cu, which

appeared in equation (l.) above.

The optimality condition with respect to x is evidently:

( ) — r + (y — 1)xa + ow 0

so that the optimal portfolio is:

I'- r + ow
(9) x:

2
(1 — y)a

The optimal portfolio is of the well-known form applying to an isoelastic

investor, except for the last term of the numerator which represents hedging

against shifts in the distribution of wealth, which induce shifts in the rate

of interest.

3. Equilibrium

Instantaneously, the equilibrium in the capital market is characterized

by:

as a result: c/W =
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a) the non-logarithmic investor's portfolio optimality condition (8),

which reads as follows, when the form of' the diffusion coefficient

is made explicit:

(10) a - r (1 - y)o2x - ( w(1 - w)a2(x - x*)

b) the logarithmic investor's portfolio condition: it is well known

since E-Iakansson (1971) that such an investor exhibits no hedging

motive, i.e., that his function 1* is a constant; hence:

n

(11) a — r a x

c) a 'supply equals demand' condition:

(12) wx + (1 — w)x* 1

Solving these three equations simultaneously, one obtains all the

endogenous variables as a function of w:

(13) x 1

wA + 1 -

A
(1)4) wX + — U

2
a

(15) r a —
(A)X + 1 - w

where:

1 - — w(1 - w)
(16) x I'

1 — — w(l — w)

is best interpreted as the non—logarithmic investor's risk tolerance "adjusted

for the hedging motive," since, in effect, his decision is mean—variance

optimizing, in the static sense, but at a level of risk aversion different
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from 1 — y. Similarly, by analogy with the CAPM, wA + 1 - w can be seen as

the market's risk tolerance, also "adjusted for the hedging motive."

The reason why the standard mean-variance framework survives, with a

minor change,4 despite the introduction of one more state variable and the non

stationarity of the rate of interest, is that this additional state variable w

is perfectly correlated with wealth (cf. equations (3) and (14)).

Over time, the equilibrium is further characterized by the dynamics (14)

of the distribution of wealth (with x, x, r, c/W, c*/W* substituted in) and

by the two functions 1(w) and I*(w). We mentioned above that 1* is a

constant; in fact, solving the logarithmic investor's partial differential

equation for 1* (which is (7) with y 0), subject to the transversality

conditions indicated in Merton (1971), produces 1* i/p and therefore c*/W*

p. Once these elements are taken into account, the dynamics of w, for a given

I function, are:

2 2
(17) dw w(1 — w){(—

° —

2
— + p)dt + adz}

(wA + 1 - w)

and, finally, substituting equations (13) to (15), and (17) above, we obtain

the partial differential equation to be satisfied by the unknown function

1(w):

(18) 0 -p + (1 -

2
2 x 2+ -

x + 1 - - (y - i)a L + 1 -

a matter of fact, if we had introduced a multiplicity of assets, we
could have proved that a Tobiri separation theorem applies to the present
situation.
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2 2 —i--

I r wa (X — 1) y—l
+ L)(1 w)[- 2

- +
(wA + 1 - w)

1
A — 1

+ — 1(l — w) ojI wX+1-w

where A is given by (16).

The problem of the determination of equilibrium is thus reduced to that

of solving the partial differential equation (18) (coupled with (16)), subject

to two "natural" boundary conditions, corresponding to the two absorbing

barriers w 0 and w 1:

(19) 1(0)
1

2
2

1 ___p — y(ci — 0 +
1 —

(20) 1(1)
1 -

( 2
p — — (1 —

Everything one might want to know about the equilibrium path, will follow from

this 1(w) function: once it is known, equations (13) to (17), and the

equation of footnote #3, give the portfolio choices, the rate of interest, the

market price of risk, the dynamics of the allocation of wealth, and

consumption choices.

14 Dynamics of the allocation of wealth

It is unlikely that equation (18) subject to boundary conditions (19) and

(20) should have a known analytical solution. Considering, however, that the

domain of variation of' w is a closed set, and that the behavior of I on the

boundary is well specified, this partial differential equation lends itself

nicely to numerical analysis.5 We choose to present the results in terms of

5cf. Smith (1978).
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the behavior (specifically the drift) of the distribution of wealth over time

(equation (17)), rather than in terms of the I function itself. The reader is

referred to figures la and lb, which are "expected" phase diagrams for c.

These figures allow one to study the stability of the distribution of

wealth. There are always two points which are stochastically stable, in the

sense that both the drift and the volatility of w vanish at those points:

they are, of course, w 0 and w 1. They correspond to situations in which

the entire wealth is concentrated in the hands of one investor. Depending on

the value of the impatience parameter , and on that of the risk aversion

parameter 1 - y (see the figures), one of these two endpoints may also be

absolutely stable in the expected value sense, which means that the drift of w

would attract it towards that endpoint, when starting away from it.

Under certainty ( 0), one of the two endpoints would necessarily be

the long—run outcome: when the two investors have the same rate of impatience

p, the one with the higher risk aversion6 would end up owning all the wealth,

when the rate of impatience p is less than the earning rate , and vice—

versa.7 There would be no stable point in-between.

Figures la and lb reveal, however, that the case of uncertainty is

qualitatively different from the case of certainty: within some range of

parameter values the curve giving the drift of w as a function of w, cuts the

w axis with a negative slope--implying stability—- for a value of w different

from 0 or 1. For these parameter values, the distribution of wealth will

forever wander around its stable interior value, tending to return to it after

6Risk aversion would act then only as a measure of elasticity of
substitution between periods.

7Wien = , the long-run allocation of wealth would be determined by the
initial situation.
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a shock, unless a series of them causes it to hit one of the two absorbing

barriers at 0 or 1.

As the allocation of wealth fluctuates, the security market line of the

traditional CAPM should be viewed as pivoting around one fixed point

representing the risky production opportunity, while the variable slope of the

line determines the current value of the riskless rate of interest. The

behavior of the allocation of wealth is thus mirrored in the stochastic

behaviors of the market price of risk 1/(Xw + 1 - w) and of the equilibrium

riskless rate of interest r, which are monotonic functions of w via equations

(15) and (16) above.8 They both admit two absorbing barriers, at 1 and 1 - y

for the market price of risk, and at - a2 and — (1 - for the rate of

interest. These values correspond to the endpoints w 0 and w 1, where one

of the two investors would impose his risk aversion and his corresponding

value of the rate of interest.

Whenever there exists a stable interior value of the distribution of

wealth, so is there one for the rate of interest, which wanders between the

two extreme values, while tending to return to the stable interior one. There

are then three possible long-run values of the rate of interest: two which

are absorbing and one which is stable in the expected-value sense (refer to

figures 2a and 2b). The volatility of the rate of interest is by no means

constant: it is zero at the two absorbing barriers and exhibits a maximum

somewhere in-between.

Although this model is perhaps the most simple one can conceive, while

still exhibiting a variable rate of interest, the process so obtained for the

8r is an increasing function when 1 - y > 1, a decreasing one otherwise;
the opposite is true for the market price of risk.
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rate is much more complex than had been previously assumed (cf. e.g., the

Ornstein—Uhlenbeck process used by Vasicek (1977)).

5. Trading, asset prices and the term structure

Asset holdings by the two investors are given by the values of x and x

(equations (1L) and (13)), for the non—logarithmic and the logarithmic

investor respectively. They represent the share of each investor's wealth

invested in the risky asset. However, the two investors' shares of ownership

in the risky production opportunity are equal to x and x*(1 - w)

respectively.

Trading takes place in the capital market if and only if w 0 or 1 and

xw is a non constant function of a fluctuating w; for, this implies that one

investor buys shares from and sells shares to the other, as time passes. In

contrast to previous theories of dynamic capital market equilibrium, the

present model accounts for (some) trading volume. Indeed figures 3a and 3b

display the shares of ownership as functions of the allocation of wealth and

it is clear that they are no constant: when one investor owns almost all the

wealth, almost all of his wealth is allocated to the risky asset and, by

necessity, he owns almost all the shares of this asset. The other investor

may or may not be a borrower, depending on his risk aversion, but his leverage

always remains finite (x < 1/(1 — y), x < 1 - y) so that he can only own a

small fraction of the shares of the risky asset. As an investor's share of

wealth fluctuates, so does his share of' ownership of the risky asset; and, of

course, his share of wealth does fluctuate because, as a result of different

risk aversions, the two investors make up their portfolios differently. Our

model provides scope for capital flows between investors; the current-account

balance between them is not equal to zero.

—11—



The current model includes only one risky asset, so that it is not

exactly appropriate to discuss the relative pricing of assets. Assets which

are in zero net supply may nonetheless be priced. These assets would have to

satisfy the following CAPM:

(21) ER = r +
S

wX + 1 -

where:

ER expected rate of return from the asset,

s = covariance of the asset rate of return with the productive

opportunity.

The price of the asset, which is a function of u--and possibly of W +

depending on its contractual definition—-will generally have to satisfy

equation (21) interpreted as a functional equation.

Since the present formulation has been able to generate an interesting

behavior for the short-term rate of interest, one might think of applying it

to the pricing of bonds. Rather than expressing the price of the bond as a

function of the allocation of wealth which is not observable, it will be

empirically more useful to express it as a function P of the rate of interest

r.9 Knowing the behavior of r, a straightforward application of Ito's lemma

to the unknown function provides expressions for ER and s. Substituting them

into (21) gives:

2
1 3P P a P 2i 1 aP r__________(22) — 1— — + — + — c

j
r — — — I

P at 3r r 2 r P 3r r wX + 1 — war

where t is the time to maturity, 1'r and cr are the drift and the volatility of

9and, of course, of the time to maturity.
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the rate of interest,10 and the expression within brackets on the right—hand

side is commonly known as "the market price of interest-rate risk" (cf.

Vasicek (1977) or Brennan and Schwartz (1982)). This quantity is thus equal

to the market price of risk, as defined above,11 times the volatility of the

output. It follows from what we said and from equation (15) that the

volatility of the market price of risk and the volatility of the rate of

interest are proportional to each other. It would therefore be inconsistent

to assume, as is sometimes done, that the market price of interest—rate risk

is constant, in a setting which allows for interest-rate uncertainty.

The boundary conditions which accompany equation (22) are easy to obtain

since it is known that the rate of interest will remain constant, once it hits

one of the two absorbing barriers. For these values of the rate, the price of

a pure-discount unit bond is simply equal to the present value, computed at a

constant rate, of one unit of consumption paid at maturity. One can then

solve equation (22) numerically, working backwards from a price equal to one

at maturity. The solution may be expressed in terms of the bond's yield to

maturity, instead of its price. Figure )4 displays the term structure of

yields for one combination of parameter values, and for various current values

of the short-term rate of interest. Except when the short rate is at one of

101n the present model the correlation between the rate of interest and
the risky output is equal to -1.

I.e., the average market risk aversion.
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the absorbing barriers, the term structure is upward sloping, thus reflecting

a liquidity premiwn.12

6. Conclusion

The current model, to our knowledge, is the first to present a self-

contained account of dynamic capital market equilibrium, involving investors

with different taste parameters. The theory is self contained in the sense

that all state variables are identified and have a well-specified,

endogenously determined, stochastic process. The model exhibits a

stochastically variable distribution of wealth, which sometimes admits a

stable interior value, and a stochastically variable short rate of interest

with the same property. It also produces trading in the capital market.

The agenda for future research includes an extension to the international

setting, with several productive assets, endogenous default and deviations

from purchasing-power parity, and possibly also several currencies.

12Even though the chosen combination of parameter values is one which
produces a stable interior value for the rate of interest (see figure 2a), the
tendency for the rate to return to that value, when the current value is
sufficiently high, fails to generate a hump—shaped term structure. The reason
for this result which is at variance with, e.g., Vasicek's structure of
yields, is that the drift of the rate of interest is of small magnitude next
to its volatility. Hence the risk premium almost alone (plus the
uninteresting technical fact that the equation for the calculation of a yield
is non linear) determines the shape of the term structure.
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