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1. Introduction’

Testing for the efficiency of financial markeits has generated enormous
attention. In this paper we provide a selective survey of the econometric tests
and estimation procedures that have been employed in this literature.
Throughout the paper we illustrate, the different ideas using monthly data on
the New York Stock Exchange (NYSE) value-weighted price index and
dividend series. Many of the results and techniques aﬁply equally well to other
financial markets, however,

As emphasized by Fama (1970, 1991), any test for market efficiency
necessarily involves a joint hypothesis regarding the equilibrium expected rate
of return and market rationality. The earliest tests for market efficiency were
primarily concerned with short-horizon returns, where by short-horizon we refer
to holding periods within one year. These tests typically assumed that the
expected rate of return was constant through time. It follows that if markets
are efficient, the realized returns should be serially uncorrelated. Statistically
significant own temporal dependencies at both daily, weekly and monthly
frequencies have been documented for a wide variety of different asset
categories, but the estimated autocomrelations are typically found to be
numerically small, It has been argued that the autocorrelations are spurious or
economically insignificant.

At the same time, however, most high frequency financial asset returns
cannot be considered independently distributed over time since most returns are
characterized by periods of relative tranquility followed by periods of
turbulence. Since most modern asset pricing theories involve a direct mean-

variance tradeoff, at least at the level of the market return, the explicit

* This paper was prepared for The Handbook of Applied Econometrics, I,
Macroeconomics, edited by M. H. Pesaran and M. R. Wickins. We thank
Geert Bekaert for helpful comments on an earlier draft.
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modeling of time variation in the conditional second-order moments of the
returns and the underlying fundamentals process is potentially very important
in tests for market efficiency. Of particular importance in these developments
has been the ARCH (Autoregressive Conditional Heteroskedastic) and GARCH
(Generalized ARCH) time series models. In the absence of any structural
model explaining the time-varying second-order moments, simple ARCH
models have provided a convenient statistical description of the conditional
heteroskedasticity. Bollerslev, Chou and Kroner (1992) provide a recent survey
of this literature.

While the short-horizon tests generally suggest only minor violations
of market efficiency, defined as constant expected returns, more recent
evidence in Fama and French (1988a) and Poterba and Summers (1988), using
multi-period regressions and variance ratio statistics, suggests that for longer
return horizons a large proportion of the return variance is explainable from the
history of past returns alone.! Of course, the finding of a large predictable
component in long-horizon returns does not necessarily imply market
inefficiency, as the variatipn in expected returns could be due to a time-varying
risk premium. Indeed, consistent with the idea of a slowly moving equilibrinm
risk premium, Fama and French (1988b) find that the variation in dividend
yields explains a large proportion of multi-year return predictability. Poterba
and Summers (1988), though, argue that the magnitude and variability of the
implied risk premium is too large to be explained by appeal to any rational
asset pricing theory. They argue that asset prices are characterized by

speculative fads in which market prices experience long systematic swings

' The estimates in Fama and French (1988a) for monthly U.S. stock returns
imply that for three to five year returns up to forty percent of the variability is
predictable. The evidence in Kim, Nelson and Startz (1991) suggests that
much of this predictability may be driven by data around the time of the Great
Depression.
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away from rational fundamentals prices. These highly serially correlated fads
are difficult to distinguish from a martingale model on the basis of the earlier
short-horizon tests for market efficiency, but their existence is more evident in
long-horizon autocorrelations of returns.

Subsequent work has illustrated that the apparent predictability of the
long-horizon returns should be interpreted very carefully. There are very few
degrees of freedom, and the overlapping nature of the data in the multi-year
return regressions gives rise to a non-standard small sample distribution of the
test statistics, which appear to be better approximated by the alternative
asymptotic distribution derived by Richardson and Stock (1989). The
overlapping data problem may also be overcome by using the vector
autoregressive techniques discussed in Baillie (1989) and Hodrick (1992).%
Interestingly, while the own long-horizon return predictability may be spurious,
the statistically more reliable retum forecasting specifications employed in
Campbell (1991), Hodrick (1992) and Bekaert and Hodrick (1992) suggest a
statistically and economically significant long-horizon return predictability on
the basis of fundamental variables including dividend yields and interest rates.

The variance bounds or volatility tests pioneered by Shiller (1979,
1981) and LeRoy and Porter (1981) constitute another important class of tests
for market efficiency. In the first generation of volatility tests the null
hypothesis was taken to be the standard present value model with a constant
discount rate. The vast majdrity of these tests resulted in apparent clear
rejections of market efficiency, with actual asset prices being excessively
volatile compared to the implied price series calculated from the discounted
value of the expected or actual future fundamentals. One possible explanation

for this finding was the idea that asset prices may be characterized by self-

2 We do not discuss these techniques here because of related coverage in this
volume.
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fulfilling speculative bubbles that earn the fair rate of return, but cause prices
to differ from their rational fundamentals. Flood and Hodrick (1990) provide
a survey of this literature.

Although some economists initially viewed volatility tests differently
from traditional autocorrelation-based tests of market efficiency, volatility tests
are equivalent to standard Euler-equation based tests in the sense that each
involves a joint hypothesis regarding the return generation process and the first
order condition for economic agents. Cochrane (1991a) provides a recent
discussion of this position. In fact, relaxing the assumption of a constant
discount rate results in much more mixed conclusions regarding excess
volatility and market inefficiency. Additionally, many of the early volatility
tests did not take seriously the non-stationarity of prices and fundamentals in
calculating and interpreting the test statistics. At the same time, this non-
stationarity gives rise to a robust testable cointegrating relationship based on
the present value model that remains valid in the presence of stationary
stochastic discount rates.

In summary, the current challenges for asset pricing theories can be
expressed as the search for a model of expected return variability that is
consistent with the empirical findings pertaining to the predictability of returns
and that provides an explanation for the pronounced volatility clustering in
returns. In this survey, we illustrate how a present value model for the NYSE
price index that accounts for the time-varying uncertainty in dividend growth
rates can actually explain most of the rejections of market efficiency on the
basis of the different tests discussed above. In particular, the conditional mean
and variance of monthly NYSE dividend growth rates both have a distinct
scasonal pattern, whereas annual dividend growth rates show little serial
correlation and appear homoskedastic. Using simulation methods, we show
how incorporating this predictable monthly time variation into a model with

stochastic discount rates provides a reconciliation of the actual empirical
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findings in tests for market efficiency with the present value relationship. In
addition to this new fundamental price process, we also report simulations for
the conventional constant discount rate present value model, together with fads
and bubble alternatives. The simulation approach employed in this paper was
inspired by the earlier work of Mattey and Meese (1986) which could be
usefully read in conjunction with the present study.

The plan for the rest of the paper is as follows. The next section
presents the different simulated models used throughout the paper along with
a discussion of the seasonal ARCH model for the fundamental dividend
process. Section 3 reports a number of short-horizon summary statistics for the
NYSE return series and illustrates how the volatility clustering in the returns
may be conveniently modelled with a GARCH formulation for the conditional
variance. Section 4 examines the long-horizon return tests. While the muiti-
period regression test statistics may be severely biased in small samples, we
show to develop tests based on an iterated version of the null hypothesis using
Hansen’s (1982) GMM (Generatized Method of Moments). We find some
improvement in the small sample performance of the test statistics using this
method. In section 5, tests for market efficiency based on the ideas underlying
cointegration are briefly analyzed. Section 6 considers a recent class of
volatility tests derived by Mankiw, Romer, and Shapiro (1991) and examines
the relation of excess volatility to expected return variability. Section 7
provided some concluding remarks.

2. Data Generation Mechanisms

In this section we describe the different data generation mechanisms

used below in the Monte Carlo experiments. According to the standard present

value relationship, the fundamental real price of an asset at time t equals



=] li=1

Pl = E, [f: ﬁpm Dm]‘ (2.1)

where E[+] denotes the mathematical expectation conditional on all
information available at time t, and D, refers to the accumulated real dividend
or other payoff on the asset from time t-1 through t.* Finally, the discount

factor is
p, = exp(-r,), (2.2)

where 1, is the continuously compounded required rate of retum. Derivation
of equation (2.1) imposes a transversality condition that the market fundamental
price does not grow faster than the expected value of the product of the
discount factors. If the present value model is true and markets are efficient,
the observed price process should equal the fundamental price in equation (2.1)
with the required rate of retun being driven by a risk premium. This
fundamental price relationship, coupled with an explicit formulation for the
discount rate, r,, forms the basis for three of our simulated models, considered
below. Two alternative simulations involve explicit deviations of the actual
price process, P, from the fundamentals price, P'.

Of course, simulation of any of these price processes requires a

characterization of the stochastic process governing dividends. All of the

? Although we illustrate the tests for market efficiency using stock market
data, the same ideas apply equally well to tests of other present value relations
such as the rational expectations theory of the term structure of interest rates;
see Campbell and Shiller (1987), for example. We also note that dividends are
not the only way of distributing value to shareholders, as Bagwell and Shoven
(1989) document, and that dividends are a decision variable of management
which may choose to smooth them or to have a liquidating dividend. Marsh
and Merton (1986) note that such behavior can cause serious problems with
econometric analysis of present value relations.
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simulations are based on a model for an annualized dividend series, defined as

the current value of the monthly dividends over the previous year,

D, = 3(ND_/CPLYTI(1 +i,,.,), @3)
0 hat

where the product from h = 1 to 0 is defined to be one. In equation (2.3) i,
denotes the monthly U.S. Treasury bill rate at the beginning of month t, ND,
is the nominal value-weighted NY SE dividend series during month t, and CPI,
is the corresponding monthly U.S. consumer price deflator. With monthly data
from Januvary 1926 through December 1987, there are 733 observations on D,
starting in December 1926. We chose to work with the annualized dividend
series in equation (2.3), as opposed to ND, /CPI,, to reduce the magnitude of
the seasonality. This same dividend series is used in Hodrick (1992). Plots of
the logarithmic dividend series, d, = In(D), together with the logarithmic value-
weighted, CPI-deflated, NYSE price index, p, = In(P,), are given in Figure 1.

It is apparent from Figure 1 that both dividends and prices experienced
growth in real terms during the sample period. In the subsequent analysis we
therefore concentrate on modelling the growth rate in the dividend process, i.e.
Ad,=d, - d_,. Formal augmented Dickey and Fuller (1981) tests for a unit root
in the autoregressive polynomial in the univariate time series representation for
d, support the idea that the dividend growth rate is stationary. In particular, on

running the regression,
Ad: =u +'Ydt-l + ¢lAdt—l o +¢12Adt-—12 +E:’ (24)

the t-statistic for ¥ = 0 equals -1.35, far above the asymptotic one-sided one
and five percent critical values of -3.43 and -2.86, respectively. We shall
return to this and other tests for unit roots in both dividends and prices in our

discussion of cointegration based tests for market efficiency in Section 5.
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Examination of the correlation structure for Ad, indicates a distinct
scasonal pattern with highly significant autocorrelations at the seasonal
frequencies and a clear cutoff in the partial autocorrelation function at lag
twelve.* This is consistent with the well-known observation that dividends are
lumpy with payoffs concentrated at certain times of each quarter. To capture
the seasonal dependence in the annual dividend series we estimate an
unrestricted AR(12) model for Ad, as in equation (2.4) with y = 0. It is
certainly possible that a seasonal ARMA model might provide a more
parsimonious representation, but as a data generating process, the unrestricted
AR(12) model conveniently captures the own temporal dependencies in the
conditional mean of the dividend series.

The residuals from this AR(12) model are uncorrelated, but they are
clearly not independently distributed through time. Strong seasonality remains
in the uncertainty associated with dividend growth, as manifest by highly
significant autocorrelations of the squared residuals at the seasonal lags.’ To
account for this feature of the dividend process, we estimated a restricted
ARCH(12) model for the conditional variance. ARCH models were first
introduced by Engle (1982) and have subsequently found very wide use in the
modelling of volatility clustering in high frequency financial data. This is
discussed further in Section 3 below. The maximum likelihood estimates for
the AR(12)-ARCH(12) model for Ad, obtained under the assumption of

* Even though the annualized dividend series exhibit seasonality, it is worth
noting that the degree of own temporal dependence is substantially reduced
when compared to the real monthly growth rate in the raw dividend series. For
instance, the Ljung and Box (1978) portmanteau test statistic, defined formally
below, for up to twelfth order serial correlation in Ad, equals 342.7 compared
to 4042.7 for Aln(ND).

* The autocorrelations for the squared residuals at lags 1, 3, 6 and 12 equal
0.066, 0.245, 0.120 and 0.164 respectively, and all but lag one exceed the five
percent critical of 1.96/VT = 0.073 under the null of &2 i.i.d. through time.
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conditional normality for the sample period January 1928 through December
1987 are

Ad = 000033 - 0.035 Ad_ + 0.053 Ad,,+ 0.337 Ad,_,+ 0.065 Ad,,
(0.00038)  (0.048) (0.027) (0.062) (0.032)

+ 0.018 Ad_,+ 0.121 Ad_+ 0.010 Ad,_,- 0.019 Ad,+ 0.182 Ad
0.023)  (0061)  (0.026) ©.021)  (0.036)

- 0.009 Ad,_,, + 0.012 Ad_,, - 0238 Ad,,, + &, (2.5)
(0.026) (0.021) (0.058)

g, |1, ~ N@©,0)

o = 0000042 + 0.105 g2, + 0289 €2, + 0.164 2 + 0.287 €.
(0.000008)  (0.078) (0.075) (0.085) (0.113)

The notation I, refers to the information set consisting of the past history of
the dividend process. Robust asymptotic standard errors as in Bollerslev and
Wooldridge (1992), which are discussed in Section 3, are reported in
parentheses. Notice that the seasonal AR and ARCH coefficients are all
statistically important. Also, standard summary statistics, available upon
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request, indicate that this relatively simple time series model provides a good
description of the own temporal dependencies in Ad,.°

Of course, the fundamental price series defined in equation (2.1)
depends on forecasts of the levels of the future dividends, D,, as opposed to the
growth rates modeled in equation (2.5). Using a first order Taylor series

expansion, it follows that

E(D,,;) ~explE(d,;) +0.5Var,(d, )], j=1,2,... (2.6)

L+j

Equation (2.6) is satisfied exactly if the dividend growth rate is conditionally
normally distributed. Closed-form expressions for E(d,,) and Var(d,,) are
available by expressing the AR(12)-ARCH(12) model in first-order companion
form, as in Baillie and Bollerslev (1992). These expressions are presented in
the Appendix.

In practice, the infinite sum in equation (2.1) is necessarily truncated
at some value J.” Since the process for dividends is difference stationary, it

follows that for large values of j,

° The maximized value of the conditional normal log-likelihood function for
the model in equation (2.5) equals -4472.4 compared to -4644.8 for the
homoskedastic normal AR(12) model restricting the four ARCH coefficients
to be zero. The resulting likelihood ratio test statistic for no ARCH equals
344.8, which is highly significant.

7 While a closed form expression for the infinite discounted sum in equation
(2.1) may be derived using the methods of Hansen and Sargent (1980, 1981)
in the case of a constant discount rate, see e.g., West (1987), the presence of
time-varying discount rates coupled with time-varying conditional variances
renders a closed form solution infeasible.
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Et(dl-l»j#l) - El(dt+j) + N,

Var (d

j=3, 1+, ..., @D
« Var(d,) + 3,

t¢j+l)

where 1 = E(Ad)) denotes the unconditional expected real growth rate, and 3
denotes the unconditional increase in the prediction error uncertainty at long
horizons. For the model estimates reported in equation (2.5), 1 = 0.00066 and
§ = 0.001065 Also, suppose that the expected future discount rate associated

with distant dividends is approximately constant, then
E,(p,..) = P = exp(-1), j=1, 141, ... (2.8)

In the implementation, we took J = 120, corresponding to a forecast horizon
of 10 years. Some informal sensitivity analysis revealed almost no change in
the results with a longer truncation lag. Combining equations (2.1}, (2.6}, (2.7)
and (2.8), the fundamental price may be approximated by

8 Let {(L) = ¢(L)" denote the lag polynomial in the infinite moving average
representation for the AR(12) model with parameters {, where ¢(L)Ad, = p +
e, Lt follows that

] h
Var{d,,.) = Var@,) + X L0, B(ena).
Thus, in the limit he im

w h
3 =0’ XL, L, ..
h= sl

where o? equals the unconditional variance of e, Also, 1 = po(1)".
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I-1] j

P, - E{ﬁE!(pt‘i)Jexp[E,(dtﬁ) + 0.5 Var,(d,)

j=1 Limt

+ f:[pj" IJI E:(pt,,i)]exp(Et(dM) + 0.5Var,{d,.)) expl(n +0.58)( -1))
j=J

J-1

= E[li[Et(pM)]exp(Et(dM) + 0.5Var,(d,.))

j=t | il

(2.9)

iw]

+ [I{IE‘(pH)]exp(E,(dw) + 0.5Var,(d, ) i(p expm + 0.53))°
j=0

=1 | iml

= J):.“l[IjlEt(pwi)}exp(E“(dhj) + 0.5Var (d,,)))

+ [lIEIEt(pH)}exp(El(d",) + 0.5 Vart(dw))(l - pexp(n +0.56))" ,

where for the last equality to hold true it is assumed that p = exp(r) > exp(n
+ 0.58). Note that a sufficient condition for the validity of the approximation
in equation (2.9) is that the expected future discount rates and dividend growth
rates are conditionally uncorrelated which is trivially satisfied with a constant
discount rate.

We simulate five different price series using the present value
relationship in equation (2.9) and the estimated model for the dividend growth
rate in equation (2.5). The Nulll prices are calculated under the assumption

of a constant discount rate,
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E(p,) = p = exp(-1), i=L2 .., (2.10)

and no ARCH effects in the dividend series; i.e. e, i.i.d. normally distributed
with a variance equal to the implied unconditional variance from equation (2.5).
The discount rate is set at r = 0.00635, corresponding to the 7.9 percent real
annual returm on the NYSE value-weighted index over the sample period
underlying the estimation results for the dividend model in equation (2.5). The
Nulll model is the standard present value relationship typically employed in
volatility tests, most of which use annual data. The use of monthly data
provides a richer representation of the data generation process and possibly
avoids serious temporal aggregation bias. ,
Following Shiller (1984), Summers (1986), and Poterba and Summers
(1988) we also consider a Fads model as a possible explanation for the actual
empirical findings. According to the Fads alternative, the market price differs
from the fundamental price by a highly serially correlated fad. More formally,
let P denote the fundamental price under Nulll as described above. The Fads

price series is then generated according to
P, = explln(P,) + In(E,)), (2.11)

where In(F) follows the AR(1) process,
In(F) = ¢In(F_) + u, (2.12)

with u, i.i.d. normally distributed. In the simulations, ¢ = 0.98, and o2 equals
0.330 times the unconditional variance of Aln(P!) for the particular sample

realization, With these parameter choices the process for the fad accounts for
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twenty-five percent of the unconditional variance in the change in logarithmic
price.?

In the Bubble alternative, the price differs from the Nulll present
value relationship by a self-fulfilling speculative bubble. That is,

P, =P'+B, (2.13)
where B, earns the required real rate of return, r,
E_(B) = B_exp(r). (2.14)

Notice that the existence of such bubbles violates the transversality condition
underlying the fundamental pricing condition in equation (2.1). Stochastic
collapsing bubbles were introduced by Blanchard and Watson (1982). The
bubble continues with a certain conditional probability and collapses otherwise,
where the probability weighted average of these two events must satisfy

equation (2.14). The bubble simulated here takes the form,

B = Ly, (7o) [e0OB, - -m ) O.RE) fenpty, 030D

+1,,, (0.1PS).

In equation (2.15) the probability of the bubble continuing is denoted =, ,. If

the bubble bursts, it does not collapse 10 zero but begins again at a value of 0.1

? From equations (2.11) and (2.12) it follows that, Var[Al(P)] = Var[Aln(P})]
+ Var[AIn(F)] = Var[AIn(P)] + 263(1+¢)". Setting ¢ = 0.98 and requiring that
26(1+¢)" equals twenty-five percent of Var(Aln(P)] implies o® =

0.330Var[Aln(PH].
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times the fundamental price, P.'® To generate stochastic bubbles we drew an
i.i.d. random variable z, from the uniform distribution on the unit interval. The
indicator variable I,‘s,l(_l signifies whether z, < . If the bubble continues, an
innovation in the bubble is generated from v, By assumption, v, is iid.
normally distributed with mean zero and variance oZ, so that E_ [exp(v, -
0.569)] = 1. We allow the probability that the bubble will collapse to depend

explicitly on the current deviation from the fundamental price,
1 -n =2[1 - &(/B)|. (2.16)

where ®(¢) refers to the cumulative standard normal distribution function.
The larger the bubble relative to the fundamental price, the greater the chance
of a collapse. In the simulations we set o2 = 0.0009. This parameterization
of the bubble process led to an average of eight collapsing bubbles, a minimum
of two and a maximum of sixteen, across the 1000 stmulations of 720 months
of data."

The Null2 model incorporates the serial dependence in the conditional
variances into the optimal forecasts for the levels of future dividends using the
forecast formula for the conditional variances based on model (2.5). Details
of these calculations are in the Appendix. Given the strong conditional

heteroskedasticity in the data, we think it is important in simulations to

19 Qur stochastic bubbles do not collapse to zero because as Diba and

Grossman (1988) note, the theoretical impossibility of a rational negative
bubble rules out a zero-mean innovation in a bubble starting at zero. Hence,
the bubble would have to be always in the stock price.

' We also imposed two other restrictions on the bubble process. We required
that the bubble continue with probability one if its current value is less than the
reversion value under a collapse, and we set the maximum probability of
collapse at 0.99. Flood and Hodrick (1986. 1990} provide a discussion of tests
for bubbles.
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explicitly account for higher order moment dependencies in the fundamentals
in a pricing relationship as illustrated in equation (2.9). In accordance with the
Nulll, Fads and Bubble series, the Null2 alternative maintains the assumption
of a constant discount rate, r = 0.00635.

The final model develops a crude time-varying risk premium, or
TVRP, price series. It extends the Null2 alternative by allowing for a variable
discount rate. In order to keep things relatively simple and to avoid the use of
additional data series, we do not work directly with any format structural model
of the variable discount rate. Instead, we simply postulate that the discount
rate is a linearly increasing function of the change in the prediction error
uncertainty associated with future values of the fundamental dividend process.

Specifically, in equation (2.2) we set

1. = A[Var(d,) - Var(d )] i=1,2,.., 2.17)

T+

where A = 6.017. This choice of A ensures that the unconditional discount rate
associated with long-horizon predictions converges to the sample real returns
employed in the other simulations.
3. Short-Horizon Returns

In this section we review some of the time series techniques and test
statistics used to examine the short-run temporal dependencies in asset returns
and their relation to the market efficiency hypothesis. It is generally accepted
that most high frequency returns are approximately linearly unpredictable,
although this is not a requirement of an efficient market. It is also well
recognized that returns are characterized by volatility clustering and leptokustic
unconditional distributions. The documentation of these facts dates back to at
least Mandelbrot (1963) and Fama (1965).

The first column in Table 1 reports a number of summary statistics for
the real monthly value-weighted NYSE percentage rates of return for the

sample period January 1928 through December 1987. These retums are



17

denoted by R, throughout the paper. As noted in Lhe previous section, the
average real monthly return on the index over this period was 0.635 percent,
or 7.9 percent on an annual basis. The realized return is very variable around
this mean return, however, with a monthly variance of 33.5. Multiplying this
monthly variance by 12, as if the returns are serially uncorrelated, produces an
annualized standard deviation of 20.1 percent. This high degree of retum
variability is also obvious from the plot in Figure 2.

The sample skewness and kurtosis coefficients are reported in the next
two rows of Table 1.2 The column labelled Asymp. provides p-values under
the null hypothesis of i.i.d. normally distributed returns, i.e. b; = 0 and b, = 3.
The median values in the asymptotic distributions are reported in square
brackets.” The results indicate some positive skewness and very pronounced
leptokurtosis in the sample unconditional distribution of returns.

The first-order sample autocorrelation coefficient is denoted by p,.
Although statistically significant, the estimated value implies that only 1.3
percent of the total variation in the return is explainable from last month’s
return alone. Furthermore, the predictability of this index return may, in part,
be attributed to a non-synchronous trading phenomenon, as discussed in Lo and
MacKinlay (1988) and Fama (1991). The next row in Table 1 reports the
Ljung and Box (1978) portmanteau test for up to twelfth order serial

correlation, Q,,."* The second column indicates that this test statistic is highly

12 [ et fi, denote the i-th centered sample moment. Then, b, = fi,/(f1,)**, and b,

= W@z)z-

13 Under the null of i.i.d. the standardized fest statistics, V(T/6)b; and
V(T/24)(b,-3), should both be the realization of a standard normal distribution;
see e.g. Jarque and Bera (1980).

4 Let p, denote the i-th sample autocorrelation. The Ljung and Box (1978)
test for up to N-th order serial dependence is then given by Qy =
(T+2)T{P? A(T-1) + pY(T-2) + ... + p3/(T-N)] where T denotes the sample size.
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significant at conventional levels in the asymplotic chi-square distribution under
the null hypothesis of i.i.d. observations. As noted by Diebold (1986) and
Cumby and Huizinga (1992), however, the presence of conditional
heteroskedasticity or excess kurtosis will bias the portmanteau test towards over
rejection of the less restrictive null hypothesis of uncorrelated returns, Also,
excluding the first lag, the test for the joint significance of lags two through
twelve equals only 22.6.

Recently, a number of authors have also employed so-called variance

ratio statistics,
v(k) = Var(R , , +R ., +.. + R)/[kVar(R)], (3.1)

as an alternative way of summarizing own temporal dependencies, particularly
at horizons longer than one year. If the returns at horizon k are dominated by
positive autocorrelation, the variance ratio is greater than one, whereas
predominantly negative autocorrelation results in a variance ratio below one.'’
Consistent with the results reported in Lo and MacKinlay (1988), the variance

ratio at the one-year horizon for the real value-weighted NYSE returns equals

Under the null hypothesis of i.i.d. observations, Q, has an asymptotic chi-
squared distribution with N degrees of freedom.

' The variance ratio statistic in equation (3.1) is consistently estimated by ¥#(k)
= {142[(k-1)p, +

(k-2)p, + ... + p,,1}/k. Under the null hypothesis of i.i.d. observations, with
k =12 and T = 720, the standard error for the variance ratio statistic in the
asymptotic normal distribution with mean one equals 0.140. A
heteroskedasticity consistent standard error may be calculated from White’s
(1980) covariance matrix estimator for the sample autocorrelations; see Lo and
MacKinley (1988) for further details.
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1.151. This indicates only minor and statistically insignificant positive short-
run own dependencies in returns. We defer discussion of longer-run
dependencies to Section 4.

In contrast to the weak evidence for autocorrelation in returns, the last
two rows in Table 1 highlight the importance of conditional heteroskedasticity.
The first-order autocorrelation coefficient for the squared returns, p;?, and the
portmanteau test for up to twelfth-order serial correlation in the squared returns,
Q!?, are highly significant at any reasonable level. The variance ratio statistic
for the squared returns equals 3.027 at the one year horizon, indicating very
significant positive dependence. This pronounced dependence in the second-
order moments is immediately evident from Figure 2, It is worth noting that
this finding of strong dependence in the even ordered moments does not
necessarily imply market inefficiency. The presence of high-frequency
volatility clustering is perfectly consistent with a martingale hypothesis for
stock prices which is implied by the assumption of a constant short-run
expected rate of return.'® In addition, though, modern asset pricing theories
rely crucially on time-variation in the second-order moments of retumns and
market fundamentals as sources of rational time-varying risk premia as in Abel
(1988), Hodrick (1989), and Bekaert (1992). We return 1o this issue in more
detail below.

'® The martingale model is sometimes incomrectly referred to as the random
walk model. Whereas the random walk model assumes i.i.d. innovations, a
martingale difference sequence only stipulates that the innovations be serially
uncorrelated, or white noise.
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We now analyze the simulation results for the various price processes
discussed in Section 2 as possible explanations of these empirical findings.
The last five columns of Table 1 report the p-values for the sample statistics
under the different data generating mechanisms along with the median values
of the statistics in the simulated distributions over the one thousand
replications. If the sample statistic does not fall within the empirical
distribution generated by a particular model, we will judge the model as being
inconsistent with the data along that dimension.

The Nulll constant discount rate model with no ARCH effects and the
Fads alternative are both unable to explain the magnitude of the unconditional
variance of returns. The medians of the Null2 and Bubble distributions are
also considerably lower than the sample statistic of 33.5, although the
distributions from these models are more disperse. Only for the TVRP
alternative is the p-value relatively large, 0.282, and the median of the
simulated distribution close to the sample unconditional one-month return
variance. Similarly, neither the Nulll nor the Fads alternative with normally
distributed errors is able to explain the non-normality of returns. In contrast,
the Bubble specification results in a considerably higher median kurtosis
coefficient than the sample analogue. The simulated Null2 and TVRP
alternatives are both consistent with the actual data regarding the sample
unconditional kurtosis.

None of the five models produces any positive first-order
autocorrelation in the medians of the test statistics. But, both the Null2 and
TVRP alternatives lead to test statistics for the joint significance of the first

twelve autocorrelations, Q,,, that are broadly consistent with the actual data.
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As noted above, a striking feature of the monthly retums is volatility
clustering.  Although the portmanteau statistic for the first twelve
autocorrelations of the squared returns is inconsistent with the null hypothesis
of ii.d. observations in the asymptotic distribution and with the simulated
Nulll, Fads and Bubbles models, the Null2 and TVRP price series yield test
statistics that exceed the sample value of 398.4 in 6.4 and 13.9 percent of the
replications, respectively.

In order to better understand the nature of this volatility clustering, we
follow Bollerslev (1986, 1987) and estimate an MA(1)-GARCH(1,1) model for

the monthly real percentage rates of return:

R =p+0g +¢

1

E,_(e) =0, (3.2)
E () =0 =0 +ag, +poL,.

This relatively simple non-linear time series model provides a useful
characterization of the temporal variation in the second-order moments of
returns for a wide variety of financial assets.

A number of alternative estimation schemes are available for the
model in equation (3.2). The estimation results reported below are all obtained
under the auxiliary distributional assumption of conditional normality; that is
&), ~ N, 65, where I, refers to the information set at time t-1. In
particular, if " = (p, 6, w, &, B) denotes the vector of unknown parameters, it

follows by a standard prediction error decomposition argument that conditional
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on the initial observations, the quasi-log-likelihood function for the sample

realizations {R,, R,, -, R;} takes the form

T
L&) = ZT:I.@ =Y -0.5(Inm) + In(e?) + £a?). (3.3)

=] =]

While standard maximum likelihood theory requires the correct distributional
assumptions, asymptotic standard errors that remain valid in the absence of
conditional normality may be calculated from the matrix of the outer products
of the gradients post and pre-multiplied by an estimate of the Hessian; see e.g.,
Domowitz and White (1982) and Weiss (1986). A simple expression for this
estimator in the context of dynamic models with conditional heteroskedasticity
that involves only first derivatives is given in Bollerslev and Wooldridge
(1992)."" The quasi-maximum-likelihood estimates, obtained by maximizing
equation (3.3) with robust standard errors in parentheses are given in the first

column of Table 2.

"7 Let p, and o? denote the conditional mean and variance functions, with
gradients Vp, and Va?, respectively. The asymptotic covariance matrix for the
quasi-maximum likelihood estimator, &;, is then consistently estimated by
A.B'A,, where

AT = ET-:VIH(VP-)'UIZ +0.5 VO‘%(VG?)'G';‘,
Br = I, VI(E)VIE),
and

VLE) = Vpo%e, + 0.5VoioHel-02),

all evaluated at €.
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The significant MA(1) term in the conditional mean captures most of
the autocorrelation in the returns. The Q,, portmanteau test for significant
autocorrelations within a year drops from 32.3 for the raw dafa to 14.2 for the
standardized residuals, £8,", from the model in (3.2). The estimate for o +
indicates a very long memory in the conditional variance. The implied half life
of a shock to the conditional variance equals In(1/2)/In(& + B) = 43.0 months.
This high degree of persistence corresponds to the findings for a large number
of other financial assets as noted by Bollerslev and Engle (1992), The
parameterization for the conditional variance in equation (3.2) does a very good
job of tracking the strong temporal dependence in the variance.® The Q{2
portmanteau test statistic for the squared standardized residuals, 878, equals
11.8 compared to 398.4 for the raw squared returns.

The negative skewness coefficient for 88, in Table 2 contrasts
sharply with the positive value for b, reported in Table 1. Negative skewness
is consistent with the so-called leverage effect in which volatility increases with
bad news but decreases with good news as analyzed by Black (1976) and

Christie (1982). This observation also provides one of the primary motivations

'8 A possible explanation for this phenomenon and the estimate of a + B close
to one is provided by the continuous time approximation arguments given in
Nelson (1992) and Nelson and Foster (1991). The apparent strong persistence
in the conditional variance could also be a result of stochastic regime changes
as in the analysis of Cai (1992).
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behind the Exponential GARCH model in Nelson (1991) that allows both the
sign and the magnitude of past shocks to influence the conditional vartance.!®

Even though the GARCH(1,1) model does a very good job of
capturing the dependence in the second-order moments, the temporal variation
in the conditional variance does not explain all the leptokurtosis in the data.
Again, this is not unique to the present return series. As an alternative to the
robust quasi-maximum-likelihood procedures, the conditional distribution for
£0," could be parameterized directly or estimated by non-parametric methods,
as discussed by Bollerslev (1987), Gallant and Tauchen (1989), and Engle and
Gonzales-Rivera (1991).

The last two columns of Table 2 report the results of estimating the
same MA(1)-GARCH(1,1) model in (3.2) for each of the one thousand
realizations of the 720 monthly simulated Null2 and TVRP returns. These are
the only two models that exhibit significant heteroskedasticity as evidenced by
the Q{? statistic in Table 1. The similarity between the estimated GARCH
coefficients for the artificially generated returns and the actual data is striking.

The median values of the quasi-maximum-likelihood estimates of o over the

' In the EGARCH(1,1) model the conditional variance is given by
ln(cf) =+ 6z, + Y|z,]| - E(]z,,]) + Bl“(of-l)»

where z, = €6, denotes the standardized innovations. Alternative asymmetric
conditional variance formulations include the model in Glosten, Jagannathan,
and Runkle (1990) and the specifications in Engle and Ng (1991). Recent
evidence in Gallant, Rossi, and Tauchen (1992) and Andersen (1992) explores
structural links between conditional volatility and volume. Space
considerations prevent us from pursuing these specifications here.
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one thousand replications for the Null2 and TVRP altematives are 0.108 and
0.127, respectively, compared to 0.123 for the real data. Similarly, the median
values for the estimates of B are 0.865 and 0.853, respectively, compared 10
0.861 for the actual refurns. Note also that although the Null2 alternative is
unable to explain the negative skewness in the standardized retums, the TVRP
hypothesis results in excess negative skewness and excess leptokurtosis
compared to the real data.

In summary, the results in Table 2 illustrate how explicitly allowing
for time-varying uncertainty in the fundamental real dividend growth process
within the context of a simple present value relationship may endogenously
account for the observed ARCH effects in the data. Reconciliation of a
fundamental model and the volatility of short-horizon real returns appears (0
require time variation in the discount factor.

4. Long-Horizon Tests

The previous section documents that the evidence in autocorrelations
of short-horizon returns against the hypothesis of a constant conditional mean
return is not very strong. At the same time, the resulis indicate that returns
appear to be too volatile relative to the models with a constant discount factor.
Shiller (1984) and Summers (1986) argued that Fads would make returns more
volatile. However, it would be difficult to detect a Fads alternative hypothesis,
as developed above, with autocorrelation tests because of their low power when
transitory components are very highly serially correlated. Poterba and
Summers (1988) and Fama and French (1988a, 1988b) also realized that the
negative serial correlation in returns implied by such a model would manifest

itself more transparently at longer horizons. Consequently, Poterba and
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Summers (1988) investigated long-horizon variance ratios as in equation (3.1),
while Fama and French (1988a) analyzed regressions of long-horizon returns
on lagged long-horizon returns.

The statistical properties of the Fama and French (1988a) analysis
have generated much controversy in the literature. For example, Jegadeesh
(1990}, Kim, Nelson, and Startz (1989), Mankiw, Romer, and Shapiro (1991),
Richardson (1990), and Richardson and Stock (1989) all argue that the case for
predictability of long-horizon stock returns is weak when one corrects for the
small sample biases in the test statistics. Our simulations demonstrate these
biases. We then present two additional ways that hypotheses regarding the
long-horizon predictability of returns can be investigated which are not as
severely biased. These techniques apply generally in other long-horizon
forecasting situations.

To begin, let In(R,.) = In(R,) + -~ + In(R,,) denote the
continuously compounded k-period rate of return. Then, a typical OLS
specification of Fama and French (1988b) is the following:

In(R,,,) = o, + B InR) +u,,,. @.1)

Note that the k-period error term u,,, « 18 not realized until time t+k. Therefore,
if the data are sampled more finely than the compound return interval, u,,,, is
serially correlated, even under the null hypothesis of constant expected returns.
If all of the data are employed, U,y IS correlated with k-1 previous error terms
as discussed in Hansen and Hodrick (1980). If the one-period returns are
serially uncorrelated, it is possible to solve explicitly for the parameters in the

corresponding moving average representation for U, as a function of the
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overlap as in Baillie and Bollerslev (1990). Under alternative hypotheses in
which returns have a variable conditional mean, however, u,, can be
arbitrarily serially correlated if lagged returns do not capture all of the variation
in the conditional mean.

Since lagged returns are predetermined but not strictly exogenous,
asymptotic distribution theory must be used to determine the properties of an
estimator for x,, = (04, Bey)’. Ordinary least squares provides consistent
estimates, but traditional OLS standard errors are not appropriate asymptotically
since the error term is serially correlated when forecasting more than one
period ahead. Furthermore, the variability of the conditional variance of
returns, documented in Section 3, makes it inappropriate to assume
homoskedasticity which underlies the derivation of the conveational OLS
standard errors.

Nevertheless, the OLS coefficient estimator from equation (4.1}, R, ,,
is readily interpreted as a generalized method of moments (GMM) estimator
based on the instruments x, = (1, R,;)". Hence, it is straightforward to derive
appropriate asymptotic standard errors. Following Hansen (1982), it can be
demonstrated that VT(R,, - x.,) ~ N(0, ), where Q = Z;'S,Z;!, Z, = E(xx)),
and S, denotes the spectral density evaluated at frequency zero of w,, =
WX, Under the null hypothesis that the returns are not predictable,

k-1

So = Y E(w, W,,.). (4.2)

j=k+1

This matrix is consistently estimated by
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k-1
St = C(0) + Y IC.() + CG)), (4.3)

il
where Ci(j) = (I/MZT,;, (W, W1,,.0), and W, denotes w,, evaluated at the

estimated residuals. Similarly, a consistent estimator for Z, is given by Z; =
(/D xx:,

We present the results for this estimation of equation (4.1) for five
horizons in Panel A of Table 3. The first column indicates the horizon k equal
to 1, 12, 24, 36, and 48 months. As in the previous tables, the second column
labelled Data provides the sample statistics, which in this case are the OLS
estimates of the slope coefficients, B,,, with asymptotic standard error in
parentheses. The p-values of the t-tests for the hypothesis B, = 0 from the
asymptotic distribution and the five simulated economies are presented in the
next six columns. The median values of the test statistics are in square
brackets.

Notice that at the twenty-four month horizon, the asymptotic p-value
is effectively zero, while the one-month and thirty-six month values both equal
0.162. Richardson (1990) notes that considerable care must be exercised when
examining the individual test statistics since they are highly correlated. Hence,
we also report the %*(5) statistic that examines the joint test that all five slope
coefficients are zero. It has a value of 15.8, which corresponds to an
asymptotic p-value of 0.007. Clearly, if the asymptotic distributions are
validated by the simulations, this would be strong evidence of long-horizon

return predictability.
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Examination of the columns labelled Nulll and Null2 indicates that the
asymptotic distribution is a poor approximation to the distribution of the test
statistics in small samples. The median values of the sample x*(5) statistics for
these two simulated economies are 8.61 and 11.1, respectively, compared to the
median of a true x%(5) of 4.35. The corresponding p-values from the two
distributions are 0.237 and 0.324. Hence, there is actually little evidence
against the null hypothesis. The deterioration of the t-tests is apparent as the
horizon is increased, with the median values becoming increasingly negative.

Notice also that the p-value and the median value of the %*(5) statistics
for the Bubble model are close to those of the Nulll and Null2 simulations.
This is not surprising, as the Bubble model maintains a constant expected
retun. More surprisingly, perhaps, are the p-values for the Fads alternative
which are only slightly larger than those under the Nulll hypothesis. This
latter finding illustrates the low power of these tests when Type I error rates

are fixed at the traditional levels., Given the large overlap in the distributions

2 Richardson and Stock (1989) develop an alternative asymptotic distribution
theory based on a functional central limit theorem for long-horizon return
regressions. They argue that if T is the sample size and k is the forecast
horizon, a more appropriate asymptotic distribution is derived by letting (k/T)
£0 to a non-zero constant rather than to zero as in the conventional asymptotic
distribution theory. Inference under this altermative distribution theory provides
little support for the hypothesis that lagged long-horizon returns predict future
long-horizon returns. Nelson and Kim (1991) and Hodrick (1992) use Monte
Carlo simulations and Goetzmann and Jorion (1992) use bootstrap techniques
to investigate the regressions of dividend yields as predictors of long-horizon
returns. These authors find that the small sample properties of estimators are
not well approximated by conventional asymptotic distribution theory.
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of the test statistics under the null and the alternative hypotheses, the
probability of failing to reject the null hypothesis when it is actually false is
quite high. Finally, notice that the p-value for the x*(5) statistic for the TVRP
model is 0.460 which is the largest of any of the models.

The bottom part of Panel A reports the coefficients of multiple
comrelation, R? statistics, for lh;a five horizons. Although the sample values
increase from 0.009 at the one-month horizon to 0.058 at the thirty-six month
horizon, the smallest p-values of the simulated economies are actually at the
one-month horizon. The serial correlation of the residuals induced by using
overlapping forecasting intervals causes a spurious regression phenomenon as
in Granger and Newbold (1974).

We next develop an alternative estimator of S, that is valid only under
the null hypothesis. This estimator utilizes the fact that the values of
unconditional expectations of covariance stationary time series depend only on
the time intervals between the observations.? In particular, notice that under
the null hypothesis, u,,, = (e, + - + e,), where e,, is the serially
uncorrelated one-step-ahead forecast error of returns. Estimates of e,,, can be
obtained from the residuals of a regression of In(R,,,) on a constant because
under the null hypothesis ¢,,; = u,,,,. To derive the alternative estimator,
examine a typical term in equation (4.2), E(w,,,Wi,.;). where k > j > 0.

Substituting (e, + - + ¢,,;) for u,,,,,

' Lars Hansen suggested this estimator, which is a heteroskedastic counterpart
to the covariance matrix in Richardson and Smith (1989). This section draws
heavily from Hodrick (1992).
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EQU b X0, 0 :-,) = E[( z €. )X 2 )x’:-j]

i=] h=l-j

4.4)
- EICY en,)

iwl
With stationary time series, the unconditional expectation of each of the (k -
j) terms on the right-hand side of equation (4.4) depends only upon the time
interval between the variables. Hence, rather than summing e,,; into the future,
one can sum xx.,; into the past:

k-j-1

E [(2 e"‘)xtx I-j] =E [e“"l( E t-l 1—1-1 ' (4.5)

i=l

Applying the same logic to all of the terms in equation (4.2) implies that

k-1 k-1
Sp = Elea(L 2 XX %) = BV, Vi) (4.6)
i) jwl
where
k+1 4
ld-].k t+1(2 t-: ( .7)

Let 9,,,, denote v, , evaluated at the estimated residual, &,,,. An alternative

estimator for S, from equation (4.6) is then,
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I o o
St = "'I"E VeV g (4.8)

ik

Two aspects of the estimator S} are important, and both are induced
by the fact that it avoids the summation of aufocovariance matrices as in
equation (4.3). First, the estimator is guaranteed to be positive definite.
Second, if it is the summation of the autocovariance matrices that causes the
poor small sample properties of the test statistics in Panel A of Table 3, the
finite sample behavior of test statistics constructed with S2 might be better.

The properties of this estimator are investigated in Panel B of Table
3. The point estimates of the slope coefficients reported in the Data column
are identical, but the standard errors are different from Panel A. In particular,
the test statistic at the twenty-four month horizon now has an asymptotic p-
value of 0.411 and the ¥*(5) statistic is only 3.37, below the median value of
4.35 in the asymptotic distribution. However, 3.37 is actually larger than the
median values of the small sample distributions for the test statistics from the
Nulll and Null2 simulations. Also, notice that the deterioration of the median
values of the test statistics is mitigated only slightly.

The last part of this section demonstrates how inference about the
statistical significance of lagged retums as predictors of long-horizon returns

can be conducted by considering the regression of one-period returns on the
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weighted sum of the lagged returns.? This specification also avoids the
summation of autocovariance matrices and may therefore have better small
sample properties under the null hypothesis (han the estimates based on
equation (4.1).

Since the compound k-period return is the sum of k one-period
returns, the numerator of the regression coefficient B, in equation (4.1) is an
estimate of cov[Z!,,In(R,,)); ZiIn(R,)]. This covariance is the weighted sum
of (2k - 1) autocovariances of returns separated by between one and (2k - 1)
periods. With covariance stationary time series it follows that

k k-1 2k-1
cov[jz-l: InR_.); j);ln(R,_j)] = cov[In(R . ); :Z; oIn(R,,), (4.9)
where @, =jfor 1<j<k,and @, =2k - j for (k + 1) <j < (2k - 1), The sum
of the covariances on the right-hand side of equation (4.9) is equal to the

numerator of the slope coefficient in the following regression:

2 Jegadeesh (1990) uses this logic and the Fads alternative hypothesis to
derive the test with the largest asymptotic slope for investigating long-horizon
predictability of returns on the basis of lagged returns. He argues that using
the one-period return as the dependent variable and the sum of k lagged returns
as the regressor is a superior way to conduct inference. The choice of k
depends on the share of the variance of returns attributed to the transitory
components in prices.



34

Z%-1
InR ) = Oy mar * BI,Zk-l [Z mjl"(Rt-l-j)] U, (4.10)

i=l

Under the null hypothesis, the error term in equation (4.10) is serially
uncorrelated in contrast to u,,,, in equation (4.1). The asymptotic distribution
of the OLS estimator for x,,, = (o, ., $,,)" can be derived as above. 'Since only
the term corresponding to j = O is different from zero in equation (4.2), this
specification might have better small sample properties under the null
hypothesis.

The results of estimating P, 5, in equation (4.10) are presented in
Table 4. The small sample properties of the test statistics are better than the
results of the tests in Panel A of Table 3 and are comparable to those in Panel
B of Table 3. The deterioration in the medians of the individual test statistics
is again quite evident, even though the p-values for the asymptotic distribution
and for the Nulll and Null2 models are quite close. There is little evidence for
predictability of returns. Again, notice from the closeness of the medians for
the Fads model and the TVRP model that these tests are likely to have very
low power. We note here that the results in this section only provide evidence
regarding the own-predictability of returns and do not demonstrate that returns
are unpredictable when additional information is used. We retumn (o this issue
in Section 6 below.
5. Cointegration Tests

Recently, a number of authors have proposed various tests for the
presence of speculative bubbles and market efficiency that are based on the

idea of cointegration as discussed in Engle and Granger (1987). In light of
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space constraints and related coverage elsewhere in this volume, our discussion
of these techniques is brief.” Intuitively, two time series are defined 1o be
cointegrated if each of the individual series is non-stationary, yet a linear
combination of the two series is stationary.

From the present value model in equation (2.1),

P,f P} D
= E[p (el + 1)L .
D‘ t[ptol( I)H1 + ) D| }

Assuming the transversality condition is satisfied, and using D,/D, ~ 1 +
Ad,,,. it follows that

=]

¢ .
If the dividend growth rate, Ad, and the discount factor, p, are jointly
covariance stationary, pf = log(P% and d, will be cointegrated with cointegrating
vector (1, -1); see Cochrane (1991a) for a formal proof. If the actual market
price contains a rational speculative bubble as in equation (2.13), P, = P{ + B..
The expectation of an explosive bubble would violate the transversality
condition, and p, - d, would be non-stationary. It is worth noting that this

argument does not depend on any particular equilibrium fair rate of return but

2 See Campbell and Shiller (1987, 1988a, 1988b), Cochrane (1991a, 1992),
Craine (1991), Evans (1991), and Froot and Obstfeld (1992) for more complete
discussions and applications.
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only requires that the implied discount factor and the dividend growth rate are
jointly covariance stationary.

The augmented Dickey-Fuller t-tests reported in Panel A of Table 5,
confirm that the logarithms of real prices and real dividends are non-stationary
or integrated of order one. From Fuller (1976) the one and five percent critical
values in the corresponding asymptotic unit root distribution are -3.43 and -
2.86, respectively. Hence, the corresponding test statistics of -1.83 and -1.35
for the logarithms of real prices and real dividends cannot reject the null
hypothesis of a unit root in the autoregressive polynomial in the univariate time
series representation for either of the two time series. The presence of a unit
root also underlies modeling the dividend growth rate as a stationary process
in equation (2.5). The conformity among the different p-values in the table
illustrates the robustness of the standard unit root tests to the presence of
conditional heteroskedasticity as shown by Phillips (1987).

The tests for cointegration of p, and d, are presented in Panel B of
Table 5. Following Engle and Granger (1987), if p, and d, are not
cointegrated, the residuals from the cointegrating regression of p, on a constant
and d, will contain a unit root. Note that under the null hypothesis of no
cointegration the regression of p, on d, is spurious in the sense of Granger and
Newbold (1974). The asymptotic distribution of this residual based unit-root
test has been formally derived by Phillips and Ouliaris (1990).* The one and

five percent critical values are -3.96 and -3.37, respectively. Consistent with

* The likelihood ratio test in Johansen (1988) provides an alternative non-
residual-based testing procedure for cointegration.
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the predictions of the present value model and the absence of speculative
bubbles, the null hypothesis of a unit root in the mean-zero residuals from the
cointegrating regression is easily rejected since the test statistic is -4.57.

When we impose the cointegrating vector (1, -1), the null hypothesis
of a unit root in the logarithmic price-dividend ratio is also firmly rejected.
Note that, when imposing the cointegrating vector, the corresponding test
statistic should be evaluated in the standard asymptotic unit-root distribution
with one and five percent critical values of -3.43 and -2.86. A time series plot
of the logarithmic price-dividend ratio is given in Figure 3.

These results are counter to relzited findings reported in the literature,
which typically fail to reject the null of no cointegration using annual data.
The findings in Table 5 for monthly data suggest that these results may be due
to a lack of power in the tests using time-aggregated annual data, even though
the annual span of the data is comparable. Note that while the p-values for the
Nulll model suggest much more powerful rejections, the p-value for the TVRP
model is broadly consistent with the actual empirical findings. The residual-
based cointegration test statistic for the actual data is also much lower than the
values obtained for the Fads and Bubble models. At the same time, the median
values of the test statistic from the empirical distributions of the Bubble model
suggest that the cointegration test is not very powerful against the collapsing
bubble analyzed here. Additional evidence on this issue is provided in Evans
(1991). Similarly, based on the results for the TVRP model, the test for no
cointegration ts likely to have low power in the presence of a time-varying

discount rate.
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Even though the estimate of b from the cointegrating regression is
significantly different from the implied value of unity in the TVRP model at
the 0.024 level, it is interesting to note that all of the other alternatives,
including the Bubble specification, result in even lower p-values for the
estimated coefficient b = 1.31.% It follows also that 4 = 3.94 is too small
compared to the results for the five simulated price processes. From equation
(2.1), if real monthly dividends followed a logarithmic random walk with drift
p and normal innovations with a variance of ¢? and the required rate of retumn

were the constant r,

p’ - d, = -In[exp(r - p - 0.50%) ~ 1]. (5.3)

When evaluated at the sample analogues of p = 0.00086, ¢* = 0.000311, and
r = 0.00635, the right-hand side of equation (5.3) equals 5.23. The median

values for the intercept under each of the alternatives are all close to this value.

6. Volatility Tests

In the late 1970’s researchers interested in the efficiency of asset
markets shifted their focus from the predictability of returns to the volatility of
prices. As always, the hypothesis of market efficiency could not be tested
directly but was part of a joint hypothesis. Researchers were still required tb

specify a particular model of expected returns. Additionally, the predictions

¥ As noted in footnote 2, if the importance of dividends as a means of
distributing cash to shareholders has declined systematically, one would expect
that the slope coefficient in the cointegrating regression would exceed one.
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of price volatility from a particular model depended on the assumed time series
properties of the dividend process and the information set of economic agents.

The first volatility tests were conducted by Shiller (1979, 1981) and
LeRoy and Porter (1981). These authors assumed a constant expected rate of
return model and reported overwhelming rejections of market efficiency.
Subsequent research, particularly by Flavin (1983) and Kleidon (1986a,b),
questioned the small sample statistical properties of these analyses. For recent
surveys of this literature see West (1988), Pesaran (1991), Gilles and LeRoy
(1991) and Cochrane (1991a). _

In order to illustrate the issues, we focus here on a volatility test
developed by Mankiw, Romer and Shapiro (1991), which we denote the MRS
test. This class of tests is designed to avoid biases that plagued previous
studies and to provide statistically reliable standard errors for the test statistics.
Like many volatility tests, the MRS test recognizes that in an efficient market
the price of an asset must equal the discounted conditional expected payoff

from holding the asset for k periods and reselling it. That is,
P, =E(P™) 6.1

where,

k
Pl-k = Ep:+l DM' + p:t-rip..k- (62)

im]
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Note that the ex-post rational price defined in equation (6.2) is only observable
at time t + k.*

Equation (6.1) implies that P} - P, is uncorrelated with any
information available at time t. In particular, let P? denote any “naive forecast"
of the ex-post rational price. Then, the following second-order moment

condition must hold:

E{(P™ -P)XP, - P)] = 0. (6.3)

This in turn implies that

E[(P™ -P1 =E[(P™ -P)»] +E(P -P7)?).  (64)

Equation (6.4) remains valid when the price constructs are deflated by any
variable in the time ¢t information set. As the results in Table 5 indicate, such
a transformation is necessary to ensure stationarity and the existence of
unconditional expectations required in deriving the test statistics. In our
implementation of the MRS volatility test we follow their lead and divide by

P. Hence, from equation (6.4),

» This contrasts with Shiller’s (1981) definition of ex post rational price in
which k = o in equation (6.1). Shiller develops a measurable counterpart by
substitution of k, = T - t for k in equation (6.2) where T is the end of the
sample observed by the economelrician. Flood and Hodrick (1990) refer to
equation (6.1) as an iterated Euler equation.
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P* P P* P’ :
Eflegm = —=— | [~ E||l= -1]|[-E||1 - =] |=0. (©3)
P, P P P

t £ t t

Let q,,, denote the corresponding sample realizations of equation (6.5):

p* p° p* p?
E RIS I Pl B R 5 L (6.6)

The null hypothesis from equation (6.5) is then stated as E(q,,,) = 0.

By the law of iterated expectations, E(q) = 0, and the sample mean
of q, denoted q, should be close to zero under the null hypothesis. The
asymptotic standard error for g may be constructed, as in Section 4, by use of
the GMM distribution theory for stationary processes that are serially correlated
and conditionally heteroskedastic. That is,

vyTq ~ N(0, V,), (6.7)

where

k-1

Vo = E E(qukqu-k-j)' ©8)

j-—k-l-l

The sample variance may be estimated by
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vV, = C0) + ¥ 2C.0), ©69)

=1
where Cr(j) = (1/T)Z ;.1 (quuline;). In order to guarantee a positive estimate of
the variance in equation (6.9), the j-th autocovariance is weighted by (k-j)/k as
in Newey and West (1987).

As our measure of a naive price prediction, we use a version of the
Gordon (1962) model assuming a constant rate of return, r, and a constant

dividend growth rate, p,

po = _t (6.10)

The tests are reported in Panel A of Table 6 for the same five
horizons as in Table 4. Notice in the Data column that q is negative at all five
horizons. The asymptotic p-values are also quite small with the largest
being 0.023 at the 24 month horizon. Given the strong significance for each
of the individual MRS test statistics at all horizons, we did not calculate a joint
test.

Several features of the MRS test are noteworthy in the simulated data.
First, for both the Nulll and Null2 models, there is no bias in the test statistics
in the sense that the median values of the test statistics are essentially zero.

This desirable feature of the MRS volatility test arises because of its use of

21 We use the sample mean return for r and the sample mean of the dividend
growth rate for u, rather than preselected values, in the construction of the
naive prices.
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uncentered second moments rather than sample variances which are biased
because of the necessity of estimating the sample mean. Next, notice that the
p-values for the Nulll, Null2, Fads, and Bubble models are all quite small, It
is unlikely that any of these models could generate the sample volatility
statistics. Only for the TVRP model are the p-values reasonable. Here we find
values ranging from 0.142 to 0.346.

The orthogonality condition in equation (6.3) also forms the basis for
Scott’s (1985) regression test of the present value model. If equation (6.1) is
true, a regression of (PY* - P) on anything in the time t information set should
have insignificant coefficients. Note again, that deflation of the price series by
some W, in the time t information set does not formally change this null
hypothesis but is desirable to ensure stationarity. In particular, consider the

regression specified without a constant term as

1
W W

t t

P - P, _ B[P - P,OJ e ©.11)

The OLS estimate for B is

3 Elo - rowc, - o] e

1 o 0

< E [ - ptyw ]

For W, = P, the numerator of f equals (1/2)]. Mankiw, Romer and Shapiro
(1991) note that their volatility test has an advantage and a disadvantage

relative to the regression test, The disadvantage is that regression coefficients
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and the coefficient of multiple correlation, R?, have natural interpretations in
terms of the predictability of returns, The advantage is that regression tests
may be more systematically biased.

Equation (6.5) implies two volatility inequalities which serve as

diagnostics for the models:

E P> _ p° S E P L (6.13)
P, P |{ I|'P '
and
MO S IR A i (6.14)
P, P || P ||

Panel B of Table 6 reports the sample analogue for the left-hand side of
equations (6.13) and (6.14) as ex-post rational price relative to naive price.
The realization of the right-hand side of equation (6.13) is denoted ex-post
rational price relative to unity, while the sample realization of the right-hand
side of equation (6.14) is referred to as naive price relative to unity.
Interestingly, it is the latter quantity that is the primary source of evidence for
excess volatility in the data. From inspection of the p-values for the various
models, it follows that only the TVRP model is consistent with the data at a
ten percent significance level.

The right-hand side of equation (6.14) is a measure of the variability

in the dividend-price ratio. The naive Gordon (1962) model predicts that the
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dividend-price ratio should be a constant. There are three sources of movement
in the TVRP model that improve on this counterfactual prediction. First,
information other than the current level of dividends is useful for predicting
future dividends, which is true for all the models. Second, the time variation
in the conditional variance of dividends matters to investors who are
forecasting the levels of dividends, which is true for Nuli2 as well. The third
feature is that the required rate of return is not a constant.®

As noted above, there is also a direct relation between the volatility
of prices and the predictability of returns. To understand this relation consider
the following argument. Assuming a constant discount factor p, and W, = P,
it follows from equation (6.2) that for k = 2,

2
P12 pBa L p|PatRa 6.15)
2 P, P

Add and subtract p(P,,/P) to the right-hand side of equation (6.15) and
multiply the second term on the right-hand side by (P, /P,,;). The result is

# Several authors including Campbell (1991), Cochrane (1992), and LeRoy
and Parke (1992) have reformulated volatility tests to examine the variance of
the price-dividend ratio.
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3
P‘-z D..,*P. P D, +P P
—_1= t+ vl 1402 1+1 142 12 | _ 1+1

t t+1

{

P
= (pR_,~1)+p _ﬁl] (PR,.,-1).
k t

Clearly, if the null hypothesis is true and expected returns have a constant
mean equal to p™', (P;%/P, -1) is not predictable.

Let x, = (1 - P%P), and let u,, = (pR,,, - 1). Substituting these
definitions into equation (6.16) and the results into equation (6.3) with its
variables deflated by P, yields

Et[(ut4-1 + p(Pt-rl/Pt)uu-z)xt] = 0. (6'17)

It is apparent that both the MRS volatility test and Scott’s regression test
examine the null hypothesis that a variable in the time t information set cannot
predict returns at various horizons,

As in Section 4, stationarity of the variables in equation (6.17) allows

us to reorganize the equation and express its unconditional expectation as
E[uhl(xt + p(P;/PI_l)xt_l)] = (). (6.18)

This formulation of the volatility test makes it transparent that it is
predictability of one period returns that is being tested, and from the definition
of x,, any predictability of returns is due to a filtered measure of dividend
yields. The sample counterparts to the unconditional expectation of equation

(6.17) and equation (6.18) only differ by the first and last observations. Of
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course, estimates of the variance of the sample mean might be very different
in small samples. The variance for the estimator based on equation {(6.17) may
be calculated as in equation (6.9). However, the variance for the estimator
based on equation (6.18) avoids the overlapping data problem and the
summation of the autocovariances and may be calculated analogously to
equation (4.8). The small sample properties of resulting test statistics will
therefore differ. We conjecture that reorganizing the test statistics to avoid the
overlapping data problem will result in superior small sample behavior.
7. Conclusion

The analysis in this chapter provides a partial survey of the
econometric methods employed in testing for own temporal dependencies in the
distribution of asset returns. It also addresses the relationship of these
dependencies to the concept of market efficiency. We intentionally worked
only with price, dividend, and return data, and avoided the use of other
macroeconomic variables that might help explain the evolution of retums over
time. We focussed the discussion on tests that have been primarily design for
broadly defined asset categories. A large literature in finance analyzes cross-
sectional differences in returns. Fama and French (1992) and Ferson (1992)
provide recent contributions to this literature. Our somewhat narrow focus was
motivated in part by space considerations and by the relevance of expected
return variability for issues in macroeconomics. q

Much of the literature on testing for market efficiency has proceeded
under the convenient assumption that rational asset pricing requires a constant
rate of return. While simple short-horizon serial correlation tests often cannot

reject this hypothesis, time-variation in equilibrium required rates of returns has
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been predicted by rational general equilibrium theories since the early models
of LeRoy (1973), Lucas (1978), and Breeden (1979). These models are often
referred to as consumption based capital asset pricing models.

Although the time-varying risk premium model postulated in our
simulations was not rigorously derived from a rational expectations model, its
performance in the simulations was broadly consistent with the empirical
findings pertaining to U.S. stock returns. In contrast, the alternative models
assuming a constant discount factor or modifications to incorporate fads or
bubbles in asset prices were grossly inconsistent with some aspects of the data.
These results illustrate the importance of explicitly recognizing the presence of
a time-varying risk premium in tests for market efficiency.

The particular functional form for our time-varying risk premium
model related the expected return on the market to the change in the
conditional variance of future dividends. This formulation was motivated by
the analysis in Abel (1988) and Hodrick (1989). Such an approach is radically
different from much of the empirical literature that has been devoted to testing
restrictions implied by the consumption based capital asset pricing model. In
spite of its theoretical appeal, the consumption based CAPM does not perform
well empirically, as exemplified by the many tests following the approach of
Hansen and Singleton (1982, 1983). The basic problem stems from the fact
that consumption is much too smooth compared to the variability of most
financial asset returns. This is formally documented in Hansen and
Jagannathan (1991) who derive bounds on intertemporal marginal rates of
substitution using asset market data, In a related context, Pesaran and Potter

(1991) argue that predictability of negative excess returns is inconsistent with
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most equilibrium consumption-based asset pricing models. While the
consumption-based asset pricing models generally fail specification tests, the
more recent developments in Cochrane (1991b) and Braun (1991) suggest that
alternative dynamic asset pricing models based on the investment decisions of
firms may provide a better explanation for the observed time-varying risk
premia,

The ready availability of data on asset returns and the declining cost
of computing have generated a large literature documenting the stylized facts
of financial markets. The current challenge facing financial economists is to
develop models that are consistent with the observed variability in the
distributions of returns. Variability of expected returns appears {0 be a
necessary aspect of rational explanations of these phenomena. We also
conjecture that understanding the link between conditional volatility of market
fundamentals and variation in required expected returns that arises from risk

aversion of economic agents will be critical to success in this endeavor.
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Appendix
Forecast expressions for E(d,,) and Var(d,;) from the estimated
AR(12)-ARCH(12) model for the dividend growth rate in equation (2.5) are
most easily evaluated by expressing the model in first-order companion form

in the logarithmic levels. That is,

SN S -1

d' B ¢+l 0,70, . .. 9,70, -9, d“‘ £
d_, 0 1 0 e 0 0 d,, 0
= + +
d:-nz 0] 0 0 . e . 1 0 |id,,, _0_

or more compactly,

d =p+dd _ +zg, (AD)

— =1 - 1

where u denotes the constant, and ¢, the i-th autoregressive parameter for Ad,
in equation (2.5).
By repeated substitution in equation (Al),

i1

i-1
4, =Loy+I0e,  + P4,

- i

Define ¢ ; to be a 13x1 basis vector of zeros except for unity in the i-th

element, and y, = ¢ | @' ¢ ,. Then,
2, '
d,=pXe/ Pe +re¢
=D
j-1 i=1 )
= pEWi * Ewiehj-i +re, P re.d
il jwl)

It follows now directly from equation (A2) that
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j-1 13
E(d,)=pLv +e @ Le,d (A3)
im0 i=l

- el

and

=1
Var, (d,,) = & v E(e3,.) (Ad)
i=0

tog=i/ "

Evaluation of the expression for the conditional variance of d,,
requires forecasts from the ARCH(12) conditional variance process for &,
Following Baillie and Bollersiev (1992), the ARCH(12) model is conveniently

expressed in first-order companion form as,

B | lo| o, @, . . . a8
2
1 0 . LI} 0 el-z

m
L
=)

"
+
+

-3‘2_“_ _0_ _0 ... 0 ] _8,2_12— _0_
or compactly as,
ei=o+Lel+v, (AS)

where v, = €2 - 6> Note, E_,(v) = 0, and v, is readily interpreted as the
innovation to the conditional variance for €. Analogous to the expression for
d..; in equation (A2), it follows by repeated substitution in equation (AS5) and
post-multiplication with the 12x1 basis vector g,, that

e,/ )X k4 ialz-vl—i- (A6)

— —_— t4j=i

) =1 _ j=1 _
el¢j=mt.§l'rlgl +EEI'F'31V
=0 im0 -

By the law of iterated expectations E(v,,;} = 0 for all j > 0, and
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2 E ’ i ’ i ﬁ 2 (A?)
El(z“j) =0 o € £ £, te, E o1 € &uaaie
Combining equations (A4) and (A7) we get

jei-t

var(d) =B lo Be / Tr ey + £ (e, Tre el | @Y
i) h=0 b=l

This completes the derivation of the forecast formula used in the evaluation of

equation (2.9) for j < J.
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Table 1

Real Monthly Percentage Returns
Short-Horizon Summary Statistics

Data Asymp  Nulll Fads Bubble Nuli2 TVRP

B 635 - .503 567 458 496 670
(.216) [.636) [.654] [.624] [.634] [.694)
o 33.5 - .000 000 047 025 282
(.77 [10.5] [14.0} [14.2) [9.12] [22.8]
b, .389 000 000 000 .003 .893 126

(:091) [:000] [:097] [:1 12] [-5.35] [.818] [-1.32]

b, 10.6 .000 .000 .000 .897 259 832
(.182) £3.00] {2.99] [2.99] (75.2]) [6.76] f16.1]

P 116 001 000 001 023 012 020
(.037) [.000]  [-.002] [-.004] [-.018] [-.003] [-.012]

Q2 323 001 .002 001 023 199 499
(4.90) {11.3] {11.6] f11.1] [10.4] [19.4] [32.2]

pR 289 000  .000 000 007 023 013
(037  [000] [-001] [-003]  [005] [077]  [045]

2 3984 .000 .000 000 002 064 139
(4.90) {11.3] [11.3] [11.1] [.896] [172.1] [190.2]

Note: The sample statistics are the mean, p, the varance, o°, the skewness, by, the
kurtosis, b,, and the first-order autocorrelations for returns, p,, and for squared returns,
p®. The Ljung-Box portmanteau tests for up to twelfth order serial correlation in the
levels of returns and the squared retums are denoted Q,, and Q{?, respectively. The
Data column gives the sample statistics with asymptotic standard errors constructed
under the null hypothesis of i.i.d. normally distributed constant expected retumns in
parentheses. The column labelled Asymp. reporis the p-values for this null hypothesis.
The last five columns give the small sample or empirical p-values of the sample
statistics from the five Monte Carlo experiments. The medians for the different
empirical distributions are reported in square brackets.



Table 2

Real Monthly Returns
MA(1)-GARCH(1,1) Quasi-Maximum Likelihood Estimates

Ri=p+0g, +g

o, = o + 0t + por,

&L ~ N, o))

Data Asymp Null2 TVRP

B 778 - 092 002
(.184) {.643] [.431]

0 101 - 006 030
(.044) [-.004] [-.002]

(0] 668 - .008 383
(.328) [.233] [.563]

o 23 - 357 523
(.023) [.108] [.127]

B 861 - 554 435
(026) [.863] [.853]

b, -547 1.00 1.00 .000
(.091) [.000) - [.555] [-1.89]

b, 4.39 .000 499 1.00
(.182) [3.00] [4.39) {10.5]

Q,, 142 288 263 396
(4.90) [11.3] * [11.0} [12.6]

o 11.8 462 984 804

(4.90) [11.3] [64.9] [22.5]

Note: The data column reports the quasi-maximum likelihood estimates for the actual
retumns with robust asympiotic standard errors in parentheses. The summary statistics
for the standardized residuals, 8,", are denoted as in Table 1. The Asymp. column
reports the p-values in the asymptotic distribution under the null hypothesis of i.i.d.
normally distributed standardized innovations. The Null2 and TVRP columns provide
the p-values from the quasi-maximum likelihood estimates for the data generated under
the two hypotheses. Medians are reported in square brackets.



Table 3

Real Monthly Returns
Multi-Period Regressions

In(R,.,) = 0 + PiuInR ) + vy

Panel: A Traditional GMM Standard Ermrors

Bubble

k Data Asymp Nulll Fads Null2 TVRP
Slope Coefficients

1 095 162 145 158 .108 175 217
(.068) [000] [-.064} [-.1271 [-359] {-.098) [-.251]

12 -068 626 649 .690 741 .680 .730
(.140) [.000] [-244] [-511] [-.801] ([-.324] {-.713]

24 .200 .00 006  .014 008  .012 018
(.044) [.000] [-.363] [-637] [-768] [-.507] [-1.14]

36 -.205 .162 327 368 371 362 516
(.146) [.0DO} [-448] [-.738] [-785] [-.553] f-1.31]

48 -.187 408 577 510 .612 590 37
(.227) [.000] [-611] [-.704] [-.884] [-.664] [-1.40]

%3(5) Statistics
15.8 007 237 278 311 324 460
[4.35] [8.61] [9.77] [10.6] {11.1] [14.3}
Coefficients of Multiple Correlation, R

1 009 014 017 049 061 102
(.001] [.001] [.001} [.001] [.002]

12 005 4535 554 661 .606 J12
[.006] [.006] [.011] [.008] [.014]

24 045 .169 204 217 226 J78
[.012] [.013] [.014] [.015] [.031]

36 058 228 270 235 245 410
[.018] [.021} [.020] [.021] [.042]

48 046 353 422 385 368 512
[.026] [.032) [.028] [.024] [.048]




Table 3 cont.

Panel B: GMM Standard Errors Calculated Under the Null Hypothesis

k Data  Asymp  Nulll Fads Bubble  Null2 TVRP

Slope Coefficients

1 095 171 152 .166 110 172 208
(069) [000] [-.064] [-.127} [-360] [-098] [-250)
12 -068 688 691 717 675 678 748
(170) [000] [-232] [-446] [-481] [-253]1 [-.S87]
24 -200 411 410 443 372 414 578
(244) [000] [-309] [-472] [-433] [-345] [-.834]
36  -205 357 380 397 344 368 504
(223) [000] [-331] [-.538] [-487] [-372] [-.836]
48  -187 276 291 335 255 289 414

(.172) [000]) [-423] [-.600] [-.518] [-449] [-.857]

%(5) Statistics

3.37 644 373 380 382 341 .396
[4.35] [1.48] [1.68] {1.50] [1.30] [1.84]

Note: The Data column provides the sample statistics with asymptotic standard errors
in parentheses. The Asymp. column reports the p-values in the asymptotic distributions
for testing the null hypothesis B, = 0. The remaining five columns provide the p-
values from the empirical distributions for the sample statistics together with the
medians in square brackets.



Table 4

Real Monthly Returns
One-Period Regressions

k-1
InR,,) = &, * Bx.n-:[ ) (ojln(RM_j)] +u,

=

3’3 Data  Asymp Nuolil Fads Bubble Null2 TVRP
Slope Coefficients

1 034 504 491 512 436 523 552
(052) [.000] [-.065] [-.100] [-.340] [-.072] [-.250])

12 -201 239 .260 242 187 236 319
(.171)  {.000] {-.249] {-.402] [-465] [-.287] [-.593]

24 -2719 283 282 311 239 251 435
(2600  [.000] [-.294] [-.459] {-.448] [-.343} {-.789]

36 -.153 633 641 649 605 637 760
(321) [.000] [-.349] [-.510] [-.464] [-.359] [-.8191

48  -.161 631 648 667 618 638 753
(336) [.000] {-407] [-.580] [-.489] [-407] [-.875)

x%(5) Statistics
2.85 723 731 762 732 737 .851
[4.35] [4.57] [4.79] {4.58] [4.58] [5.74)
Coefficients of Multiple Correlation, R?

1 .001 403 427 495 533 586
[.001] [.001} [.001] [.001} [.001]

12 005 183 A72 269 262 369
[.001] {.001] [.001] [.001] [.002]

24 .003 258 277 271 289 462
[.001] [.001] [.001] [.001] [.002]

36 .001 587 596 572 590 712
[.001} [.001] [.001] [.001} [.001]

48 .000 634 649 589 634 733
[.001] [.001} [.001] [.001] [.001}

Note: See Table 3. The weights ; are defined after equation (4.9).



Table 5

Real Monthly Stock Prices and Dividends

Panel A: Unit Root Tests

Au, = p +py,, + GAu, + .. 4+ dpAu,;, + €

t,o Data  Asymp Nulll Fads Bubble  Null2 TVRP

P -1.83 639 652 598 533 627 A25
{-1.56]) [-1.53] [-162] [-1.78] [-151] [-1.98]

d, -1.35 403 429 429 429 437 419
[-1.56] [-154] [-154] [-1.54] [-1.50] [-1.54]

Panel B: Cointegration Tests
pp=a+bd +u

Data  Asymp  Nulll Fads Bubble Null2 TVRP

a 394 - 1.00 991 962 1.00 947
[5.26] [5.25] [5.21] [5.26] [5.28]

b 1.31 - 000 .001 .002 .001 024
[1.00} [1.00] [.954] {1.00] [.994]

Lo -4.57 999 .000 954 952 054 718
n=0 [-221] [-7.25) (-3.39] [-3.55] [-6.51] [4.06]

byopso  -3-87 999 000 848 794 029 499
a=0 [-1.56]) [-7.23] [-3.17] [340] [-642] [-3.95]
b=1

Note: Augmented Dickey-Fuller t-tests for a unit root. In Panel B, the coefficients a
and b denote the OLS estimates from the cointegrating regression. The statistics t,.4
give the t-tests for a unit root in the regression residuals; i.e., the null hypothesis of no
cointegration. The row labelled t, ., denotes the t-test for a unit root in p, - d; ie.,
imposing a=0 and b=1. The Data column provides the sample statistics. The Asymp.
column reports the p-values in the simulated asymptotic distributions. The last five
columns provide the p-values from the Monte Carlo experiments under the different

hypotheses. Medians are reported in square brackets.



Table 6

Volatility Tests

Panel A: Second Moment Volatility Tests

P:k Plo Pt.k P‘o
il e e 0 T ) B e
k Data  Asymp  Nulll Fads Bubble Null2 TVRP
1 -.007 001 .000 000 041 .008 346
(002) [.000] [-001] [-002] [-002] [-001] [-.005]
12 -032 .000 .000 .000 173 .013 142
(003) [000] [-002) [-003] ({-006] [-001} [-.009]
24 -.059 023 .000 .000 009 .000 331
(026) [.000] {-001] {-007] [-010] [-001] [-034]}
36 -082 .008 000 000 012 .000 307
(031) [o000} ([-001}] [-010] [-014] [-001}] ([-.041]
4838 -112 006 000 000 021 .003 .266
(041 {000] [-001) [-012] [-O18] [-001]) [-.046]




Table 6 cont.

Panel B: Diagnostics on Ex-Post Rational Prices and Dividend Yields

Hor. Data  Asymp Nulll Fads Bubble Null2 TVRP

Second Moment of Ex-Post Rational Price Relative to Naive Price

1 142 000 .000 .093 .008 180
{.023) [.005]  [.016] [.030] {.004] {.047]

12 117 .000 .000 017 003 187
(.020) (.004] [.013]) [.024] [.003] [.041]

24 155 000 .000 114 015 140
(.028) [.023] [.036] [.049] [.022]  [.056]

36 144 .000 .000 118 017 153
(.028) [.033] [.042] [.055] [.028]  [.061}

48 141 .000 .000 A15 030 155
(.029) [.040] {.048] [.061] [.033] {.063]

Second Moment of Ex-Post Rational Price Relative to Unity

1 .003 .000 .000 045 027 274
(.001) {.001] [.001] [.001] [.001]  [.002]

12 .003 .000 .000 197 .021 166
(.001) [.001] [.001] [.001] [.001]  [.001]

24 069 .000 .000 083 023 295
(016) [.021] [.027] [.027] [.018] [.042]

36 080 000 000 085 035 316
(.018) [.029] [.036] [.038] [.024] [.052]

48 107 000 .000 074 .033 269
(.028) [.035] [.044] [.047] .030] [.061]

Second Moment of Naive Price Relative to Unity

146 .000 .000 092 008 184
(.023) [.005}] {.016] [-031] [.004] [.049]

Note: Mankiw, Romer and Shapiro (1991) volatility tests. The ex-post rational price
is denoted P."*, and the naive price is P?. The results reported in Panel A test the mean
of q,,, equal to zero. The three second-moment components of q,,, are reported in
Panel B. The columns report the p-values for the sample statistics with medians in
square brackets.
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