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ABSTRACT

Shimer (2005) pointed out that although we have a satisfactory theory of why some workers are unemployed
at any given time, we don?t know why the number of unemployed workers varies so much over time.
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rents associated with this stickiness are sufficient to generate relatively large unemployment fluctuations.
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1. Introduction
The standard view of unemployment is that it takes time for workers to find the right job, and for

employers to find the right worker.  Fluctuations in the productivity of jobs naturally give rise to

fluctuations in the number of workers looking for jobs, and in the number of employers looking for

workers.  High productivity is associated with a tight labor market in which more workers have jobs and

fewer workers are looking for jobs, while employers are keen to hire more workers, so vacancies are

plentiful; conversely, when productivity is low, unemployment is high and there are few vacancies.

This simple description of the source of unemployment fluctuations suggests that it should be

possible to measure the variability of productivity and use this to explain the variability of

unemployment, to a rough approximation.  The Mortensen-Pissarides (1994) model is the natural

framework for such a calculation, since it gives a precise account of the relationship between productivity

and search on each side of the labor market.  Shimer (2005) showed that the basic Mortensen-Pissarides

model in fact translates fluctuations in labor productivity into unemployment fluctuations that are very

much smaller than those seen in U.S. data.  Thus although we have a satisfactory theory of why some

workers are unemployed at any given time, we don’t know why the number of unemployed workers

varies so much over time.  To a substantial extent the number of unemployed workers varies because of

movements into and out of the labor force, which are not included in the Mortensen-Pissarides model. 

But even for people who are firmly attached to the labor force, the variations are large.  For example, in

the U.S. over the period 1967-2006, the median annual unemployment rate of white men aged 35-39 was

3.65%; in 10 of these 40 years, the rate was 4.4% or higher, while there were 11 years with a rate of 2.6%

or lower.  The basic reason for unemployment in this group is that no two workers are the same, and no

two jobs are the same.  Given that job separation rates are relatively stable, the unemployment rate is a

measure of how long it takes to match workers and jobs.  The question then is why the matching process

should be so much slower in some years than in others.

Hall (2005) argued that this volatility problem can be fixed if the Nash bargaining component of the

Mortensen-Pissarides model is replaced by a “sticky” wage-setting process.  Brügemann and

Moscarini (2007) showed that the volatility of unemployment remains implausibly low for a broad class

of surplus-sharing rules: the Nash bargaining rule is not an isolated case.  On the other hand when there is

some stickiness in wages, the employers’ incentive to create vacancies is magnified when the economy

improves, and this increases unemployment volatility.   Brügemann and Moscarini (2007) show that
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unless there is enough stickiness to generate countercyclical fluctuations in the rents accruing to workers,

the job creation incentive cannot vary enough to match the unemployment volatility data.

As Rotemberg (2006) points out, the basic Mortensen-Pissarides model also predicts procyclical

wages, which are not seen in the data, and this problem persists in the more general model developed by

Yashiv (2006).  Wage stickiness helps to resolve this discrepancy as well, but of course this is useful only

if we understand why wages are sticky.  Hall (2005) assumed that the wage level in a previous contract

establishes a “social norm” that largely determines the wage in the next contract.  In the absence of a

theory of social norms, this explanation is incomplete.  Similarly, Gertler and Trigari (2006) showed that

staggered wage contracts magnify the incentive to create vacancies, but did not try to explain why

workers and employers who are interested only in the present value of income would negotiate contracts

that constrain the division of the surplus in matches that have not yet been made.

This paper shows that an extension of the Mortensen-Pissarides model in which some productivity

fluctuations are privately observed by employers can explain the volatility of unemployment in a more

parsimonious way.  The introduction of private information precludes the Nash bargaining rule; instead,

the surplus is divided using Myerson’s Neutral Bargaining Solution, which generalizes the Nash

bargaining solution to allow for private information.  There are two main results.  First, the extended

model has a unique equilibrium.  Second, this equilibrium exhibits a kind of wage stickiness, and the

informational rents associated with this stickiness are sufficient to translate small fluctuations in

productivity into large unemployment fluctuations.2

Brügemann and Moscarini (2007) consider generalizations of the Mortensen-Pissarides model in

which both employers and workers have private information about the job match surplus, and they

analyze a representative selection of bargaining models that yield procyclical worker rents, and therefore

insufficient unemployment volatility.  But their analysis is confined to situations in which the extent of

private information does not change over the cycle, so there is no scope for procyclical informational

rents, which is the main focus of the analysis in this paper.
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2. A Model of Sticky Wages with Private Information and Aggregate Shocks

A successful job match generates a surplus to be divided between the worker and the employer. The

value of the worker’s output is the sum of two components, p + y, where p is common to all matches, and

y is a random idiosyncratic component whose realization (“L” for low or “H” for high) is observed

privately by the employer when the match is made.  The aggregate component p is a publicly observed

Markov pure jump process with two states (s = 1 in the bad state and s = 2 in the good state), and exit

hazards 81 and 82.  The high value of y has probability Js , depending on the aggregate state.  The flow

surplus is p + y - y0  > 0, where y0 > 0 is the flow value of unemployment (including unemployment

benefits and the value of leisure).  The expectation of the surplus is assumed to be higher in the good

state.

When the joint continuation value from a match falls below the joint opportunity cost, the match is

destroyed.  The job destruction hazard rate is a constant, *, and there is a constant returns matching

function that generates a flow of new matches M(NU,NV) from unemployment and vacancy stocks NU and

NV. There is an infinitely elastic supply of potential vacancies, and the actual number of vacancies posted

is such that the expected profit from a vacancy is zero.  Workers and employers maximize the present

value of net income, using the interest rate r.

In the Mortensen-Pissarides model, the match surplus is divided according to the Nash Bargaining

Solution.  In the model considered here, the surplus is not common knowledge, so this solution is not

applicable.  What is needed is a generalization of Nash’s argument to cover bargaining problems

involving private information.  A natural choice is the Neutral Bargaining Solution (NBS) developed by

Myerson (1984).   The NBS coincides with the Nash solution under complete information, and in the

more general case it divides the surplus equitably while respecting the incentive compatibility constraints

arising from the existence of private information.  Myerson (1984) shows that a Neutral Bargaining

Solution always exists, and provides a characterization that is relatively tractable in simple cases.

In Appendix A it is shown that for the bargaining problem considered in this paper, the Neutral

Bargaining Solution is unique, and it can be implemented by Myerson’s Random Dictator mechanism. 

This means that the surplus is divided in the following way.  Either the employer or the worker is

randomly selected to make an offer, and if this offer is rejected the match dissolves.  Clearly, the

employer’s offer will just match the worker’s reservation level, which is the value of searching for

another match.  The worker effectively has two choices: an offer that exhausts the low surplus, with a sure

acceptance, or an offer that exhausts the high surplus, with acceptance only if the high surplus has
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actually been realized.  It is assumed that the parameters are such that the worker always finds it optimal

to demand the low surplus, conceding the difference between the high and the low surplus to the

employer as an informational rent.

Match Surplus

The match surplus depends on whether the idiosyncratic component of output is high or low, and it

also depends on the aggregate state.  Let Ss
L be the surplus when the idiosyncratic component is low, and

the aggregate state is s, and similarly when the realization of y is high; and let ys
L = ps + yL, and

y s
H = ps + yH , with )y = yH - yL.

Let U denote the state-dependent continuation value of an unmatched worker, and let G denote the

joint continuation value of a matched worker-employer pair.  When y = yL, the joint match values are

determined by the following asset pricing equations

and similarly when y = yH.  This specification rules out two interesting alternatives.  First, the flow value

of a match is the same for all workers.  Nagypál (2005) shows that heterogeneity in workers’ (private)

evaluations of nonpecuniary job characteristics can substantially increase the volatility of unemployment. 

Second, there is no possibility of switching from low to high output, once the match has been made. 

Even in the absence of informational rents, this tends to increase unemployment volatility, by

strengthening the incentive to create vacancies when a high-output match is more likely because the

aggregate state is good.  Costain and Reiter (2005) show that this vintage productivity effect can

potentially explain the volatility of unemployment, but Brügemann (2005) shows that this effect is quite

weak in the model considered in this paper.

It is assumed that there is free entry of employers, so that the continuation value of an unmatched

employer is zero in all states.  Thus the (state-dependent) match surplus S is the difference between G and

U, and the match value equations can be rewritten as
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where )U = U2 - U1.  This implies

where 7 = 81 +82.  Substituting this in (2) gives

Using these equations, and the analogous equations for a high-output match, the effect of the aggregate

state on the match surplus is given by

Thus even if an unmatched worker has better prospects when the aggregate state is good, the match

surplus might be lower, for a given output draw.  On the other hand there is a higher probability of

drawing a high output value in the good aggregate state.

The effect of the output draw on the match surplus is given by

Unemployment Continuation Values

The rate at which unemployed workers find new matches is M(NU,NV)/NU = m(2), where 2 = NV/NU

represents market tightness, and m(2) = M(1,2).  The job-finding rate function m(2) is assumed to be

increasing, and strictly concave, with m(0) = 0.

When a match is made, the worker is selected to make an offer with probability <.  In this case, the

worker gets the low-output surplus, and the employer gets an informational rent if the realized output

value is high.  If the employer is selected to make an offer, the worker gets the reservation level U and the
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employer gets the whole surplus.  So an unmatched worker’s continuation values are determined by the

asset pricing equations 

Thus

Vacancy Creation

Employers post new vacancies to the point where the net profit from doing so is zero.  When a match

is made, the employer gets an informational rent if the match value is high, and also gets a fraction 1-< of

the low-output surplus (in expectation).  The value to the employer of a filled vacancy in state s is given

by

Thus the zero-profit conditions implied by free entry are

where c is the flow cost of maintaining a vacancy.
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It is convenient to let d = 2/m(2) denote the expected duration of a vacancy.  Then the free-entry

conditions can be written as

Solution

The model can be solved as follows.  For given values of d1 and d2, the free entry conditions

determine the low-state surplus values:

where

for s = 1, 2.  Equation (2) can be rearranged to give U1 and U2 as linear functions of S1
L and S2

L, and U1 and

U2 can then be expressed in terms of d1 and d2 as

Next (12) can be substituted in (8), giving
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Since m(2) is strictly concave, with m(0) = 0, the ratio m(2)/2 is strictly decreasing, so the function

d = 2/m(2) has an inverse, 2 = H(d).  Using equations (14) and (15) to eliminate U1 and U2 , and making

the substitution m(2s) = H(ds)/ds to eliminate 2, gives the following equations determining d1 and d2

where

3.Existence and Uniqueness of Equilibrium

 It is assumed that the function 2 = H(d) is convex, with H(0) = 0.3  Under this assumption, it will be

shown that an equilibrium with informational rents exists, and that it is unique.

Proposition 1

If the function 2 = H(d) is convex, and if H(0) = 0, then there is a unique vector d* = (d1
*, d2

*) such that

R(d*) = 0.

The proof uses the following result.

Lemma 1

Suppose H is a twice differentiable function, with H(0) = 0, H'(x) > 0 and H''(x) > 0, for x > a > 0. 

Define the function h, on the domain [a,4), as



9

h x a
x

H x( ) ( )= −⎛
⎝⎜

⎞
⎠⎟

1 (18)

( )

′ = −⎛
⎝⎜

⎞
⎠⎟

′ −

′′ = −⎛
⎝⎜

⎞
⎠⎟

′′ − ′ +

= −⎛
⎝⎜

⎞
⎠⎟

′′ + − ′

h x a
x

H x a
x

H x

h x a
x

H x a
x

H x a
x

H x

a
x

H x a
x

H x xH x

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1

1 2 2

1 2

2

2 3

3

(19)

( ) ( ) ( )( ) ( ) ( )[ ]

( ) ( ) ( )( ) ( ) ( )[ ]

ψ ρ ν δ ρ λ ρ ρ

ψ ρ ν δ ρ λ ρ ρ

1 1 1 1
1

1
1 1 1 2 2 1 1

2 2 2 2
2

2
2 2 2 2 2 1 1

( )

( )

d Z d
H d

d
r d d d

d Z d
H d

d
r d d d

= + − − + − + − − −

= + − − + − − − − −
(20)

Then h'(x) < 0 and h''(x) < 0.

Proof

The first and second derivatives of h are as follows

Since x $ a, and H'(x) > 0, it is clear that h is decreasing.  Any convex (differentiable) function H that

passes through the origin has the property that xH'(x) $ H(x).  Thus h''(x) # 0.

Proof of Proposition 1

First it will be shown that R(d*) = 0 implies d* > D.  Indeed if d1 # D1 and d2 $ D2 then R1 (d) > 0; and

if d1 $ D1 and d2 # D2 then R2 (d) > 0.  If d # D, write R(d) as

These equations show that either R1(d) or R2(d) is a sum of four positive terms: the first three terms are

positive in both equations, and if the last term is negative in one equation, it is positive in the other.  Thus

R(d) … 0 if d # D.

Next it will be shown that a solution exists.  Note that R(D) = Z > 0.  Define b as the solution of the

linear equations obtained by setting H = 0.  Then
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where

Thus b > D and R(b) < 0.

Since R1 is increasing in d2 and decreasing in d1, the equation R1(d) = 0 can be solved to obtain d2 as

an increasing function of d1.  Write this as d2 = K1(d1).  Since R2 is increasing in d1 and decreasing in d2,

the equation R2(d) = 0 can also be solved to obtain d2 as an increasing function of d1.  Write this as

d2 = K2 (d1).  Define the function K0(x) = K2 (x) - K1(x).  Since R1 (D1 ,K1(D1)) = 0, and R1(D1 ,D2) > 0, and

R1 is increasing in d2 , it follows that K1 (D1) < D2.  Also, since R2 (D1 ,K2 (D1)) = 0, and R2 (D1 ,D2) > 0, and

R2 is decreasing in d2 , it follows that K2(D1) >  D2.  Therefore K0(D1) is positive.  By a similar argument,

K0(b1) is negative.  Also, K0 is continuous (since R1 is linear in d2 and R2 is linear in d1).  So by the

intermediate value theorem K2 (x)  = K1(x) for some x 0 (D1 , b1).  This means that R(x,K1(x)) = 0,

showing that a solution d* = (x,K1(x)) exists (with d* > D).

To show uniqueness, define the function g(z) = R(D + z).  Then g(0) > 0, g1 is increasing in z2 and g2

is increasing in z1, and both g1 and g2 are concave by Lemma 1.  Therefore, by Theorem 1 in

Kennan (2001), g has at most one positive root, meaning that R has at most one root above D.  Since it has

already been shown that R does have a root above D, and no roots anywhere else, the proof is complete.

Optimality of Pooling Offers

It has been assumed that when a match is made in the good aggregate state, and the worker is selected

to make an offer, it is optimal to demand the low surplus, rather than demand the high surplus at the risk

of destroying the match.  Thus the equilibrium surplus values must satisfy the following no-screening

conditions
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which can be written as

for s = 1,2.  Using the free entry conditions, this reduces to

where

Since Ds = 0 for Js = 0, Proposition 1 implies that a unique equilibrium satisfying the no-screening

conditions exists if J1 and J2 are small enough.  Conversely, the no-screening condition fails as Js

approaches 1 (as of course it should).  Also, the condition necessarily holds if the expected cost of filling

a vacancy is high enough.  The choice between pooling and screening depends on how big the difference

is between the good idiosyncratic draw and the bad draw, relative to the surplus associated with the bad

draw.  A screening offer risks losing the low surplus, in exchange for a chance of getting the high surplus. 

When the expected cost of filling a vacancy is high, the free entry condition implies that the surplus

associated with a filled vacancy is high.  The effect of this is to increase the opportunity cost of screening,

without changing the benefit, so pooling becomes more attractive.

The main theoretical result is Theorem 1, which characterizes a set of parameter values for which an

equilibrium exists, and shows that if the parameters lie in this set, the equilibrium is unique.



12

cd y w y
r

L

=
− +
+

τ
δ

Δ
(27)

( )w y yL
0 01= + −ν ν (28)

Theorem 1

If H(d) is a convex function, with H(0) = 0, and if R( D6  ) $ 0, then a unique equilibrium exists.

Proof

By Proposition 1, there is a unique vector d* such that R(d* ) = 0.  Since R( D6  ) $ 0 and R(b) < 0, the

argument in the proof of Proposition 1 can be used to show that R has a root in the rectangle [ D6, A], and

since there is only one root above D, this root is d*.  The no-screening conditions are satisfied because

d* $ D6.  Therefore d* is the unique equilibrium.

4. The Effects of Informational Rents

Suppose that there are no transitions, and that the wage rate is fixed, as in Hall (2005).  Then the free

entry condition is

The right side of this equation is the capital gain from a filled vacancy, and the left side is the flow cost of

maintaining the vacancy, multiplied by the expected vacancy duration.  A higher productivity level, with

a fixed wage, is offset in equilibrium by an increase in duration.  If the profit flow is small (because the

wage is high), a small productivity change implies a large proportional change in profits, and therefore a

large proportional change in the rate at which vacancies are filled, which implies a large change in the

unemployment rate.

The following lemma characterizes the wage as a nested weighted average of the productivity levels

while employed (y) and while unemployed (y0).  This characterization applies to the standard Mortensen-

Pissarides model, and in the informational rents model, the wage is determined in exactly the same way,

assuming the low realization of the productivity shock (yL).  Let N = m(2) be the job-finding rate, and

define w0 as the wage such that the worker’s share of the flow surplus is <:
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A
L
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( )rU y yL= + −Ω Ω1 0 (34)

( )rE w E U= − −δ (35)

Lemma 2

If the aggregate state is permanent, the equilibrium wage is given by

where

Proof:

From equation (7), the continuation value of an unemployed worker is

Equation (4) gives the surplus as

Solving these equations for U and SL yields

and

The continuation value of an employed worker is E = U + <SL.  The wage that delivers this value satisfies

the asset pricing equation

Thus the wage is given by



14

( )
( )
( ) ( ) ( )
( )

w r E U

rU r S

y y y y

y w

L

L L

L

= + −

= + +

= + − + − −

= + −

δ δ

δ ν

νΩ Ω Ω

Ω Ω

1 1

1
0 0

0

(36)

( )cd
A

y y y
r

L=
+

−
− +

+
1 1

0φ
ν

ν
τ

δ
Δ

(37)

which proves the result.

Using Lemma 2, the free entry condition can be written as

The result for the standard model (with J)y = 0) differs from the fixed wage result in two respects.  First,

if the job-finding rate is held constant, a large proportional change in d requires a large proportional

change in the flow surplus from employment (rather than in the flow profit).  This means that small

productivity shocks do not cause large unemployment movements unless the flow surplus is small, as in

Hagedorn and Manovskii (2006).  Second, this exaggerates the relationship between productivity and

unemployment, because the job-finding rate does not in fact stay constant when d increases.  An increase

in d implies an increase in N, and this dampens the relationship between productivity and unemployment:

workers receive a larger share of the flow surplus when an increase in the job-finding rate increases the

continuation value of being unemployed, and this diminishes the incentive to create vacancies.

Informational rents affect unemployment in much the same way as fixed wages, because small

productivity changes that are observed privately by employers do not affect wages.  The wage is close to

the low productivity level, for standard parameter values, so the profit flow yL - w is small in equation

(27).  Since J)y is also small (in the sense that the no-screening condition is satisfied), changes in J)y

therefore give rise to large proportional changes in profits, and in the unemployment rate.

The Cobb-Douglas Case

The equilibrium relationships between productivity, informational rents and the unemployment rate

can be characterized more explicitly in the case of a constant-returns Cobb-Douglas matching function,

M = :U"V1-", with m(2) = :21-".  In this case the equilibrium conditions (16) can be stated as



4In this figure, :0 is chosen so that the job-finding rate in the good steady state matches the data.  Using the baseline parameters
from Table 1 below, with )y = 0 and y2

L = 1.03, setting :0 = 1360/21 implies N2 = 6.  The horizontal lines are drawn for y1
L = 1 and

y2
L = 1.03.
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where Ns = m(2s), and

Thus, as Shimer (2005) noted, the parameters c and : enter only through the ratio .μ μ α

0

1
1

=
−

c

If the aggregate state is permanent, equation (38) reduces to (two copies of) the following equation:

where

The effect of productivity variation with a square-root matching function (" = ½) and no informational

rents is illustrated in Figure 1, which plots the quadratic function on the right side of equation (40) against

the constant on the left side, with R set to zero.  Productivity changes move the horizontal line up and

down in this figure, and the equilibrium job-finding rate adjusts along the quadratic curve.  For standard

parameter values, this curve is steep at the baseline equilibrium, and small productivity differences

therefore have little effect on the job-finding rate.4



5Here :0 is again chosen so that the job-finding rate in the good steady state matches the data.  Using the baseline parameters
from Table 1, with p2)y = 3/100 and y2

L = 1, setting :0 = 1360/37 implies N2 = 6..
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The elasticity of the job-finding rate with respect to productivity with no informational rents is

This elasticity is not large unless the match surplus is small.

The effect of informational rents is shown in Figure 2.  When R is positive, the quadratic curve shifts

to the right (in the relevant region), and a comparison of the two curves shows that a small informational

rent has a large effect on the equilibrium job-finding rate.  On the other hand, the effect of (publicly

observed) productivity movements remains small.5
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Figure 2

5. Wages

Pissarides (2007) has recently argued that wage stickiness is not the answer to the unemployment

volatility puzzle, simply because wages are not in fact sticky: the wages of job-changers vary

procyclically, and there is also evidence (due to Beaudry and DiNardo, 1991) that wages in continuing

matches depend on labor market conditions at the time the match was made.  In this paper wages are

sticky in the sense that they do not respond directly to improvements in the distribution of the

idiosyncratic component of match productivity, and the informational rent associated with this stickiness

provides an incentive to create vacancies.  But this does not imply that wages are acyclical: the

informational rent has an indirect effect on wages by increasing the job-finding rate, and thereby

increasing the continuation value of an unemployed worker.  When the aggregate state is permanent

(81 = 82 = 0) the magnitude of this effect is given by Lemma 2.  More generally, the cyclical variation of

wages can be analyzed using a matrix version of Lemma 2. 

Suppose U#  is the continuation value of an unemployed worker, starting from the end of the job (that

is, assuming that wages are zero on the present job from now on).  Then
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This can be written in matrix form as 'U#   = *U.

A job that starts in state s is worth Us + <Ss
L to the worker.  This is delivered in two parts:

Thus the present value of wages is

where W is the vector (W1 W2 )'. 

The surplus in a match with a low idiosyncratic component is given by equation (2):

The continuation value of an unemployed worker is given by equation (7):

where M is a diagonal matrix with elements N1 and N2 . Combining these equations gives

Thus the present value of wages is

The matrix analog of Lemma 2 is
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Since w0 = <yL + (1-<)y0 , this gives

Thus

where the weighting matrix S is defined by

In the one-dimensional case, this reduces to S-1 = 1 + (r+*)/(<N), as in Lemma 2, while 'W = (r+*)W

when 81 = 82 = 0, so that this represents the flow value of wages.

There are of course many ways to specify a wage flow that adds up to the required present value of

wages.  The simplest way is make the wage constant for the duration of the job, in which case the flow

wage is ws = (r+*)Ws .  Alternatively, the wage might be state-dependent, meaning that when the

aggregate state changes, the wage changes to match the wage paid to new hires.  In that case, the flow

wage is given by w = 'W, so it is a weighted average of yL and y0 , as was just shown.  This has the rather

implausible implication that the wage in continuing matches falls when there is a transition to the bad

aggregate state.  The simplest way to avoid this is to specify a wage that is constant for the life of the

match if the match begins in the good aggregate state, with a lower wage initially for matches that begin

in the bad state, followed by a wage increase when there is a transition to the good state.  In this case the

flow wages are given by

The quantitative implications of these results are illustrated below (in Table 2).
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6Productivity could alternatively be measured as output per hour, and smaller smoothing parameters could also be justified. 
Since output per hour varies less than output per person, and smaller smoothing parameters (like the conventional choice of 1,600)
attribute more of the variance to the trend component, these alternatives would give smaller volatility estimates. The point is that by
any reasonable measure, labor productivity is not very volatile.
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6. Unemployment Volatility

The volatility of unemployment can be analyzed by comparing the steady-state levels of

unemployment associated with each aggregate state (rather than measuring standard deviations in

simulated data).  Although this ignores movements along the transition paths from one steady state to the

other, these transitions occur very rapidly, since the job-finding rate in the data is about 50% per month.

Standard parameter values are used as far as possible, following Shimer (2005) and Hall (2005).  The

interest rate is set at 5% per annum, and the job destruction rate * is set at .35 per annum, so that the

monthly rate is about 3%.  The flow value of nonemployment is set initially at 40% of the flow value of

employment.  The matching function is Cobb-Douglas.  The exit rate from unemployment is about 50%

per month in the data, so :0 is chosen to solve the equilibrium equations with N182 + N281 = 6 (82 + 81),

meaning that the average job-finding rate is 6 per annum, the average being taken with respect to the

invariant distribution of the Markov process.  The expected cost of filling a vacancy in state s is given

by .( )
cds

s=
−φ

μ

α
α1

0

In the NBER postwar data, the average duration of a recession is about a year, and the average

duration of an expansion is about 5 years.  This implies that the exit hazards are 82 = 1/5 and 81 = 1. 

Shimer (2005) reports summary statistics for detrended labor productivity (output per person), using an

HP filter with smoothing parameter 100,000: the standard deviation is .02 log points.  Since the model in

this paper assumes that productivity is a two-state process, it is perhaps better to measure volatility as the

difference between the average levels of productivity during recessions and expansions.  Using the same

detrended productivity series, this difference is .028 log points.  Letting Y1 and Y2 denote aggregate state-

contingent productivity levels, this implies that Y2 should be about 3% above Y1 , so Y2 is set to 1.03,

with Y1 normalized at one.6

The variation in the informational rent is chosen so as to match the fluctuations in productivity.  A

simple way to do this is to set (J2 - J1))y = .03, with y1
L =  y2

L, so that the common component of the

surplus does not depend on the aggregate state, but the probability of drawing the high idiosyncratic

component is higher in the good state.  For example, if there is no informational rent in the bad state
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(J1 = 0), the rent in the good state is enough to account for the observed variation in aggregate

productivity levels.

The parameter values are summarized in Table 1.

Table 1: Parameter Values

Parameter Notation Value Comments

matching function m(2) :21-" see text

recession exit hazard 81 1 recession duration (1year)

expansion exit hazard 82 1/5 expansion duration (5 years)

unmatched flow payoff y0 0.4 Shimer

low output y1
L =  y2

L 1

informational rent J2)y 0.030 volatility of labor productivity (J1 = 0)

separation rate * .35 Shimer

interest rate r .05

The steady-state unemployment levels are determined in the usual way as

In the case of a (Cobb-Douglas) matching function that is symmetric in unemployment and vacancies

(" = ½), the equilibrium values of N1 and N2 for the parameters in Table 1 can be obtained from the

following equations:

When :0 is chosen so as to give an average job-finding rate of 6, the solution is

(N1 = 4.295536223, N2 =6.340892756, :0 = 39.54966078).  In this example, D and "6  are given by 
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In the bad state there is no informational rent, so the no-screening condition is irrelevant.  In the good

state the condition holds if d2 = N2 /:² $ D62 .  The equilibrium depends on Js only through the effect of Js

on Ds  (provided that the no-screening condition holds), and with J1 = 0, D2 depends on J2 only through the

product J2)y, which is set to 0.03.  The no-screening condition then holds provided that J2 # 0.5605.

Table 2 shows that informational rents can generate realistic variations in the unemployment rate. 

Even though the informational rent is only 3% of the productivity level, it moves the unemployment rate

by about 40%.  To put this in context, the table also shows the unemployment rates for a baseline

parameter set that matches the variance of aggregate productivity by letting the match surplus depend on

the aggregate state, with no idiosyncratic variation.  These baseline parameter values are as in Table 1, but

with y1
L = p1 + yL = 1, y2

L = p2 + yL = 1.03, and yL = yH = 0.  In this case, the unemployment rate is virtually

constant.  The table includes results for a symmetric Cobb-Douglas matching function, with < = ½, and

also for the labor share and matching elasticity parameters used by Shimer (" = < = 0.72).  Although these

parameters affect the level of unemployment, they have little effect on volatility.



23

Table 2: Unemployment and Wage Volatility

Baseline Model Informational Rent Model

Productivity Variation
y2

L 1.03 1.0

J2)y 0 .03

< = " 0.50 0.72 0.50 0.72

Unemployment Rates (Steady State) u1
* 5.61% 5.56% 7.53% 7.32%

u2
* 5.49% 5.50% 5.23% 5.25%

Wages: flat rates w1 0.983 1.004 0.957 0.982

w2 0.989 1.011 0.966 0.986

)w% 0.7% 0.7% 1.0% 0.4%

Wages: non-decreasing rates w1 0.966 0.987 0.933 0.973

w2 0.989 1.011 0.966 0.986

)w% 2.4% 2.5% 3.5% 1.4%

Note:

The “flat rate” wage is given by ws = (r+*)Ws , where Ws is the present value of wages.  

The “nondecreasing rate” is given by w1 = (r+*)W1 - 81(W2 - W1), as explained in Section 5.

Table 2 also shows that even though wages are sticky with respect to cyclical changes in the

distribution of the idiosyncratic component of productivity, there is nevertheless substantial cyclical wage

variation.  Thus although ad hoc sticky wage models have been strongly criticized by Pissarides (2007)

on the grounds that they generate too little wage volatility, this criticism does not apply to the

informational rents model.  The present value of wages is about 1% higher in the good aggregate state,

and if the wage contract delivers this present value by specifying a single constant wage for all matches

when the aggregate state is good, and a temporary initial wage for matches made in the bad state, then the

wage rate (in new matches) is about 3.5% higher in the good state.

Hagedorn and Manovskii (2006) have argued that the Mortensen-Pissarides model can generate

realistic unemployment fluctuations if the value of the worker’s outside option is close to the value of

production.  In the model considered here, this means setting y0 near 1.  Hagedorn and Manovskii
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calibrated y0 as .955, with < = .052.  Table 3 explores the implications of these parameter values, in the

model with no informational rents.

Table 3: Unemployment Volatility (no informational rent)

Baseline High y0 Low < High y0

low <

Higher y0

low <

Variant
y0 =.40

< = .5

y0 =.955

< = .5

y0 =.40

< = .052

y0 =.955

< = .052

y0 = y1
L = 1

< = .052

Steady State

Unemployment Rates

u1
* 5.61% 6.56% 5.58% 6.19% 8.08%

u2
* 5.49% 5.34% 5.50% 5.39% 5.18%

When the workers’ outside opportunities are almost as good as their market production opportunities,

unemployment is indeed more volatile.  Mortensen and Nagypál (2007) argue that this is quite unrealistic,

since it implies that the average worker has little to gain from employment.  Moreover, as Costain and

Reiter (2006) and Hornstein, Krusell and Violante (2005) point out, it also implies implausibly large

changes in unemployment rates in response to small changes in unemployment benefits.  And even the

rather extreme value of y0 advocated by Hagedorn and Manovskii (2006) generates only about a 20%

difference between the unemployment rates in the two states.  The last column of the table shows that

volatility increases sharply as y0 approaches 1.  It might seem that everyone should be unemployed in the

bad state if y0 = 1, since this means that jobs produce no surplus, and in order to move workers into jobs,

it is necessary to expend resources on vacancy costs.  But in fact the bad state is not expected to last very

long, and jobs generate a (small) surplus in the good state.  Moving some workers into jobs in the bad

state reduces congestion in the matching process when the economy switches to the good state.  From the

employer’s point of view, it is worthwhile to create vacancies in the bad state in anticipation of a

transition to the good state, because when that transition occurs the aggregate component of productivity

will increase.  If the transition to the good state is unlikely, the unemployment rate in the bad state will be

high.  But in the data, recessions are relatively short-lived, so the Hagedorn and Manovskii calibration

yields a relatively small difference between the unemployment rates in the good and bad states.  



7Here :0 cannot be chosen so as to equate the average job-finding rate in the model with the empirical value, because each
realization of the aggregate state is permanent, so there is no invariant distribution that can be used to take an average.  Instead, :0 is
chosen to solve the equilibrium equations with N1 + N2 (81/82)  = 6 (1 + (81/82)) , where 81/82 = 5, as in the baseline model.  This
corresponds to taking a limit as the transition rates become small, while their ratio stays fixed.

25

Table 4 shows that in a comparison of steady states with no transitions, the Hagedorn and Manovskii

calibration gives much more volatility.7  But this is largely beside the point, since the volatility in the data

is generated by a single economy with transitions between states, while Table 4 compares the steady

states of two different economies.  This is illustrated by considering the effects of the very low value for

the labor share parameter used by Hagedorn and Manovskii.  Although this generates additional volatility

in the comparison of two unrelated economies shown in Table 4, it actually reduces volatility in the more

relevant comparison of steady states of a single stochastic economy, as shown in Table 3.  Again, the

reason for this is evidently that when the employer gets most of the surplus there is a stronger tendency to

create vacancies in the bad state in anticipation of a transition to the good state, and this effect is absent in

the model without transitions.

Table 4: Unemployment Volatility with no transitions (81 = 82 = 0)

Baseline High y0 Low < High y0

low <

Informational

Rent

Variant
y0 =.40

< = .5

y0 =.955

< = .5

y0 =.40

< = .052

y0 =.955

< = .052

y0 =.40

< = .5

Steady State

Unemployment Rates

u1
* 5.63% 6.85% 5.66% 7.37% 7.24%

u2
* 5.49% 5.30% 5.48% 5.25% 5.26%

Cyclical Movements in the Dispersion of Productivity

It has been shown that small variations in informational rents generate large variations in the

unemployment rate.  It is of course difficult to obtain evidence that such variations actually occur,

precisely because they are due to private information.  But it seems reasonable to suppose that procyclical

variations in informational rents would be associated with procyclical variations in the variability of labor

productivity across employers.  Figure 3 shows some evidence in favor of such variations.  Dunne, Foster,

Haltiwanger and Troske (2004) analyzed productivity dispersion across manufacturing plants over the

period 1975-1992.  As Dunne et al point out, dispersion increased over this period, especially from 1986
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to 1992.  Figure 3 shows the Dunne et al productivity dispersion series, overlaid on a Hodrick-Prescott

estimate of the trend, in relation to the U.S. unemployment rate.  Productivity dispersion is clearly

procyclical over this (admittedly short) period.

7. Are Informational Rents Bigger when More Information is Private?

A key feature of the model is that the dispersion of the privately observed component of the match

surplus increases in the good aggregate state, and this increased dispersion gives rise to an increase in

informational rent.  An important theoretical issue is then whether the increase in informational rent arises

merely from the assumption that the privately observed portion of the surplus takes just two possible

values, with the worker optimally choosing to demand one of these values or the other.  Given just two

possible realizations, a small increase in the probability of the high surplus is not enough to induce the

worker to switch the optimal demand from the low value to the high value, but in the case of a more
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general distribution an improvement in the distribution would induce the worker to make a more

aggressive demand, and it is not clear that this would leave a larger informational rent for the employer.

One way to analyze this is to consider an alternative situation in which the surplus is distributed

continuously over an interval.  Without loss of generality, the lowest possible surplus can be taken to be

0.  Thus consider a worker making a take-it-or-leave-it demand to an employer in a match where the

surplus is a + s, with a > 0 and s distributed over the interval [0,b].  Let y = s/b, distributed on [0,1]

according to the distribution function F.  The worker’s payoff from a demand a + bx is zero if this

demand exceeds the actual surplus, which is the case if x > y.  Thus the worker’s expected payoff is

(a+bx)(1-F(x)).

A simple way to formulate the question is to ask whether an increase in b leads to an increase in the

informational rent.  An increase in b, with F fixed, magnifies the surplus in every state of the world.  This

is known to the worker, and it is assumed that the employer’s only options are to say yes or no to a single

offer made by the worker.  The question is whether the employer’s expected payoff increases when the

distribution improves in this way, even though the change in the distribution is common knowledge, and

the worker has all of the bargaining power.  In the absence of private information, the employer would get

no surplus in this situation.  So any positive payoff for the employer arises solely from the employer’s

informational advantage, and is thus an informational rent.

The informational rent when the worker demands x is R = b[E max(y,x) - x], which can be written as

The worker’s problem can be stated as

where c = a/b.

First, it is clear that an increase in b implies an increase in the worker’s optimal demand.  Indeed

suppose that b increases from b0 to b1 , meaning that c decreases from c0 to c1 (with a fixed), and let the

corresponding optimal choices of x be x0 and x1.  Then optimality implies
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Since the expected payoff is positive for x = 0, and zero for F(x) = 1, it follows that 1-F(x) is positive at

the optimum.  Thus the above revealed preference inequalities can be written as

which implies )x)c # 0.  Thus an increase in b implies an increase in x.

Next, the pooling solution (x = 0) is optimal if the opportunity cost of screening is high relative to the

expected gains.  Indeed pooling is optimal if and only if

For example, if F is the uniform distribution, pooling is optimal if c $ 1.  On the other hand, if F is

differentiable at 0, then F(x) . xF'(0), for x near 0.  Thus if F has zero density at the origin, then pooling

cannot be optimal for any value of c.

Obviously, if pooling is optimal, and remains so after an increase in b, then the informational rent

increases with b, just as in the case of the two-point distribution analyzed above.  The issue considered

here is whether this result is limited to the case where pooling is optimal.  In fact, it is not: it is shown in

Appendix B that it holds for a reasonably broad class of distributions.

If pooling is not optimal, and if F has a density f, the optimal choice of x must satisfy the first-order

condition

This can be written as



8More general versions of this result for a class of beta distributions are given in Appendix B.  Thus the result for the case of a
two-point distribution of the private information variable is reasonably robust.  But it should be noted that the result certainly does
not hold for all distributions, or even for all beta distributions.  For example, if F(y) = y¾, with a = 1, screening becomes optimal
when b = 2.1165.  There is a downward jump in the informational rent at this point, and after this the rent continues to fall until
b = 2.2684; beyond this point the rent is increasing in b.
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where h is the hazard function.

The simplest example is the uniform distribution.  In that case if b < a, pooling is optimal, so a (small)

increase in b necessarily gives an increase in the informational rent.  For some distributions, when b

increases to the point where screening becomes optimal, there is then a downward jump in the rent.  The

two-point distribution has this property: when the probability of the good state or the size of the surplus in

the good state rise beyond a certain point, the informational rent disappears.  But it will be shown that in

the case of a uniform distribution there is no downward jump, and that further increases in b lead to

increases in R, even though the worker screens more aggressively.

For a uniform distribution with b > a, the optimal screening price is

Thus the rent is given by

which is increasing in b (when b > a).  Thus when the surplus is magnified, the informational rent

increases, regardless of whether pooling or screening is optimal.8
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8. Alternative Explanations of Unemployment Volatility

Starting with Shimer (2005) and Costain and Reiter (2005), the literature on unemployment volatility

has developed very rapidly.  The main developments have recently been reviewed by Mortensen and

Nagypál (2007), and by Pissarides (2007).  The focus has been largely on modifications of the wage-

setting mechanism that increase the elasticity of the job-finding rate with respect to productivity.  The

main point is that if the profit margin associated with a filled job is very small, then small changes in

productivity can have large effects on profits, and therefore on vacancy creation.

As a point of reference, consider a simple wage-setting mechanism in which the wage is set one day

at a time.  Each day, either the worker or the employer is selected to make a take-it-or-leave-it offer

setting the wage for that day.  Wages and profits are then given by

where < is the probability that the worker makes the offer.  Thus w0 is a weighted average of the worker’s

productivity inside and outside of the match.  It was shown in Lemma 2 above that the Nash bargaining

mechanism used in the M-P model yields a wage that is an average of y and w0 , with weights that depend

on the job-finding rate.  Thus the wage is a nested weighted average of y and y0 , and since M is close to 1

for standard parameter values, the Nash wage is heavily influenced by the worker’s job-finding prospects. 

The worker gets a bigger share of the surplus when the job-finding rate increases, but even in a recession

the worker gets a very large share.

The elasticity of the job-finding rate with respect to productivity is governed by the free entry

condition.  Not much is lost by assuming that the matching function is Cobb-Douglas, and that it is

symmetric in the number of vacancies and the number of unemployed workers, so that N = :%&2.  In this

case the free entry condition can be written as 

Thus the volatility of the job-finding rate is the same as the volatility of the profit flow (with * fixed). 

Using Lemma 2, the elasticity of N is given by



9In the Hall-Milgrom  model, the employer pays a bargaining cost ( each day until a wage agreement is reached.  Thus on a day
when the worker is selected to make the offer, the wage is y+( (leaving the employer indifferent between saying yes or no), and
when the employer makes the offer the wage is y0.  The average profit flow is then (1- <)(y-y0-().  Thus the elasticity N can be made
large even though y0 is not close to y, by choosing a suitable value of (.
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This elasticity is not large unless an unmatched worker is almost as productive as a matched worker, as in

Hagedorn-Manovskii (2006).

If the wage is fixed, then

Thus, as Hall (2005) pointed out, if the wage is sticky the response of the job finding rate to productivity

may be very elastic; but this is true only if the wage is set at a level that is close to the productivity level.

If the wage is negotiated every day, then y-w = (1-<)(y-y0), so 

This is closely related to the point made by Hall and Milgrom (2007): if the worker’s option to find

another match is regarded as being irrelevant, then there is no link between N and w, and so the elasticity

of the job finding rate is increased.  But again, the elasticity is not large unless the value of the worker’s

outside option is almost as good as the value of working.9

Nagypál (2005) and Mortensen and Nagypál (2007) develop an extended version of the Mortensen-

Pissarides model that is capable of matching both the volatility of unemployment and the observed

negative correlation of unemployment and vacancies.  They introduce four modifications of the basic

model.  First, exogenous job destruction shocks provide an additional source of unemployment

movements, (without being so large as to overturn the negative U-V correlation generated by productivity

shocks).  Second, there are substantial job-to-job flows.  Although the job separation rate is relatively

constant, as was argued by Hall (2006), the flow from employment to unemployment increases in

recessions, as was shown by Elsby, Michaels and Solon (2007), because the job-to-job flow decreases. 
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Third, in order to post a vacancy, the employer must pay a lump sum hiring cost (in addition to the flow

cost of maintaining the vacancy).  Fourth, the wage bargaining is day-to-day (as described above), so the

wage is not affected by the job-finding rate.  Taken together, these four modifications lead to a model that

can match the data if the lump sum hiring cost is sufficiently large (about nine months worth of profits). 

But the extended model is unwieldy, and the empirical plausibility of the required hiring costs is

questionable.  Moreover, as Pissarides (2007) points out, if the observed fluctuations in the job

destruction rate are interpreted in the context of the original Mortensen-Pissarides model (rather than

being treated as exogenous changes in the rate at which matches are destroyed), they do not generate

much volatility in unemployment, because they are not associated with changes in the job creation rate.

The informational rents model developed here introduces just one modification of the standard model,

and thereby explains the same facts in a more parsimonious way.

9. Conclusion

Rent is a powerful economic force, and private information is a pervasive rent source, so it is

plausible that private information can help to explain features of the economy that are otherwise difficult

to understand.  It has been shown here that the introduction of private information in an otherwise

standard model of unemployment fluctuations provides a reasonable explanation for the volatility of

unemployment.  In the standard Mortensen-Pissarides model, unemployment fluctuations are driven by

labor productivity shocks.  In the data, these shocks are small, and the implied fluctuations in

unemployment are also small, and much smaller than the fluctuations in the data.  But if the productivity

realizations are privately observed by employers, the implications for unemployment fluctuations are

quite different.  Small productivity shocks generate informational rents for employers, and small rents are

a powerful job creation force.  Thus privately observed productivity shocks of the magnitude seen in the

data can generate realistic unemployment fluctuations.
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Appendix A

The Neutral Bargaining Solution: One-sided Private Information with 2 types

Myerson (1984) proposed the Neutral Bargaining Solution as a generalization of the Nash bargaining

solution suitable for a broad class of two-person bargaining problems with private information. There is a

finite set of decisions, D.  A direct revelation mechanism : specifies the probabilities of the various

decisions, conditional on information reported by the players.  The payoff for player i, ui(d,t), depends on

the decision d, and on the vector of reported types, t.  Thus the expected payoff of player i of type ti is

where p gives the probability of the type vector t, conditional on ti, and :(d,t) is the probability that the

decision d is chosen, given that types are reported as t.

Consider a two-player bargaining problem in which the surplus to be divided is either SH or SL, with

probabilities J, and 1-J, where the realization of S is known to player 1, but not to player 2.  There are

three decisions, D = {d0,d1,d2}, where d0 is the conflict outcome in which each player gets zero, d1 means

that player 1 gets S, where S is the realized value of the surplus (and player 2 gets zero), and d2 means

that player 2 gets SH, and player 1 gets S-SH.  Thus the payoffs depend on whether player 1 is of type H or

type L, as follows

(u1,u2) d0 d1 d2

1H (0,0) (SH,0) (0,SH)

1L (0,0) (SL,0) (-)S,SH)

where )S = SH - SL.

It is not difficult to show that there are  incentive-efficient mechanisms that select d0 with positive

probability if and only if J $ SL/SH (see Kennan (1986)).  This condition does not hold in the model

considered in this paper.  Incentive compatibility then requires that the probability of choosing d1 is the

same in both states, since player 1’s payoff is increasing in this probability, regardless of the state.  Let "

be the multiplier associated with this constraint, and let :(di) be the probability of choosing decision i, for

i 0 {1,2}.

Myerson’s Theorem 5 gives a set of conditions which must hold for every mechanism : in the set of

neutral bargaining solutions.  It will be shown that there is only one mechanism that satisfies these

( ) ( ) ( ) ( )U t p t t d t u d ti i i
d D

i
t T

μ μ| | , ,=
∈∈
∑∑
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conditions.  Since the NBS set is not empty (according to Myerson’s Theorem 2), this is a neutral

bargaining solution, and it is unique.

The conditions are as follows.  The mechanism : is incentive-efficient, and there exist 8 0R3,  T 0R3

and " $0, such that

[(8.6)]  8 $ 0, T $ 0 and (8,") … 0

[(8.7)] : is an optimal solution of the primal problem for 8.  That is, there is some " $ 0 such that :

maximizes the lagrangean

with " = 0 if U > U1
*

H(:,L), where U1
*

H(:,L) is player 1's payoff when falsely reporting type L.  This

lagrangean can be rewritten in terms of “virtual evaluations” V as

where

[(8.8)] " is an optimal solution of the dual problem for 8.  That is, " solves

[(8.9)] The virtual evaluations satisfy the following (“warrant”) equations
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* ,

( ) ( ) ( )( ) ( ) ( ) ( )( )l = + + +
∈ ∈
∑ ∑μ μH H H
d D

L L L
d D

d V d V d d V d V d1 2 1 2

( ) ( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( )

V d u d

V d u d
V d u d u d
V d u d

H H H

H H

L L L H

L L

1 1 1

2 2 2

1 1 1 1

2 2 21

= +

=

= −

= −

λ α

λ τ
λ α
λ τ( )

( )min max , , ,α λ α≥ ∈
∈

∑∑0 d D i
it T

V d t

( ) ( )( )

( ) ( ) ( )( )

λ ω α ω

λ α ω

λ ω λ ω λ ω

1 1 1 1 1 2

1 1 1 2

2 2 1 1 1 1

1
2
1
2

L L H H d D L L

H H H d D H H

L L H H

V d V d

V d V d

− = +

+ = +

= +

∈

∈

max

max



35

[(8.10)] Each type of each agent gets at least the warranted expected utility

[(8.5)] The warranted and actual expected utilities satisfy the following complementary slackness

conditions

The first step is to maximize the Lagrangean.  This is done by choosing a decision in each state that

maximizes the sum of the virtual evaluations, the relevant sums being given by

The dual problem is

In the low state, it must be optimal to choose d1, since otherwise the mechanism would choose d2 with

probability 1 in the low state, and then UL would be negative, so the mechanism would not be feasible.  It

must also be optimal to choose d1 in the high state.  Otherwise :H(d1) = 0, and then the incentive

compatibility constraint implies :L(d2) = 1, which is impossible, as was just shown.

The dual problem can therefore be written as
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The optimality of d1 also implies that the warrant equations can be written as

If 81L = 0, then optimality of d1 in the low state implies " = 0, and 82 = 0, and then the third warrant

equation implies 81H = 0, which is a contradiction (since the theorem requires (8,") … 0).  Thus 81L is

strictly positive, which implies T1L = U1L . And because 81L is strictly positive, the third warrant equation

implies that 82 and T2 are also strictly positive, and so T2 = U2. 

Since both decisions are optimal in both states, " must satisfy the equations

Thus

The complementary slackness conditions require either 81H = 0, or  T1H = UH .  Suppose 81H > 0.  Then

T1H = UH = :1SH and the warrant equations can be written as

Adding the first two equations here gives
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and since 81L > 0 and 81H > 0 this implies :1 = ½.  But then the third warrant equation gives

which is a contradiction, since SH > SL.

Therefore 81H = 0, which implies 81L = 82 and " = J82, and the warrant equations reduce to

Since 81L > 0, UL = T1L, and the first two equations here imply T1L = ½SL, and this implies

Finally, the second warrant equation implies T1H = ½SH, while UH = :1SH = SH - ½SL.  So T1H < UH, and

all of the conditions of the theorem are satisfied.

Thus it has been shown that the Neutral Bargaining Solution is unique, and that it gives player 2 half

of the low surplus, with player 1 getting the residual.  Since JSH < SL, the optimal mechanism for player

two is a pooling demand, with :1 = 1-SL/SH, while the optimal mechanism for player 1 sets :1 = 1.  So the

NBS is implemented by the random dictator mechanism (i.e. by randomly selecting the optimal

mechanism for one player or the other, with equal probabilities).
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Appendix B

Are Informational Rents Bigger when More Information is Private?

When an uninformed seller makes offers to a buyer whose valuation is drawn privately from some

known distribution, the optimal offer for the seller may be a pooling offer that concedes an informational

rent to the buyer.  In that case a small improvement in the distribution of the buyer’s valuations implies an

increase in the informational rent.  More generally, one might expect that when the buyer’s informational

advantage increases, the informational rent increases as well.  But this is not always true.  For example, a

large improvement in the distribution may cause the seller to switch from a pooling to a screening offer,

and in some cases this completely eliminates the informational rent.  And in the case where partial

pooling is initially optimal, even a small improvement induces the seller to screen more aggressively,

with the possibility that the informational rent is reduced.  The purpose of this Appendix is to examine

this possibility, for a limited but interesting class of distributions.

Consider a seller making a take-it-or-leave-it demand to a buyer whose valuation is a + s, with a $ 0

and s distributed over the interval [0,b].  Let y = s/b, distributed on [0,1] according to the distribution

function F.  The seller’s payoff from a demand a + bx is zero if this demand exceeds the actual surplus,

which is the case if x > y. Thus the seller’s expected payoff is (a+bx)(1-F(x)).  The question is whether an

increase in b leads to an increase in the informational rent.

Suppose that F is a beta distribution, with density

where ' is the gamma function, with " > 0, and $ > 0.  Two subsets of this class of distributions will be

analyzed, one (Case A) defined by taking $ = 1 with " > 1, so that x has a power distribution with an

increasing density, and the other (Case B) defined by taking " = 1 (with no restriction on $), so that 1-x

has a power distribution.  The uniform distribution is included in class B (and it is on the boundary of

case A).

The following lemma will be used in the analysis of Case A.
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Lemma

The function

is decreasing in ", for z > 0. 

Proof:

The derivative of f is

Let y = -"log(z).  Then 

where the inequality holds because ey $ 1+y (with equality when y = 0, which means z = 1).

Case A

Suppose F is a beta distribution with $ = 1 and " > 1.  In this case pooling is never optimal, since

f(0) = 0.  Let z be the optimal screening price.  The seller’s objective function is strictly concave, and z is

the unique solution of the first-order condition

This equation can be rewritten as
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This gives b as a strictly increasing function of z, meaning that the optimal screening price is strictly

increasing in b.  That being so, the informational rent R is increasing in b if and only if R is increasing in

z. Using equation (84), the relationship between R and z is given by

Taking derivatives and simplifying the result gives

Thus R is increasing in z (and therefore in b) if and only if numerator of the expression on the right side

of this equation is nonnegative. 

The first-order condition determining the screening price implies that

Thus
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So it is enough to show that

The derivative of R is given by

Since R'(0) < 0 < R'(1) and R''(z) > 0, the function R has a unique minimum, say at z0.  So it is enough to

show that R(z0) $ 0.  Note that

Thus R(z0)  $ 0 if and only if

This is an immediate implication of Lemma A, because f(1) $ f(") for " > 1.

Thus it has been shown that although pooling is never optimal for a power distribution with exponent

greater than one, the informational rent nevertheless increases when the extent of the employer’s private

information is magnified.

Case B

Suppose F is a beta distribution with " = 1. The simplest example is the uniform distribution (with

$ = 1).  The informational rent is 



42

( ) ( ) ( )
( ) ( )( )

′ = − − − +

= − − − −

−

−

H x x x c x

x c x

( ) 1 1

1 1 1

1

1

β β

β

β

β β
(94)

x
c* =

−
−

1
1

β
β

(95)

R b

b b a

b a
b

b a
( ) =

+
≤

+ +
⎛
⎝
⎜

⎞
⎠
⎟ +⎛

⎝⎜
⎞
⎠⎟

≥

⎧

⎨
⎪
⎪

⎩
⎪
⎪

+ +

β
β

β
β

β
β

β β

1

1 1
1

1 1

b a
b

1
1

+⎛
⎝⎜

⎞
⎠⎟

+β

ω
β

( )z z
z

= +⎛
⎝⎜

⎞
⎠⎟

+

1 1 1

The derivative of the worker’s objective function is given by

where c = a/b.  If $c $ 1 then H'(x) # 0 for all x, so pooling is optimal.  If $c # 1 then H'(x) > 0 for all

x < x*, and H'(x) < 0 for all x > x*, where x* is given by

Also, H(x* ) = 0, so screening at x* is optimal.  Thus the mapping from b to R is given by

The function R(b) is obviously increasing in the pooling region. To show that it is increasing in the

screening region, it is enough to show that 

is increasing in b, for b $ a$, or equivalently that the function 

is increasing in z, for z $ $ > 0.  The derivative of this function is 



10Note that the rent function R(b) is continuous (but not differentiable) at the point where screening becomes optimal.
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So the function is increasing.

Thus it has been shown that for any beta distribution with " = 1, the informational rent increases

when the extent of the employer’s private information is magnified, even though this induces the worker

to switch from a pooling price to a screening price.10
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