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This psper is an extension of earlier work. In Delgado and Dumes (1990) a

general solution technique is used to analyze different contracting

arrangements between two central banks who agree to intervene in the foreign

exchange market to maintain their currencies within certain limits. In this

study we would like to address a different issue, namely the effects on macro

variables of the widening and narrowing of the target zone, with special

emphasis on changes in the interest rate differential. The experiment of

progressivly narrowing the target zone is of interest as a representation of

the transition between a target zone arrangement and a unique currency,

assuming that a fully credible fixed exchange rate is identical to a unique

currency.

Svensson (1989) has already studied this question. lie restricted himself to

the study of a stochastic process without drift. We extend his work and

Delgado and Dumas (1990) by incorporating successively a non-zero drift and a

mean-reverting process. As Svensson suggested, it is necessary to study a

process that is not characterized by a constant mean. A mean reverting process

has this property. This type of process will be used to model the fact that in

the functioning of the EMS about 85% of the intervention is done

intramarginally.

The paper is organized as follows: Section I lays out the basic framework

for both the non-zero mean linear Brownian motion and the mean-reverting

process. The necessary assumptions will be made in this section. Section II

presents the various solutions for the exchange rate process in the Brownian

motion case. Section III studies the limiting properties of the zone when the

target zone is either very wide or very narrow; this includes the behavior of

the interest rate differential. Section IV describes the various

interpretations of the mean reverting process and presents the various

solutions for the exchange rate function. Section V establishes the limiting



properties of the mean reverting case. We conclude in Section VI,

I. THE MODEL: DIFFERENTIAL EQUATION FOR THE EXCHA1GE RATE

The basic equation on which most of the target zone literature is bssed is:

*
S — a - a + v + yE(dS I 'F(tfl/dt (1)

where S is the exchange rate between two currencies (the domestic currency

* * *
value of foreign exchange), m — .En(R + U) and m — Ln(R + U ) are domestic

and foreign measures of controllable money supply and v is an exogenous

*
monetary shock. In this study m and m are deemed controllable because foreign

* *
exchange intervention by Central Banks modifies reserves R and R ; U and U

stand for domestic credit. y is a coefficient interpreted as an interest semi-

elasticity of money demand and E(dS I (t))/dt is the conditionally expected

instantaneous change in the exchange rate; 't'(t) is the information set of

economic agents acting in the foreign exchange market.

The following assumptions are made:

Al) Intervention in the foreign exchange market which occurs at the

boundaries of the target zone (marginal intervention) is instantaneous

and infinitesimal. Intervention which occurs within the band

(intramarginal intervention) is proportional in intensity to the

deviation from some target, so that we can model it by means of a

mean reverting process. This reflects a policy of "leaning against the

wind" 1

1Lewis (1990) models "leaning against the wind" in a different manner.
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A2) There is full cooperation between central banks to render the

target zone completely credible. The burden of intervention is shared.

If the country whose currency is weak has run out of reserves, the

other central bank intervenes by printing money. The assumption is

made in order to avoid the problem of running out of reserves which

has been examined elsewhere [Delgado and Dumas (1990); see, by way of

contrast, their Assumption 2].

A3) Commodity prices are flexible, purchasing power parity and

uncovered interest rate parity hold. There is full capital mobility

and interventions are not sterilized.

A4) Both countries share the same money demand function with identical

parameters.

Svensson (1989) has examined limiting properties of some solutions of (1)

under the assumption that the shock v follows a zero-drift arithmetic Brownian

motion. Here we extend the analysis to Brownian motions with a non zero

constant trend and to mean-reverting processes. The constant-trend formulation

is:

dv — pdt + cdW; IL a constant and > 0 (2)

> 0 given.

In (2), p and a are constants and dW is the increment of a standard Wiener

process. For p > 0 -- which, for the sake of definiteness, will be assumed --

we will say that the domestic currency is inherently aic because the trend

in fundamentals works against it. Without intervention the domestic currency

is expected to depreciate.

We also extend the analysis to the case of mean-reverting shocks which
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I
produces a variable drift:

dv — -p(v - a&dt + adz; p, a constant and > 0 (3)

> 0 given,

where a is the long-run level of v and p is the speed with which the process

tends towards this value. In this specification a positive shock to v is

detrimental to the domestic currency in the short run but also induces s drift

which in the long run is favorable to the domestic currency. Appendix A

reminds the reader [see slso Svensson (1989), Froot and Obstfeld (l989b,

footnote 2)] that it is conceivable to interpret v either as a supply or a

demand shock. As long as v follows a constant drift process, the distinction

is immaterial. When v is mean reverting, however, more care muat be exercised;

we return to the issue in section IV.

Equation (1) is the basic equation which Krugman (1990) used to study

*
exchange rate target zones. Define the "fundamentals" X as: m - m +v. Note

that X includes controllable (reserves) and uncontrollable (domestic credit)

terms. Equation (1) can be rewritten as:

S — X + 7E(dS I c'(t))/dt. (4)

II. SOLUTIONS OF THE MODEL: THE COHSTANT-MEAN CASE

We are now ready to solve the model for the two basic assumptions about

the stochastic process followed by the "fundamentals". In the next two

sections we analyze the non-zero constant mean case and in the following ones
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the mean reverting case.

We interpret the constant-trend case [equation (2)] as one in which

intervention occurs at the margins only and is of the instantaneous variety.

The atochastic differential equation for the fundamentals can be written as

the non-regulated fundamentals plus two terms that take into account the

intervention of the central banks, dU and dL:

dX—1sdt+udW - dU+dL, (5)

with initial condition X(O) — — m +
m*0

+ v, U(O) — 0, L(O) — 0, U and L

being two non negative non decreasing processes, and U increases only when S

— while L increases only when S — . U and L stand for the cumulative

amounts of intervention done by the two countries. Because of Assumption A2 we

do not have to specify who performs the intervention. Equation (5) indicates

that the same fixed trend drives v and the fundamentals X.

Assume that the value of the exchange rate is a twice continuously

differentiable function of X and apply It&'s lemma to calculate E(dS I

(cfl/dt explicitly. Substitution of the resulting expression into (4) yields

the basic differential equation which muat be satisfied by the exchange rate

function, irrespective of the particular government policy regarding exchange

rates:

S — K + y[pS'(X) + 0.Sc2S'(X)]. (6)

This equation applies over the domain of K where no intervention takes place.

The aeneral solution of (6) is:

S(X)_X+lp+Ae0X+Be (7)
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where A and B are constants of integration which must be solved for, using the

boundary conditions implied by the exchange rate policy, a and -fi are rhe

positive and negative roots of the characteristic equation: 1 — ipq +

O.5-ya2q2. One property of the roots will prove useful later: I/o - 1/fl — yp.

The free-float particular solution: Resorting to a no-bubble argument and

considering the fact that X under free float has support in (-c.o) both

exponential terms are eliminated on the grounds that they would generate

explosive paths. This implies A — B — 0. Therefore, the equation for the

exchange rate is:

S—X+7p. (8)

The free-float solution, shown in Figure 1 and other figures, is a 450 line

with intercept at S —

A fixed-rate regime is, in theory, an exchange rate system in which the

government is committed to doing whatever is necessary to maintain the

exchange rate fixed. Because of the full credibility assumption, we can

identify in this study a fixed-rate regime and a one currency world.2

If we refer to Figure 1, point fl on the diagonal line represents a strict

fixed-exchange regime solution. Indeed, if the exchange rate is not expected

to change (E(dS I (t))/dt — 0), Equation (4) implies:

S-X (9)

If the authorities wish to peg the exchange rate at some level S0 they must

2We show below that the fixed rate regime is also the limit of a sequence
of narrower and narrower bands.

6
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strictly maintain the fundamentals at a level X —
S0.

Tareet zone solutions: Assuming that the target zone policy has been

specified by two bounds on the exchange rate and the size of the interventions

(infinitesimal in our case), there is a unique aolution to the target zone

problem. This solution is characterized by smooth-pasting conditions at the

boundaries3.

The determination of the constants of integration A and B and the bounds

on fundamentals implied by the bounds on exchange rates is done by solving

simultaneously the following system of four equations with four unknowns A, B,

X, and X.

- - -a
S—X+js+Ae +Be (10)

m -fi)

S—X+yp+Ae +Be (11)

at -fiX
0—l+aAe -flEe (12)

aX
O—l+aAe - - flEe (13)

In (10)-(13), S and S ate the upper and lower limits the governments will

allow the exchange rate to reach before intervention. X and X are the implied

limits for the fundamentals. Equations (10) and (11) are just a restatement

3Flood and Carber (1989) present a model in which the policy is not
specified by infinitesimal interventions but by discrete ones. This implies
the same exchange rate function for the same bounds placed on the exchange
rate. The type of regulation implied by discrete interventions is called
impulse control.



of the fact that at the boundaries of the target zone S — S(X) and S — 5(X).

Equations (12) and (13) are the "smooth pasting" conditions. We solve this

system for the general case of non-zero drift in fundamentals, in which a

symmetric band placed on the exchange rate translates into an asymmetric band

placed on the fundamentals.

The study of the properties of target zones is based on the solution of the

system given by equations (lO)-(13). Since the system is linear in the

constants of integration, it is straightforward to eliminate them and obtain a

non-linear system of two equations with two unknowns X and X:

mk- mX-$X
- - -fls - me + (m+fl)e 14
X—S--yp+ -

aX-fiX oX-fiX
-mfi(e - -e- )

ok-fiX oX-ftC (m-fi)X

me + fie - (o+fi)e 15XS7h+ - -
oX-fiX oX-fiX

-ofi(e
- -e-

INSERT FIGURE 1 HERE

Part of our exposition of what happens as one changes the width of the band

will refer to Figure 1. We proceed to explain it at this point. The figure is

constructed by changing the width of the band around S. This means solving

the system (14)-(l5) for different values of S and S positioned symmetrically

around S0 (— 4.5 in Figure 1). The two straight lines in the middle are the

450 diagonal line which contains the fixed exchange points, and the free

float. As we know, the free float is also a 450 line but translated up a

distance js. The thick line is the locus of tangencies implied by the smooth
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pasting conditions. Points above S0 are pairs (X, S); points below S0 are

pairs (X. ). Furthermore, in Figure 1 -- as is clear from the basic Equation

(4) which indicates that the interest-rate differential is equal to (S -

X)/7, -. iso-interest-rate differential lines would also be 450 lines, the

diagonal line corresponding to a zero value of the interest-rate differential,

while the free-float line corresponds to the level of the differential.

As is clear from Figure 1, the following holds:

Statement # 1: The locus of tangency points establishes a monotonic

(increasing) relationship between the positioning of the bounds on the

exchange rate and the positioning of the bounds on the fundamentals.

See Appendix B.

Statement # 1 authorizes us. under the current assunmtion of infinitesimal

intervention, to define a tarset zone in terms of exchange rate bounds. The

assumption of declared bounds imposed on the exchange rate rather than on the

fundamentals is preferable because, in practice, exchange rates are directly

observable by the financial markets, while fundamentals are less easily

observable.

III. LIMITING PROPERTIES OF TARGET ZONES UNDER

CONSTANT MEAN FUNDAMENTALS

111.1 Widening the band

We now study the behavior of exchange rates and interest rate differentials

for wide bands. The behavior of the interest rate differential is quite

different for wide bands from what it is for narrow ones. We show that:

Statement # 2: For wide enough bands, the distance of )( from the diagonal



line is the same asymptotically as the distance of X from the free-float

line and that both tend to a constant value.

Proof: See appendix C

INSERT FIGURES 2 AND 3 HERE

The asymptotic behavior of the band described by statement # 2 has two

implications. First, it implies that at points such as B of Figure 1 the

expected chanee in the exchanae rate (and the interest rate differential) is

close to +p + 1/va, which is also l/ya. At points such as C, it is close to

-l/y$. These are also the limits of the two extreme values of the interest

rate differential occurring at the edges of the band (see Figure 2).

Figure 3 shows in greater detail an example of an exchange rate curve, an

interest-rate differential curve and the free float curve for a given wide

band. For values of the exchange rate close to the free float curve, the

interest rate differential is constant and equal to p. As the band is

widened, this flat section expands because the exchange rate is closer to the

free float over a wider range of fundamentals. Hence, interest rate

variability would tend to approach zero. This point has been emphasized by

Svensson (1989); it is obviously equally valid in the special symmetric case

and in the general case; we do not delve on it further.

111.2 Narrowing the band

Figure 1 can again help in visualizing the process of narrowing the band.

As one tightens the band around a given exchange rate value Se,, the system

convergea to the fixed-rate solution (X — S — The interesting aspect,
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however, is the rate at which this convergence takes place:4

Statement II 3 The relationship between the bounds on the exchange rate and

the bounds on the fundamentals is cubic.

Proof: See Appendix D.

Statement 1/ 3 generalizes a similar result obtained by Svensson (1989) in

the zero-mean case. This result has an important policy implication. Evan a

very tiaht target zone orovides some roos for the fundamentals to move about:

the bounds on the fundamentals are two order of magnitude wider apart than the

bounds on the exchange rate! As compared to a strict fixed-rate system, in

which fundamentals would be absolutely immutable, s narrow target zone buys a

lot of temporary flexibility. Foreign exchange traders do not move the

exchange rate in response to a deviation in the fundamentals precisely

because, under the target zone intervention policy, they know that this

deviation is temporary. The anticipated reversion in the fundamentals, which

is bound to be triggered in the near future, is what keeps the current

exchange rate from reacting to the current value of the fundamentals.

INSERT FIGURE 4 HERE

As a function of fundamentals, the interest differential, as we narrow the

band, has a smaller and smaller flat section over the range within which

fundamentals are allowed to oscillate without intervention. In Figure 4, drawn

for a given narrow band, the inrerest differential is practically a straight

line st en angle equal to -l/. Hence, as in Svensson (1989), fundamentals

volatility translates one-for-one into interest-rate volatility, provided the

4We also find below for the mean reversion case that the relationship is
cubic.
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economy is inside the band; in fact, the standard deviation of the

differential, conditional on being at a given point in the band, grows

monotonically as one narrows the band.

But, of course, as the band narrows, the supports of the probability

distributions of the fundamentals and the interest rate differential shrink

dramatically. The overall, unconditional variability of the differential

approaches zero as the band shrinks. This fact is vividly illustrated by

Figure 2 which also illustrates the rate at which convergence to zero

variability takes place. Recall that this figure shows the extreme valuem of

the differential against the extreme values of the fundamentals. The rmnge of

fluctuations of the differential drops precipitously as the band is tightened.

IV, MEAN REVEPJING FUNDAXENTALS

In this section we set up and solve an exchange rate systom similar to the

fixed trend fundamentals but with a crucial difference: The assumed process

for the cumulative disturbance v is mean reverting,5 as in equation (3). A

mean reverting supply disturbance is particularly interesting to study if v is

interpreted as a supply shock, as it can represent an error-correction policy

on the part of authorities. In particular, intervention on the part of Central

bmnks within the band, prior to reaching the edges, can be modelled that way.

This interpretation would fit the fact that 85% of all intervention is done

intramarginally. In the earlier constant-drift specification (Sections II and

III), it has been possible to interpret v interchangeably as a demand or as a

supply shock (see Appendix A). In the present case, we are going to

5Other researchers have used this process: Dumas (1989), Miller and
Weller (1988), Rrugman and Rotemberg (1990) and Front and Obstfeld (l989a).
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distinguish the two interpretations carefullY.

IV.l The model

Exchange rate Equation (1) remsins in force, but, in place of Equation (2).

stochastic differential Equation (3) characterizes the process followed by v.

is the long-run level of accumulated shocks and p is the speed with which

the process tends toward this value. This equation implies that the process

*
followed by X — m - m + v is given by:

dx— -p(X -
A0)

+adW - dU+dL (16)

where A0 — a0
+ m - m*. We now distinguish two interpretations of the model.

Interpretation /1 1: v is a demand shock. The mean reverting process for v

translates into a similar mean reverting process for X. However, while a is a

constant, the reversion point A0 for X is not immutable. U and L have the same

interpretation as before. Every time intervention is activated at the

boundaries, m - m* changes value and affects A0. A0 becomes in effect a new

state variable of the system, one, however, which changes only at the

*
boundaries. The initial condition is still X — mO - m + v

o 0 0

Interpretation 2: v is a supply shock reflecting intramarginal

intervention. Here again, the mean reverting process for v translates into a

similar mean reverting process for X. The difference with interpretation # 1

arises in the joint behavior of a0 and A0. We are no longer forced to consider

that A0 varies over time. If the authorities have decided to enforce, by

marginal intervention, a target zone centered on S0. it would be inconsistent

for them to let the target point of the intramarginal intervention wander away

from some preset level; they must therefore adjust a0 as m - m* changes to

keep A0 constant. This preset level is likely to be precisely A0 — S.
13



Under both interptetations, the diffetential equation implied by (1) and

the proceaa for X given in (17) is:6

5(X) — X - -yp(X -
A0)S'(X) + O.5-yc2S"(X) (17)

A change of variable Y — p(A0
- X)2/a2 turns equation (17) into Kummer's

equation.7 The general solution of differential equation (17) is:

S(Y(X)) — (X+A0py)/(l+p7) + C1M[l/2py;O.5;y) +
C2M((l+p-y)/2p-y;l.5;Y]Jp(A0-X)/cy

(18)

where M[. ;.;'J is the confluent hypetgeometric function (HGF); Cl and C2 are

constants of integration to be determined by boundary behavior aa in section

II.

IV.2 Solutions

The free float solution, corresponding to an absence of marginal

intervention, is given by the first term in (18), a straight line in Figures 5

and 6. Unlike the fixed trend fundamental case, this line is not fixed. Its

position (but not its slope) depends, via the variable A0 on the two money

supplies and therefore on the two Central banks' levels of assets (including

reserves)

The target zone policy implies, as before, the solution of a system of

four equations with four unknowns C1, C2, X, X, given the choice of exchange

rate bounds.

6This is, of course, after applying ItB's lemma, and assuming that 5(X)
is twice continuously differentiable.

7See Abramowitz and Stegun (1972), page 504.
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5(1(A)) — (19)

S(Y(X)) — s (20)

S'(Y(k)) — 0 (21)

S'(Y(X)) — 0 (22)

Consider first the symmetric case, in which exchange rate bounds are placed

at an equal distance from the mean reversion point A0. Direct observation of

Equation (18) allows one to conclude that the integration constant C1 must be

equal to zero, since it is the coefficient of the only non-symmetric term. Let

50—A0, X—A0+6, X—A0 - Sands—50+c, S—S0 - c. Thevariablef

must be determined as a function of c, the distance of the bounds from S —

A0. The system reduces to one of two equations with two unknowns C2 and 5.

s0
+ c — + + A0p-y)/(l+py)-

C2M[(l+p-y)/2p-y;1.5;Y]JpS/u (23)

0 — l/ + ri) - C2(Jp/c)(M[(l+p)/2p;1.5;Y)

+ 29 M[(l+3p)/2p;2.5;Y]) (24)

where t — p52/c2. Given 0 and the half width of the band (c) we can obtain C2

and 5.

Under interpretation 4 2 with A0 — S the symmetric case is perfectly

natural. Under interpretation 4 1, however, it is very special: Even if an

exchange rate system starts in a symmetric situation, the first time one

country intervenes to maintain the exchange rate within the specified bands,

the symmetry will have been eliminated because the mean reversion point A0

15



will have been shifted.

It is therefore essential to solve the non-symmetric case as well. For that

purpose we define some functions:

Y(X) — p(A0
- X)2/a2 (25)

M1(Y) — M[l/2py ; 0.5 ; Y]

113(Y) — Mj(l+2py)/2p ; 1.5 Y]

M2(Y) — M[(l+pi)/2pi ; 1.5 ;

M4(Y) — M[(l+3p)/2p-y 2.5 ; Y]

N1(Y) — M1(Y(X))

N2(Y) — M2(Y)jp(A0
-

NP1(Y)
—

2[(A0
-

X)/1a2]M3(Y)

NP2(Y) — -(J)/a(M2(Y) + 2Y[(l+p7)/3p1]M4(Y))
NPP1(Y) — (2/-ya2)M3(Y)

+ 4Y[(l+2p)/(3py2a2)M5(Y)

NPP2(Y) — 2pJ[(l+p-y)/(3p2)](3M4(Y) + 2Y[(1+3p7)/(5pyflM6(Y))

N]. and N2 are the last two functional forms in the solution (19); Nfl and NP2

are their first derivatives and NPP1 and NPP2 their second derivatives.

With these definitions and some algebra to eliminate the constants of

integration in the system (19)-(22) we can write a non-linear system of two

variables with two unknowns for ( and X, to be solved for given values of S

and S:

+
A0

- (l+py) N1(X) N2() NP1() NP2(X)
-l

1

X + A0
- S(l+p1)

-

N1(X) N2(X) NP1(X) NP2(X)
1

8For the same reason, the free-float locus moves whenever a country

intervenes.
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We now draw the implications of this system.

V LIMITING PROPERTIES OF TARGET ZONES

UNDER MEAN REVERTING FUNDAMENTALS

INSERT FIGURES S AND 6 HERE

The set of tsrget zones of different widths is pictured as the thick line

locus in Figures 5 and 6. These figures are leid out exectly like Figure 1

but under the assumption of a variable dtift. Figure 5 depicts the

"symmetric" mean-reversion case in which the exchange rate bands ate

centered, and then widened or narrowed, around the long-run mean reversion

point for fundamentals (S — A0), while Figure 6 depicts the general case in

which the same is done around an arbitrary point.

A comparison with the constant-trend case seems worthwhile at this point.

For this purpose, one would calibrare a constant-trend analysis to match the

values of the drift at the center of the band (e.g. we pick — 0 in the

symmetric case). It would be found that the constant-trend locus so calibrated

is not uniformly inside or outside the mean-reversion locus. One might expect

that the market would tolerate wider bands -- i.e. wider deviations in the

fundamentala -- when the disturbance is known to have a temporary component

than when it is permanent. In fact, the mean-reversion bounds on the

fundamentals are inside the mean-reversion bounds for moderate size bands;

they are outside them, as expected, only when the band is wide enough.

For the analysis of limiting properties of target zones, the following

17



(4

asymptotic values of the HGF will be useful:

i) For small Y we can approximate M[a;b;Y[ — 1 + (a/h)Y (27)

ii) For large Y we can approximate M[a;b;Y[ — [F(b)/r(a)JeYYa(l+oIyI1) (28)

V.1 Widenine the bend

The solution of (26) for any band produces a relationship which links the

positioning of the band in the fundamentals dimension to the center and width

of the band in the exchange rate dimension. Using the limiting value (28) of

this HGF, this relationship, at either end, is found to be:

- (k + A0p)/(l+p-y) S - (X + A0p-y)/(l+p) (29)

In other words:

Statement # 4: The asymptotes of the (S,X) and (S,X) loci in Figures 5 and

6 coincide with the free-float line.

The policy implications of this result are markedly at variance with those

obtained for the constant-trend caae)°

i) A very wide band is approximately the same as a regime without marginal

intervention;

ii) For a very wide band, the interest-rate differential is at all times

9See Abramowitz and Stegun (1972), especially equations 13.1.2 and
13.1.4. page 504.

10Also, under imperfect credibility [as in Delgado and Dumas (1990)[, a
very wide band would require no reserves, as there would be practically no
risk of speculative attacks: Under mean reversion, reaching the edges of a
very wide band becomes a zero probability event. But thia observation falls
outside the topic of the present paper.
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practically equal to what it would be under no marginal intervention: p(A0 -

X)/(l + py).

V.2 Tiahtening the band

The study of narrow bands must be distinguished depending on whether the

band is chosen to be symmetric or not.

To study the behavior of narrow symmetric bands (S — S + c, — S - c; X

— S + 6, — S + 6), we can proceed to linearize the system (l9)-(22) using

the expansion (27) of the HCF. This will give us a system of two equation with

two unknowns. Solving for the constant of integration C2 from (24) and

replacing it in (23) yielda the following equation which links the distance 6

of the limits on fundamentals with the width c of the band.

3 2
6 6 ÷ 6 (1 + )/(3a y)

(30)—
1 + py

- (I + p)[l + 6'((l +

or, simplifying further:

- (2/3)[(l+p)/(c2)J63. (31)

Hence:

Statement 1/ 5: In the case of narrow symmetric bands, the relationship

between the bounds on fundamentals and the bounds on the exchange rate is

cubic, as in the case of constant drift.

The fundamentals deviation S is of order id1"3 (witness the flat section of

the double-sided locus in Figure 5 near point FX). The fundamentals, here

again, have a lot of room to move about.
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A comparison of Figures 5 and 6 around point FX provides a hint that this

result does not survive to an asymmetry in the band. For the asymmetric case

(S — S + c, — S - c; X — S + 8, — S - fl, the full system (26) is

needed. Expand around S0 using the previously defined functions:

—
N1(S0)

+
NP1(S0)6

N2(X) — N2(S0) +

NP1(k)
—

NP1(S0)
+

NPP1(S0)6

NP2(X) — NP2(S0) ÷ NPP2(S0)6

N1(X) — N1(S0)
-

NP1(S0)6

N2(X) — N2(S0)
-

NP2(50)6

NP1(X) — NP1(50)
-

NPP1(S0)6

NP2(X) — NP2(S0)
-

NPP2(S0)&

where NPP1 (resp. NPP2) is the derivative of NPl (NP2) with respect to X.

Replacing in (26) we can solve for & and 6 and obtain:

— & — 2c(]. + p).

or: c — 6/2(1 ÷ (32)

This result is to be compared to equation (31) which was cubic in 6.

Stetement /fr 6: As soon as the band is not exactly centered on the reversion

point, the relationship between the bounds on fundamentals and the bounds

on the exchange rate is linear.

We loose the policy implication which said that fundamentals have room to

move about even when the exchange rate band is narrow.
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VI. CONCLUSION

This psper hss illustrated the tradeoffs policy makers would face when

choosing the width of a band, or when converging to an extremely narrow band

in order to shift to a unique currency. These tradeoffs concern the degree of

exchange- rate, interest-rate and fundamentals variability. They depend on the

assumed process (constant drift or mean reversion) for the disturbances which

affect money demand and/or supply.

They also depend on the type of coordination which would take place in case

of foreign exchange crisis. In this last respect, we have been careful to make

Assumption 2 so as to avoid altogether the problem of speculative attacks and

needed reserves. We have assumed that central banks credibly and

unconditionally intervene so as prevent speculative attacks. Indefinite

intervention is possible if the central bank of the currently strong currency

supports the other currency by printing money.

We have generalized the result of Svensson (1989) that the variability of

the exchange rate is translated into variability in the interest rate

differential.

We have also found that the degree of fundamentals variability which would

be tolerated by the market when a target zone is extremely narrow is very

large (a difference of two orders cf magnitude) in the case of a constant

drift disturbance and in the case of mean reversion with a band exactly

centered on the reversion point. The result is lost if the band is not

precisely centered there.
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APPENDIX A

MODEL INTERPRETATION

It is conceivable to interpret v either as a supply or a demand shock.

Consider the following two-country log-linear monetary exchange rate model

which has been extensively used in recent work (see for example Delgedo and

Dumas (1990) and all the references given there).

m—.Qn(D+R)+z1—m+z1 (Al)

(A2)

m-p—y--yi+z2 (A3)

-* * * * *
m -p —*y +12 (A4)

i — i* + E(dS I '(tfl/dt + 13 (AS)

All starred variables are the foreign variables corresponding to the non-

starred domestic variables. 21 being a multiplicative shock which affects (D +

R) and is assumed to follow a geometric Erownian motion process, z is the log

of m is the total money supply that can be broken down into two

components, m the controllable money supply, and 11 the uncontrollable

component. The right-hand sides of equations (A3) and (A4) are money demands;

12 and 4
are money demand shocks. p is the price level. y is domestic output.

i is the domestic interest rate.

E is the expectations operator. '(t) is the information set used by

In the classic speculative attack literature [Rrugman (1979) and Flood
and Carber (1983); see also Dornbusch (1984) and Claessens (l98(A3)], shoc4
came from growth in domestic credit. In our formulation, the terms and

are shocks applied to the sum of R end D, not to D.
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(1989a, b) put it, all information regarding not only the evolution of the

variables in the system (Al)-(A5), but the implicit as well as explicit
If

government policies regarding exchange rate regimes in particular and monetary

policy in general. Of impottance for our purposes is the market perception

that once the central bank whose currency is weak runs out of reseves, the

other central bank will continue intervention to support the weak currency.

Subtracting (A3) from (A4) and replacing (Al), (A2) and (A3) we can obtain

equation (1), where v — (z1
- 4) + (y - y*) (z2 - 4) +

z3 is a cumulative

shock. Given that v includes terms in and it can be interpreted as

either a demand or a supply shock to money.
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APPENDIX B

MONOTONIC RELATIONSHIP BETWEEN

THE BAND ON FUNDAMENTALS AND THE BAND ON THE EXCHANGE RATE

For simplicity let's define the following functions:

- aX-fiX aX-fiX (a-fi)X
NF(X,X) — -fie - oe + (a+fi)e (El)

- oX-fiX oX-fiX (a-fi)X
HC(X,X) — oe + fie - (a+fi)e (82)

oX-fiX oX-fiX
DF(X,X) — -afi(e - e ) (B3)

F(X,A;S,) — - X + S - + NF(X,X)/DF(X,A) — 0 (84)

C(XX;S,S) — - X + S - - + NG(X,X)/DF(X,X) — 0 (BE)

Using the implicit function theorem for F(.) — 0 and G(.) — 0 we can

obtain the two derivatives aX/a and which we are looking for.

Defining the following functions

— BF(•)/PX (BE)

— aF(•)/3 (B7)

Cl(s) — dG(•)/BX (88)

02(5) — aG(.)/3X (89)

— BF(')/3S (810)

— 3F(•)/8 , (811)
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we can determine the signs of the following expressions

F F
sl x2

OX/aS — / J a 0 (312)

C C
sl x2

F F
xl s2

/Ja0 (513)

C C
xl s2

where:

F F
xl x2

>0 (514)

C C
xl x2

Replacing all definitions in (512) and (513), and remembering that 1/a -

1/fl — -yp, we obtain the signs of the partial derivatives. Q.E.D.
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APPENDIX C

ASYMPTOTIC BEHAVIOR POR WIDE BANDS

UNDER CONSTANT DREFT

Let us call S the joint asymptotic value of the distance of it from the

diagonal line and of the distance of from the free-float line; let us also

call 2 the width of the exchange rate band, S — S + c and S — S - r. We

have:

it — So + C + S

--yp-5 and

X — X - 2(c + 5) -

To study the behavior of wide bands we can substitute these relationships

into (14), simplify, and neglect terms that approach zero as we make 5, c -.

We obtain a simple relstionshipH2

S—c - -yp+l/a=c+l/ (Cl)

Q.E.D.

12Svensson obtained a similar relationship for the special case of zero

drift (ji — 0) in which the two roots are of equal magnitude: m The
distance from the free-float (confounded in his case with the 45 line) was
1/a — -1/fl.
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APPENDIX D

CUBIC RELATIONSHIP FOR NARROW BANDS BETWEEN

THE BAND ON FUNDAMENTALS AND THE BAND ON THE EXCHANGE RATE

UNDER CONSTANT DRIFT

To obtain the relationship between the widths of the bands for small widths we

are going to use a linear approximation to the exponential function:

1 + Ax + (Ax)2/2! + (Ax)3/3! + ... (Dl)

The expansion is carried out as far as is needed. Additional terms are

added if the prior order terms vanish or lead to an identity.

We proceed with the linearization around S. The four variables with

respect to which the linearization is to be performed can be written as:

—
5o

+ c (02)

(03)

(04)

ASe-A (05)

Replacing (02)-(D5) in (A14)-(A15) the system is written as:

- - -e° + - oe0L + fl + (o+)e(°Th8
(06)

oS + 6 - (aL +
$6))
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+ +
- (a-I-)e°+

_________________________________________ (D7)
a + -(a6 + 6)e — )

The last two equations can also be written in matrix form as

— — — lii
-1 1 a 1 iF

1 1 + 8 le e I 1/a 0 I e e

—
I—1— Ii I I i (08)

H L - i Fe
I i j [o l/j Le e j [ij

Using -ip — 1/a - l/ and expanding (08), the following expression is

obtained:

( + $)( + /l2 (09)

Q.E.D.
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Legends for figures

Figure 1: Tsrget zones of different widths

The figure is constructed by changing the width of the band around S — 4.5.

This means solving the system (14)-(l5) for different values of S and S

positioned symmetrically around S0. The two straight lines in the middle are

the 450 diagonal line which contains the fixed exchange points, and the free

float. The thick line is the locus of tangencies implied by the smooth

pasting conditions. Points above S are pairs (X,); points below S are

pairs (X, s.). Numerical values of parameters are: 2 — 0.25, p — 0.5 and y —

0.5. Units on the two axes are not the same.

Figure 2: Extreme values of interest rate differential

The figure is constructed by changing the width of the exchange rate band

symmetrically around S — 4.5. Points above o have abscissae equal to i and

ordinates equal to the interest rate differential (assumed equal to the

conditionally expected exchange rate change) reached when X — X. Points below

have abscissae equal to X and ordinates equal to the interest rate

differential (assumed equal to the conditionally expected exchange rate

change) reached when X — . Numerical values of parameters are: 2 — 0.25, p —

0.5 and 7 — 0.5.

Figure 3: Exchange rate and interest rate differential

When the band is wide as in the case of this figure ( — 1.999, — 7.001),

the exchange-rate curve follows the free-float line and the interest-rate

curve is flat over most of the range of allowed variations. Numerical values

of parameters are: a — 0.25, p — 0.5 and y — 0.5.
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Figure 4: Exchange rate and interest rate differential

When the band is narrow as in the case of this figure ( — 4.4999, —

4.5001), the exchange-rate curve is S-shaped and is situated far from the

free-float line. The interest-rate curve is practically a straigtht line

reflecting the imminent intervention. Numerical values of parameters are:

0.25, p — 05 and y — 0.5.

Figure 5: Target zones of different widths: mean reverting case; symmetric

solution with reversion point A0 — 7.8.

The figure is constructed by changing the width of the band around —
A0

—

7.8. This means solving the system (26) for different values of S and S

posicioned symmetrically around S0 — A0. The two straight lines in the middle

are the 450 diagonal line which contains the fixed exchange points, and the

free float which is not at a 450 incline in this case. The thin curve is an

example of an exchange rate curve. The thick line is the locus of tangencies

implied by the smooth pasting conditions. Points above o are pairs (X, 5);

points below o are pairs (, ). Observe the flatness of the locus around

7.8. Numerical values of parameters are: p — 0.5, a2 — 0.2, A0 — 7.8 and -y —

0.5. Units on the two axes are not the same.

Figure 6: Target zones of different widths: mean reverting, non-symmetric

csse.

The figure is similar to Figure 5. While the reversion point A0 is still equal

to 4.8, the center of the exchange rate band is now at o — 9. The free-float

line and the 450 line would intersect at 7.8. The thin curve is an example of

an exchange rate curve. The thick line is the locus of tangencies implied by

the smooth pasting conditions. Observe that the locus is not flat around the

central point S — 9.
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