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ABSTRACT

This paper solves explicitly an equilibrium asset pricing model with liquidity risk – the risk arising

from unpredictable changes in liquidity over time. In our liquidity-adjusted capital asset pricing

model, a security's required return depends on its expected liquidity as well as on the covariances

of its own return and liquidity with market return and market liquidity.  In addition, the model shows

how a negative shock to a security's liquidity, if it is persistent, results in low contemporaneous

returns and high predicted future returns. The model provides a simple, unified framework for

understanding the various channels through which liquidity risk may affect asset prices. Our

empirical results shed light on the total and relative economic significance of these channels.
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1 Introduction

Liquidity is risky and has commonality: it varies over time both for individual

stocks and for the market as a whole (Chordia, Roll, and Subrahmanyam (2000),

Hasbrouck and Seppi (2000), and Huberman and Halka (1999)). Liquidity risk is

often noted in the press, for instance:

The possibility that liquidity might disappear from a market, and so

not be available when it is needed, is a big source of risk to an in-

vestor.

— The Economist September 23, 1999

and in the financial industry:

there is also broad belief among users of financial liquidity — traders,

investors and central bankers — that the principal challenge is not

the average level of financial liquidity ... but its variability and un-

certainty

— Persaud (2003)

This paper presents a simple theoretical model that helps explain how asset

prices are affected by liquidity risk and commonality in liquidity. The model

provides a unified theoretical framework that can explain the empirical findings

that return sensitivity to market liquidity is priced (Pastor and Stambaugh (2003)),

that average liquidity is priced (Amihud and Mendelson (1986)), and that liquidity

comoves with returns and predicts future returns (Amihud (2002), Chordia, Roll,

and Subrahmanyam (2001), Jones (2001), and Bekaert, Harvey, and Lundblad

(2003)).
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In our model, risk averse agents in an overlapping-generations economy trade

securities whose liquidity varies randomly over time. We solve the model ex-

plicitly and derive a liquidity-adjusted capital asset pricing model (CAPM). Our

model of liquidity risk complements the existing theoretical literature on liquidity

and transactions costs, which deals with deterministic trading costs (for instance,

Amihud and Mendelson (1986), Constantinides (1986), Vayanos (1998), Vayanos

and Vila (1999), Gârleanu and Pedersen (2000), Huang (2002)). In the liquidity-

adjusted CAPM, the expected return of a security is increasing in its expected

illiquidity and its “net beta,” which is proportional to the covariance of its return,

ri, net of illiquidity costs, ci, with the market portfolio’s net return, rM − cM .

The net beta can be decomposed into the standard market beta and three betas

representing different forms of liquidity risk. These liquidity risks are associated

with (i) commonality in liquidity with the market liquidity, cov(ci, cM); (ii) return

sensitivity to market liquidity, cov(ri, cM); and (iii) liquidity sensitivity to market

returns, cov(ci, rM).

We explore the cross-sectional predictions of the model using NYSE and

AMEX stocks over the period 1963–1999. We use the illiquidity measure of Ami-

hud (2002) to proxy for ci. We find that the liquidity-adjusted CAPM fares better

than the standard CAPM in terms of R2 for cross-sectional returns and p-values

in specification tests, even though both models employ exactly one degree of free-

dom. The model has a good fit for portfolios sorted on liquidity, liquidity varia-

tion, and size, but the model cannot explain the cross-sectional returns associated

with the book-to-market effect.

An interesting result that emerges from our empirical exercises based on Ami-

hud’s illiquidity measure is that illiquid securities also have high liquidity risk. In

particular, a security that has high average illiquidity ci also tends to have high
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commonality in liquidity with the market liquidity, high return sensitivity to mar-

ket liquidity, and high liquidity sensitivity to market returns. While this collinear-

ity is itself interesting, it also complicates the task of distinguishing statistically

the relative return impacts of liquidity, liquidity risk, and market risk. There is,

however, some evidence that the total effect of the three liquidity risks matters

over and above market risk and the level of liquidity.

It is interesting to consider the total and relative economic significance of liq-

uidity level and each of the three liquidity risks by evaluating their contribution

to cross-sectional return differences. It is, however, difficult to accurately dis-

tinguish the relative economic effects because of the inherent collinearity in the

data. One of the benefits of having an economic model is that it provides a re-

strictive structure under which the identification problem is alleviated. Under the

model’s restrictions, liquidity risk contributes on average about 1.1% annually to

the difference in risk premium between stocks with high expected illiquidity and

low expected illiquidity. We decompose the effect of liquidity risk into the con-

tribution from each of the three kinds of risk, recognizing that these estimates are

subject to error and rely on the validity of the model:

First, we estimate that the return premium due to commonality in liquidity,

cov(ci, cM), is 0.08%. Hence, while the model shows that investors require a

return premium for a security that is illiquid when the market as a whole is illiquid,

this effect appears to be small. The commonality in liquidity has been documented

by Chordia, Roll, and Subrahmanyam (2000), Huberman and Halka (1999), and

Hasbrouck and Seppi (2000), but these papers do not study the implications for

required returns.

Second, we estimate that the return premium due to cov(ri, cM) is 0.16%. This

model-implied premium stems from investors’ preference for securities with high
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returns when the market is illiquid. Pastor and Stambaugh (2003) find empirical

support for this effect using monthly data over 34 years with a measure of liquidity

that they construct based on the return reversals induced by order flow.

Third, we estimate that the return premium due to cov(ci, rM) is 0.82%. In-

tuitively, investors are willing to pay a premium for a security that is liquid when

the market return is low. We note that cov(ci, rM) appears to be the most impor-

tant source of liquidity risk although it has not previously been considered in the

academic literature. It is, however, reflected in industry practices such as legal

disclaimers for certain asset management firms, e.g.

Risks of investing in smaller companies include ... the potential diffi-

culty of selling these stocks during market downturns (illiquidity).

— Legal Disclaimer, Investec Asset Management, 2004.1

The return premium due to the level of liquidity is calibrated based on the aver-

age turnover to be 3.5% so the combined effect of the differences in liquidity risks

and differences in the level of liquidity is estimated to be 4.6% per year. These

estimates of the relative importance of liquidity level and the liquidity risks de-

pend on the model-implied restrictions of a single risk premium and a level effect

consistent with the turnover. If we depart from the model restrictions and estimate

each liquidity risk premium as a free parameter then the economic effect of liquid-

ity risk appears to be larger, but the unrestricted premia are estimated with little

precision. Pastor and Stambaugh (2003) find a large (7.5%) effect of liquidity risk

(cov(ri, cM)) using an unrestricted liquidity risk premium and without controlling

for the level of liquidity.

1Source: http://www2.investecfunds.com/US/LegalDisclaimer/Index.cfm
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Finally, the model also shows that, since liquidity is persistent,2 liquidity pre-

dicts future returns and liquidity co-moves with contemporaneous returns. This

is because a positive shock to illiquidity predicts high future illiquidity, which

raises the required return and lowers contemporaneous prices. This may help ex-

plain the empirical findings of Amihud, Mendelson, and Wood (1990), Amihud

(2002), Chordia, Roll, and Subrahmanyam (2001), Jones (2001), and Pastor and

Stambaugh (2003) in the US stock market, and of Bekaert, Harvey, and Lundblad

(2003) in emerging markets.

In summary, we offer a simple theoretical framework that illustrates several

channels through which liquidity risk can affect asset prices. The model is a useful

first step in understanding how a number of recent empirical findings fit together.

Finally, our empirical analysis suggests that the effects of liquidity level and liq-

uidity risk are separate, although the analysis is made difficult by collinearity, and

that one channel for liquidity risk that has not been treated in the prior literature,

cov(ci, rM ), may be of empirical importance.

The paper is organized as follows. Section 2 describes the economy. Section 3

derives the liquidity-adjusted capital asset pricing model and outlines how liquid-

ity predicts and co-moves with returns. Section 4 contains an empirical analysis.

Section 5 concludes. Proofs are in the Appendix.

2 Assumptions

The model assumes a simple overlapping generations economy in which a new

generation of agents is born at any time t ∈ {. . . ,−2,−1, 0, 1, 2, . . .} (Samuel-

son (1958)). Generation t consists of N agents, indexed by n, who live for two
2Amihud (2002), Chordia, Roll, and Subrahmanyam (2000, 2001), Hasbrouck and Seppi

(2000), Huberman and Halka (1999), Jones (2001), and Pastor and Stambaugh (2003).
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periods, t and t + 1. Agent n of generation t has an endowment at time t and no

other sources of income, trades in periods t and t + 1, and derives utility from

consumption at time t + 1. He has constant absolute risk aversion An so that his

preferences are represented by the expected utility function −Et exp(−Anxt+1),

where xt+1 is his consumption at time t + 1.

There are I securities indexed by i = 1, . . . , I with a total of S i shares of secu-

rity i. At time t, security i pays a dividend of Di
t, has an ex-dividend share price of

P i
t , and has an illiquidity cost of C i

t , where Di
t and C i

t are random variables.3 The

illiquidity cost, C i
t , is modeled simply as the per-share cost of selling security i.

Hence, agents can buy at P i
t but must sell at P i

t −C i
t . Short-selling is not allowed.

Uncertainty about the illiquidity cost is what generates the liquidity risk in

this model. Specifically, we assume that Di
t and C i

t are autoregressive processes

of order one, that is:

Dt = D̄ + ρD(Dt−1 − D̄) + εt

Ct = C̄ + ρC(Ct−1 − C̄) + ηt ,

where4 D̄, C̄ ∈ R
I
+ are positive real vectors, ρD, ρC ∈ [0, 1], and (εt, ηt) is an

independent identically distributed normal process with mean E(εt) = E(ηt) = 0

and variance-covariance matrices var(εt) = ΣD, var(ηt) = ΣC , and E(εtη
>
t ) =

ΣCD.

We assume that agents can borrow and lend at a risk-free real return of rf > 1,

which is exogenous. This can be interpreted as an inelastic bond market, or a

3All random variables are defined on a probability space (Ω,F ,P), and all random variables
indexed by t are measurable with respect to the filtration {Ft}, representing the information com-
monly available to investors.

4For notational convenience we assume that all securities have the same autocorrelation of
dividends and liquidity (ρD and ρC) although our results apply more generally.
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generally available production technology that turns a unit of consumption at time

t into rf units of consumption at time t + 1.

The assumptions with respect to agents, preferences, and dividends are strong.

These assumptions are made for tractability, and, as we shall see, they imply nat-

ural closed-form results for prices and expected returns. The main result (Propo-

sition 1) applies more generally, however. It holds for arbitrary utility functions

defined on (−∞,∞) as long as conditional expected net returns are normal,5 and

also for arbitrary return distribution and quadratic utility. Furthermore, it can be

viewed as a result of near-rational behavior, for instance, by using a Taylor ex-

pansion of the utility function (see Huang and Litzenberger (1988), Markowitz

(2000), and Cochrane (2001)). Our assumptions allow us, additionally, to study

return predictability caused by illiquidity (Proposition 2) and the co-movements

of returns and illiquidity (Proposition 3), producing insights that also seem robust

to the specification.

Perhaps the strongest assumption is that investors need to sell all their securi-

ties after one period (when they die). In a more general setting with endogenous

holding periods, deriving a general equilibrium with time-varying liquidity is an

onerous task. While our model is mostly suggestive, it is helpful since it provides

guidelines concerning the first-order effect of liquidity risk, showing which risks

are priced. The assumption of overlapping generations can capture investors’ life-

cycle motives for trade (as in Vayanos (1998), and Constantinides, Donaldson, and

Mehra (2002)), or can be viewed as a way of capturing short investment horizons

(as in De Long, Shleifer, Summers, and Waldmann (1990)) and the large turnover

observed empirically in many markets.

5The normal returns assumption is an assumption about endogenous variables that is used
in standard CAPM analysis (for instance, Huang and Litzenberger (1988)). This assumption is
satisfied in the equilibrium of the model of this paper.

8



It should also be noted that a narrow interpretation of the illiquidity cost, C i
t ,

is that it is a transaction cost such as broker fees and bid-ask spread, in line with

the literature on exogenous transactions costs. More broadly, however, the illiq-

uidity cost could represent other the real costs, for instance, arising from delay

and search associated with trade execution as in Duffie, Gârleanu, and Pedersen

(2000). The novelty in our model arises from the fact that we allow this cost

to be time-varying. While research on endogenous time-variation in illiquidity

is sparse, in a recent paper Eisfeldt (2004) presents a model in which liquidity

fluctuates with real-sector productivity and investment.

3 Liquidity-Adjusted Capital Asset Pricing Model

This section derives a liquidity-adjusted version of the Capital Asset Pricing Model

(CAPM) and studies its asset pricing implications.

We are interested in how an asset’s expected (gross) return,

ri
t =

Di
t + P i

t

P i
t−1

,

depends on its relative illiquidity cost, defined as

ci
t =

C i
t

P i
t−1

,

on the market return,

rM
t =

∑

i S
i(Di

t + P i
t )

∑

i S
iP i

t−1

,
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and on the relative market illiquidity,

cM
t =

∑

i S
iC i

t
∑

i S
iP i

t−1

.

In a competitive equilibrium of the model (henceforth referred to simply as equi-

librium), agents choose consumption and portfolios so as to maximize their ex-

pected utility taking prices as given, and prices are determined such that markets

clear.

To determine equilibrium prices, consider first an economy with the same

agents in which asset i has a dividend of Di
t − C i

t and no illiquidity cost. In

this imagined economy, standard results imply that the CAPM holds (Markowitz

(1952), Sharpe (1964), Lintner (1965), and Mossin (1966)). We claim that the

equilibrium prices in the original economy with frictions are the same as those of

the imagined economy. This follows from two facts: (i) the net return on a long

position is the same in both economies; (ii) all investors in the imagined econ-

omy hold a long position in the market portfolio, and a (long or short) position

in the risk-free asset. Hence, an investor’s equilibrium return in the frictionless

economy is feasible in the original economy, and is also optimal, given the more

limited investment opportunities due to the short-selling constraints.6

These arguments show that the CAPM in the imagined frictionless economy

translates into a CAPM in net returns for the original economy with illiquidity

costs. Rewriting the one-beta CAPM in net returns in terms of gross returns,

we get a liquidity-adjusted CAPM for gross returns. This is the main testable7

6This argument applies more generally since positive transactions costs imply that a short po-
sition has a worse payoff than minus the payoff of a long position. We impose the short-sale
constraint because C can be negative in our normal setting.

7Difficulties in testing this model arise from the fact that it makes predictions concerning condi-
tional moments as is standard in asset pricing. See Hansen and Richard (1987), Cochrane (2001),
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implication of this paper:

Proposition 1 In the unique linear equilibrium, the conditional expected net re-

turn of security i is

Et(r
i
t+1 − ci

t+1) = rf + λt

covt(r
i
t+1 − ci

t+1, r
M
t+1 − cM

t+1)

vart(rM
t+1 − cM

t+1)
(1)

where λt = Et(r
M
t+1−cM

t+1−rf ) is the risk premium. Equivalently, the conditional

expected gross return is

Et(r
i
t+1) = rf + Et(c

i
t+1) + λt

covt(r
i
t+1, r

M
t+1)

vart(rM
t+1 − cM

t+1)
+ λt

covt(c
i
t+1, c

M
t+1)

vart(rM
t+1 − cM

t+1)

−λt

covt(r
i
t+1, c

M
t+1)

vart(rM
t+1 − cM

t+1)
− λt

covt(c
i
t+1, r

M
t+1)

vart(rM
t+1 − cM

t+1)
. (2)

Equation (2) is simple and natural. It states that the required excess return is the

expected relative illiquidity cost, Et(c
i
t+1), as found theoretically and empirically8

by Amihud and Mendelson (1986)), plus four betas (or covariances) times the risk

premium. These four betas depend on the asset’s payoff and liquidity risks. As

in the standard CAPM, the required return on an asset increases linearly with the

market beta, that is, covariance between the asset’s return and the market return.

This model yields three additional effects which could be regarded as three forms

and references therein. An unconditional version of (2) applies under stronger assumptions as
discussed in Section 3.3.

8Empirically, Amihud and Mendelson (1986, 1989) find the required rate of return on NYSE
stocks to increase with the relative bid-ask spread. This result is questioned for NYSE stocks
by Eleswarapu and Reinganum (1993), but supported for NYSE stocks (especially for amortized
spreads) by Chalmers and Kadlec (1998), and for Nasdaq stocks by Eleswarapu (1997). Gârleanu
and Pedersen (2000) find that adverse-selection costs are priced only to the extent that they render
allocations inefficient. The ability of a market to allocate assets efficiently may be related to market
depth, and, consistent with this view, the required rate of return has been found to decrease with
measures of depth (Brennan and Subrahmanyam (1996) and Amihud (2002)). Easley, Hvidkjær,
and O’Hara (2002) find returns to increase with a measure of the probability of informed trading.
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of liquidity risks.

3.1 Three Liquidity Risks

1. covt(c
i
t+1, c

M
t+1): The first effect is that the return increases with the covariance

between the asset’s illiquidity and the market illiquidity. This is because investors

want to be compensated for holding a security that becomes illiquid when the

market in general becomes illiquid. The potential empirical significance of this

pricing implication follows from the presence of a time-varying common factor

in liquidity, which is documented by Chordia, Roll, and Subrahmanyam (2000),

Hasbrouck and Seppi (2000), and Huberman and Halka (1999). These papers

find that most stocks’ illiquidities are positively related to market illiquidity, so

the required return should be raised by the commonality-in-liquidity effect. The

effect of commonality in liquidity on asset prices is, however, not studied by these

authors; We study this effect empirically in Section 4.

In this model, the risk premium associated with commonality in liquidity is

caused by the wealth effects of illiquidity. Also, this risk premium would poten-

tially apply in an economy in which investors can choose which securities to sell.

In such a model, an investor who holds a security that becomes illiquid (that is,

has a high cost ci
t) can choose not to trade this security and instead trade other

(similar) securities. It is more likely that an investor can trade other (similar) se-

curities, at low cost, if the liquidity of this asset does not co-move with the market

liquidity. Hence, investors would require a return premium for assets with positive

covariance between individual and market illiquidity.

2. covt(r
i
t+1, c

M
t+1): The second effect on expected returns is due to covariation

between a security’s return and the market liquidity. We see that covt(r
i
t+1, c

M
t+1)
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affects required returns negatively because investors are willing to accept a lower

return on an asset with a high return in times of market illiquidity. Related effects

also arise in the theoretical models of Holmstrom and Tirole (2000), who examine

implications of corporate demand for liquidity, and Lustig (2001), who studies the

equilibrium implications of solvency constraints. Empirical support for this effect

is provided by Pastor and Stambaugh (2003), who find that “the average return

on stocks with high sensitivities to [market] liquidity exceeds that for stocks with

low sensitivities by 7.5% annually, adjusted for exposures to the market return as

well as size, value, and momentum factors.” Sadka (2002) and Wang (2002) also

present consistent evidence for this effect using alternative measures of liquidity.

3. covt(c
i
t+1, r

M
t+1): The third effect on required returns is due to covariation be-

tween a security’s illiquidity and the market return. This effect stems from in-

vestors’ willingness to accept a lower expected return on a security that is liquid

in a down market. When the market declines, investors are poor, and the ability

to sell easily is especially valuable. Hence, an investor is willing to accept a dis-

counted return on stocks with low illiquidity costs in states of poor market return.

We find consistent evidence for this liquidity risk in the stock market in Sec-

tion 4, and the effect seems economically important. Also, anecdotal evidence9

suggests that private equity is illiquid during down markets, which, together with

our model, may help explain the high average return documented by Ljungqvist

and Richardson (2003).

Outside our model, intuition suggests that a low market return causes wealth

problems for some investors, who then need to sell. If a selling investor holds

securities that are illiquid at this time, then his problems are magnified. Con-
9E.g., the Institute for Fiduciary Education (2002) characterizes private equity as an “illiquid

asset class” and points out that “In down equity markets, exits are more difficult and little cash is
returned.” Source: http://www.ifecorp.com/Papers-PDFs/Wender1102.PDF
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sistent with this intuition, Lynch and Tan (2003) find that the liquidity premium

is large if the transactions costs covary negatively with wealth shocks, among

other conditions. This is consistent with our effect of covt(c
i
t+1, r

M
t+1) to the extent

that rM proxies for wealth shocks. Lynch and Tan (2003) complement our paper

by showing through calibration that, even if an investor chooses his holding pe-

riod endogenously, the liquidity premium can be large (3.55% in one calibration).

They follow Constantinides (1986) in using a partial-equilibrium framework and

defining the liquidity premium as the decrease in expected return that makes an

investor indifferent between having access to the asset without transaction costs

rather than with them.

The three covariances thus provide a characterization of the liquidity risk of a

security. We note that all these covariances can be accounted for by simply using

the conditional CAPM in net returns as in (1). It is useful, however, to use gross

returns and illiquidity as the basic inputs for several reasons: First, computing

the net return is not straightforward since it depends on the investor’s holding pe-

riod, and the holding period may be different from the econometrician’s sampling

period. We explain in Section 4 how we overcome this problem. Second, the

empirical liquidity literature is based on measures of gross return and illiquidity

costs, and the model provides a theoretical foundation for the empirical relations

between these security characteristics. Third, a pricing relation for gross returns

and illiquidity, which is similar in spirit to (2), may hold in richer models in which

net returns are not sufficient state variables. As argued above, additional liquidity

effects outside the model suggest risk premia of the same sign for the covariance

terms in (2). These additional liquidity effects also suggest that the size of the risk

premia need not be identical across the covariance terms. To accommodate the

possibility of a richer liquidity framework, we also consider a generalization of
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(2) in our empirical work in Section 4.

3.2 Implications of Persistence of Liquidity

This section shows that persistence of liquidity implies that liquidity predicts fu-

ture returns and co-moves with contemporaneous returns.

Empirically, liquidity is time-varying and persistent,10 that is, ρC > 0. This

model shows that persistent liquidity implies that returns are predictable. Intu-

itively, high illiquidity today predicts high expected illiquidity next period, imply-

ing a high required return.

Proposition 2 Suppose that ρC > 0, and that q ∈ R
I is a portfolio11 with

Et(P
q
t+1 + Dq

t+1) > ρCP q
t . Then, the conditional expected return increases with

illiquidity,

∂

∂Cq
t

Et(r
q
t+1 − rf ) > 0. (3)

Proposition 2 relies on a mild technical condition, which is satisfied, for instance,

for any portfolio with positive price and with Et(P
q
t+1 + Dq

t+1)/P
q
t ≥ 1. The

proposition states that the conditional expected return depends positively on the

current illiquidity cost, that is, the current liquidity predicts the return.

Jones (2001) finds empirically that the expected annual stock market return

increases with the previous year’s bid-ask spread and decreases with the previous

year’s turnover. Amihud (2002) finds that illiquidity predicts excess return both

for the market and for size-based portfolios, and Bekaert, Harvey, and Lundblad

(2003) find that illiquidity predicts returns in emerging markets.
10See Amihud (2002), Chordia, Roll, and Subrahmanyam (2000, 2001), Hasbrouck and Seppi

(2000), Huberman and Halka (1999), Jones (2001), and Pastor and Stambaugh (2003).
11For any q ∈ R

I , we use the obvious notation D
q
t = q>Dt, r

q
t =

∑

i
qi(Di

t+P i
t )

∑

i
qiP i

t−1

and so on.
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Predictability of liquidity further implies a negative conditional covariance

between contemporaneous returns and illiquidity. Naturally, when illiquidity is

high, the required return is high also, which depresses the current price, leading to

a low return. This intuition applies as long as liquidity is persistent (ρC > 0) and

innovations in dividends and illiquidity are not too correlated (q>ΣCDq low for a

portfolio q) as is formalized in the following proposition.

Proposition 3 Suppose q ∈ R
I is a portfolio such that ρC(rf q>ΣCDq + (rf −

ρD)q>ΣCq) > (rf )2 q>ΣCDq. Then, returns are low when illiquidity increases,

covt(c
q
t+1, r

q
t+1) < 0 (4)

Consistent with this result, Chordia, Roll, and Subrahmanyam (2001), Jones (2001),

and Pastor and Stambaugh (2003) find a negative relation between the market re-

turn and measures of market illiquidity, Amihud (2002) finds a negative relation

between the return on size portfolios and their corresponding unexpected illiq-

uidity, and Bekaert, Harvey, and Lundblad (2003) find a negative relationship

between illiquidity and returns for emerging markets.

3.3 An Unconditional Liquidity-Adjusted CAPM

To estimate the liquidity-adjusted CAPM, we derive an unconditional version. An

unconditional result obtains, for instance, under the assumption of independence

over time of dividends and illiquidity costs. Empirically, however, illiquidity is

persistent. Therefore, we rely instead on an assumption of constant conditional
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covariances of innovations in illiquidity and returns.12 This assumption yields the

unconditional result that,

E(ri
t − rf

t ) = E(ci
t) + λβ1i + λβ2i − λβ3i − λβ4i , (6)

where

β1i =
cov(ri

t, r
M
t − Et−1(r

M
t ))

var (rM
t − Et−1(rM

t ) − [cM
t − Et−1(cM

t )])
(7)

β2i =
cov(ci

t − Et−1(c
i
t), c

M
t − Et−1(c

M
t ))

var (rM
t − Et−1(rM

t ) − [cM
t − Et−1(cM

t )])
(8)

β3i =
cov(ri

t, c
M
t − Et−1(c

M
t ))

var (rM
t − Et−1(rM

t ) − [cM
t − Et−1(cM

t )])
(9)

β4i =
cov(ci

t − Et−1(c
i
t), r

M
t − Et−1(r

M
t ))

var (rM
t − Et−1(rM

t ) − [cM
t − Et−1(cM

t )])
, (10)

and λ = E(λt) = E(rM
t − cM

t − rf ). Next, we describe the empirical tests of this

unconditional relation.

4 Empirical Results

In this section, we estimate and test the liquidity-adjusted CAPM as specified in

Equation (6). We do this in five steps:

(i) We estimate, in each month t of our sample, a measure of illiquidity, ci
t, for

each individual security i. (Section 4.1.)

12Alternatively, the same unconditional model can be derived by assuming a constant risk pre-
mium λ, and by using the fact that for any random variables X and Y , it holds that

E(covt(X,Y )) = cov(X − Et(X), Y ) = cov(X − Et(X), Y − Et(Y )). (5)

We note that the possible time-variation of risk premium is driven by constant absolute risk aver-
sion in our model, but with constant relative risk aversion the risk premium is approximately
constant. See Friend and Blume (1975).
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(ii) We form a “market portfolio” and sets of 25 test portfolios sorted on the

basis of illiquidity, illiquidity variation, size, and book-to-market by size, respec-

tively. For each portfolio and each month, we compute its return and illiquidity.

(Section 4.2.)

(iii) For the market portfolio as well as the test portfolios, we estimate the

innovations in illiquidity, cp
t − Et−1(c

p
t ). (Section 4.3.)

(iv) Using these illiquidity innovations and returns, we estimate and analyze

the liquidity betas. (Section 4.4.)

(v) Finally, we consider the empirical fit of the (unconditional) liquidity-adjusted

CAPM by running cross-sectional regressions. To check the robustness of our re-

sults, we do the analysis with a number of different specifications. (Section 4.5.)

4.1 The Illiquidity Measure

Liquidity is (unfortunately) not an observable variable. There exist, however,

many proxies for liquidity. Some proxies, such as the bid-ask spread, are based

on market microstructure data, which is not available for a time series as long as

is usually desirable for studying the effect on expected returns. Further, the bid-

ask spread measures well the cost of selling a small number of shares, but it does

not necessarily measure well the cost of selling many shares. We follow Amihud

(2002) in estimating illiquidity using only daily data from the Center for Research

in Security Prices (CRSP). In particular, Amihud (2002) defines the illiquidity of

stock i in month t as

ILLIQ i
t =

1

Days i
t

Daysi
t

∑

d=1

|Ri
td|

V i
td

, (11)
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where Ri
td and V i

td are, respectively, the return and dollar volume (in millions) on

day d in month t, and Days i
t is the number of valid observation days in month t

for stock i.

The intuition behind this illiquidity measure is as follows. A stock is illiquid

— that is, has a high value of ILLIQ i
t — if the stock’s price moves a lot in response

to little volume. In our model, illiquidity is the cost of selling and, as discussed in

Section 2, real markets have several different selling costs including broker fees,

bid-ask spreads, market impact, and search costs. Our empirical strategy is based

on an assumption that ILLIQ is a valid instrument for the costs of selling, broadly

interpreted. Consistent with this view, Amihud (2002) shows empirically that

ILLIQ is positively related to measures of price impact and fixed trading costs

over the time period in which he has the microstructure data. Similarly, Has-

brouck (2002) computes a measure of Kyle’s lambda using micro-structure data

for NYSE, AMEX and NASDAQ stocks, and finds that its Spearman (Pearson)

correlation with ILLIQ in the cross-section of stocks is 0.737 (0.473). Hasbrouck

(2002) concludes that “[a]mong the proxies considered here, the illiquidity mea-

sure [ILLIQ] appears to be the best.” Furthermore, ILLIQ is closely related to

the Amivest measure of illiquidity, which has often been used in the empirical

microstructure literature.13

There are two problems with using ILLIQ . First, it is measured in “percent per

dollar,” whereas the model is specified in terms of “dollar cost per dollar invested.”

This is a problem because it means that ILLIQ is not stationary (e.g., inflation is

ignored). Second, while ILLIQ is an instrument for the cost of selling, it does

not directly measure the cost of a trade. To solve these problems, we define a

13The Amivest measure of liquidity is the average ratio of volume to absolute return.
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normalized measure of illiquidity, ci
t, by

ci
t = min

(

0.25 + 0.30 ILLIQ i
t P

M
t−1 , 30.00

)

, (12)

where P M
t−1 is the ratio of the capitalizations of the market portfolio at the end

of month t − 1 and of the market portfolio at the end of July 1962. The P M
t−1

adjustment solves the first problem mentioned above, and it makes this measure

of illiquidity relatively stationary. The coefficients 0.25 and 0.30 are chosen such

that the cross-sectional distribution of normalized illiquidity (ci
t) for size-decile

portfolios has approximately the same level and variance as does the effective

half spread14 reported by Chalmers and Kadlec (1998). This normalized illiquid-

ity is capped at a maximum value of 30% in order to ensure that our results are

not driven by the extreme observations of ILLIQ i
t. Furthermore, a per-trade cost

greater than 30% seems unreasonable and is an artifact of the effect of low volume

days on ILLIQ i
t.

Chalmers and Kadlec (1998) report that the mean effective spread for size-

decile portfolios of NYSE and AMEX stocks over the period 1983–1992 ranges

from 0.29% to 3.41% with an average of 1.11%. The normalized illiquidity, ci
t,

for identically formed portfolios has an average of 1.24%, a standard deviation

of 0.37%, and matches the range as well as the cross-sectional variation reported

by Chalmers and Kadlec (1998). This means that we can interpret the illiquidity

measure ci
t as directly related to (a lower bound of) the per-trade cost.

Admittedly, this is a noisy measure of illiquidity. This makes it harder for us

to find an empirical connection between return and illiquidity, and it can enhance

omitted-variable problems. The noise is reduced by considering portfolios rather

14The effective half spread is the difference between the transaction price and the midpoint of
the prevailing bid-ask quote, see Chalmers and Kadlec (1998), Table 1.

20



than individual stocks.

4.2 Portfolios

We employ daily return and volume data from CRSP from July 1st, 1962 until

December 31st, 1999 for all common shares (CRSP sharecodes 10 and 11) listed

on NYSE and AMEX.15 Also, we use book-to-market data based on the COM-

PUSTAT measure of book value.16

We form a market portfolio for each month t during this sample period based

on stocks with beginning-of-month price between 5 and 1000, and with at least 15

days of return and volume data in that month.

We form 25 illiquidity portfolios for each year y during the period 1964 to

1999 by sorting stocks with price, at beginning of year, between 5 and 1000, and

return and volume data in year y − 1 for at least 100 days.17 We compute the

annual illiquidity for each eligible stock as the average over the entire year y − 1

of daily illiquidities, analogously to monthly illiquidity calculation in (11). The

eligible stocks are then sorted into 25 portfolios, p ∈ {1, 2, . . . , 25}, based on

their year y − 1 illiquidities.

Similarly, we form 25 illiquidity-variation portfolios (denoted “σ(illiquidity)

15Since volume data in CRSP for Nasdaq stocks is available only from 1982 and includes inter-
dealer trades, we employ only NYSE and AMEX stocks for sake of consistency in the illiquidity
measure.

16We are grateful to Joe Chen for providing us with data on book-to-market ratios. The book-
to-market ratios are computed as described in Ang and Chen (2002): [For a given month] the
book-to-market ratio is calculated using the most recently available fiscal year-end balance sheet
data on COMPUSTAT. Following Fama and French (1993), we define “book value” as the value
of common stockholders’ equity, plus deferred taxes and investment tax credit, minus the book
value of preferred stock. The book value is then divided by the market value on the day of the
firm’s fiscal year-end.

17Amihud (2002) and Pastor and Stambaugh (2003) employ similar requirements for the in-
clusion of stocks in their samples. These requirements help reduce the measurement error in the
monthly illiquidity series.
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portfolios”) by ranking the eligible stocks each year based on the standard devi-

ation of daily illiquidity measures in the previous year, and 25 size portfolios by

ranking stocks based on their market capitalization at the beginning of the year.

Finally, we form portfolios sorted first in 5 book-to-market quintiles and then

in 5 size quintiles within the book-to-market groups as in Fama and French (1992)

and Fama and French (1993). This sample is restricted to stocks with book-to-

market data in year y − 1. When considering the portfolio properties, we use

the year-y book-to-market, averaging across stocks with available book-to-market

data in that year.

For each portfolio p (including the market portfolio), we compute its return in

month t, as

rp
t =

∑

i in p

wip
t ri

t, (13)

where the sum is taken over the stocks included in portfolio p in month t, and

where wip
t are either equal weights or value-based weights, depending on the spec-

ification.18

Similarly, we compute the normalized illiquidity of a portfolio, p, as

cp
t =

∑

i in p

wip
t ci

t, (14)

18The returns, ri
t, are adjusted for stock delisting to avoid survivorship bias, following Shumway

(1997). In particular, the last return used is either the last return available on CRSP, or the delisting
return, if available. While a last return for the stock of −100% is naturally included in the study,
a return of −30% is assigned if the deletion reason is coded in CRSP as 500 (reason unavailable),
520 (went to OTC), 551–573 and 580 (various reasons), 574 (bankruptcy) and 584 (does not meet
exchange financial guidelines). Shumway (1997) obtains that −30% is the average delisting return,
examining the OTC returns of delisted stocks. Amihud (2002) employs an identical survivorship
bias correction.
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where, as above, wip
t are either equal weights or value-based weights, depending

on the specification.

The model’s results are phrased in terms of value-weighted returns and value-

weighted illiquidity for the market portfolio. Several studies, however, focus on

equal-weighted return and illiquidity measures, for instance Amihud (2002) and

Chordia, Roll, and Subrahmanyam (2000). Computing the market return and

illiquidity as equal-weighted averages is a way of compensating for the over-

representation in our sample of large liquid securities, as compared to the “true”

market portfolio in the economy. In particular, our sample does not include illiquid

assets such as corporate bonds, private equity, real estate, and many small stocks,

and these assets constitute a significant fraction of aggregate wealth.19 Therefore,

we focus in our empirical work on an equal-weighted market portfolio, although

we also estimate the model with a value-weighted market portfolio for robustness.

Also, we use both equal- and value-weighted averages for the test portfolios.

4.3 Innovations in Illiquidity

Illiquidity is persistent. The auto-correlation of the market illiquidity, for in-

stance, is 0.87 at a monthly frequency. Therefore, we focus on the innovations,

cp
t − Et−1(c

p
t ), in illiquidity of a portfolio when computing its liquidity betas as

explained in Section 3.3.

To compute these innovations, we first define the un-normalized illiquidity,

19Heaton and Lucas (2000) report that stocks constitute only 13.6% of national wealth, while
non-corporate (i.e. private) equity is 13.8%, other financial wealth is 28.2%, owner-occupied real
estate is 33.3%, and consumer durables is 11.1%.
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truncated for outliers, of a portfolio p as

ILLIQ
p

t :=
∑

i in p

wip
t min

(

ILLIQ i
t ,

30.00 − 0.25

0.30 P M
t−1

)

, (15)

where wip
t is the portfolio weight. As explained in Section 4.1, we normalize

illiquidity to make it stationary and to put it on a scale corresponding to the cost

of a single trade.

To predict market illiquidity, we run the following regression:

(

0.25 + 0.30 ILLIQ
M

t PM
t−1

)

= a0 + a1

(

0.25 + 0.30 ILLIQ
M

t−1 PM
t−1

)

+ a2

(

0.25 + 0.30 ILLIQ
M

t−2 PM
t−1

)

+ ut . (16)

Note that the three terms inside parentheses in this specification correspond closely

to cM
t , cM

t−1, and cM
t−2, respectively, as given by (12) and (14), with the difference

that the same date is used for the market index (P M
t−1) in all three terms. This

is to ensure that we are measuring innovations only in illiquidity, not changes in

PM . Our results are robust to the specification of liquidity innovations and, in

particular, employing other stock-market variables available at time t − 1 did not

improve significantly the explanatory power of the regression. Pastor and Stam-

baugh (2003) employ a specification to compute market liquidity innovations that

is similar in spirit to the AR(2) specification in (16).

The residual, u, of the regression in (16) is interpreted as the standardized

market illiquidity innovation, cM
t − Et−1(c

M
t ), that is,

cM
t − Et−1(c

M
t ) := ut . (17)
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and innovations in portfolio illiquidity are computed in the same way, using the

same AR coefficients.

For the market illiquidity series, the AR(2) specification has a R2 of 78%. The

resulting innovations in market illiquidity, cM
t − Et−1(c

M
t ), have a standard de-

viation of 0.17%. Figure 1 plots the time-series of these innovations, scaled to

have unit standard deviation. The auto-correlation of these illiquidity innovations

is low (−0.03) and, visually, they appear stationary. Employing AR(1) specifica-

tion produces a significantly greater correlation of innovations (−0.29), whereas

employing AR(3) specification produces little improvement in the explanatory

power.

The measured innovations in market illiquidity are high during periods that

anecdotally were characterized by liquidity crisis, for instance, in 5/1970 (Penn

Central commercial paper crisis), 11/1973 (oil crisis), 10/1987 (stock market crash),

8/1990 (Iraqi invasion of Kuwait), 4,12/1997 (Asian crisis), and 6–10/1998 (Rus-

sian default and Long-Term Capital Management crisis). The correlation between

this measure of innovations in market illiquidity and the measure of innovations

in liquidity used by Pastor and Stambaugh (2003) is −0.33.20 (The negative sign

is due to the fact that Pastor and Stambaugh (2003) measure liquidity, whereas we

follow Amihud (2002) in considering illiquidity.)

4.4 Liquidity Risk

In this section, we present the descriptive statistics of liquidity risk, measured

through the betas β2p, β3p and β4p. We focus on the value-weighted illiquid-

ity portfolios whose properties are reported in Table 1. Similar conclusions are

drawn from examining the properties of equal-weighted illiquidity portfolios or

20We thank Pastor and Stambaugh for providing their data on innovations in market liquidity.
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Figure 1: Standardized innovations in market illiquidity from 1964-1999.

size portfolios (not reported). The four betas, β1p, β2p, β3p and β4p, for each

portfolio are computed as per Equation (7) using the entire time-series, that is,

using all monthly return and illiquidity observations for the portfolio and the mar-

ket portfolio from the beginning of year 1964 till end of year 1999. Similarly,

average illiquidity E(cp) for a portfolio is computed using the entire time-series

of monthly illiquidity observations for the portfolio. This approach of using the

entire time-series in computing the portfolio characteristics is similar to the one

adopted in Black, Jensen, and Scholes (1990) and Pastor and Stambaugh (2003).

Table 1 shows that the sort on past illiquidity successfully produces portfolios

with monotonically increasing average illiquidity from portfolio 1 through port-

folio 25. Not surprisingly, we see that illiquid stocks — that is, stocks with high

values of E(cp) — tend to have a high volatility of stock returns, a low turnover,
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and a small market capitalization. Furthermore, we find that illiquid stocks also

have high liquidity risk: they have large values of β2p and large negative values

of β3p and β4p. This is an interesting result on its own. It says that a stock, which

is illiquid in absolute terms (cp), also tends to have a lot of commonality in liq-

uidity with the market (cov(cp, cM)), a lot of return sensitivity to market liquidity

(cov(rp, cM)), and a lot of liquidity sensitivity to market returns (cov(cp, rM)). We

note that all of the betas are estimated with a small error (i.e., a small asymptotic

variance). Indeed, almost all of the betas are statistically significant at conven-

tional levels.

A liquidity beta is proportional to the product of the correlation between its re-

spective arguments and their standard deviations. As noted before, more illiquid

stocks have greater volatility of returns. Furthermore, since illiquidity is bounded

below by zero, it is natural that more illiquid stocks also have more volatile illiq-

uidity innovations. This is verified in Table 1 which shows that the standard de-

viation of portfolio illiquidity innovations, σ(∆cp), increases monotonically in

portfolio illiquidity. The higher variability of returns and illiquidity innovations

are, however, not the sole drivers of the positive relationship between illiquidity

and liquidity risk. The correlation coefficients between cp and cM (rp and cM ) are

also increasing (decreasing) in portfolio illiquidity. The correlation coefficients

between cp and rM are decreasing in illiquidity between portfolios 1− 15 and are

gradually increasing thereafter. Nevertheless, the variability of cp ensures that the

covariances between cp and rM are decreasing in illiquidity.21

The co-linearity of measures of liquidity risk is confirmed by considering the

correlation among the betas, reported in Table 2. The co-linearity problem is not

just a property of the liquidity-sorted portfolios; it also exists at an individual

21These correlations are not reported in the table for sake of brevity.
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stock level as is seen in Table 3. The co-linearity at the stock level is smaller,

which could be due in part to larger estimation errors. While this co-linearity is

theoretically intriguing, it makes it hard to empirically distinguish the separate

effects of illiquidity and the individual liquidity betas.22

4.5 How Liquidity Risk Affects Returns

In this section, we study how liquidity risk affects expected returns. We do

this by running cross-sectional regressions on our test portfolios using a GMM

framework that takes into account the pre-estimation of the betas (as in Cochrane

(2001)). Standard errors are computed using the Newey and West (1987) method

with 2 lags.23

Illiquidity and σ(illiquidity) Portfolios

The potential effect of liquidity and liquidity risk is, of course, detected by consid-

ering portfolios that differ in their liquidity attributes. Hence, we consider first the

liquidity-adjusted CAPM (6) for portfolios sorted by illiquidity and the illiquidity

variation.

To impose the model-implied constraint that the risk premia of the different

22We have not been able to construct portfolios which allow us to better identify the separate
beta effects. For instance, we have considered portfolios based on predicted liquidity betas, similar
to the approach taken by Pastor and Stambaugh (2003). These results are not reported as these
portfolios did not improve statistical power: The liquidity betas after portfolio formation turned out
to be better sorted for illiquidity and size portfolios than for the portfolios sorted using predicted
liquidity betas. We attribute this, in part, to the large estimation errors associated with predicting
liquidity betas at the individual stock level.

23Our point estimates are the same as those derived using OLS (either in a pooled regression or
using the Fama and MacBeth (1973) method). Our standard errors correspond to those of Shanken
(1992) except that the GMM method also takes serial correlation into account.
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betas is the same, we define the “net beta” as

βnet,p := β1p + β2p − β3p − β4p. (18)

With this definition, the liquidity-adjusted CAPM becomes

E(rp
t − rf

t ) = α + κE(cp
t ) + λβnet,p , (19)

where we allow a non-zero intercept, α, in the estimation, although the model

implies that the intercept is zero. In our model, investors incur the illiquidity cost

exactly once over their holding period. The coefficient κ adjusts for the difference

between the monthly period used in estimation, and the typical holding period

of an investor (which is the period implicitly considered in the model). More

precisely, κ is the ratio of the monthly estimation period to the typical holding pe-

riod.24 The average holding period is proxied by the period over which all shares

are turned over once. Hence, we calibrate κ as the average monthly turnover

across all stocks in the sample.25 In the sample of liquidity portfolios, κ is cali-

brated to 0.034, which corresponds to a holding period of 1/0.034 ∼= 29 months.

The expected illiquidity, E(cp
t ), is computed as the portfolio’s average illiquidity.

Note that the structure of the liquidity-adjusted CAPM and its calibration using

24If the estimation period is equal to the holding period, then the model implies (19) with κ = 1.
If the estimation period is κ times the holding period, then E(rp

t − r
f
t ) is (approximately) κ times

the expected holding period return, and βnet,p is assumed to be approximately κ times the holding-
period net beta. This is because a κ-period return (or illiquidity innovation) is approximately a sum
of κ 1-period returns (or illiquidity innovations), and because returns and illiquidity innovations
have low correlation across time. The illiquidity, E(cp), however, does not scale with time period
because it is an average of daily illiquidities (not a sum of such terms). Therefore, the E(cp) term
is scaled by κ in (19).

25 To run the regression (19) with a fixed κ, we treat the net return, E(rp
t − r

f
t ) − κE(cp

t ),
as the dependent variable. All R2 are, however, based on the same dependent variable namely
E(rp

t − r
f
t ).
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κ equal to the average monthly turnover for stocks make the estimation different

from the typical cross-sectional regression study in which the asset-pricing rela-

tionship is backed out from the return series and data on security characteristics

such as beta, size, book-to-market, etc.

The liquidity-adjusted CAPM (19) has only one risk premium, λ, that needs to

be estimated as in the standard CAPM. Here, the risk factor is the net beta instead

of the standard market beta. Hence, the empirical improvement in fit relative to the

standard CAPM is not achieved by adding factors (or otherwise adding degrees of

freedom), but simply by making a liquidity adjustment.

The estimated results for Equation (19) are reported in line 1 of Table 4, with

illiquidity portfolios in Panel A and σ(illiquidity) portfolios in Panel B. With either

portfolio, the risk premium λ is positive and significant at a 1% level and α is

insignificant, both results lending support to our model. The R2 of the liquidity-

adjusted CAPM is high relative to the standard CAPM, reported in line 3. In line 2,

we estimate the liquidity-adjusted CAPM with κ as a free parameter, which results

in only modest changes in κ and λ.

While the improvement in fit of the liquidity-adjusted CAPM over the CAPM

is encouraging, it does not constitute a test of the effect of liquidity risk. To isolate

the effect of liquidity risk (β2, β3, and β4) over liquidity level (E(c)) and market

risk (β1), we consider the relation

E(rp
t − rf

t ) = α + κE(cp
t ) + λ1β1p + λβnet,p (20)

In line 4, this relation is estimated with κ at its calibrated value. We see that βnet is

insignificant for illiquidity portfolios, but significant for σ(illiquidity) portfolios.

In line 5, the relation is estimated with κ as a free parameter. In this regression, the

support for the model is stronger in that βnet is significant with either portfolio.
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We note that κ is estimated to be negative in Panel A, although it is statistically

insignificant. Since the model implies that κ should be positive, we estimate in

line 6 with the restriction that κ = 0. With this specification, βnet remains sig-

nificant in both panels. In conclusion, there is some evidence that liquidity risk

matters over and above market risk and liquidity level. The collinearity problems

imply, however, that this evidence is weak.

We note that a negative coefficient on β1 does not imply a negative risk pre-

mium on market risk since β1 is also contained in βnet. Rather, a negative coeffi-

cient suggests that liquidity risk may have a higher risk premium than market risk.

For instance, line 4 of Table 4A means that

E(rp
t − rf

t ) =−0.333 + 0.034E(cp
t ) − 3.181β1p + 4.334βnet,p

=−0.333 + 0.034E(cp
t ) + 1.153β1p + 4.334

(

β2p − β3p − β4p
)

Finally, in line 7 we allow all of the betas to have different risk premia λi,

and in line 8 we further let κ be a free parameter. That is, lines 7–8 estimate the

generalized relation

E(rp
t − rf

t ) = α + κE(cp
t ) + λ1β1p + λ2β2p + λ3β3p + λ4β4p (21)

without the model restrictions that λ1 = λ2 = −λ3 = −λ4. We see that the

multicollinearity problems are severe, and, hence, statistical identification of the

separate effects of the different liquidity risks is difficult. Of course, we must also

entertain the possibility that not all these risk factors are empirically relevant.

The empirical fit of the standard CAPM is illustrated in the top panel of Fig-

ure 2 for illiquidity portfolios and in Figure 3 for σ(illiquidity) portfolios. The

middle and bottom panels show, respectively, the fit of the constrained and un-
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constrained liquidity-adjusted CAPM, that is, lines 1 and 8, respectively, from

Table 4. We see that the liquidity adjustment improves the fit especially for the

illiquid portfolios, consistent with what our intuition would suggest. We note that

the number of free parameters is the same in top and middle panels, so the im-

provement in fit is not a consequence of more degrees of freedom.

Economic Significance of Results

It is interesting to consider the economic significance of liquidity risk. To get

a perspective on the magnitude of the effect, we compute the annual return pre-

mium required to hold illiquid rather than liquid securities. This is computed as

the product of the risk premium and the difference in liquidity risk across liquidity

portfolios. If we use the unrestricted model in line 8 of Table 4A then our esti-

mates are very noisy because of the multicollinearity problem. Instead, the benefit

of having an economic model is that we can impose its structure and can get rel-

atively tight estimates. Hence, we use the calibrated value of κ and the common

risk premium, λ = 1.512, from line 1. Of course, when interpreting the results,

one must bear in mind that they rely on the validity of the model.

The difference in annualized expected return between portfolio 1 and 25 that

can be attributed to a difference in β2, the commonality between the portfolio

illiquidity and market illiquidity, is

λ(β2,p25 − β2,p1) · 12 = 0.08%.

Similarly, the annualized return difference stemming from the difference in β3,

the sensitivity of the portfolio return to market illiquidity, is

−λ(β3,p25 − β3,p1) · 12 = 0.16%,
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and the effect of β4, the sensitivity of the portfolio illiquidity to market return, is

−λ(β4,p25 − β4,p1) · 12 = 0.82%.

The total effect of liquidity risk is therefore 1.1% per year. Using the standard

error of the estimates of λ and the betas, the 95% confidence interval for the total

effect of β2 − β3 − β4 is [0.24%, 1.88%]. Hence, under the model restrictions and

using the calibrated κ, the effect of liquidity risk is significantly different from

zero.

Interestingly, of the three liquidity risks the effect of β4, the covariation of

a security’s illiquidity to market returns, appears to have the largest economic

impact on expected returns. (Also, it has the highest t-statistics in the unrestricted

regression of lines 7–8 in Table 4.) This liquidity risk has not been studied before

either theoretically or empirically.

The difference in annualized expected return between portfolio 1 and 25 that

can be attributed to a difference in the expected illiquidity, E(c), is 3.5%, using

the calibrated coefficient. The overall effect of expected illiquidity and liquidity

risk is thus 4.6% per year.

While the magnitude of liquidity risk is economically significant, it is lower

than the magnitude estimated by Pastor and Stambaugh (2003). This could be

due to the fact that they employ a different measure of liquidity, or due to the fact

that they sort portfolios based on liquidity risk (in their case, β3) whereas we sort

based on the level of liquidity. Also, this could be because they do not control for

the level of illiquidity which has been shown to command a significant premium in

a number of studies including Amihud and Mendelson (1986), Brennan and Sub-

rahmanyam (1996), Brennan, Chordia, and Subrahmanyam (1998), Datar, Naik,
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and Radcliffe (1998), Swan (2002), and Dimson and Hanke (2002). Finally, the

difference could also arise because we restrict the risk premia on different liquid-

ity betas to be the same. For instance, the magnitude of the risk premium related

to β4 is estimated to be higher in line 7–8 of Table 4A. This higher risk premium

results in a per year effect of about 9% from β4 alone.26

The collinearity between liquidity and liquidity risk implies that the most ro-

bust number is their overall effect. Further, our results suggest that studies that

focus on the separate effect of liquidity (or liquidity risk) can possibly be rein-

terpreted as providing an estimate of the overall effect of liquidity and liquidity

risk.

Robustness, Size, and Book-to-Market

To check the robustness of our results, we consider different specifications and

portfolios. First, we consider whether our results are robust to the choice of

value weighting versus equal weighting. Table 5A reports the results with equal-

weighted illiquidity portfolios and equal-weighted market, and Table 5B with

value-weighted illiquidity portfolios and value-weighted market. The results and

their significance are similar to those of Table 4A. First, βnet is borderline signifi-

cant at a 5% level in line 1 of Table 5A, but insignificant at this level in Table 5B.

In both tables, the liquidity-adjusted CAPM has a higher R-square than the stan-

dard CAPM. In particular with value-weighted portfolios in Table 5B, the standard

CAPM has an R-square of 0.0%, whereas the liquidity-adjusted CAPM has an R-

square of 48.6%. There is further evidence that liquidity risk matters over and

26In another recent paper, Chordia, Subrahmanyam, and Anshuman (2001) find that expected
returns in the cross-section are higher for stocks with low variability of liquidity, measured using
variables such as trading volume and turnover. They examine the firm-specific variability of liq-
uidity. By contrast, our model and tests suggest that it is the co-movement of firm-specific liquidity
with market return and market liquidity that affects expected returns.

34



above liquidity level and market risk. In particular, βnet is significant in line 5 of

Table 5A, and in all of lines 4–6 in Table 5B. (Also, βnet is significant in line 6 of

Table 5A, but this line is not relevant since the coefficient on E(cp) has the correct

sign in line 5.)

As a further robustness check, we re-estimate our model with size-based port-

folios and portfolios sorted first in 5 book-to-market quintiles and then in 5 size

quintiles within the book-to-market groups (as in Fama and French (1992)).

Small-sized stocks are illiquid (in absolute terms as measured by E(c)) and

also have high liquidity risk (as measured by the three betas β2p, β3p and β4p). Ta-

ble 6A shows that the cross-sectional regressions have coefficients that are similar

to our earlier results, but the statistical significance is reduced. The coefficient of

βnet is estimated to be positive and the liquidity-adjusted CAPM still has a higher

R2 than the standard CAPM. Figure 4 shows graphically the fit for size portfolios

of the standard CAPM, and the liquidity-adjusted CAPM, with constrained and

unconstrained risk premia. We see that the liquidity adjustment improves the fit,

particularly for the smaller size portfolios.

Table 6B and Figure 5 show the models’ fit of the B/M-by-size portfolios. We

recover the well-known27 result that CAPM does relatively poorly for B/M-by-

size portfolios (adjusted R2 = 22.9%) since market beta is relatively “flat” across

these portfolios. The liquidity-adjusted CAPM in line 1 provides a moderate im-

provement in the fit (adjusted R2 = 40.6%) whereas the model with unconstrained

risk premia produces a significant improvement in the fit (adjusted R2 = 73.3%).

It should be noted, however, that the unconstrained specification may be “over

fitted” in the sense that some of the risk premia estimated have incorrect sign and

they are all insignificant. The negative coefficient on βnet in line 5 suggest that

27See Fama and French (1992) and Fama and French (1993).
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the model is misspecified for these portfolios.

To further consider the model’s ability to explain the size and book-to-market

effects, we run our regressions while controlling for size and book-to-market (Ta-

ble 7). We do this both for illiquidity portfolios (Panel A) and for B/M-by-size

portfolios (Panel B). The results with illiquidity portfolios are similar to the earlier

results, although the standard errors increase because of the additional variables.

The coefficient on βnet is significant in the liquidity-adjusted CAPM of line 1. The

coefficient on size is always insignificant and the coefficient on book-to-market

is insignificant in all specifications except line 2. (Including volatility does not

change the results, and volatility is not significant. These results are not reported.)

With B/M-by-size portfolios (Table 7B) the model performs poorly. Indeed, the

coefficient on βnet is negative, although insignificant, and the coefficient on B/M

is significant in most specifications. To summarize, the results with illiquidity

portfolios suggest that liquidity risk matters while controlling for book to market,

while the results with B/M-by-size portfolios suggest that liquidity risk does not

explain the book-to-market effect. (Pastor and Stambaugh (2003) reach a simi-

lar conclusion.) Hence, our simple model fails to explain the entire investment

universe.

Specification Tests

We perform several specification tests of the liquidity-adjusted CAPM. First, we

note that we fail to reject at conventional levels the model-implied restriction that

α = 0 in the liquidity-adjusted CAPM (lines 1–2 and 4–8 of Table 4), whereas this

restriction is rejected for the standard CAPM (at a 10% level in line 3 Table 4A,

and at a 5% level in Table 4B). Second, in context of the model with unrestricted

36



risk premia in line 8 of Table 4, a Wald test28 fails to reject the five model-implied

restrictions λ1 = λ2 = −λ3 = −λ4, α = 0, and κ = k, where k is the calibrated

value. The p-value is 47% in Table 4A and 28% in Table 4B. The CAPM restric-

tions λ2 = λ3 = λ4 = 0, α = 0, and κ = 0 have p-values of 15% and 8.7%,

respectively. The CAPM is rejected in lines 5 and 6 since βnet is significant.

Another testable restriction implied by the model is that the risk premium

equals the expected net return on the market in excess of the risk-free rate. The

point estimate of the risk premium, λ, is larger than the sample average of the

excess return of the market net of transaction costs, E(rM
t − rf

t − κcM
t ) and the

p-value is 6.6% in regression 1 of Table 4A and 7.3% in Table 4B. In comparison,

the test that the standard CAPM risk premium equals the E(rM
t −rf

t ) has p-values

of 1.2% and 0.8%, respectively.

Lastly, we test that the linear model has zero average pricing error for all of the

portfolios, a stringent test since it requires that the model is pricing all portfolios

correctly. (We use a GMM test as in Cochrane (2001) page 241, which corre-

sponds to the test of Shanken (1985).) With illiquidity portfolios, the p-values for

regressions 1, 5, and 8 are, respectively, 8.5%, 9.9%, and 6.8%. In comparison,

the standard CAPM has a p-value of 0.5%. With σ(illiquidity) portfolios the p-

values for the liquidity-adjusted CAPM are, respectively, 16%, 42%, and 65%,

and the p-value for the standard CAPM is 6.6%. The specification tests for size

portfolios are similar, and lends further support to the model. This confirms the

visual evidence from Figures 2–4 that the model fit for these portfolios is good.

With B/M-by-size portfolios, the Wald test of the liquidity-adjusted CAPM

has a p-value of 47% and the test of zero pricing errors for regressions 1, 5, and

28We compute the joint variance-covariance test of the parameters in a GMM framework and
derive a standard Wald test with an asymptotic chi-square distribution.
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8 are, respectively, 15.7%, 38%, and 85%. The standard CAPM has a p-value of

23% for the Wald test and 3.2% for the test of zero pricing errors. The failure to

reject the liquidity-adjusted CAPM using B/M-by-size portfolios may be due to

low power since, as discussed above, the model fit is not good for these portfolios.

5 Conclusion

This paper derives a model of liquidity risk. The model in its simplest form shows

that the CAPM applies for returns net of illiquidity costs. This implies that in-

vestors should worry about a security’s performance and tradability both in mar-

ket downturns and when liquidity “dries up.” Said differently, the required return

of a security i is increasing in the covariance between its illiquidity and the market

illiquidity, covt(c
i
t+1, c

M
t+1), decreasing in the covariance between the security’s re-

turn and the market illiquidity, covt(r
i
t+1, c

M
t+1), and decreasing in the covariance

between its illiquidity and market returns, covt(c
i
t+1, r

M
t+1). The model further

shows that a positive shocks to illiquidity, if persistent, are associated with a low

contemporaneous returns and high predicted future returns.

Hence, the model gives an integrated view of the existing empirical evidence

related to liquidity and liquidity risk, and it generates new testable predictions.

We find, in a variety of specifications, that the liquidity-adjusted CAPM explains

the data better than the standard CAPM, while still exploiting the same degrees

of freedom. Further, we find weak evidence that liquidity risk is important over

and above the effects of market risk and the level of liquidity. The model has a

reasonably good fit for portfolios sorted by liquidity, liquidity variation, and size,

but it fails to explain the book-to-market effect.

The model provides a framework in which we can study the economic signif-
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icance of liquidity risk. We find that liquidity risk explains about 1.1% of cross-

sectional returns when the effect of average liquidity is calibrated to the typical

holding period in the data and the model restriction of a single risk premium is im-

posed. About 80% of this effect is due to the liquidity sensitivity, covt(c
i
t+1, r

M
t+1),

to the market return, an effect not previously studied in the literature. Freeing up

risk premia leads to larger estimates of the liquidity risk premium, but these results

are estimated imprecisely because of collinearity between liquidity and liquidity

risk.

While the model gives clear predictions that seem to have some bearing in the

data, it is obviously simplistic. The model and the empirical results are suggestive

of further theoretical and empirical work. In particular, it would be of interest

to explain the time-variation in liquidity, and why stocks that are illiquid in ab-

solute terms also are more liquidity risky in the sense of high values of all three

liquidity betas. Another interesting topic is the determination of liquidity premia

in a general equilibrium with liquidity risk and endogenous holdings periods. We

note that if investors live several periods, but their probability of living more than

one period approaches zero, then our general-equilibrium economy is approached

(assuming continuity). Hence, our effects would also be present in the more gen-

eral economy, although endogenous holding periods may imply a smaller effect of

liquidity risk (as in Constantinides (1986)). The effect of liquidity risk is strength-

ened, however, if investors have important reasons to trade frequently. Such rea-

sons include return predictability and wealth shocks (as considered in the context

of liquidity by Lynch and Tan (2003)), differences of opinions (e.g. Harris and

Raviv (1993)), asymmetric information (e.g. He and Wang (1995)), institutional

effects (e.g. Allen (2001)), taxes (e.g. Constantinides (1983)), etc. It would be

interesting to determine the equilibrium impact of liquidity risk in light of these
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trading motives.
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A Appendix

Proof of Proposition 1:

We first solve the investment problem of any investor n at time t. We assume, and

later confirm, that the price at time t + 1 is normally distributed conditional on

the time t information. Hence, the investor’s problem is to choose optimally the

number of shares, yn = (yn,1, . . . , yn,I), to purchase according to

max
yn∈R

I
+

(

Et(W
n
t+1) −

1

2
An vart(W

n
t+1)

)

,

where

W n
t+1 = (Pt+1 + Dt+1 − Ct+1)

>yn + rf (en
t − P>

t yn),

and en
t is this agent’s endowment. If we disregard the no-short-sale constraint, the

solution is

yn =
1

An
(vart(Pt+1 + Dt+1 − Ct+1))

−1
(

Et(Pt+1 + Dt+1 − Ct+1) − rfPt

)

.

We shortly verify that, in equilibrium, this solution does not entail short selling.

In equilibrium,
∑

n yn = S, so equilibrium is characterized by the condition that

Pt =
1

rf
[Et(Pt+1 + Dt+1 − Ct+1) − A vart(Pt+1 + Dt+1 − Ct+1)S ] ,

where A =
(
∑

n
1

An

)−1. The unique stationary linear equilibrium is

Pt = Υ +
ρD

rf − ρD
Dt −

ρC

rf − ρC
Ct, (A.1)
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where

Υ =
1

rf − 1

(

rf (1 − ρD)

r − ρD
D̄ −

rf (1 − ρC)

rf − ρC
C̄ − Avart

[

rf

r − ρD
εt −

rf

rf − ρC
ηt

]

S

)

and S = (S1, . . . , SI) is the total supply of shares.

With this price, conditional expected net returns are normally distributed, and

any investor n holds a fraction A/An > 0 of the market portfolio S > 0 so

he is not short selling any securities. Therefore, our assumptions are satisfied in

equilibrium.

Finally, since investors have mean-variance preferences, the conditional CAPM

holds for net returns. See, for instance, Huang and Litzenberger (1988). Rewrit-

ing in terms of net returns yields the result stated in the proposition.

�

Proof of Proposition 2:

The conditional expected return on a portfolio q is computed using (A.1):

Et(r
q
t+1) = Et

(

P q
t+1 + Dq

t+1

P q
t

)

=
Et(Υ

q + rf

rf−ρD Dq
t+1 −

ρC

rf−ρC Cq
t+1)

Υq + ρD

rf−ρD Dq
t −

ρC

rf−ρC Cq
t

so we have that

∂

∂Cq
t

Et(r
q
t+1 − rf )

=
1

(P q
t )2

(

−
(ρC)2

rf − ρC
P q

t +
ρC

rf − ρC
Et(P

q
t+1 + Dq

t+1)

)
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This partial derivative is greater than 0 under the conditions given in the proposi-

tion. �

Proof of Proposition 3:

The conditional covariance between illiquidity and return for a portfolio q is:

covt(c
q
t+1, r

q
t+1) =

1

(P q
t )2

covt(C
q
t+1 , P q

t+1 + Dq
t+1)

=
1

(P q
t )2

covt(C
q
t+1 ,

rf

rf − ρD
Dq

t+1 −
ρC

rf − ρC
Cq

t+1)

=
1

(P q
t )2

(

rf

rf − ρD
q>ΣCDq −

ρC

rf − ρC
q>ΣCq

)

which yields the proposition. �
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Table 1: Properties of illiquidity portfolios.

This table reports the properties of the odd–numbered portfolios of 25 value-weighted
illiquidity portfolios formed each year during 1964–1999 as described in Section 4.2. The
four betas (βip) are computed for each portfolio using all monthly return and illiquidity
observations for a portfolio, and an equal-weighted market portfolio. In particular, these
betas based on (7), where the innovations in portfolio illiquidity and market illiquidity are
computed using the AR(2) specification in (16) for the standardized illiquidity series, and
the innovations in market portfolio return is computed using an AR(2) specification for
the market return series that also employs available market characteristics at the beginning
of the month (return, volatility, average illiquidity, log of average dollar volume, log of
average turnover, all measured over past six months, and log of one-month lagged market
capitalization). The t-statistics, reported in parenthesis, are estimated using GMM. The
standard deviation of the portfolio illiquidity innovations is reported under the column
σ(∆cp). The average illiquidity, E(cp), the average excess return, E(re,p), the turnover
(trn), the market capitalization (size), and book-to-market (BM) are computed for each
portfolio as time-series averages of the respective monthly characteristics. Finally, σ(rp),
is the average of the standard deviation of daily returns for the portfolio’s constituent
stocks computed each month.

β1p β2p β3p β4p E(cp) σ(∆cp) E(re,p) σ(rp) trn size BM
(· 100) (· 100) (· 100) (· 100) (%) (%) (%) (%) (%) (bl$)

1 55.10 0.00 −0.80 −0.00 0.25 0.00 0.48 1.43 3.25 12.50 0.53
(14.54) (0.08) (−5.90) (−0.10)

3 67.70 0.00 −1.05 −0.03 0.26 0.00 0.39 1.64 4.19 2.26 0.72
(16.32) (0.58) (−7.14) (−0.62)

5 74.67 0.00 −1.24 −0.07 0.27 0.01 0.60 1.74 4.17 1.20 0.71
(20.44) (1.27) (−7.43) (−1.36)

7 76.25 0.00 −1.27 −0.10 0.29 0.01 0.57 1.83 4.14 0.74 0.73
(20.63) (2.18) (−7.49) (−2.03)

9 81.93 0.01 −1.37 −0.18 0.32 0.02 0.71 1.86 3.82 0.48 0.73
(33.25) (3.79) (−8.00) (−3.74)

11 84.59 0.01 −1.41 −0.33 0.36 0.04 0.73 1.94 3.87 0.33 0.76
(34.21) (5.07) (−7.94) (−5.85)

13 85.29 0.01 −1.47 −0.40 0.43 0.05 0.77 1.99 3.47 0.24 0.77
(34.15) (6.84) (−8.01) (−7.46)

15 88.99 0.02 −1.61 −0.70 0.53 0.08 0.85 2.04 3.20 0.17 0.83
(42.88) (6.87) (−8.35) (−8.45)

17 87.89 0.04 −1.59 −0.98 0.71 0.13 0.80 2.11 2.96 0.13 0.88
(27.54) (8.16) (−8.18) (−9.30)

19 87.50 0.05 −1.58 −1.53 1.01 0.21 0.83 2.13 2.68 0.09 0.92
(40.74) (7.63) (−8.75) (−8.77)

21 92.73 0.09 −1.69 −2.10 1.61 0.34 1.13 2.28 2.97 0.06 0.99
(37.85) (7.33) (−8.34) (−6.11)

23 94.76 0.19 −1.71 −3.35 3.02 0.62 1.12 2.57 2.75 0.04 1.09
(39.71) (6.85) (−8.68) (−5.91)

25 84.54 0.42 −1.69 −4.52 8.83 1.46 1.10 2.87 2.60 0.02 1.15
(20.86) (6.40) (−8.23) (−3.35)



Table 2: Beta correlations for illiquidity portfolios.

This table reports the correlations of the four covariances, β1p, β2p, β3p and β4p, for the 25
value-weighted illiquidity portfolios formed for each year during 1964–1999 as described
in Section 4.2. The four betas are computed for each portfolio as per (7) using all monthly
return and illiquidity observations for the portfolio and the market portfolio. The monthly
innovations in portfolio illiquidity and market illiquidity are computed using the AR(2)
specification in (16) for the standardized illiquidity series. The monthly innovations in
market portfolio return are computed using an AR(2) specification for the market return
series that also employs available market characteristics at the beginning of the month.

β1p β2p β3p β4p

β1p 1.000 0.441 −0.972 −0.628
β2p 1.000 −0.573 −0.941
β3p 1.000 0.726
β4p 1.000

Table 3: Beta correlations for individual stocks.

This table reports the correlations of the four covariances, β1i, β2i, β3i and β4i, for the
common shares listed on NYSE and AMEX during the period 1964–1999. The correla-
tions are computed annually for all eligible stocks in a year as described in Section 4.2
and then averaged over the sample period. The four betas are computed for each stock as
per (7) using all monthly return and illiquidity observations for the stock and the market
portfolio. The monthly innovations in market illiquidity are computed using the AR(2)
specification in (16) for the standardized market illiquidity series. The innovations in
stock illiquidity are computed using a similar AR(2) specification with coefficients es-
timated for the market illiquidity. The monthly innovations in market portfolio return
are computed using an AR(2) specification for the market return series that also employs
available market characteristics at the beginning of the month.

β1i β2i β3i β4i

β1i 1.000 0.020 −0.685 −0.164
β2i 1.000 −0.072 −0.270
β3i 1.000 0.192
β4i 1.000



Table 4: Illiquidity and σ(illiquidity) portfolios.

This table reports the estimated coefficients from cross-sectional regressions of the
liquidity-adjusted CAPM for 25 value-weighted portfolios using monthly data during
1964–1999 with an equal-weighted market portfolio. We consider special cases of the
relation:

E(rp
t − r

f
t ) = α + κE(cp

t ) + λ1β1p + λ2β2p + λ3β3p + λ4β4p + λβnet,p ,

where βnet,p = β1p + β2p − β3p − β4p. In some specifications, κ is set to be the average
monthly turnover. The t-statistic, reported in the parentheses, is estimated using a GMM
framework that takes into account the pre-estimation of the betas. The R2 is obtained in a
single cross-sectional regression, and the adjusted R2 is reported in the parentheses.

Panel A: illiquidity portfolios
constant E(cp) β1p β2p β3p β4p βnet,p R2

1 −0.556 0.034 1.512 0.732
(−1.450) ( — ) (2.806) (0.732)

2 −0.512 0.042 1.449 0.825
(−1.482) (2.210) (2.532) (0.809)

3 −0.788 1.891 0.653
(−1.910) (3.198) (0.638)

4 −0.333 0.034 −3.181 4.334 0.843
(−0.913) ( — ) (−0.998) (1.102) (0.836)

5 0.005 −0.032 −13.223 13.767 0.878
(0.013) (−0.806) (−1.969) (2.080) (0.861)

6 −0.160 −8.322 9.164 0.870
(−0.447) (−2.681) (3.016) (0.858)

7 −0.089 0.034 0.992 −153.369 7.112 −17.583 0.881
(−0.219) ( — ) (0.743) (−1.287) (0.402) (−1.753) (0.865)

8 −0.089 0.033 0.992 −151.152 7.087 −17.542 0.881
(−0.157) (0.166) (0.468) (−0.280) (0.086) (−1.130) (0.850)

Panel B: σ(illiquidity) portfolios
constant E(cp) β1p β2p β3p β4p βnet,p R2

1 −0.528 0.035 1.471 0.865
(−1.419) ( — ) (2.817) (0.865)

2 −0.363 0.062 1.243 0.886
(−1.070) (2.433) (2.240) (0.875)

3 −0.827 1.923 0.726
(−2.027) (3.322) (0.714)

4 −0.014 0.035 −7.113 7.772 0.917
(−0.037) ( — ) (−1.939) (2.615) (0.914)

5 0.094 0.007 −11.013 11.467 0.924
(0.235) (0.158) (−2.080) (2.480) (0.914)

6 0.119 −11.914 12.320 0.924
(0.305) (−2.413) (2.608) (0.917)

7 0.464 0.035 −1.105 −83.690 −74.538 −14.560 0.940
(0.913) ( — ) (−0.728) (−0.663) (−1.175) (−1.662) (0.931)

8 0.459 0.148 −1.125 −390.588 −73.552 −21.688 0.942
(0.565) (0.140) (−0.485) (−0.140) (−1.943) (−0.335) (0.927)



Table 5: Illiquidity portfolios: robustness of weighting method

This table reports the estimated coefficients from cross-sectional regressions of the
liquidity-adjusted CAPM for 25 liquidity portfolios using monthly data during 1964–
1999. We consider special cases of the relation:

E(rp
t − r

f
t ) = α + κE(cp

t ) + λ1β1p + λ2β2p + λ3β3p + λ4β4p + λβnet,p ,

where βnet,p = β1p + β2p − β3p − β4p. In some specifications, κ is set to be the average
monthly turnover. The t-statistic, reported in the parentheses, is estimated using a GMM
framework that takes into account the pre-estimation of the betas. The R2 is obtained in a
single cross-sectional regression, and the adjusted R2 is reported in the parentheses.

Panel A: equal-weighted illiquidity pf’s, equal-weighted market
constant E(cp) β1p β2p β3p β4p βnet,p R2

1 −0.391 0.046 1.115 0.825
(−0.889) ( — ) (1.997) (0.825)

2 −0.299 0.062 0.996 0.846
(−0.737) (3.878) (4.848) (0.832)

3 −0.530 1.374 0.350
(−1.082) (2.085) (0.322)

4 −0.088 0.046 −2.699 3.395 0.879
(−0.249) ( — ) (−1.441) (1.782) (0.873)

5 0.105 0.008 −6.392 6.800 0.901
(0.296) (0.318) (−2.238) (2.427) (0.886)

6 0.143 −7.115 7.467 0.900
(0.397) (−3.623) (3.871) (0.891)

7 −0.132 0.046 1.568 −141.416 47.823 −12.784 0.911
(−0.633) ( — ) (1.295) (−1.032) (0.469) (−1.553) (0.898)

8 −0.053 0.117 1.207 −346.547 33.043 −17.356 0.913
(−0.060) (0.837) (0.343) (−0.796) (0.186) (−0.981) (0.890)

Panel B: value-weighted illiquidity pf’s, value-weighted market
constant E(cp) β1p β2p β3p β4p βnet,p R2

1 −1.938 0.034 2.495 0.486
(−1.203) ( — ) (1.627) (0.486)

2 −2.059 0.081 2.556 0.642
(−1.755) (2.755) (2.107) (0.609)

3 0.700 0.062 0.000
(0.272) (0.025) (−0.043)

4 −1.536 0.034 −6.070 8.099 0.754
(−2.033) ( — ) (−1.540) (2.040) (0.743)

5 −0.583 −0.076 −16.226 17.333 0.841
(−0.718) (−0.902) (−2.978) (3.453) (0.819)

6 −1.241 −9.210 10.954 0.800
(−1.271) (−2.733) (3.183) (0.781)

7 −0.301 0.034 0.363 −4494.924 −370.840 −26.044 0.850
(−0.285) ( — ) (0.268) (−1.060) (−0.806) (−1.366) (0.828)

8 0.039 −0.056 0.015 −116.450 −405.451 −13.135 0.865
(0.031) (−0.410) (0.007) (−0.010) (−0.413) (−0.270) (0.829)



Table 6: Size and B/M-by-size portfolios.

This table reports the estimated coefficients from cross-sectional regressions of the
liquidity-adjusted CAPM for 25 value-weighted size and B/M-by-size portfolios using
monthly data during 1964–1999 with an equal-weighted market portfolio. We consider
special cases of the relation:

E(rp
t − r

f
t ) = α + κE(cp

t ) + λ1β1p + λ2β2p + λ3β3p + λ4β4p + λβnet,p ,

where βnet,p = β1p + β2p − β3p − β4p. In some specifications, κ is set to be the average
monthly turnover. The t-statistic, reported in the parentheses, is estimated using a GMM
framework that takes into account the pre-estimation of the betas. The R2 is obtained in a
single cross-sectional regression, and the adjusted R2 is reported in the parentheses.

Panel A: size portfolios
constant E(cp) β1p β2p β3p β4p βnet,p R2

1 −0.087 0.047 0.865 0.910
(−0.274) ( — ) (1.864) (0.910)

2 −0.059 0.056 0.823 0.912
(−0.201) (2.139) (1.768) (0.904)

3 −0.265 1.144 0.757
(−0.789) (2.270) (0.747)

4 −0.043 0.047 −0.770 1.562 0.912
(−0.151) ( — ) (−0.323) (0.685) (0.908)

5 −0.055 0.054 −0.168 0.984 0.912
(−0.186) (1.180) (−0.050) (0.266) (0.900)

6 0.032 −4.633 5.278 0.902
(0.112) (−1.899) (2.104) (0.893)

7 −0.073 0.047 0.887 27.387 1.741 0.038 0.913
(−0.122) ( — ) (0.304) (0.342) (0.009) (0.006) (0.901)

8 0.224 −0.408 −0.079 742.841 −42.800 7.933 0.929
(0.552) (−1.206) (−0.047) (1.157) (−0.845) (0.691) (0.911)

Panel B: B/M-by-size portfolios
constant E(cp) β1p β2p β3p β4p βnet,p R2

1 0.200 0.045 0.582 0.406
(0.680) ( — ) (1.197) (0.406)

2 0.453 0.167 0.182 0.541
(1.657) (3.452) (0.377) (0.499)

3 0.109 0.748 0.262
(0.348) (1.406) (0.229)

4 0.529 0.045 −8.289 8.275 0.502
(1.665) ( — ) (−2.013) (2.198) (0.481)

5 0.187 0.387 18.229 −17.458 0.571
(0.626) (3.061) (2.344) (−2.265) (0.510)

6 0.574 −11.787 11.671 0.483
(1.959) (−3.102) (2.902) (0.436)

7 −0.425 0.045 4.606 203.397 198.027 −3.330 0.788
(−0.254) ( — ) (0.483) (0.200) (0.526) (−0.049) (0.758)

8 −0.395 −0.031 4.545 397.770 195.128 0.380 0.789
(−0.638) (−0.028) (1.722) (0.115) (1.612) (0.004) (0.733)



Table 7: Controlling for size and book-to-market.

This table reports the estimated coefficients from cross-sectional regressions of the
liquidity-adjusted CAPM for 25 value-weighted illiquidity and B/M-by-size portfolios
using monthly data during 1964–1999 with an equal-weighted market portfolio. We con-
sider special cases of the relation:

E(rp
t−r

f
t ) = α+κE(cp

t )+λ1β1p+λ2β2p+λ3β3p+λ4β4p+λβnet,p+λ5ln(sizep)+λ6BMp ,

where βnet,p = β1p +β2p−β3p−β4p, and the control variables ln(sizep) and BMp are,
respectively, the time-series average of the natural log of the ratio of the portfolio’s market
capitalization at the beginning of the month to the total market capitalization, and BM is
the time-series average of the average monthly book-to-market of the stocks constituting
the portfolio. In some specifications, κ is set to be the average monthly turnover. The
t-statistic, reported in the parentheses, is estimated using a GMM framework that takes
into account the pre-estimation of betas. The R2 is obtained in a single cross-sectional
regression, and the adjusted R2 is reported in the parentheses.

Panel A: liquidity portfolios
constant E(cp) β1p β2p β3p β4p βnet,p ln(sizep) B/M R2

1 −1.358 0.034 2.158 0.142 1.076 0.865
(−1.843) ( — ) (2.114) (1.247) (1.871) (0.852)

2 −1.286 0.028 1.970 0.129 1.120 0.865
(−1.501) (1.129) (1.869) (0.950) (2.215) (0.838)

3 −0.818 0.798 0.043 1.350 0.850
(−0.837) (0.651) (0.302) (1.724) (0.829)

4 −1.273 0.034 −3.740 6.145 0.155 0.679 0.869
(−1.459) ( — ) (−0.576) (0.891) (1.054) (0.814) (0.850)

5 −0.441 −0.018 −12.278 13.565 0.068 0.159 0.882
(−0.613) (−0.227) (−1.292) (1.453) (0.871) (0.229) (0.850)

6 −0.730 −9.313 10.988 0.098 0.339 0.880
(−0.939) (−1.884) (2.106) (0.788) (0.598) (0.856)

7 −0.491 0.034 1.253 −124.221 −18.359 −16.421 0.078 0.205 0.884
(−0.369) ( — ) (0.714) (−0.818) (−0.180) (−1.230) (0.313) (0.208) (0.853)

8 −0.557 0.059 1.300 −183.466 −19.865 −17.238 0.087 0.253 0.884
(−0.912) (0.298) (2.043) (−0.325) (−0.208) (−0.922) (0.773) (0.376) (0.836)

Panel B: B/M-by-size portfolios
constant E(cp) β1p β2p β3p β4p βnet,p ln(sizep) B/M R2

1 0.310 0.045 −0.199 −0.084 0.251 0.924
(1.040) ( — ) (−0.345) (−1.415) (2.892) (0.917)

2 0.317 0.035 −0.236 −0.091 0.250 0.925
(1.026) (0.684) (−0.311) (−1.176) (2.905) (0.910)

3 0.365 −0.403 −0.119 0.246 0.920
(1.177) (−0.516) (−2.155) (2.749) (0.909)

4 0.311 0.045 0.484 −0.696 −0.089 0.249 0.924
(1.170) ( — ) (0.155) (−0.262) (−1.598) (2.960) (0.913)

5 0.340 −0.003 −3.145 2.850 −0.087 0.259 0.925
(1.083) (−0.039) (−0.894) (0.846) (−1.224) (3.108) (0.906)

6 0.338 −2.930 2.639 −0.087 0.259 0.925
(1.003) (−1.366) (0.613) (−1.065) (3.314) (0.910)

7 0.237 0.045 0.490 −286.927 38.480 −14.711 −0.095 0.226 0.932
(1.483) ( — ) (0.284) (−1.063) (0.615) (−1.069) (−1.613) (2.868) (0.915)

8 0.171 0.284 0.529 −916.982 42.353 −26.730 −0.100 0.233 0.937
(0.249) (0.308) (0.232) (−0.344) (0.181) (−0.391) (−0.735) (0.746) (0.911)
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Figure 2: Illiquidity portfolios: The top panel shows the fitted CAPM returns vs. realized
returns using monthly data 1964–1999 for value-weighted illiquidity portfolios. The middle panel
shows the same for the liquidity-adjusted CAPM, and the lower panel shows the relation for the
liquidity adjusted CAPM with unconstrained risk premia.
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Figure 3: σ(illiquidity) portfolios: The top panel shows the fitted CAPM returns vs. realized
returns using monthly data 1964–1999 for value-weighted σ(illiquidity) portfolios. The middle
panel shows the same for the liquidity-adjusted CAPM, and the lower panel shows the relation for
the liquidity adjusted CAPM with unconstrained risk premia.
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Figure 4: Size portfolios: The top panel shows the fitted CAPM returns vs. realized returns
using monthly data 1964–1999 for value-weighted size portfolios. The middle panel shows the
same for the liquidity-adjusted CAPM, and the lower panel shows the relation for the liquidity
adjusted CAPM with unconstrained risk premia.
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Figure 5: Book-to-market by size portfolios: The top panel shows the fitted CAPM returns
vs. realized returns using monthly data 1964–1999 for value-weighted BM-size portfolios. The
middle panel shows the same for the liquidity-adjusted CAPM, and the lower panel shows the
relation for the liquidity adjusted CAPM with unconstrained risk premia.




