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ABSTRACT

Existing models of open-access resources are applicable to non-storable resources, such as

fish, Many open-access resources, however, are used to produce storable goods. Elephants, rhinos,

and tigers are three prominent examples. Anticipated future scarcity of these resources will increase

current prices, and current poaching, This implies that, for given initial conditions, there may be

rational expectations equilibria leading both to extinction and to survival. Governments maybe able

to eliminate extinction equilibria by promising to implement tough anti-poaching measures if the

population falls below a threshold. Alternatively, they, or private agents, maybe able to eliminate

extinction equilibria by accumulating a sufficient stockpile of the storable good.
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I. Introduction

Twenty-nine percent of threatened birds worldwide and more than half the threatened

mammals in Australasia and the Americas are subject to over-harvesting [Goombridge, 1992].

Most models of open-access resources assume that the good is non-storable [Clark, 1976;

Gordon, 1954; Schaefer, 1957]. While this may be a reasonable assumption for fish, it is

inappropriate for many other species threatened by over-harvesting, as illustrated in Table I.

Although 30% of threatened mammals are hunted for presumably non-storable meat, 20% are

hunted for fur or hides, which are presumably storable, and approximately 10% are threatened

by the live trade [Goombridge, 1992].

African elephants are a prime example of a resource which is technologically difficult

to protect as private property, and is used to produce a storable good. From 1981 to 1989,

Africa’s elephant population fell from approximately 1.2 million to just over 600,000 [Barbier,

et al., 1990]. Dealers in Hong Kong stockpiled large amounts of ivory [New York Times

Magazine, 1990]. As the elephant population decreased, the constant-dollar price of uncarved

elephant tusks rose from $7.00 a pound in 1969 to $52.00 per pound in 1978, and $66.00 a

pound in 1989 [Simmons and Freuteo., 1989]. The higher prices increased incentives for

poaching.

Recently, governments have toughened enforcement efforts with a ban on the ivory

trade, shooting of poachers on sight, strengthened measures against corruption, and the highly

publicized destruction of confiscated ivory.’ This crackdown on poaching has been

accompanied by decreases in the price of elephant tusks [Bonner, 1993]. Since these policy

changes reduce short-run ivory supply as well as demand, it is not clear that the fall in price

4 In September 1988, Kenya’s president ordered that poachers be shot on sight, and in April 1989 Richard Leakey
took over Kenya’s wildlife department.
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would have been predicted under a static model, and indeed most economists did not predict

this decline. However, the fall in price is consistent with the dynamic model set forth in this

paper, under which improved anti-poaching enforcement may increase long-run ivory supply

by allowing the elephant population to recover.

Under the model, anticipated future scarcity of storable resources leads to higher

current prices, and therefore to more intensive current exploitation. For example, elephant

poaching leads to expected future shortages of ivory, and thus raises future ivory prices.

Since ivory is a storable good, current ivory prices therefore rise, and this creates incentives

for more poaching today. Because poaching creates its own incentives, there may be multiple

rational expectations paths of ivory prices and the elephant population for a range of initial

populations.

In order to gain intuition for why there may be multiple rational expectations

equilibria, it is useful to consider the following two period example, for which we thank

Marty Weitzman, Suppose that each year there is a breeding season during which population

grows by an amount B(x) given an initial population of x. Following the breeding season, an

amount h is harvested. Denote the elephant population at the beginning of the harvest season

in year one as Xo. Then the population at the end of the harvest in year one will be X. - hl, and

the population at the end of the harvest in year two will be X. - hl + B(XO- hl) - h2. To keep

the model as simple as possible, we assume that the world ends after two years.



FigureII

Time Line for Two Period Example

Time Population

Initial (year 1) Xo

After harvest, hl, in year 1 Xo - hl

After breeding in year 2 X. - hl + B(xo - hl)

After harvest, h2, in year 2 (end of world) X. - hf + B(xo - hl) - h2

Let c denote the cost of harvesting an animal, and denote the amount of the good

demanded at a price ofp as Do). Assume D’ <0 and D(m) = O. The interest rate, which is

assumed to be the only cost of storage, is denoted r.

There will bean equilibrium in which the animal is hunted to extinction in year 1 if

the initial population is less than enough to satisfy demand during the first year at a price of c,

plus demand during the second year at a price of (1+r)c. Algebraically, this can be written as:

X()< D(c) + D((I +r)c).

There will be an equilibrium in which the animal survives if the initial population,

minus the amount required to satisfy first-year demand at price c, plus the births in the

breeding season, is more than enough to satisfy second period demand at price c. This will be

the case if X. - D(c)+ B(XO- D(c))> D(c).

If both conditions hold, then there will be two equilibria. In one, the animal survives.

Lnthe other, the price is high enough that the population is eliminated in the first period, and

the breeding that would have satisfied second-period demand never takes place. There will be



multiple equilibria if the initial population is such that

D((I + r)c) + D(c) > X. > 2D(C) – B(xo – D(c)).

Note that as the interest rate increases, there will be an extinction equilibrium for a

diminishing range of initial population levels. For sufficiently high interest rates, there will

only be a single equilibrium path of population for any initial stock, just as in non-storable

fisheries models.

Note that the example above implicitly assumes that the good is not destroyed when it

is consumed. It thus applies to goods such as rhino horn, which is consumed in traditional

Asian medicines. We will call such goods storable and distinguish them from durable goods,

which are not used up when they are consumed. (Ivory is often considered an example of a

durable good.) In an earlier version of this paper, we showed that there could be multiple

equilibria in a two-period model of durable goods. This paper models storable, but we believe

that except where noted, the results would be qualitatively similar for durable goods.

In the remainder of the paper we use a continuous time, infinite-horizon model, which

allows us to solve for steady-state population and prices, and to examine cases in which

extinction is not immediate following a shift in expectations, or the path of population and

prices is stochastic,

The model may be relevant for policy. It suggests that even if the population level is

steady, so that standard models would predict the continued survival of the species, the

species could still be vulnerable to a switch to an extinction equilibrium. One way to

eliminate the extinction equilibrium would be to increase the population of the animal by

providing additional habitat. This is, however, likely to be expensive.

If governments have credibility, they maybe able to eliminate the extinction

equilibrium, and coordinate on the high population equilibrium, merely by promising to
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implement tough anti-poaching measures if the population falls below a threshold. This

suggests a theoretical possibility that laws which provide little protection to non-endangered

species, and practically unlimited protection to endangered species may be justified in some

cases.

Finally governments or conservation organizations may be able to eliminate the

extinction equilibria by building sufficient stockpiles of the storable good, and threatening to

sell the stockpile if the animal becomes endangered or the price rises beyond a threshold.

This is somewhat analogous to central banks using foreign exchange reserves to defend an

exchange rate (see, for example, [Obstfeld 1986; 1994]). Stockpiles could be built either by

deliberately harvesting animals, or by storing confiscated contraband taken from poachers,

rather than either destroying or selling it.

A number of other papers find multiple equilibria in models of open-access resources

with small numbers of players [Lancaster, 1971; Haurie and Pohjola, 1987; Levhari and

Mirman, 1980; Reinganum and Stokey, 1984; and Benhabib and Radner, 1992]. In these

models, each player prefers to grab resources immediately if others are going to do so, but to

leave resources in place, where they will grow more quickly, if others will not consume them

immediately. Tomell and Velasco [1992] introduce the possibility of storage into this type of

model.

The effects examined in the previous models are unlikely to lead to multiple equilibria

if there are many potential poachers, each of whom assumes that his or her actions have only

an infinitesimal effect on future resource stocks, and on the actions chosen by other players.

This paper argues there may nonetheless be multiple equilibria for open-access renewable

resources used in the production of storable goods, because if others poach, the animal will

become scarce, and this will increase the price of the good, making poaching more attractive.
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Because poaching transforms an open-access renewable resource into a private exhaustible

resource, this paper can be seen as helping unify the Gordon-Schaefer analysis of open-access

renewable resources with Hotelling’s [1931] analysis of optimal extraction of private non-

renewable resources.

The remainder of the paper is organized as follows. Section II presents the standard

Gordon-Schaefer fisheries model, in which storage is impossible. Section III shows how the

model can be adapted to allow for storage, and classifies the possible equilibria. Section IV

discusses equilibria in which people believe there is some probability that the economy will

coordinate on extinction and some probability the economy will coordinate on survival,

Section V concludes with a discussion of policy implications,

II. The Standard Gordon-Schaefer Model With No Storage

ln the standard Gordon-Schaefer model, as set forth by Clark [1976],

dx
— = B(x)-h,
dt

II. 1

where x denotes the population, h is the harvesting rate, and B(”), the net-births function, is the

rate of population increase in the absence of harvesting.5 B(O) = O, since if the population is

extinct, no more animals can be born. We will measure the population in units of the habitat’s

carrying capacity, so B( 1) = O, and B(x) is strictly negative for x > 1. B is strictly positive if

population is positive and less than 1. This implies that, without harvesting, the unique stable

steady state for the population is 1.

The rate of harvest will depend on the demand and the marginal cost faced by

5This is often taken to be the logistic function B(x) = x(1 - x).
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poachers. The marginal cost of poaching, c, is a decreasing function of the population x, so

that c = c(x), with c’(x)cO. We assume that c’(x) is bounded and that there is a maximum

poaching marginal cost of cm, so that c(0) = cm.

Given price, p, consumer demand is D(p), where D is continuous, decreasing in p, and

zero at and above a maximum price pm. We will restrict ourselves to the case in which

pm> cm, so that some poaching will be profitable, no matter how small the population. This

condition is necessq for extinction to be a stable steady-state.

Since the good is open-access, and storage is assumed to be impossible, its price must

be equal to the marginal poaching cost. Algebraically, p = c(x). The harvest must be exactly

equal to consumer demand, so h = D(c(x)). The evolution of the system in which storage is

impossible is thus described by:

&
~ = B(x) – D(c(x)) = F(x) 11.2

We assume that B, D, and c are differentiable. Since B(O) = O, and pm > cm,

D(c(0)) >0, so that F(O) e O, as illustrated in Figure H. 1. Thus, zero is a stable steady state of

11,2. F(l) e O since B(l) = O, and D(c(l)) >0. We will consider the case in which F is positive

at some point in (O,1), so that extinction is not inevitable. Assuming that F is single-peakedG,

there will generically be points XS and Xu so that F is negative and increasing on (O,Xu),

positive on (Xu, XS), and negative and decreasing on (XS, 1]. Hence, if population is between

O and Xu, it will become extinct, whereas if it starts above Xu, it will tend to the high steady

state, X~. Thus, if storage is impossible, there will be multiple steady states, but a unique

equilibrium given initial population.

6 For most of the sequel, we don’t strictly need F to be single peaked, but this requirement simplifies the analysis
and the notation, and is not too restrictive.
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III. Equilibria with Storage

This section introduces the possibility of storage into a Gordon-Schaefer type model.

We assume that storage is competitive, that there is no intertemporal substitution in demand

for the good, and that the cost of storage is an interest cost, with rater.

We will look for rational expectations equilibria, or paths of population, stores, and

price in which poachers, consumers, and storers are behaving rationally at all times. This

section considers perfect foresight equilibria, in which the path is deterministic; Section IV

considers equilibria in which the path is stochastic. The steady states of the model with

storage are the same as those in the model without storage, as we show below.7 Indeed, the

stable steady states of the last section comprise the entire stable limit set of the system with

storage (i.e. there are no cycles or chaotic attractors).

We analyze the fairly general model introduced in the last section with two stable

steady states, one at zero and the other at Xs. In fact, the propositions of this section can be

easily generalized to cover much more general models in which there are many stable steady

states, or in which extinction is not stable.

Our strategy for finding equilibria is as follows. Simple accounting arithmetic and the

absence of arbitrage opportunities in poaching and storage yield local equilibrium conditions

on the possible equilibrium paths. Because there may or may not be storage or poaching, it

turns out that there Me three possible different dynamic r6gimes: no storage, storage, and no

poaching. Using the local equilibrium conditions, we derive differential equations for the

equilibrium paths in each r6gime. The steady states give terminal or boundary conditions

7We will make a distinction between a steady state, which is a stationmy value of population and stores, and an

equilibrium.
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which allow us completely to determine the equilibrium paths, which we represent using

phase diagrams in population-stores space. The steady states provide a terminal condition that

allow us completely characterize the equilibrium paths.

LOCAL EQUILIBRIUM AND FEASIBILITY CONDITIONS

The local equilibrium conditions are determined by the absence of arbitrage

opportunities for both poachers and storers of the good:

The Storage Condition

prices. As in [Hotelling

The possibility of storage introduces constraints on the path of

193 1], in order to rule out arbitrage,

dp
–rp, ifs>O,

z–
III. 1

wheres denotes the amount of the good that is stored. If the price were rising less quickly,

people would sell their stores, and if the price were rising more quickly, peop!e would hold on

to their stores or poach more. This “storage condition” is slack when stores are zero. In this

case, dp/dt S rp, because otherwise people would find it profitable to hold stores.

The Poaching Condition Because poaching is competitive, if there is poaching at all, the

price of the good must be equal to the marginal cost of poaching another unit of the good,

which is c(x) if the population is x. Thus the “poaching condition” is that

p = c(x), if there is poaching. m.2

This condition is slack if there is no poaching, in which case p < c(x).



Note that, in addition to the local equilibrium conditions above, there are some

feasibility conditions:

“Conservation of Elephants” At all times, the increase in stores plus the increase in

population must equal the net births minus the amount consumed, or

i+i=B(x)– D(p). nI.3

Note that, as mentioned earlier, we assume that the good is destroyed when it is

consumed. Note also that animals which die naturally cannot be turned into the storable

good.g

Finally, both population, x, and stores, s, must be non-negative at all times.

The above conditions imply that, once on an equilibrium path, population, stores, and

price, must be a continuous function of time. This is because, with perfect foresight, jumps

would be anticipated and arbitraged. See Appendix A, proposition A. 1 for a more formal proof.

As we discuss below, there maybe an initial jump to get to the equilibrium path.

These conditions must be satisfied at all points on a rational expectations equilibrium

path. There are four conceivable dynamic r6gimes for the system, depending on which of the

storage and poaching conditions (III. 1 and IH.2) are binding at any time, but only three of

these potential r6gimes are actually possible:

No Storage Rkgime Stores are zero, but there is poaching. The zero profit condition for

poaching implies that p = c(x). The storage condition restricts the rate at which the price can

rise and not induce storage ( p < rp ). Because the price is inversely related to the population,

s We write the conservation condition as an equality. Because the price is positive, no one would throw the good

away voluntarily.
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it is possible to translate this condition that prices may not rise too fast into a condition that

the population may not fall too fast: differentiating p = c(x), the condition that no one wants to

hold positive stores becomes

dx c(x)
—>r —
dt c’(x) ‘

m.4

In the No Storage Regime, the dynamics are the same as Section II, the model with no

storage:

~ = ~(x) – ~(c(x))

S=()

p = c(x)

nI.5

Storage Rkgime Stores are positive and there is poaching, so dpldt = rp, and

p = c(x). Here, the exponential path of the price translates into a differential equation

population: differentiating p = c(x) gives the same expression, but with equality, that

for the No Storage r6gime (111.4). Given the path of population and, hence, price and

for

we had

consumption, the dynamics of stores are determined by “consemation of elephants” (IH.3), and

we can express all the local equilibrium dynamics in terms of the population, x:

c(x)~=r —
c’(x)

i = B(x) – D(c(x)) – x .

p = rc(x)

111.6

No Poaching Rkgime Stores are positive, but there is no poaching. Without poaching,

the rate of change of population is just the net birth rate. All demand is being satisfied from

stores, so stores must be falling at the same rate as demand. For stores to be positive, price

must be rising exponentially at rate r. The dynamics can thus be summmized by:
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j = ~(x)

i = –D(p) .

p=~p

Note that since there is no poaching, it is not possible to substitute c(x) for p.

111.7

No Storage, No Poaching This is impossible if population is positive, since it would imply

that there is no consumption, so the price must be pm, but pm is greater than cm, which is the

maximum marginal cost of poaching, so there would have to be poaching, which contradicts

the assumption that there was no poaching.

To be in steady state, stores must be zero because, when they are positive, price must

be rising exponentially. This means that there are only two stable steady states: extinction, in

which population and stores are zero, and what we will call the “high steady state”, in which

population is Xs, stores are zero, and price is c(Xs). If stores are zero, then the system must be

in the No Storage r6gime, and will thus have the same steady states as the model with no

storage in Section II, i.e. x = Oor X~,

DYNAMICS WITHIN THE STORAGE AND NO STORAGE REGIMES

We shall begin by looking at the two r6gimes in which there is poaching: No Storage

and Storage.

Equilibrium Paths in the No Storage Rkgime.

For the system to be in the no storage rggime in equilibrium, people must not want to

hold positive stores, so price must not be rising faster than rp. Since the price is determined by
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the population, p = c(x), storage implies that the population cannot fall too fast. Specifically,

from 111.4and 111.5,

rc(x)
B(x) – D(c(x)) 2 — 111.8

c’(x) -

As is clear from Figure 111.1,for small enough r, 111.8will hold if and only if

x ● [Xu”, X~*],where X~*and XU*are the two critical points at which the storage condition is

just binding, i.e. B - D = r c / c‘. Moreover, O < XU*< Xu < X~ < X~*.

If the system starts with population in (Xux~*] and no stores, then it is an equilibrium

to follow the No Storage R6gime dynamics to X~, the stable steady state. If the system starts

with no stores and a population of exactly Xu, the unstable steady state, the system will stay

there. Here, as elsewhere, for the sake of clarity we shall not discuss measure zero cases like

this in any detail.

If the system starts with no stores and with population in [Xu”, Xu), then the No

Storage dynamics will eventually take population to a point less than XU*. At some point,

therefore, the system must leave the No Storage R6gime and enter the Storage R6gime. We

discuss this after we have found the equilibrium paths in the Storage R6gime.

Equilibrium Paths in the Storage R6gime

The dynamics of population are determined by the price, which is rising exponentially.

The dynamics of stores are determined by “conservation of elephants”: what is harvested and

not consumed must be stored. We may rewrite 111.6as a differential equation for the trajecto~

of stores,s, in terms of x:

ds c’(x)

{

c(x)—= — B(x) – D(c(x)) – r —
& rc(x) 1c’(x) “

lIr.9
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dx/dt is still just rc(x)/c’(x), which is strictly negative, and bounded above.

Equation 111.9implies that rational expectations trajectories in population-stores space

must have stores decreasing with population, x, if x c XU*,or x > X~*. Stores must be an

increasing function of population if x ● (Xu”, X,S*).There is a maximum of stores at XU*,and

a minimum at X~*. To see the intuition for this, note that if population is very high or very

low, population would tend to fall rapidly without stores, and as may be seen from Figure

III. 1, it would fall rapidly enough that price would be rising faster than rate r. In order to

prevent population from falling too rapidly, part of demand must be satisfied out of stores, and

so stores must decrease with time. XU*and X~*are the points at which, in the absence of

stores, the population would fall just fast enough that price would rise at rate r, Between XU*

and Xs*, the price would rise more slowly than rate r with no storage. For an equilibrium with

stores, therefore, more than current demand must be being harvested and stores must increase

to make the population fall fast enough so that price rises at exactly rate r.

Equation 111.9is the differential equation for the trajectories of equilibria in

population-stores space. The equilibria are now to be determined by boundary conditions.

One possibility is that stores run out while population is still positive, and the system enters

the No Storage R6gime. The only place at which this can possibly happen is where population

is exactly X~*. To see why, consider the following: to be in the No Storage R6gime,

x ● [Xu”, X~*]. Because population, stores and price are continuous in equilibrium, the system

must leave the Storage r6gime at the same point at which it enters the No Storage r~gime. As

explained above, stores are decreasing as a function of x, so strictly increasing as a function

of time (x is falling) if x = (Xu”, XS*),and at a maximum at x = XU*. But stores have to run out

at the point of transition from the Storage to No Storage R6gime, so stores must have been
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falling, (or at least not increasing or at a maximum) immediately before the transition. The

only point at which stores could run out is, therefore, X~*.

The other possible boundary condition is that population becomes extinct before stores

run out. Since x is decreasing at a rate which is bounded below while stores are positive, the

population must become extinct in finite time if stores do not run out. After that, stores will

be consumed until they reach zero as well. It turns out that the quantity of stores remaining

when the population becomes extinct is uniquely determined in a rational expectations

equilibrium. To see this, note that the price charged for the last unit of stores must be pm, the

maximum price people are willing to pay for the good, or a storer would profit by waiting

momentarily to sell his or her stock, The zero profit condition in poaching implies that the

price when the population becomes extinct must be c(0)= cm. Price is rising exponentially

while stores are positive, so we can calculate the amount, U@), consumed from the time when

price is p until price reaches pm:

()
~ln~

U(p) = ‘ J\(p err)dt. 111.1o
0

The amount of stores remaining at the moment of extinction must, therefore, be U(c~).

We have shown that there can only be two equilibrium paths in the Storage R6gime

(See Figure 111.2)

1 High Steady State Storage Equilibrium In this equilibrium, population starts at

x 2 X~*.The system evolves until stores run out when population is Xs*, and then

enters the No Storage R&gime. The equations p = c(x), and dp/dt = r p determine the

path of population and price. Stores are given bys = s+(x), where
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‘ c’(q)

[

c(q)
s+(x)= J— B(q) – D(c(q)) – r— 1dq . 111.11

~:rc(q) c’(q)

2 Extinction Storage Equilibrium. In this equilibrium, population becomes extinct, and

at that moment, stores = U(c~). The equations p = c(x) and dp/dt = rp determine the

path of population and price. Stores are given bys = s.(x), where

xc’(q)
sc(x)=u(cm)+j—

~ rc(q)

c(q)
B(q) – D(c(q)) – r—

1
dq . 111.12

c’(q)

For this to be an equilibrium, stores must stay positive at all times along this path. If

stores would have to become negative at some point in the future, this path is not an

equilibrium. Ifs.(x) is ever negative, we define X- ot be the smallest positive root of

s,(x). If there is none such, we say that X_ = m. To be an equilibrium, the starting

population must be less than X-.

se(x) and s+(x) are parallel. Both have a minimum at X~*. It is clear from Figure 111,2

that Xrna is finite if and only if se(x) lies below s+(x). If X~ is finite, it must lie between XU*

and X~*.

Transitions Between Storage and No Storage Rkgimes

We now examine under which circumstances an equilibrium path can move from the

No Storage to the Storage R6gime. If the initial population is small enough, an equilibrium

path can move to the Storage r&gime and, thence, to extinction. It may have to do this: if

Xu’ >0 and the system starts in the No Storage r6gime with population less than Xu, then the

system must eventually move to the Storage r6gime because if it didn’t, the population would

fall fast enough to violate the storage condition once it had fallen past XU*. On an equilibrium
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path, the system must move to the Storage r6gime before that point is reached. The system

may also move to the Storage r6gime when it doesn’t strictly have to. By continuity of stores,

the system must make the transition from the No Storage to the Storage r6gime where

s.(x) = O, i.e. at X-9. If the path in the No Storage r6gime crosses X_, then the system can

move to the Storage r6gime path se leading to extinction. At such a transition, the rates of

change of population, stores, and price will jump, but the storage and poaching conditions are

not violated because the levels will not jump.

We may thus define two sets of points on equilibrium paths in the Storage and No

Storage r6gimes: A,, the set of points leading to extinction, and A+, the set of points leading to

the high steady state, as illustrated in Figure 111.3.

The system must end up on one of these paths, A+ or A,. Given arbitrary initial values

of population and stores (XO,,SO),there can either be an initial cull, or there can be an interlude

when there is no poaching, as discussed below.

MOVING TO EQUILIBRIUM

If the initial population and stores are not on one of the equilibria identified above,

then one of two things will happen. If the initial point in population-stores space is below the

equilibrium paths described above, then the system may jump instantaneously to one of the

equilibrium paths via a cull. If the initial point is above an equilibrium, demand may be

satisfied from stores with no poaching for a while until the path meets Ae or A+.

9 The transition cannot happen at X~*, because the population would be falling there in the No Storage r6gime, so

the system could never reach that point,

17



Culling

If the system starts below an equilibrium path in population stores space, there maybe

an instantaneous harvest, which we shall call a “cull”. In this case, the price starts high

enough that it is above the marginal cost implied by the initial population, C(xo) , and there

will be instantaneous poaching up to the point at which the price is equal to the marginal

cost.l” Although continuity of price, population, and stores is required by rationality, such a

jump is allowed if it is unanticipated, or at the “beginning of time”, as it is in this case. We

will make a distinction between “initial” values of population and stores and “starting” values,

which are the values just after the initial cull. When we need to indicate this, we will write

(XO, SO) for initial population and stores, and (x(0), s(O)) to denote starting (i.e. at time O on the

equilibrium path) values.

In a cull, live elephants are killed and turned into dead elephants one-to-one. This

means that, in population-stores space, the system moves up a downward sloping diagonal,

and the total quantity of elephants, dead or alive, is conserved. We call this quantity

Q= x + S. For a CU1lto be rational, it must take the system to a point on one of the

equilibrium paths we identified above, A, or A+.

To get to the high steady state equilibrium path by culling, initial population and stores

must lie below the lines = s+(x), and X. < X~*.

To get to the path leading to extinction, if XM is infinite, the initial point must lie

belows = ~,(x). If X~ is finite, points below se(x) can also cull to the equilibrium, but there

may also be other points from which this is feasible, In particular, if the curves = se(x) has a

‘0 If the marginal cost of poaching became sufficiently great as the instantaneous rate of poaching became great

enough, the harvest would take place over time, rather than instantaneously. Structurally, though, there is little
real difference in the two approaches: the rational expectations equilibria are determined by the boundary

conditions (where people anticipate the system must end up), and these are essentially the same in both cases.
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tangent of gradient -1, then, as illustrated in Figure 111.4,points above the curve, but below the

tangent can also reach the extinction equilibrium by culling. A quick look at 111,9shows that

the points at which s.(x) has gradient -1 are Xu and Xs, but only the tangent at Xu lies above

the curve. The value of Q at this tangency, Q-, is the maximum value Q may have so that

the extinction equilibrium may be reached via culling. If X- e Xu, then this tangency doesn’t

exist, and only points belows. can cull to the extinction equilibrium.

No Poaching

If there are sufficient initial stores, there will be equilibria in which the starting price is

below c(x), and there is no poaching for a time while demand is satisfied out of stores,

Eventually poaching must resume, at a point on A, or A+, While there is no poaching,

population will be rising, and stores falling as they are consumed. Price is rising

exponentially, at rate r. In population-stores space, trajectories with no poaching must be

downward sloping and population must be increasing so long as population is less than one.

When poaching resumes at a point on one of the A[ paths, price, population, and stores

are all determined. Given the end point, there is a unique, downward sloping no poaching

trajectory leading to it. In order for no poaching to be rational, and for an initial point to end

up on one of the Ai, the initial point must lie on one of these trajectories (Figure IH.5). To get

to the path leading to the high steady state, the initial point must lie to the right of the

boundary of the set of points on trajectories leading to A+, which we denote L+, and above the

curves = s+(x). To get to the path leading to extinction, the initial point must lie to the left of

the boundary of the set of points on trajectories leading to points on A., which we denote L,.

We include a more formal treatment of this in the Appendix A, proposition A.3.
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We have now found all the possible equilibria of the model with storage, As

illustrated in Figure 111.6,population-stores space may be divided into at most three regions

depending on whether there exist equilibria leading to extinction, the high steady state, or

both. In the first region, there is no equilibrium path leading to extinction. This will be the

case if the initial population and stores are high enough, so that killing and storing enough to

get to extinction would mean that stores would have to be held long enough that the storers

would lose money. In the second region, there is no equilibrium path leading to the high

steady state. This is the case if population and stores are low enough that, even if poaching

were temporarily to cease and demand were to be satisfied from stores until they should run

out, the population cannot recover enough to guarantee species survival. The third region is

where there are multiple possible equilibria, some to extinction, and some to the high steady

state. In this deterministic, perfect foresight model, which equilibrium is chosen is

determined by exogenously formed, self-fulfilling expectations.

Depending on parameter values, some of these regions maybe empty. It is possible

that there will be no region in which survival is assured, If X_ is infinite, any point can get

to the extinction set A,, either through a cull if it lies below s., or by an interlude with no

poaching if it lies above s,.

If, on the other hand, x- is small enough (less than X~), then there will be no region

of multiple equilibria, and the fate of the system will be entirely determined by its initial point,

and not by expectations.

Note that, if there is an initial no poaching interlude, the population will be rising to

start with even if the eventual fate of the system is extinction. There will often be over-

shooting with No Poaching equilibria, and one should not, therefore, become complacent if
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elephant populations are increasing,

It turns out that X_ and Q- are both decreasing in r, the storage cost. For proofs,

see Appendix A, proposition A.2. This should not come as a surprise. Q- tells us the

largest population can be and still reach extinction via culling and a storage equilibrium path.

The larger the population, the longer stores have to be held before extinction. This is clearly

going to be less desirable with higher storage costs. Increasing the storage cost thus always

reduces the region of phase space from which extinction is possible. Governments could

increase storage costs by threatening prosecution of anybody found to be storing the good.

The international ban on ivory trade may have had this effect,

For sufficiently large r, X- wi11be less than Xu, and there will be no region of

multiple equilibria at all; the ultimate fate of the species is the same as in the model with no

storage possible, given the same initial conditions. In this sense, our model converges to the

standard Gordon-Schaefer model as storage cost rises.

If Qm > X~, then even starting from the high steady state with no stores, the

population will be vulnerable to coordination on the extinction equilibrium. This highlights

another possible policy response to limit the possibility of extinction: the government or

private conservation organizations may increase the size of habitat available to the species.

Increasing the habitat, while leaving demand unchanged, will increase the steady state

population, X~, more than proportionally. At the same time, Q_ will fall. We show, in

Appendix A, proposition A,4 that, for sufficient habitat, X~ will be above Qm, and the

species will then be safe from speculative attacks leading to extinction when it is in the high

steady state.
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IV. Non-Deterministic Equilibria

So far, we have focused on perfect foresight equilibria, in which all agents believe that

the economy will follow a deterministic path. This section considers a broader class of

rational expectations equilibria in which agents may attach positive probability to a number of

future possible paths of the economy. One reason to consider this broader class of equilibria

is that the perfect foresight equilibrium concept has the uncomfortable property that there may

be a path from A to B, and from B to C, but not from A to C. To see this, note that if Q_ is

greater than Xs, then for sufficient initial population, the only equilibrium will lead to the high

steady state. For a system that starts in the high steady state, however, an extinction storage

equilibrium would also be possible.

Note also that the concept of no poaching regimes is also much more relevant when

stochastic paths are admissible, since in order to have an equilibrium with no poaching, there

must be stores, and the only way stores can be generated within the model is through a storage

equilibrium. However, within the limited class of perfect foresight equilibria, people must

assign zero weight to the possibility that there might be a switch from an storage regime to a

no poaching regime.

While we have not fully categorized the extremely broad class of equilibria with

stochastic rational expectations paths, we have been able to describe a subclass of equilibria,

which we conjecture illustrates some more general aspects of behavior. We consider

equilibria in which agents believe there is a constant hazard that a sunspot will appear and

that, when this happens, the economy will switch to the extinction storage equilibrium, with
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no possibility of any other switches. 11 Thus all agents know that the economy will switch to

the extinction equilibrium eventually with probability one, but they are unsure when. We

divide time into two parts: before the sunspot (B.S.), and after the sunspot (A.S.), The

equilibrium behavior A.S. is simple: it is just the extinction equilibrium we found in the last

section. In this section, we look for equilibria B .S. in which the population does not become

extinct.

We first derive a stochastic analogue of the storage condition. We then show that

there are equilibria with a small switching hazard in which the behavior is similar to that seen

in section III: the B.S. steady state population is X~, and no stores are held in this steady state.

There are also equilibria with a higher switching hazard in which positive stores are held in

B.S. steady-state equilibrium in anticipation of a switch to the extinction equilibrium. There

cannot be equilibria with a hazard rate above a certain threshold, because in this case

extinction would become so likely that it would become certain and the system would have to

jump immediately to the extinction equilibrium.

We also show that while the species can survive a series of small increases in the

hazard rate of switching by building up stores after each increase, it might not be able to

sustain the same increase in the h=ard rate if it took place in a single jump, because the

required increase in storage would be so great as to drive the species into extinction.

In this section, it is mathematically more convenient to work with the total of stores

and population, Q, rather than stores,s, Since Q =s + x, working with (x,Q) is equivalent to

working with (x,J).

For the sake of clarity and brevity, we relegate all proofs to Appendix B, where we

llIn some cases, extinction is instantaneous after the switch, so there is no way that agents could rationally

ascribe positive probability to any further switch.
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derive the results of this section more formally.

B.S. Equilibrium Conditions

Let the B.S. state be (x, Q, p), and the A.S. state be (x., Q, p,). Note that, since the

switch happens instantaneously by culling, Q doesn’ t change when the sunspot appears. If

there are positive stores, the expected profit from storage must be zero, so that, if we denote

by n the hazard rate that the sunspot will appear:

~+(pe–p)n=rp ifs>O, Iv. 1

If stores are zero, it must be because expected profits from storage are not positive, and so

~+(p, –p)n<rp ifs=O. IV.2

IV. 1 & IV.2 are just generalizations of the storage condition when the price change is

stochastic, and not necessarily continuous.

We shall consider equilibria in which, once the system is in the extinction equilibrium,

there is no possibility of further change. (x., Q) must, therefore, lie on the extinction storage

equilibrium path derived in section III. In some cases, there maybe more than one point on

this path to which the system could jump. We will consider equilibria in which the system

jumps to the lowest possible population on this path. Thus the population after the switch is a

function of Q: x.(Q) is the smallest population such that s.(x,(Q)) + xc(Q) = Q. This is

illustrated in Figure IV. 1. Because harvesting cannot increase the population, for people to

believe in the possibility of a switch to the extinction equilibrium we must have x 2 x.(Q),

We will also only formally consider cases in which Q-is bigger than X~. The system must,

therefore, be in the region where Q- 2 Q 2 x > x.(Q).

By assumption, the system jumps to the extinction equilibrium path if there is a
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sunspot. We may, therefore, determine the A.S price as a function of Q, the total stores plus

population at the time of the sunspot. Q is conserved during the switch. p, is a decreasing

function of Q (as we prove in Appendix B, proposition B. 1), and it is continuous on [0, Qm].

When Q S U(c~), the system jumps straight to extinction, and p. = U1(Q), When Q > U(c~),

the population jumps to x,(Q), and p, = c(x,(Q)).

We first consider the system dynamics when there are positive stores, so that IV. 1

holds. By an argument analogous to that used in Section III, while stores are positive (i.e.

Q 2 x), the system evolves before the sunspot according to the differential equations:

Q=B(x) - D(c(x)) = F(x)

C,:x)[(~+~)c(x) - ZPe(Q)]”x.—
IV,3

B.S. Steady States

It is rather easy to solve for the steady states of IV.3. The first equation tells us that,

for total stores and population to be constant, population must be either Xs, or zero (we ignore

Xu), just as was the case in the deterministic case in the last section. We are interested in the

steady state at Xs. Given the population X.S,the B.S. price will be c(Xs). To determine the

steady state level of stores, note that the more stores, the lower the A.S. price will be, and so

the less profitable it will be to speculate on the sunspot’s appearance. There will thus be a

unique level of stores plus population, Qs, that satisfies the storage condition with equality.

The second equation of IV.3 allows us to solve for this level of stores in terms of the interest

rate, the sunspot hazard, and the characteristics of the extinction equilibrium after the sunspot:

-’(=C(XS))Q, =P, IV.4
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Because stores must be positive, this is only a feasible B.S. steady state if Qs 2 Xs.

This will be the case for z 2 ml, where

If z < Zl, the storage condition cannot be satisfied with equality at Xs, and there must be zero

stores in steady state.

Because it must be possible to reach the A.S. equilibrium path via culling, it is also the

case that we must have Qs < S,(XU)+ Xu. If Q_ is finite, the right hand side of IV.5 is just

QIIw.x. Even if Q- is infinite, this equation still holds, as if stores are too large at X.S,one

cannot cull to a point on the extinction equilibrium. For this to hold, n must be below n~,

where

rc(X~ )
‘h = C(XU) –c(Xs) “ IV.6

In summary, then, if n < ml, then there is no B.S. steady state equilibrium with positive

stores. In this case, Xs is a steady state with no stores, just as it was in the perfect-foresight

case of section III: the sunspot probability is low enough that the costs of holding positive

stores outweigh the expected profit when the sunspot happens.

If Z1< n < rc~,then there is a B.S. steady state with positive stores, (Xs, Qs). The

possibility of the sunspot causes agents to hold positive stores in anticipation, so the more

likely the sunspot’s occurrence, the higher the stores held in anticipation of it (see Appendix

B, proposition B.2).

If z > nh, there exists no B.S. steady state at X~. This is because if the sunspot

probability is high enough, extinction becomes self-fulfilling even before the sunspot happens,
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and there is no steady state equilibrium before the sunspot apart from extinction,

B.S. Equilibrium Dynamics

We now summarize the main features of the B.S, equilibrium dynamics. Details of

this are in Appendix B, propositions B.2 - B.7. Figure IV.2 illustrates a possible phase

diagram in x - Q space.

Steady states for population Xu are always totally unstable, so we ignore them.

If n < Zl, then the dynamics are basically the same as for the perfect foresight case.

Along the equilibrium path, there will be some level of positive stores s+”(x) when population

is above a critical value X~’, In this case, population decreases towards X~ over time, and

stores are falling and run out at X~=,the stochastic analogue of X.S’,where the storage condition

IV.2 is just binding. The system continues to the B.S. steady state x = X,S,s = Oin the No

Storage r~gime exactly as in section III. As we show in the Appendix B, proposition B.4, Xsn

is decreasing with n. Obviously X,So= X~*,and X;’ = X~,

If Z1 < z c n~, the B .S. equilibrium path is the saddle path of the fixed point (X.S,Q~),

This saddle path rises with increasing n. This means, as is not surprising, that if the

probability of a sunspot is higher, then higher stores will be held for all population levels, not

just at the steady state. We illustrate the dynamics in Figure IV,3.

Comparative Statics and Unanticipated Changes in n

Now we consider unanticipated changes inn, the transition hazard. If n increases”,

12If n decreases, of course, the price would have to fall to get back to the stable manifold, and poaching would

stop for a while in a non-deterministic version of a no poaching equilibrium.
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the B.S. equilibrium path moves up, and there will be a cull to get to the new equilibrium path

from the old one, so long as the increase in n is not too big. If the increase in n is too big the

required cull will be so large that the new equilibrium path cannot be reached, and the system

will switch immediately to the extinction equilibrium. Note that a large increase in n need not

necessarily lead to extinction if it happens gradually, in a series of small, unanticipated steps.

If the increase in n is slow enough, then the equilibrium is sustainable up to the point at which

the equilibrium ceases to exist altogether (i,e. n~).

Thus, if a policy maker knew that there had to be a shift in expectations towards a

higher probability of extinction, and somehow had control over the timing of that shift, it

would be best to make the shift gradual, rather than rapid. This hints that if policy makers

have access to continuously changing information about the state of the population, it might

be best for them to release this information on a regular basis, rather than simply trying to

cover up bad news about the availability of the resource and hope that the situation repairs

itself before people find out. This can only be conjectured, however, because in the model,

there is no uncertainty about the population, only about what other agents are thinking.

We conjecture that if there was a chance of switching to a no poaching equilibrium at

any point on the A.S. trajectory, the rate of growth of prices in the extinction equilibria would

have to be higher. Similarly, the possibility of switching back to an extinction equilibrium

from a no poaching equilibrium would mean that the rate of growth of prices would have to be

lower in the no poaching equilibrium. Note that the possibility of switching to a no poaching

equilibrium makes it harder to have a storage equilibrium, just as increasing storage costs

would.
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v. Conclusion

This paper has argued that there may be multiple possible rational expectation paths of

population and prices for open-access resources used in the production of storable goods.

Expectation of future poaching will increase future prices, and this will increase current

prices, thus rationalizing the initial increase in poaching. Note that this argument does not

apply to non-storable goods, such as fish, because the price of fish depends only on current

supply and demand, and not on expectations of prices. It also does not apply to privately held

goods, such as oil, since anticipation of higher prices will lead people to postpone extracting

the resource.

It is becoming cost-effective for people to assert property rights to elephants in a few

areas of Africa [Simmons and Kreuteo, 1989]. Most elephants, however, continue to live in

open-access areas, and only a fraction of the elephant population can profitably be protected

as private property. (It is expensive to protect elephants as private property, since they

naturally range over huge territories and ordinary fences cannot contain them [Bonner, 1993 ].)

If elephants can only be supported as private property above a certain price, then there maybe

one equilibrium in which they are a plentiful open-access resource at a low price, and another

equilibrium in which they are a scarce private resource at a high price.

The analysis carries several policy implications. First, it indicates that in order to

assure the survival of a species, it maybe necessary to preserve a large enough herd not only

to allow the species to survive at current equilibrium poaching levels, but also to prevent an

equilibrium with a higher level of poaching. If Q- > X,S,then the population may appear

safe, but may in fact be vulnerable to a switch in equilibrium. One way to rule out the

extinction equilibrium is to increase the habitat for the animal, so that the steady-state

29



population becomes greater than Q-.

It maybe possible for governments and international organizations to avoid the

extinction equilibrium if they can commit to drastic measures to prevent extinction, This

could keep prices down and reduce the incentive to poach. If a government or international

organization could credibly announce that it would spend a lmge amount on elephant

protection if the herd fell below a certain critical size, it might never actually have to spend

the money, whereas if the same government spent a moderate amount on elephant protection

each year, the herd might become extinct. The model thus suggests a rationale for

conservation laws that extend little protection to a species until it is declared endangered, and

then provide extensive protection with almost no regard to cost.13 Whether this is important

empirically is another matter.

While conservationists and governments may wish to coordinate on low-poaching

equilibria, people who hold stores will prefer to coordinate on a high-poaching equilibrium, in

which the species becomes extinct. In fact, although game officials in Zimbabwe removed the

horns of some rhinos in order to protect them from poaching, poachers killed the rhinos

anyway. The New York Times [July 11 or 12, 1994], quotes a wildlife official as explaining

their behavior by saying “If Zimbabwe is to lose its entire rhino population, such news would

increase the values of stockpiles internationally.” 14

Note that if there were a “George Soros” of elephants who had sufficient resources, or

were not subject to credit constraints, he or she could use his or her market power to

coordinate on the extinction equilibrium simply by offering to buy enough of the good at a

13On the other hand, the model suggests that if the government plans to impose such strong anti-poaching
enforcement that the long-run harvest will decline, and announcing these regulations ahead of time may lead to a
rush to poach.
14It is also possible that the poachers killed the rhinos to obtain the stumps of their horns, or to make rhino

poaching easier in the future.
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high enough price. Aspeculator whoalready owned some of thegood would make

substantial profits by inducing coordination on the extinction equilibrium, so this equilibrium

may be more likely in the absence of government intervention, assuming the parameters are

such that both extinction and survival equilibria exist.

The model also suggests that it maybe possible to eliminate the extinction equilibrium

by accumulating a sufficient stockpile of the storable good, and threatening to release it onto

the market if the animal goes extinct or becomes sufficiently endangered, (Note that this

policy is more likely to be time consistent than policies which promise to spend arbitrary

amounts of resources to preserve an animal. If the animal is already going extinct, there is no

reason not to sell the stockpile.) As illustrated in Figure IH.6, if Q- is finite, but greater than

the high steady state, X~, then an extinction equilibrium will exist in steady state if the

government does not stockpile stores. If the government or a conservation organization holds

stores greater than the boundary of the region where the extinction equilibria cease to exist,

and credibly promises to release them onto the market if the population falls below a

threshold, the extinction equilibrium will be eliminated. The organization holding stores

would have to pay the interest costs on the stores, and this would entail a financial loss, but

the price might be worth paying if the organization valued conservation, and the stores

eliminated the extinction equilibrium,

If Q- is infinite, stores cannot eliminate the extinction equilibrium, but they can

extend the range of the survival equilibrium. For example, suppose that the initial stock is X~,

and the initial stores are zero, but that there is an exogenous shock to population, for example

due to disease. If there are no stores, then the species will be driven to extinction if the

population dips below XU*.However, if there are sufficient stores, there will be a no poaching

equilibrium in which demand is satisfied by stores and the population can recover.
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Bergstrom [1990] has suggested that confiscated contraband should be sold onto the

market. This analysis suggests that an alternative policy would be to hold confiscated supplies

of goods such as rhino horn and released them on onto the market only if it appears that the

market is coordinating on the extinction equilibrium. For example, a rule might be adopted

that confiscated rhino horn would be sold only if the rhino population dipped below a certain

level, or the price rose above a certain level,

Stores could be built up not only by confiscating contraband, but also by harvesting.

Sick animals could be harvested, and animals could be harvested during periods when

population is temporarily above its steady state level, due, for example, to a run of good

weather,

Building up stores will reduce the population, but only temporarily. Once the target

stockpile has been accumulated, harvesting to buildup the stockpiles can be discontinued, and

the live population will return to the same level as in the absence of stockpiling. The presence

of the stockpiles, however, will permanently eliminate or reduce the chance of a switch to the

extinction equilibrium. If Q- were less than X~ it is particularly important to build up

stockpiles gradually, so as to prevent the population from falling below Q~w, and thus

creating an opportunity for coordination on the extinction equilibrium.

Many conservationists oppose selling confiscated ivory on the market, for fear that it

would legitimize the ivory trade. Building stores achieves the same goal of depressing prices,

but without the disadvantage of legitimizing the ivory trade. Stores could potentially be held

until scientists develop cheap and reliable ways of marking or identifying “legitimately” sold

animal products so they can be distinguished from illegitimate products.

While stockpiles may help promote conservation of animals which are killed for goods

which are storable but not durable, such as rhino horn, this analysis does not strictly apply to
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durable goods, utility from them. Elephant ivory is often considered an example of such a

durable good. The government has no reason to wait before selling confiscated durable

goods, since in any case, private agents will store any durable goods sold on the market. In

practice, however, there are few completely durable goods. Even ivory is not perfectly

durable, since it depreciates, and uncarved ivory is not perfectly substitutable for carved ivory,

due to changing styles and demand for personalized ivory seals.

In the perfect foresight model of Section III, no private stores were held by speculators

in the high steady-state. However, if the price is stochastic, either due to sunspot

coordination, as in Section IV, or to exogenous shocks, such as weather or disease, then

speculators may hold stores, and government stores may crowd these out. In the example

considered in Section IV, government stores would crowd out private stores one for one, until

the government accumulated greater stores than would be held by private agents. Any further

accumulation by the government would reduce the range of equilibria in which agents could

anticipate extinction.

Finally, it is worth noting that this model suggests that if one country reduces the price

of ivory by protecting its elephants, this reduces the incentive to poach in other countries. In

conventional models of non-storable resources, increased anti-poaching efforts in one country

will initially drive up the price of the good, encouraging extra poaching in other countries.

Under this model, increased anti-poaching efforts in one country may reduce poaching in

other countries, both in the short run and in the long run.
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Appendix A Proofs for Section III

Proposition A.1 The path of population, x, stores, s, and price, p, is continuous on an

equilibrium path.

ProoI Together, the storage and poaching conditions imply that the equilibrium price

path must be continuous in time. A jump up in price would violate the storage condition, and

a jump down in price would imply an instantaneous infinite growth rate of the population,

which is impossible.

While there is poaching, p = c(x), which is continuous and monotonic, so population,

x, must be continuous. In the no poaching r6gime, population develops as 111.7,so is

continuous. Population cannot jump suddenly across r~gime changes, either, as that would

require a jump in price so there is an instantaneous harvest. Population is thus continuous.

Stores are differentiable within r6gimes, and so are continuous, For thereto be a jump in

stores across r6gimes, there would have to be an instantaneous harvest, which would require a

jump in price, which is impossible. Hence stores are continuous.

A. 1

Proposition A.2

(a) The maximum initial value of population plus stores the system may have and still get to

the storage equilibrium path s.(x) is Q-, where

Q-= max{ X-, S.(XU)+ Xu },

(b) Qm is decreasing in storage cost, r.

Proof (a) Q- must either be X_, or the point lying on thes = O axis and the

tangent to s.(x) of gradient -1, These tangencies occur at Xu or Xs (F(x) = Oin equation 111.9

gives ds/dx = - 1). s.(x) is concave at XS, so Q- cannot be associated with X5.
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(b) If Q~m = X-, then s.(Q-) = O. Differentiating with respect to r,

)
dQm as,s:(Qmx—

dr
—(Qm.)=o

+ dr

s,’(x) is just (111.9),and ds/dr is:

A.2

{=*[F(U)--I’UI=~(x)=$Jxjrc(U)

=-:(se(x)+x-xs”) -~~
r

(’(u)-~] =x; A.3

=-:(S,(X)+X-X,*)SO
r

since x > Xs*, and s.(x) must be non-negative. The second term is zero, because at X~*,the

storage condition is satisfied with equality, and that is precisely what is in the parentheses.

Because s,(x) must be strictly decreasing at Xm,

aQmx
—=-:(xmx)s,(; ~so.

dr
A.4

e n-lax

If Q- = S(XU)+ Xu, then, because Xu is independent of r, the result follows in the same way,

but then the equivalent of A.3 holds because the second term vanishes because Xu is

independent of r.

Proposition A.3 If initial population and stores are (xO,SO)then if, and only if

m

(xo,so)= up@-,(A,)=~,,
t=()

A.5

where P is the projection operator P(x,s,p) = (x,s), i = + or e, and $f is the time evolution

operator mapping {x(0), s(0), p(0) } to {x(t), s(t), p(t)}, there is a starting price p. and poaching

resumption time tp so that @f(xo,so,po)is an no poaching equilibrium leading to the point
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(x, si(x), c(x)) at time tpfor some x. These equilibria are not, in general, unique. There maybe

equilibria leading to A. and A+. There may also be cases where the equilibrium passes through

PA+or PA. on its way to another point. If there are multiple equilibria from the same point

(xO,SO),then the one with the lower starting price must have a steeper trajectory in s-x space,

since stores will be consumed faster with a lower price.

In other words, there is a no poaching equilibrium ultimately leading to the steady state

XS if and only if L+(xo) e so and so> S+(xO),where L+ is the left boundary of the set E+ defined

in A.5. Likewise, there is an no poaching equilibrium leading to extinction if and only if

L,(xo) < so, and so > S.(xo). See Figure 111.5, Li are downward sloping. L. and L+ will be the

same line if X- S X~.

Proof By Figure 111.5. Li are downward sloping, because they are possible no poaching

paths, and so stores are decreasing, while population is increasing.

Proposition A.4 If the habitat available to the population is increased sufficiently, it is

always possible to make X~ > Q-.

Proof Denote the available habitat by K, and the total population, in real units by $.

Thus x = ~/K. We assume that demand, measured in real units, is independent of habitat, and

that the poaching marginal cost, c, is a function only of population relative to habitat. Thus

c(x) = c(~/~, The dynamics of the population in real units without storage will be:

j= KB(@/K) - D(c(@ /K)), A.6

which implies that
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i = B(x) – +D(c(x)) . A.7

The steady states Xs, and XU will be functions of habitat, K, and are such that the RHS of A.7

is zero. Differentiating, we find that

ax, au
—> O,and —
~K 13K ‘0”

A.8

This means that increasing the habitat more than proportionally increases the population in the

high steady state. This is not unsurprising, given that demand has not changed.

In the region where Q-is close to Xs, Q- = Xu + S.(XU). We may write this as:

(Qmx=Xu+; +~B(q)- K -— 1D(c(q)) rc(q) c’(q)
—dq . A.9

o c’(q) ~c(q)

When we differentiate this expression with respect to K,

dQmax &u u ‘“D(c(q))c’(q)— =— _—
~K ~dK K’+o

dq–1<–l. A.1O
K2rc(q)

Thus Q-is falling with K at a rate bounded away from zero

therefore, that we can find K large enough that Q- < Xs.

Xs is rising with K. It must be,
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Appendix B Proofs for Section IV

Proposition B.1 p, is a decreasing function of Q, continuous on [0, Q-]. For

Qe[O, U(c~)], p.(Q) =U1(Q). For Q~[U(c~), QM], p.(Q) =c(x.(Q)).

Proof If Q> U(c~), thesystemjumps tox.(Q), andtheprice isthenc(x.(Q)). If

Q< U(c~), theprice will be Vi(Q). x.(Q) isdecreasing in Q,andcontinuous asrequired. U1

is decreasing in Q. U1(U(c~)) = cm = c(0) = c(x,(U(c~)), sop. is continuous at U(c~),

Proposition B.2 dQ/dt = O when x = Xu or X,S. The line where dx/dt = O, Qo(x), is

increasing in x, and increasing in n. For n in a suitable region (see below), there are two

steady states, (Xu, Qu), and (X~, Q~), and

Q=p’’(wc(xi))where’isuorsB.]

Both Qi are increasing with n. The line x = x~(Q) is a trajectory of the system. See Figure

IV.2.

Proof Since dQ/dt = F(x), dQ/dt = O iff x = Xs or Xu. From IV.3, the line where

dx/dt = O satisfies

(r+n)c(x) = np.(Qo(x)). B.2

Differentiating with respect to x,

dQo
(r+ z)c’(x) = v;(Q,(x)) ~ . B.3

c’ and p.’ are both negative, so Q. must be increasing with x, for given n. Differentiating the

same equation with respect to n,

aQo
C(X) = PC(QO) +zP; (Qo)~ . B.4
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So that, on rearranging,

dQo C(X) – P,(Qo)——
an - B.5

rep:

When the system jumps, population cannot rise, so price cannot fall. Hence, c(x) e p., and

B.5 is positive. Steady states are where dQ/dt = dx/dt = O. Substituting X.Sor Xu into B.2

quickly yields B. 1

Proposition B.3 (Xu, Qu) is totally unstable; there may or may not be oscillato~

behavior. (Xs, Qs) is hyperbolic for all n. The stable manifold is thus a line, upward sloping,

and passing through (Xs,Qs). See Figure IV.3

Proof Consider x and Q near the steady states, (x,Q) = (Xi+ ~, Q;+ e), where ~ and e

are small. Using Taylor’s theorem on IV.3 (and assuming that we’re allowed to), to first order,

[)[i ]()~P:(Qi) ~
g+z –

0= C’(xi)~
F’(xi) o

The eigen-values of this linearized system are:

A,=;{(g+.,,J~}.

B.6

B,7

p, rand c’ are always negative. F(XU) >0, and F(Xs) e 0. Thus at (Xs, Qs) the discriminant is

strictly larger than (r+ n)2, and so one eigen-value is strictly positive, the other is strictly

negative. This means that, locally, there exist 1 dimensional stable and unstable manifolds for

this fixed point. At (Xu, Qu), the discriminant is less than (r+ n)2, and may be negative. Both

eigen-values have, therefore, strictly positive real parts, and the steady state is totally unstable.
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Proposition B.4 X~Xis decreasing with n, X~O= X~*> X~, There always exists nf at

which X.S’i= X~, so that for O c z < nl, X~’> X~, and for z > nl, X~Ke X~.

rc(X~ )

“ = pe(x~)–c(xs)

Proof X~Xis the point at which:

B.8

B,9

When n = O, this is the same as the relation defining X,S*.Figure IV.4 shows X~n. Let

A(x,n) = [ (r+ Z)C(X) - rip.(x) ] / c’(x). Since the line A(x,Tc) for constant n crosses F(x) from

below, dA(X~X)/~x > F(X.SX). Hence,

If X,Sn= X~, then F(X~) = O, so Zf, if it exists, satisfies (r+rc)c(Xs) = np,(X~). Because p. > c, a

solution does exist.

Proposition B.5 If stores run out, they must do so at X~m.This is only possible if

X~’> X~, in which case it is a minimum of stores. If X~’c X~ it is a maximum.

Proof The rate of change of stores goes from -to O to+ as x falls across X~’. But if

X~x< X~, then A(Xs, n) >0, and so x is increasing, not decreasing. Thus stores are at a

maximum, as stated.

Proposition B.6 For given parameters, there is only one equilibrium path (but

see Proposition IV.8) in the storage r6gime. If z e Zl, there is a path Q = s+’(x) + x where
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stores run out at X~n> X~ and the system reverts to the no storage r~gime. If n 2 nl, the

equilibrium path is the stable manifold of the fixed point (X~, Q~). See Figure IV,5

Proof If z < nl, then stores may run out at X~’, and we get exactly the same

equilibrium structure as in section III. The system cannot go to extinction before the switch,

because that path would be the one the system would switch to. In that case, assuming a n

hazard of switching is meaningless. The system cannot follow the stable manifold of

(X~, Q~), Why not? Proposition IV,3 proves that np.(Q~) = (r + n)c(X~). If n < n{ then

(r+~)c(Xs) < npe(X,S),so we must have Xs > Qs. This would mean that, if the system were on

the stable manifold, it would have to tend to a point with strictly negative stores, which is not

allowed. Thus it is not rational ever to be on the stable manifold. If n > Zf, then the opposite

happens: stores may not run out at X~x,but the system may move along the stable manifold in

equilibrium.

Proposition B.7 If z > n~, then the system must be in the extinction equilibrium, where

~h is the hazard rate at which QS = Q-, or

~h =
gc(x~)

c(x~)–c(x~)
B.11

ProcJ~ QS is increasing in z and, once past nl, (XS, Qs) is the only stable steady state

before the switch to extinction. As discussed above, Q S Q- for all points in equilibrium

before the switch. Thus if Q > Q=, the stable manifold to (XS, Qs) cannot be an equilibrium.

If there is a z at which QS = Q-, then it satisfies: np.(Q-) = (r+ n)c(XS). But p.(Q-) is

just c(Xu) (recall Figure IV. 1). Solving this for n, such a ~h does exist, and is as claimed.
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Table I: Some Species Used for Storable Goods or by Collectors

Sources: [Goombridge 1992], [Life 1994], [Wall Street Journal 1994] and others

Bears
Giant Panda
Asiatic Black Bear

Grizzly Bear
South American

Spectacle Bear
Malayan Sun Bear
Himalayan Sloth Bear

Cats
Tiger
Cheetah
Lynx felis

Lynx canadensis

Ocelot Felis pardalis

Little spotted cat F.
tigri~
Margay F. wiedii
Geoffroy’s Cat F.
geoffroyi
Leopard Cat F.
bengalensis

Other Mammals
Black Rhino
Amur Leopard

Caucasian Leopard
Markhor Goat

Saiga Antelope
Cape Fur Bull Seal

Sea Otter
African Elephant

Chimpanzees

Lizards
Horned Lizard
Latin American

Spectacle Caiman
Caiman crocodiles

Tegus Lizard
Monitor Lizard
Varanus nilolicus

V. exanthematicus

V. salvator

V. bengalensis

V. flavenscens

Snakes
Python reticulates

P. molurus

P. curtus

P. sebae

Eunectes spp.

Boa Constrictor

Rat snake Ptyas

mucosus

Dog-faced Water Snake
Cerberus rhynchops

Sea snakes (genus
tipemis and Homalopsis)

Toads
Colorado River Toad

Turtles
Hawsbill Sea Turtle

Egyptian Tortoise
American Box Turtle

Butterflies
Schaus Swallowtail
Homerus Swallowtail
Birdwing

Queen Alexandra’s
Birdwing Ornithoptera

alexandrae

Birds
Red and Blue Lorry
Parrots

Quetzal Pharomachrus

mocinno

Roseate Spoonbill Ajaia

ajaia

Macaws Ara spp.

Hyacinth Macaw

Medicinal Plants
species of Dioscorea

species of Ephedra

Dioscorea deltoidea

Rauvol!a serpentine

Curcuma spp.

Parkia roxburghii

Voacanga gradl~olia

Orthosiphon aristasus

Rauvoljia

species of Aconitum

Rattan
Calamus caesius

C. manun

C. optimus

Orchids
Dendrobium aphyllum

D. bellatulum

D. chqsotoxum

D. farmeri

D. scabrilingue

D. senile

D. thqsiflorum

D. unicum

Trees
Astronium urundeuva

Aspidosperma polyneuron

Ilex paraguaiensis

Didymopana morotoni

Araucaria hunsteinii

Zeyhera tuberculose

Cordia milleni

Atriplex repanda

Cupressus atlantica

Cupressus dupreziana

Diospyros hemiteles

Aniba duckei

Ocotea porosa

Bertholetia excelsa

Dipterix alata

Abies guatemalensis

Tecto~ hamiltoniana

Mahogany
Teak

Other Plants
Himalayan Yew

Green Pitcher Plant
Sm. Begonia
Chisos Mt.

Hedgehog’s

Cactus
Key Tree Cactus
Nellie Cory Cactus














