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ABSTRACT

Three potential sources of bias present complications for estimating the half-life of purchasing

power parity deviations from panel data. They are the bias associated with inapproiate aggregation

across heterogeneous coefficients, time aggregation of commodity prices, and downward bias in

estimation of dynamic lag coefficients. Each of these biases have been addressed individually in the

literature. In this paper, we address all three biases in arriving at our estimates. Analyzing an annual

panel data set of real exchange rates for 21 OECD countries from 1948 to 2002, our point estimate

of the half-life is 5.5 years.
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1 Introduction

The motivation for using panel data to estimate the convergence half-life of purchasing
power parity (PPP) deviations is straightforward. Increasing the number of data points
by combining the cross-section with the time-series should give more precise estimates.1

Obtaining accurate measurements of the convergence speed to PPP is important because
of its role in guiding theoretical work on the role of nominal rigidities and the relative
importance of nominal and real shocks in macro models. Accuracy in estimation is
especially important due to the nonlinearity of the half-life formula as small di¤erences
in the estimated value of dynamic lag coe¢ cients of the real exchange rate can lead to
markedly di¤erent predictions of the half life.
In practice, panel data estimation of the half-life to convergence has been anything

but straightforward. Popular estimators are potentially subject to three sources of bias.
Each of these biases have been discussed in the literature and addressed by researchers
on an individual basis. In this short paper, we address and control for all three potential
sources of bias to arrive at our �nal estimate of the half life. Using an annual sample of
21 OECD country�s CPI-based real exchange rates from 1973 to 2002, when we jointly
control for multiple sources of bias, we estimate the half-life to be 5.5 years (95 percent
con�dence interval ranges from 4.3 to 7.3 years). This approximately brings us back
to point estimates obtained by the uncorrected least-squares dummy variable method.
It is also within Rogo¤�s (1996) consensus estimate of the half life so the PPP puzzle
remains in panel data.2

One potential source of bias is inappropriate pooling across cross sectional units. If
the real exchange rates of di¤erent countries exhibit heterogenous rates of convergence to
PPP then the data should not be pooled because the panel data estimator of a common
autoregressive coe¢ cient can be biased upwards. Imbs et. al. (2004) study how sectoral
heterogeneity in convergence rates to the law of one price can result in upward bias of
the estimated half-life but Chen and Engel (2004) �nd that sectoral heterogeneity is not
a quantitatively important source of bias. We do not address sectoral heterogeneity in
this paper but we do examine the potential importance of country-level heterogeneity.
A second source of bias is that price indices used to form real exchange rates are

not constructed from point-in-time sampled commodity prices. Instead, source agencies
report period averages of commodity and service prices. The consequences of this time

1Frankel and Rose (1996) was one of the �rst PPP studies to use panel data. Panel data analysis
has been useful in forming a concensus that PPP holds in the long run. While univariate tests on post-
1973 data generally cannot reject a unit root in the real exchange rate, panel unit root tests provide
consistent rejections of the unit root hypothesis. See Chiu (2002), Choi (2002), Fleissig and Strauss
(2000), Flores et. al. (1999), Lothian (1997), Papell and Theodoridis (1998), and Papell (2004). The
alternative is to obtain long historical time series, as in Lothian and Taylor (1996) but because those
data span a variety of regimes they pose their own set of complications.

2The PPP puzzle is that real exchange rates exhibit both very long half-lives (three to �ve years)
and high short-term volatility.
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aggregation of the data was �rst discussed by Working (1960). Taylor (2001) extended
the analysis to the study of PPP by showing that time-aggregation biases results in an
upward bias in the estimated half-life.
The third source of bias that we consider is the attendant downward small sample

bias that results when a constant is included in the dynamic regression. This bias was
discussed in the univariate context by Marriott and Pope (1954) and Kendall (1954),
and in the dynamic panel context by Nickell (1981). The source of this downward bias
can be seen by noting that using least squares to estimate an autoregression with a
constant is equivalent to running the regression with no constant on observations that
are deviations from the sample mean. The problem then, is that for any observation t,
the regression error is correlated with current and future values of the real exchange rate
which are embedded in the sample mean which in turn is a component of the independent
variable. It is this induced correlation between the regression error and the sample mean
that gives rise to the downward bias. Allowing for �xed e¤ects, the half life based on the
least-squares dummy variable (LSDV) estimator of � will be biased down and will give
estimates of half lives that are too short.3

The remainder of the paper is organized as follows. The next section discusses our
measurement of the half-life. Section 3 discusses each of the potential biases. Section
4 outlines our bias-adjustment strategies and presents the empirical results. Section 5
concludes. An appendix contains derivations for many of the results presented in the
text.

2 Half life measurement

Let the real exchange rate for country i, (i = 1; :::; N) evolve according to a �rst-order
autoregression (AR(1)), qit = �i + �qit�1 + eit; where eit is serially uncorrelated. The
half-life H(�); commonly employed as a measure of the speed at which convergence to
PPP occurs, is the time required for a unit shock to PPP to dissipate by one half. In
the AR(1) case, it is t� such that E(qt�) = e1=2 = 1=2; which takes the convenient form

t� = H (�) =
ln(0:5)

ln (�)
(1)

Due to the nonlinear nature ofH(�); small variations in � lead to disproportionately large
variations in the half life, especially for � in the region near unity.4 Thus if the estimator
of � is biased, failure to provide appropriate adjustments can produce substantially
misleading estimates of the half life.
For more complicated dynamic models that include additional lags or moving average

3The LSDV method is pooled OLS with �xed e¤ects. See Hsiao (2003).
4e.g., H(0:93) = 9:56;H(0:95) = 13:5;H(0:97) = 22:8:
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error terms, eq.(1) would only approximate the true half life. For these models, the exact
half life can be computed by impulse response analysis. A knotty problem associated
with general ARMA speci�cations is that the impulse response may not be monotonic
so that there may be multiple half lives. We are able to avoid these complications in
our empirical analysis by employing annual data for which the AR(1) speci�cation is
appropriate.

3 Three possible sources of half-life bias

In this section, we review the three potential sources of bias discussed in the literature.
Section 4 discusses our strategy for accounting for these biases.

Cross-sectional aggregation bias. Imbs et. al. (2004) study how heterogeneity in
the speed of convergence towards the law of one price across the di¤erent commodities
that comprise the general price level may result in an upward bias of the estimated
half-life of PPP deviations. Chen and Engel (2004), on the other hand, �nd that sector
heterogeneity is not a quantitatively important source of bias. We will not address the
issue of sectoral heterogeneity but we do consider the possibility that there is country
speci�c heterogeneity in convergence rates.
To see how cross-sectional heterogeneity can bias the panel estimator, suppose that

the real exchange rate for country i follows5

qit = �iqit�1 + eit: (2)

If the heterogeneity in the autoregressive coe¢ cient across countries is speci�ed as

�i = �+ vi (3)

where E (vi) = 0; then substituting (3) into (2) gives

qit = �qit�1 + (eit + viqit�1) : (4)

The potential bias arises because the second piece of the composite error term viqit�1, is
correlated with the regressor qit�1: Looking in more detail at the pooled OLS estimator,

b�OLS = �+

PN
i=1

PT
t=1 qit�1eitPN

i=1

PT
t=1 q

2
it�1| {z }

A(N;T )

+

PN
i=1 vi

�PT
t=1 q

2
it�1

�
PN

i=1

PT
t=1 q

2
it�1| {z }

B(N;T )

(5)

5We disregard the constant here so as to isolate the bias arising from cross-sectional aggregation.
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A(N; T ) is standard. The piece introduced by aggregating across heterogeneous cross-
sectional coe¢ cients is B(N; T ): If each of the country real exchange rates are covariance
stationary and the distribution of vi is symmetric, then this is unlikely to be a quanti-
tatively important source of bias because the terms vi

�PT
t=1 q

2
it�1

�
will average out to

zero. What is potentially a more serious situation is if the observations are drawn from
a mixed panel where a fraction � of the real exchange rates are stationary and a fraction
1� � are unit root nonstationary. In this case, the OLS estimator can be shown to be

b�OLS = ��

�PN
i=1

1

(1��2i )

�
+ (1� �)

�
T+1
2

�
�

�PN
i=1

1

(1��2i )

�
+ (1� �)

�
T+1
2

� � � (6)

which evidently is biased upwards.6 If there is heterogeneity in the data, pooling is
inappropriate and an alternative estimation strategy should be employed.

Nickell bias. Nickell (1981) studied the properties of the LSDV estimator for the
dynamic panel regression model when the observations are cross-sectionally independent.
His analysis showed that pooling results in more e¢ cient estimates of � than OLS but
does not eliminate the downward bias found in univariate estimation. The bias in the
LSDV estimator does not go away even asymptotically (when N ! 1). We refer to
this as N�asymptotic bias.
For the LSDV estimator in the panel AR(1) model with �xed e¤ects, Nickell shows

plim
N!1

�̂LSDV � m(�)

= ��
�
1 + �

T � 1

��
1�

�
1

T

��
1� �T

1� �

��
�
�
1�

�
1

T � 1

��
2�

1� �

��
1�

�
1

T

��
1� �T

1� �

����1
(7)

which is biased downwards.

Time aggregation bias. Time aggregation bias was �rst analyzed by Working (1960)
and subsequently studied by many authors.7 Working showed that if the true underlying
process followed a driftless random walk, that time-averaging of this process induces a
moving average error into the reported (time-averaged) �rst di¤erences. The analyst who

6Derivation in Appendix section 1.
7Tiao (1972) and Brewer (1973) also develop econometric implications of time aggregation. Rossana

and Seater (1995), Marcellino (1999), and Breitung and Swanson (1999) study the e¤ects of time
aggregation on exogeneity tests and forecasting.
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estimates the correlation of �rst-di¤erenced time-averaged observations will mistakenly
conclude that they are serially correlated when in fact the autocorrelation is zero. Taylor
(2001) extends this to the case where the true process follows a stationary AR(1). In the
PPP problem, an upward bias is induced in estimation of � because source statistical
agencies report price indices that are formed as averages of goods and services prices
over a particular interval and are not point-in-time sampled prices. He reports that this
is standard practice around the world and argues that the 3-5 year consensus half life
overstates the truth because those studies did not correct for time-aggregation bias.
With time aggregated observations, the data are reported at time intervals indexed

by t but within each data reporting interval there are M subintervals at which the
underlying price process is observable. Thus if the data are reported annually, there
are M = 260 business days and the annual observations are reported as period aver-
ages at the annual time intervals j = M; 2M; :::; TM . Assuming that the dynamics of
the underlying point-in-time daily real exchange rate process evolves according to the
AR(1) process qij = ai + �qij�1 + eij; with autocorrelation coe¢ cient �; the dynamics
of the point sampled process at annual intervals is qij+M = �i + �Mqij + eij+M with
autocorrelation coe¢ cient �M < � for 0 < � < 1 and the �true�half life in years is
H(�) = ln(0:5)= ln(�M). However, when the available observations are the average of
prices over M = 260 working days, the data being analyzed are 1

M

PM
j=1 qi;Mt�j. Taylor

shows that the implied autocorrelation coe¢ cient from �tting the time-averaged annual
real exchange rate to an AR(1) is

� � G(�;M) =
�(1� �M)2

M(1� �2)� 2�(1� �M)
> �M (8)

which leads to an overstatement of the half-life.
Since point sampled nominal exchange rates are available, one might be tempted to

combine them with the time-averaged price indices to mitigate time aggregation bias
embedded in the real exchange rate. However, nuisance parameter dependencies make
it impossible to determine the bias in the combined point and time-averaged data. A
discussion of this issue is provided in the appendix

4 Bias-adjusted half-life estimation

The data. We use annual real exchange rates of 21 OECD countries which are con-
structed by combining annual nominal exchange rates and annual consumer price indices
from 1948 to 1998 which results in 51 observations. Both nominal exchange rates (IFS
line code RF) and CPIs (IFS line code 64) are annual average observations. They were re-
trieved from the International Monetary Fund�s International Financial Statistics (IFS)
for 21 industrial countries: Australia, Austria, Belgium, Canada, Denmark, Finland,
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France, Germany, Greece, Ireland, Italy, Japan, the Netherlands, New Zealand, Norway,
Portugal, Spain, Sweden, Switzerland, the United Kingdom, and the United States.
Each country is alternatively considered as the numeraire country.8

In preliminary data analysis, we employed the Phillips and Sul (2003) panel unit
root test which �nds that the real exchange rates de�ned by the alternative numeraires
are stationary. We do not devote space for detail reporting of these results since they
simply con�rm the �ndings of earlier research.

Cross-sectional heterogeneity. We investigate whether pooling is appropriate in our
data set. In order for the test of the homogeneity restrictions to have the correct size,
the test must be done using an estimator that controls for Nickell bias. For this purpose,
we estimate systems associated with each of the numeraire countries by recursive mean
adjusted seemingly unrelated regression and conduct tests for homogeneity of �:9 The
results of the homogeneity test are reported in Table 1. Homogeneity is rejected at the
5 percent level only when Belgium, France, and Greece are the numeraire countries.
Because the evidence against homogeneity in this data set is fairly weak, we proceed by
assuming that pooling is generally appropriate and that cross-country heterogeneity in
the autoregressive coe¢ cient does not constitute a signi�cant source of bias.

Table 1: Homogeneity Test (Real Exchange Rates in 21 OECD Countries 1948-1998)

Numeraire Wald Numeraire Wald
Country Statistic P-value Country Statistic P-value
Australia 14.02 0.78 Japan 23.60 0.21
Austria 20.15 0.39 Netherlands 16.56 0.62
Belgium 33.82 0.02* New Zealand 33.80 0.02
Canada 24.46 0.18 Norway 11.40 0.91
Denmark 14.98 0.72 Portugal 18.83 0.47
Finland 22.62 0.25 Spain 8.21 0.98
France 43.96 0.00* Sweden 8.94 0.97
Germany 15.83 0.67 Switzerland 17.81 0.53
Greece 33.82 0.02* U.K. 26.76 0.11
Ireland 13.73 0.80 U.S. 26.74 0.11
Italy 11.22 0.92

8Papell and Theodoridis (2001) �nd that the choice of numeriare matters in panel unit root tests of
PPP.

9See Choi, Mark and Sul (2004) for a description of this estimator and its properties.

7



Figure 1: N�asymptotic biases of pooled estimators with pure temporal aggregated
data (T=51).

Combined Nickell and time-aggregation bias adjustments We turn now to a
joint treatment of Nickell bias and time-aggregation bias. If we had point-sampled
data so that time aggregation bias were not an issue, the adjustment for Nickell bias
can be done directly with panel mean unbiased estimation. This would proceed by
estimating � by LSDV and then adjusting for bias using the inverse function of the
N�asymptotic bias formula to obtain the mean unbiased estimator �̂MUE as the inverse
of the mean function, �̂MUE = m�1 (�̂LSDV ) where b�LSDV is the LSDV estimator and the
function m (�) is given in (??).10 However, when the data are time aggregated, a further
adjustment in the mean function is necessary to do panel mean unbiased estimation as
there is now an interaction between Nickell�s �xed e¤ect bias and the time aggregation
bias.

To better understand the relation between the two biases, we are able to analytically

10Murray and Papell (2002)employed median unbiased estimation whose performance is very similar
to panel mean unbiased estimation.
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characterize the LSDV bias with time aggregated data under cross section independence
although in estimation we will relax the independence assumption. The pure Nickell
bias and the time-aggregation bias go in opposite directions and a decomposition of the
opposing bias factors is shown in Figure 1. In the �gure, the true value of � is plotted
on the horizontal axis and the LSDV probability is plotted on the vertical axis.11 The
top line shows the e¤ect of time-aggregation in panel data. It is the probability limit
of the pooled OLS estimator on time aggregated data with no regression constant. In
this case, a pooled OLS point estimate of 0.9 (implied half life of 6.6 years) implies that
the time-aggregated bias corrected value of � is approximately 0.85 (implied half life
of 4.3 years). As � ! 1; the upward time aggregation bias vanishes. The bottom line
shows the e¤ect of pure Nickell bias which is the LSDV probability limit from (??). For
this case, an LSDV point estimate of 0.9 implies that the mean-unbiased value of � is
approximately 0.95 (implied half life of 13.5 years). The center line shows the e¤ects
of the combined biases. In the neighborhood of � = 0:9, the two pieces largely o¤set
each other. When the true value of � lies below (above) 0:9, however there is an upward
(downward) combined bias.
Denote the formula that generates the center line by B(�; T ) (shown in the appen-

dix). A strategy that simultaneously corrects for Nickell and time aggregation bias is to
estimate � by LSDV and invert the function,12

b�NTAU = B�1 (�LSDV ; T ) : (9)

To this proposed correction, we make one additional adjustment. Because LSDV does
not exploit the cross-sectional covariance structure of the observations in estimation, an
e¢ ciency improvement can be achieved by using a panel GLS estimator with �xed e¤ects.
When the cross-sectional dependence has a single factor structure, the N�asymptotic
bias of the �xed e¤ects GLS estimator is independent of both the factor loadings and
the unobserved factor (Phillips and Sul (2003)). This independence allows us to apply
the mean adjustment in (9) with the panel GLS estimator in place of LSDV. Call itb�GNTAU: A brief description of the estimator is given in the appendix.
Table 2 reports our panel estimates of � and implied median and 95 percentiles for

the half lives of all 21 panels de�ned by alternative numeraire. The unadjusted LSDV
estimate with the US as numeraire is b�LSDV = 0:912 implies a half life of 7.5 years. The
median half life across all 21 panels is 5.6 years. Applying the Nickell mean adjustment
(ignoring time aggregation) gives the mean-unbiased estimate b�MUE = 0:96 when the
US is the numeraire country. This gives an implied half life of 17 years. The median
half life across all numeraire country panels is 22 years. Finally, when we jointly adjust

11The probability limits are for N ! 1 but for �xed T = 51 which corresponds to the number of
time series observations in our data set.
12The Nickell and Time Aggegation Unbiased estimator.

9



for Nickell bias and time aggregation bias, estimating the autocorrelation coe¢ cient by
GLS and applying the mean adjustment, we obtain an estimate of the autocorrelation
coe¢ cient with the US as numeraire of b�GNTAU = 0:87 which is slightly below the LSDV
estimate. The implied half life is 4.8 years (95 percent con�dence interval ranges from 3.7
to 6.6 years). The median across all alternative panels is 5.5 years which approximately
returns us to the LSDV estimates.

5 Conclusion

PPP research, desperate for larger sample sizes to improve precision and con�dence
in empirical estimates, has turned to the analysis of panel data. However, half-life
estimation from panel data, is subject to two major sources of bias. The �rst source is
the downward bias of the LSDV estimator. The second main source of bias arises from
the use of time aggregated data. These two opposing biases roughly cancel out. When
we simultaneously control for these two opposing biases, the resulting half-life estimates
bring us approximately back to the LSDV estimates.
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Table 2: Panel Half Life Estimation

Numeraire b�LSDV H0:025 H0:5 H0:975 b�MUE H0:5 b�GNTAU H0:025 H0:5 H0:975
Australia 0.890 4.6 5.9 8.1 0.977 29 0.884 4.3 5.6 7.8
Austria 0.866 3.9 4.8 6.3 0.970 23 0.883 4.4 5.6 7.3
Belgium 0.883 4.5 5.6 7.3 1.000 oo 0.941 7.8 11.4 21.2
Canada 0.948 9.1 13.1 23.1 0.957 16 0.828 3.0 3.7 4.7
Denmark 0.916 6.1 7.9 10.9 0.955 15 0.853 3.5 4.3 5.6
Finland 0.788 2.4 2.9 3.6 0.963 18 0.926 6.6 9.0 14.2
France 0.884 4.5 5.6 7.4 0.985 45 0.852 3.4 4.3 5.7
Germany 0.861 3.8 4.6 5.9 0.971 23 0.930 6.8 9.5 15.6
Greece 0.790 2.6 2.9 3.4 0.973 25 0.922 6.6 8.5 11.9
Ireland 0.872 4.1 5.1 6.6 0.969 22 0.906 5.2 7.1 10.9
Italy 0.881 4.4 5.5 7.2 0.961 17 0.845 3.3 4.1 5.4
Japan 0.962 12.3 17.7 31.2 0.947 13 0.811 2.7 3.3 4.2
Netherlands 0.912 5.9 7.5 10.3 0.962 18 0.868 3.9 4.9 6.5
New Zealand 0.862 3.8 4.7 6.0 0.971 23 0.882 4.3 5.5 7.7
Norway 0.905 5.5 6.9 9.1 0.970 23 0.877 4.3 5.3 6.8
Portugal 0.895 4.9 6.3 8.5 0.971 23 0.859 3.6 4.6 6.2
Spain 0.854 3.6 4.4 5.7 0.969 22 0.931 6.9 9.7 16.5
Sweden 0.887 4.6 5.8 7.8 0.973 26 0.919 5.9 8.2 13.1
Switzerland 0.920 6.4 8.3 11.6 0.966 20 0.869 3.9 4.9 6.6
U.K. 0.868 4.0 4.9 6.4 0.968 22 0.905 4.9 6.9 11.8
U.S. 0.912 5.8 7.5 10.5 0.960 17 0.865 3.7 4.8 6.6
Median 0.884 4.5 5.6 7.4 0.969 22 0.882 4.3 5.5 7.3
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Appendix

Derivation of equation (6)
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Hence we have

plim
N!1

�̂ =
���2eT�+ (1� �)�2e

T (T+1)
2

��2eT�+ (1� �)�2e
T (T+1)

2

=
���+ (1� �) (T+1)

2

��+ (1� �) (T+1)
2

Time aggregation bias

Working (1960) assumes that the underlying time series of interest evolves according to the
driftless random walk,

xj = xj�1 + uj: (10)

Here, uj
iid� (0; 1): The intervals at which the observations are reported are indexed by t =

1; : : : T . Within each reporting interval there areM subintervals at which the xj are observed.
The reported observations are period averages at time intervals j = tM; for t = 1; : : : T:

Denoting the time averaged observations with a tilde, the observable data are

ext =
1

M

�
x(t�1)M + x(t�1)M+1 + � � �+ xtM

�
=

1

M

MX
j=1

xtM�j

For concreteness, if we letM = 2; then ext = 1
2
(xj + xj�1); and �ext = 1

2
(xj + xj�1� xj�2�

xj�3) =
1
2
(vj + 2vj�1 + vj�2); �ext�1 = 1

2
(xj�2 + xj�3 � xj�4 � xj�5) =

1
2
(vj�2 + 2vj�3 +

vj�4). The econometrician studies the time dependence between observations by computing
the covariance between period changes in the time averaged observations. The complication
is that now both �ext�1 and �ext contain vj�2; which gives E(�ext�ext�1) = 1=4: The time
averaging has induced arti�cial serial correlation into the random walk sequence because the
truth is E(�xj�xj�1) = 0:Working shows that asM gets large, the correlation between �ext
and �ext�1 approaches 1/4. The correlation is 0.235 even when the number of subintervals
M is as small as 5

The bias arises as a result of induced endogeneity between ut and eqt�1.The error term ut
follows an MA(1) so that an alternative option to getting a consistent estimate of � = �M

is to estimate an ARMA(1,1) model to eqt. While it may seem that the bias might vanish as
M ! 1;it is inappropriate to take this limit for �xed �, because in applications, we do not
observe corresponding reductions in b� when this is done. Instead, the limit should be taken
for a �xed value of �. This requires lettingM !1 simultaneously with �! 1 in such a way
to keep � constant. The nature of the time aggregation bias is

� = �M < E(b�) < �
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To �x ideas, suppose that each time interval has 2 subintervals M = 2, from which the
underlying observations are averaged. Then, it can be seen that

eqt+1 = �2eqt + 1
2
(e4 + (1 + �)e3 + �e2)

While the coe¢ cient on eqt declines, (�2 < �); the last component e2 of the composite error
term is positively correlated with eqt which results in an upward bias in the estimator.
Combining point and time-averaged data.

Here, we show that when point-in-time sampled nominal exchange rates are combined with
time-averaged price indices that the time-aggregation bias exhibits nuisance parameter depen-
dencies. As a result, it is not possible to obtain meaningful corrections for time-aggregation
bias when � is estimated using quasi time-averaged observations.

Let s be the log nominal exchange rate and P = p� p� be the log price di¤erential where
s and P follow a permanent-transitory components process. that evolve according to

sj = zj + usj

Pj = zj � uPj

where zj = zj�1 + vj vj � iid(0; �2v); and

usj = �usj�1 + esj ;

uPj = �uPj�1 + ePj

where the sum of the transient components follows the AR(1),

Uj � usj + uPj = �Uj�1 + ej

ej � iid(0; �2e): Let Q be the quasi-time averaged real exchange rate and eq be the pure
time-averaged real exchange rate. Then the quasi-time averaged rate is,

QMt = sMt �
1

M

MX
j=1

PMt�j

= zMt �
1

M

MX
j=1

zMt�j| {z }
(A)

+ usMt �
1

M

MX
j=1

uPMt�j (11)
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To evaluate the term (A), since zMt = zM(t�1) +
PM

j=1 vMt�j; it follows that

zMt �
1

M

MX
j=1

zMt�j = zM(t�1) +

MX
j=1

vtM�j � zM(t�1) �
1

M

MX
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M�jX
k=1

vMt�k

=

MX
j=1

vtM�j �
1

M

MX
j=1

M�jX
k=1

vMt�k (12)

Substitute (12) into (11) to get

QMt =
MX
j=1

vMt�j �
1

M

MX
j=1

M�jX
k=1

vMt�k + usMt �
1

M

MX
j=1

uPMt�j (13)

From (13), it is seen that QMt depends on three innovations, v; us and uP : It follows that
the autocorrelation coe¢ cient of QMt; will depend on correlation between the two transient
components (we assumed above that the innovation to the permanent component is iid). The
AR(1) structure of the daily real exchange rate implies an ECM(0) where

�sj = � (sj�1 � pj�1) + esj

�pj = (1� �� �) (sj�1 � pj�1) + ePj

and �
esj
ePj

�
= iidN

�
0;

�
1  

 1

��
To examine the sensitivity of the autocorrelation coe¢ cient to  ; we conduct a Monte Carlo
experiment with 500 replications for T = 2000; M = 12:We computed the mean values of
�̂ with quasi time aggregated observations well as with �pure�time aggregated observations.
We found that the autocorrelation coe¢ cient � can be very sensitive to  . For example, let
�1 be the autocorrelation coe¢ cient for quasi time averaged observations. Setting � = 0:998
so that �12 = 0:99812 = 0:976 which is similar to our point estimate in applications, we
�nd for � = 0:05;  = �0:8; E

�
�̂1 � �M

�
= 0:06; but for � = �0:3;  = 0:8; we get

E
�
�̂1 � �M

�
= �0:86:

Thus, in order to adjust for time-aggregation bias in quasi time-averaged real exchange
rates, one would need to have access to the underlying point sampled observations. But if
those were available, one would perform direct estimation on the point sampled data and
time-aggregation bias would not be an issue.
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Combined Nickel and time-aggregation bias in LSDV estimator

We state the bias function B (�; T ) : Under time aggregation, � = �M : The LSDV estimator
has the limit as N !1

�̂ = B (�; T ) =
A1 � A2 (T � 1)�2

B1 �B2
(14)

where

A1 = (T � 1)�
�
1� �M

�2
;

A2 = M (T � 2)
�
1� �2

�
+ �M(T�1)

h
2�+ �
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1� �M

�2i� 2�M+1

B1 = M (T � 2)
�
1� �2

�
B2 = 2�

�
(T � 1)

�
1� �M

�
� 1

T � 1

�
1� �(T�1)M

��

Here we provide the derivation for the bias function. The LSDV estimator is
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Without loss of generality, set 1

N

P
�2i = 1: As N !1;
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for m > 0

Let the point-sampled data be denoted by a superscript +. Then

Eq2it =
1

M2
E
�
q+i(t�1)M+1 + � � �+ q+itM

�2
=
1

M

M
�
1� �2

�
� 2�

�
1� �M

�
(1� �)2

18



Hence
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To calculate additional terms due to the inclusion of unknown constant, we need to know
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and
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and
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Hence we have
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Plugging (16), (15) and (18) to (17) yields
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Hence the denominator term in (14) is given by
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That is,

�̂ =
A1 � A2 (T � 1)�2

B1 �B2
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Fixed e¤ects GLS

The estimator is fully described in Phillips and Sul (2003). Here, we give only a cursory
account. In the absence of time-aggregation, the innovations are governed by the single factor
model,

eit = �i�t + uit

where �i; i = 1; :::N , are the factor loadings and �t is the single driving factor. The uit are
serially and mutually independent. Let et = (e1t; :::; eNt); � = (�1; � � � ; �N) ; and ut =
(u1t; :::; uNt). Then E (ete0t) = �e = ��0+�u; where �u = E (utu

0
t) : The factor loadings can

be estimated by iterative method of moments after imposing a normalization for the variance
of �t. This gives

�̂" = �̂�̂
0
+ �̂u

where �̂ =
�
�̂1; � � � ; �̂N

�
and the diagonal elements of �̂u are

1
T

PT
t=1 "̂

2
it; "̂it = ~qit � �̂m~qit�1

where ~qit = qit � 1
T

P
qit, and �̂m is the mean-unbiased estimator of �: Having obtained the

estimated error covariance matrix, one can apply feasible GLS to obtain e¢ cient estimates of
�:

When the observations are time aggregated data, the regression error has an MA(1) struc-
ture. In this case, we need one further adjustment because feasible GLS should be based on
the long run variance of eit rather than the contemporaneous variance of eit: Since eit follows
MA(1), the parametric structure of cross section dependence is now eit = �it + �it�1; where
�it = �i�t + uit. The long run covariance matrix for eit becomes


e = E (ete
0
t) + E

�
ete

0
t�1
�
+ E (et�1e

0
t)
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