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I. INTRODUCTION

The Occupational Safety and Health Administration has been

controversial since it was established in 1970. Observers have challenged

the agency's efforts on worker safety, arguing occupational disease

presents a more serious case for government action2 because workers

experience greater difficulty collecting risk information for long—term

disease hazards than for more immediate injury risks. Consequently,

neither the wage—setting process nor the workers' compensation system

internalize the costs of occupational disease as effectively as for

occupational injuries.3 Given the current regulatory approach to

workplace health and safety, analysts further assert that OSHA health

standards are more effectively designed to reduce future occupational

disease than OSHA safety standards are designed to reduce accidents.

Safety engineers have determined that the majority of injuries are not

related to the violation of OSHA safety standards and would occur despite

perfect compliance.4 On the other hand, OSHA health standards establish

2. See Cornell, Noll and Weingast (1976); Hendeloff (1979, 1988); and

Nichols and Zeckhauser (1977).

3. See Boden and Jones (1987), and Barth and Hunt (1980).

4. Strains and over—exertion, for example, cause 1/4—1/3 of all lost-time

injuries, but are unaffected by standards. See p. 26, Mendeloff

(1979) for a discussion of the studies by safety experts.



2

worker exposure restrictions for most of the known disease threats in the

workplace, and require medical exams, exposure monitoring, and warning

signs.

Rule—making for OSHA health standards has not been exempt from

controversy. Many of the 10 health standards promulgated through rule-

making since 1972 have been challenged on cost-benefit grounds.5 Though

OSHA standard—setting does not explicitly incorporate cost—benefit

principles, the Supreme Court decided in the benzene case6 and affirmed in

the cotton dust case' that, for each new standard, OSHA must show that

"significant risks" currently exist and can be eliminated or reduced with

the proposed regulation. OSHA also adopted Threshold Limit Values (TLV)

for 400 chemical substances in 1971 and an additional 168 chemicals in

1988, by reference from the voluntary standards of the American Committee

of Government Industrial Hygienists (ACGIH), a consensus—based

organization. The goals for risk-reduction In ACGIH standard-setting

appear to be less stringent than for OSHA standards promulgated through

rule—making.
e

5. Mendeloff (1988) compiled and re—evaluated the historical record of
cost and benefit studies for health standards. In his data (Table 2.1,

p. 22), the accepted estimates of the willingness—to-pay for a life
saved ($1.6—$8.3 million in 1985$; Fisher et al., 1989) fall within
the range of costs per cancer prevented for all health standards (with
cancer risks) promulgated through rule—making, except vinyl chloride.

Employing an estimate of $2.5 million per life—saved, Mendeloff
concludes that several standards are probably too stringent according
to cost-benefit criteria, though the excess stringency is perhaps not
as great as some critics have suggested. (p. xv)

6. Industrial Union Dept. v. American Petroleum Institute, 448 US 607
(1980).

7. American Textile Mfrs. Inst. v Donovan, 452 US 490 (1981).

8. In 1988, OSHA also lowered the TLVs for 234 of the 400 initially
regulated chemicals, in accordance with ACGIH actions on the
substances during the 1971—88 period. See Mendeloff (1988) for a more
complete discussion of the ACGIH standards.
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Despite greater expectations for OSHA's intervention to reduce health

risks, lack of suitable data to measure health effects has restricted most

statistical studies of OSHA to examining safety performance.9 Though some

early studies suggested OSHA had no effect on workplace injuries, current

research with longitudinal plant-level data indicates that OSHA has had a

small, salutary effect on reducing injuries.'0 Because the effect of the

agency on workplace health risks has not been evaluated, however, the

research to date may substantially under—represent OSHA's total effect on

workplace quality.

Direct measurement of the incidence of occupational disease is

extremely difficult because of the confluence of several factors: long

latency periods (frequently 10—25 years) between initial workplace

exposure to hazardous substances and the onset of disease; mobility of

workers across establishments; and, sometimes, inaccurate diagnoses or

inaccurate attribution of causation for diseases. As a result, there is

no data series comparable to the BLS injury rate series for occupational

diseases with long latency However, current worker exposure

levels represent a useful proxy for the future incidence of occupational

9. Exceptions include John Mendeloff's (1988) book focusing on the

process of setting health standards, and a study of enforcement of the

asbestos standard (Jones, 1984).

10. Analyzing a 7—year panel with plant-specific injury rates and OSHA

inspection data, Gray and Scholz (1989) estimated that a 10% increase
in inspections with penalties would have a cumulative effect lagged

over 3 years of reducing total accident rates by 1—2%. Analyzing OSHA

enforcement and compliance data, Gray and Jones (1989) showed that

during the first twelve years of the agency, OSHA inspections reduced

citations in ever—inspected plants by 3.0 citations or by 0.36 s.d.,

on average. For earlier statistical studies on safety effects, see

Viscusi (1979, 1986); Bartel and Thomas (1985); Mendeloff (1979);

Smith (1979); and McCaffrey (1983).

11. The BLS data series on workplace disease incidence mainly reports skin

problems which manifest shortly after exposure.
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disease because most of the diseases are characterized by dose—response

relationships.

In this paper, we employ a unique plant-level dataset characterizing

OSHA health enforcement and plant compliance, to study the impact of OSHA

on reducing workplace health hazards. To solve the problem of measuring

OSHA's effect on reducing health risks, we use data that document the

worker over—exposures to regulated substances and citations for violating

OSHA standards, recorded during OSHA health inspections. The longitudinal

structure of the OSHA enforcement data allows us to estimate the

determinants of plant—level health compliance patterns through the first

12 years (1972—1983) of the agency's enforcement operations. We

implicitly assume that the future incidence of occupational disease will

decline with (1) an increase In compliance with OSHA health standards, and

(2) a reduction in violations of worker exposure restrictions.

In recognition of the count form of the data series for both

violation measures, we estimate several count—distribution models, along

with the standard linear and log-linear models, to test the robustness of

the results to model specification. Taking advantage of the longitudinal

form of the dataset, we estimate the fixed-effects versions of the Poisson

and negative binomial count models developed in Hausman, Hall and

Griliches.

The following section of the paper presents a simple model of

enforcement and compliance. The third section presents the statistical

count models employed in the analysis. The fourth section describes the

data. The fifth section presents the empirical results, and the final

section summarizes the paper.
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II. TUE MODEL

The major actors in the model of workplace safety and health are OSHA

and private companies. OSHA sets standards, inspects plants, takes

samples measuring workers' exposures to regulated substances, and issues

citations and penalties when violations are detected. Each company is

assumed to choose a level of compliance with the standards for each of its

plants. The compliance level, in turn, has implications for the levels of

worker exposures to hazardous substances.

Following the tradition in the plant—level analysis in the OSHA

literature, we employ a specific—deterrence framework to estimate the

impact of an inspection of a plant on the subsequent compliance behavior

of the plant. At any given point in time, the number of previous

inspections signals the intensity of (past) enforcement. The initial

inspections may disseminate information to firms about OSHA requirements

and may provide a "management shock" to action. In addition, we

implicitly assume that firms' responses to inspections are partially

motivated by the trade—off between the anticipated future penalties for

non—compliance and the costs of compliance. Though OSHA penalties for

initial violations tend to be very low, the penalty schedules for repeat

and willful violations cited in subsequent inspections are substantially

higher.2 To measure the intensity of agency enforcement, we employ dummy

variables indicating the sequence number of the inspection for the first

through the fifth inspection [SEQNUMJ, j=1,...,51. We do not have direct

12. Other—than—serious penalties averaged $88 throughout 1977—84, while

serious penalties averaged $276/citation (1977—80) and $192 (1981-84).
However, willful penalties per citation averaged $3361 and $4389, and

repeat penalties per citation averaged $395 and $365, during those tvo

time periods, respectively. [Willful and repeat citations can be

either serious or other—than—serious.] OTA (1985).
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measures of the private costs of compliance. We assume that they vary

with the employment size ISMALLI or are captured in the plant—specific

dummy in the fixed—effects framework.

We employ two measures of plant performance with OSIIA health

standards. The number of worker exposure measurements violating OSHA

permissible exposure limits LNIJMBADI serves as a proxy for plant

performance in preventing (reducing) the future incidence of occupational

disease.'3 The number of citations [NUMCITEI provides a measure of

violations of all OSHA standards.

We control for several factors which may affect the consistency of

the relationship between measured and "true" violations across inspections

or through time. First, different Administrations may vary in the rate at

which enforcement officers choose to sample various regulated substances,

to cite different types of violations, or to impose penalties for repeat

violations. We control for variations in agency enforcement policy across

Administrations with dummy variables for the Nixon/Ford (1972—76) and

Carter (1977—80) Administrations; the excluded dummy covers 1981—mid-83,

the early part of the Reagan Administration. Second, the origin of each

inspection (complaint, follow—up, general schedule, accident) affects how

much of an establishment is inspected, and therefore affects the

likelihood that violations will be detected. The dummy variable

13. See the detailed study of the worker exposure data (Jones et al.,

1986) for a discussion of sampling and reporting issues. An in-depth

study of records in two OSHA offices indicated that compliance samples

were taken in 48% and 61% of all health inspections, but samples iere

reported in approximately half of the inspections with samples taken.

In the study the lack of reporting appeared to be random. Contrary to

prior hypotheses, the distribution of severity levels for all

compliance samples taken (as reported in area office files) was

approximately the same as the distribution of severity levels for all

compliance samples reported in the MIS by area offices.
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identifies general schedule (targeted) inspections, which allow for the

broadest coverage of the workplace.14

We observe the violation level only when an enforcement officer

inspects an establishment. The criteria OSHA uses to select plants for

repeated inspections will affect the choice of an appropriate estimation

procedure. OSHA's policy of targeting high—hazard plants suggests that

(re)inspectiofl criteria conform to characteristics for which we can

control in the analysis. Due to the longitudinal nature of the dataset,

we also employ a fixed—effects framework to control for unobservable,

permanent, plant—level effects.

III. STATISTICAL FRA$EWORF FOR COUNT MODELS

The dependent variable NUMCITE, measuring the number of citations

detected in an inspection, equals 0 for 50% of the sample and has values

of 3 or less for 75% of the sample. The other dependent variable

(NUMBADI, measuring the number of exposure samples in violation of OSHA

standards, equals 0 for 81% of the sample, and has values of 3 or less for

95% of the sample. (See Table AZ for a complete characterization of the

distributions.) Given these distributions, count models, in which the

dependent variable takes only non—negative integer values, seem more

appropriate than the standard continuous approximations. Of particular

interest are the fixed—effects versions of the Poisson and negative

binomial models developed in Hausman, Hall and Griliches (1984) (hereafter

referred to as HHG). The presentation below of the models we estimate is

based on their discussion.

14. In accident, follow—up, and complaint inspections, inspectors are

directed to focus on the specific factors originating the inspection.
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For events that occur randomly and independently through time, the

Poisson distribution is a natural starting point among count models.

Denote the Poisson parameter as X, and the number of violations identified

by OSRA for plant j during inspection i, as v,. The basic Poisson

probability distribution is:

(1) pr(v) = f(v) [exp(-X]XiIvj! i=l,...I; j=l,...J.

The exponential functional form is conventionally used to incorporate

exogenous variables, X, in order to restrict the range of possible

values of the predicted Poisson parameter to positive real numbers:'5

(2) = exp(X16)

HHG note that the advantages of the Poisson framework include (1)

natural treatments of the integer property of the outcomes and of the

zero—value case; (2) convenient time aggregation, which facilitates the

implementation of a fixed—effect framework; and (3) ease of estimation by

MLE due to global concavity of log—likelihood function.

At the same time, the basic Poisson model is restrictive in several

ways. First, it is based on the assumption that events are independently

and identically distributed through time conditional on X. Given the

panel structure of the data, a primary alternative hypothesis is

heterogeneity across plants, attributable to unmeasured differences such

15. Use of the exponential form requires adding 1 to the values of the

dependent variable, to handle 0—value observations.
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as plant technology, compliance costs, and management attitudes,'6 which

we test with the fixed—effects Poisson framework.

Second, the Poisson is a single_parameter distribution in which the

mean and variance of (v,IX) are equal. If this equality restriction is

inappropriately imposed, the estimated standard errors of 0 may be

spuriously small. Greater flexibility in the mean/variance relationship

can be achieved by generalizing the Poisson model (which is deterministic

in XIXO) to allow for unexplained variation in X. Under certain

distributional assumptions, the resulting compound Poisson distribution

yields the negative binomial distribution.

Figure 1 summarizes the models we estimate. For comparison with the

count models, we also estimate 2 linear models. The first model is:

(v.X+c), or (v=X#u+C) in the fixed—effects version. The first and

second moments are: (X0,i,2) and (X0iiJ, a,2+a2) respectively. The

second model is the log—linear version, lnvX6+C, or lnv=XBi-I.I+C in the

fixed—effects form, with first and second moments (exp(X0J,a2) and

(expLXOi.uI,a22+a,.2), respectively. The third and fourth models are the

Poisson and negative binomial models, respectively. The assumed mean

function is the same in models 2-4, exp(X0), which differs from the mean

function in model 1: (X0).

16. Alternative violations of the independence hypothesis include the

"true contagion" model, in which the occurrence of an event may

increase the probability of subsequent occurrences, and the "spells"

model, in which events occur in clusters, where clusters occur

according to one probability law, and the events within a given

cluster occur according to a different probability law. Given the

long time between health inspections, it seems highly unlikely that

either of these effects occur in the data. We estimated first-order

serial correlations of error terms for the basic Poisson model and

found them to be very small.
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Poisson Distribution Models

The basic Poisson model (3.1 in Figure 1) yields the following log-

likelihood function for a sample covering i inspections in plant j across

j plants:

(3) log I. = EE(v! — exp(X) + v.,(Xj5)I

The OSBA panel is unbalanced: plants vary in the total number of health

inspections they have received. In the analysis sample, we truncate the

number of inspections in plant j, i, to a maximum of 5.

Unobserved plant—specific effects can be incorporated by specifying

— Because X needs to be positive, the following form is

employed:

(4) = = exp(X + +

where IJj is the effect specific to plant j and u0 is the overall

intercept. The fixed—effects framework does not require a distributional

assumption for , and allows for correlation between the plant effect and

the observed exogenous variables.1'

HHG observe that the fixed-effects specification cannot be

implemented simply by estimating separate
parameters because, with I

held fixed and J large, the incidental parameter problem occurs vhich may

lead to inconsistency in ML estimators.' Instead they employ the

17. This flexibility represents a major advantage relative to the random-

effects framework, an alternative panel data model. However,

inferences with the fixed—effects model are conditional on the plant

error term; unconditional inferences are not possible without more

specific distributional assumptions.

18. See Neymann and Scott (1948); Andersen (1973); and Haberiflan (1977).
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conditional Maximum Likelihood techniques of Andersen (1970, 1972), and

condition on by conditioning on the sum of violations for plant j

across its inspections, E1V.

The log—likelihood function for the fixed—effect Poisson model (3.2)

is:

(5) log L = E)(1ogr[(Ev1))+1J — Elogr(v)+-1)

—

where s c I

The log—likelihood function consists of different segments for plants

with 2, 3, 4 or 5 inspections in the panel, respectively, with the

segments linked by common parameters on shared variables.t9

Negative Binomial Distribution Models

To relax the Poisson model restriction that the mean and variance of

(v1IX) are equal, we allow for randomness in X by replacing (2) with

the stochastic equation:

(6) — exp[X6 +

where the error term s represents intrinsic randomness. It is well known

that if the probability density of c, or equivalently of follows

the gamma distribution, then the pr(v1)) is distributed negative binomial.

HHG assume gamma—distribution parameters (y, 8), with

and 8 common both across firms and across time. Note the nature of the

19. In order to implement the fixed—effects framework, plants with only
one inspection cannot be used in the analysis.
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stochasticity in in this model: can vary over time even if

remains constant (unlike with the Poisson model); however, there are no

firm—specific effects, so the are independent across inspections for a

plant. With this formulation, the first and second moments of the

distribution of v are: and

With a variance/mean ratio for v of (1+6)18 > 1, the specification allows

for over—dispersion (with the original Poisson as a limiting case with

6-). However, it does not allow the variance to increase with the value

of the dependent variable.

The log—likelihood function for model 4.1 is:

(7) log L = £1(—logr(v÷1) — 1ogr(exp(Xø)]

+ exp(XB)log(8/(l+8)I

— (v)log(l+8) + logr(v1+exp(X1,B)1}

In order to incorporate plant—specific effects in the negative

binomial model, HUG again condition the estimation on the sum of citations

across all inspections. Th firm—specific effect is incorporated by

setting the parameters of the underlying gamma function as follows:

('rj,8j) = (expIX8J f/exp[3iJ) where 8 now varies across plants-

The moments of the corresponding unconditional negative binomial model

are:

E(v1) = exp(Xj÷3iJ/+

V(v)) = (exp[X+2U)1/4')2)(1 + $)/expfuJl)



14

The variance/mean ratio for v in this specification is (exp(u)J +

which allows for both over—dispersion and a plant—specific variance/mean

ratio. The log—likelihood function for the fixed—effects negative

binomial model (4.2) is:

(8) log L = E(logr[(Ev)+1J — E1logr(v+1)

+ logrIEexp(X1J)1 —

+ E1logr(exp(X6)+v1 — ElogrIexp(X)])

As with the fixed—effects Poisson model, the log—likelihood function

consists of four separate segments with plants in each segment

distinguished by total number of health inspections, 1,=2,...5, but

sharing the same coefficient matrix 8.

IV. DATA

The source of data for the analysis is OSHA's enforcement Management

Information System (MIS), used by the agency to track agency enforcement

and company compliance performance. The version of the MIS data obtained

for this study includes the 63,383 federal health inspections performed in

20
37,639 manufacturing establishments between 1972 and the middle of 1983.

In order to create longitudinal records of plant inspection histories,

Gray (1986) matched all inspections of individual establishments using

20. Not included in the data are those few inspections done in 1971 and
1972 before the MIS was operational, and inspections performed in
"state plan" states, where state authorities have taken over
responsibility for enforcement.
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establishment—level identifiers.2' In order to implement efficiently the

conditioning procedure in the Andersen ML.E technique, we only include up

to the fifth inspection for a plant. This truncation does not result in

the loss of any plants, but does eliminate 2909 health inspections of

sequence order 6 and above (4.6% of all inspections) in 984 heavily

health—inspected plants (2.6% of all plants), yielding a sample of 60,474

inspections.

In order to estimate the fixed—effect versions of the models, we

restrict the analysis sample to the 35,427 health inspections in the

12,592 plants with two or more health inspections during the period.

Table Al compares the means and standard deviations of the variables for

the full sample (I) with for the analysis sample (II). Across the full

sample, inspectors wrote citations (NUNCITE) in 50% of the inspections,

averaging 2.5 citations across all inspections and 5 citations in

inspections with citations. Inspectors reported an average of .6 exposure

samples violating exposure limits in each inspection, for an average of

3.2 violations in plants with exposure violations. In the analysis

sample, the NUMCITE mean is almost identical; the mean of NUMBAD is 25%

higher than the mean for sample I (.76 relative to .61).

In its early years, OSHA did not hire many industrial hygienists and

so the agency conducted relatively few health inspections. The agency

began to place greater priority on health inspections by the end of the

21. This project used the Fellegi-Sunter technique of record matching,

based on establishing the likelihood of agreement in the various

fields. Because of the variation in coding of establishment data over

time (including errors in data entry), there are almost certainly

cases in which inspections of the same establishment are not

identified as such. It is also possible (though less likely given the

structure of the weights) that inspections of different establishments

are mis—identified as repeat inspections of a single establishment.
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Ford Administration, when a health professional was appointed head of the

agency for the first time. In the full sample, health inspections are

fairly evenly distributed across the years in the Carter (1977—80) and

Reagan (1980—mid—83) Administrations (at 11% per year, with a slight bulge

to 12.6% In 1980). Not surprisingly, after eliminating plants with only

one inspection, the profile of sample II shifts slightly toward the

earlier part of the panel. General-schedule targeting (aimed toward high-

hazard workplaces) generated 44% of the inspections among all plants,

dropping to 1/3 in the analysis sample. Slightly over half of the

inspections (55%) in sample I were In plants with fewer than 100

employees; the share of small plants declines to 42% in the analysis

sample.

Table A2 presents more detailed descriptive statistics for the two

count variables, separately for the two samples. Given the patterns In

the means, it Is not surprising that the distribution for NUMCITE Is

almost identical for the two samples and the distribution for NUMBAD is

shifted slightly upward in the analysis sample. We also show a 2x2 table

indicating the joint outcomes on the 2 violation measures. It is

reassuring that among plants with exposure violations, 88% received

citations. Among plants with citations, 34% had documented exposure

violations.
22

22. Inspectors may cite plants for not having the appropriate control

equipment to achieve exposure limits, without taking exposure

measurements. Alternatively, citations may involve violations of

other requirements such as exposure employer monitoring, warning

signs, personal protective equipment, or medical exams.
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V. E1PIRICAL RESULTS

The major issue considered in this paper is: do OSHA's enforcement

efforts deter violations of OSHA health standards? To address this issue

we estimate each of the four models developed above, both with and without

plant—specific fixed effects. For the versions of the model without fixed

effects, we control for the selection effect by incorporating the variable

HNUMINSP, the total number of health inspections experienced by a plant,

as a proxy for the plant fixed effect. As with the inspection—sequence

series of variables [HSEQNUMI, we create dummy variables for values of

HNUMINSP equal to 1 through
523

Tables 1 and 2 report the estimates of the determinants of the total

number of citations, NUMCITE, and the number of exposure violations

reported, NUMBAD, respectively. Across all specifications for both

variables, the results are consistent with the qualitative conclusions

that (1) both measures of violation (worker exposure violations and

citations of standards) decrease with additional inspections, and (2) the

first health inspection has the strongest impact in reducing violations.

We first consider the results for NUMCITE presented in Table 1. In

all four models, the fixed-effects framework cannot be rejected. The

coefficients on the health inspection variables (IISEQNUMJ) are somewhat

larger (and the differences are statistically significant) in the fixed—

effects versions. However, the estimates of the impact of OSHA

enforcement throughout the sample, (summarized for fixed—effects models

below in Table 3), are not greatly affected by the differences.

23. With this model, the coefficients of the health inspection sequence

variables EHSEQNUMh the focus of our inquiry, are estimated without

bias. The coefficients on HNUMINSP are underestimated by a factor

equal to the ratio of the variance of the "noise" in HNUMINSP (as a

proxy for p) to the total variance of HNUMINSP. Proof available from

the authors.
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Because the specification of the mean function is a critical

component in the implementation of the count models, we are particularly

interested in specification testing for models 1 and 2. The R2 are not

comparable in the two models (due to the data transformation).

Alternatively, we use the Sargan test which indicates the log—linear model

(2) is preferred to the linear version (1).24

Comparing the results for the two count—distribution models, we see

the dramatic decline in the log—likelihood function for the negative

binomial model25 relative to the Poisson, from —126,186 to —66,464 for the

non—fixed—effects version, and -53,989 to —23,375 for the fixed—effects

version. Based on a test, the negative binomial model is not rejected

in either version. For the non—fixed—effects version, we can also examine

the estimate of 6, which allows for over—dispersion in the negative

binomial specification. In model 4.1, the estimated ratio of the variance

to the mean is (1+6)16=6, substantially different from the imposed ratio

24. The statistic presented by Sargan (1964) is: S=(j/g2)T, where b is
the root—Inse from model 1, and is the root-mse from model 2, and g

is the geometric mean of v. Based on the assumption that the errors
from each model k, (k1,2), are distributed iid N(O,k): if S>1, then
model 2 is favored; if S<1, then model 1 is favored. [Maddala (1977,

p. 317) proposed a comparable test.j The value of (/g2) = 2.8 for

both the fixed-effects and the non—fixed—effects versions, which
indicates that the log—linear model is preferred to the linear model.

25. Unlike the other fixed—effects models, the negative binomial allows
estimation of coefficients for variables that are constant for a plant

over time. Including the constant term had important implications:
without it, the IISEQNUM2 coefficient in the NIJMBAD equation was
substantially (50Z) higher in magnitude, yielding a much larger
estimate of the effect of first inspections than with the other

models. We also include the SMALL plant dummy in the reported
results. The procedure would not converge when the HNUMINSP dummies
were included, however, due to their high collinearity with the
HSEQNUM dummies. When we incorporated UNUMINSP dummies with a range
of pre—specified parameter values for the coefficients (rather than

estimating them), the }ISEQNUM parameter estimates were not greatly

affected.
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of 1 in the Poisson model. Note also that the standard errors are larger

in the negative binomial model, consistent with the observation above that

the standard errors estimated in the Poisson models may be spuriously

small where over—dispersion occurs due to the imposed equality of mean and

variance.

The HSEQNUM coefficients in the linear model (1, v=X6+c) indicate

the change in the violation level with additional inspections. For the

three other models (2-4) based on the log—linear form of the relationship,

(lnvX&.C), the coefficients indicate the percentage change in the

dependent variable with an additional inspection. In order to compare

across models the estimated effect of inspections on the level of

violations, we multiply the coefficients in models 2-4 by the mean of the

dependent variables (v), which gives us the estimated inspection effect at

the sample mean. In the following discussion we assume that the reduction

in citations induced by an inspection is permanent, which yields a

conservative interpretation of the incremental effects of repeated

inspections.26

The first four columns o Table 3 summarize the impact of sequential

inspections on citations. Due to the statistical dominance of the fixed—

effects models, we report only those estimates of the inspection effects,

in both numerical counts and standardized units (+ sd). Before turning to

Table 3, we observe in Table 1 that the coefficients on the health

26. Alternatively, if the impact is short—lived, the effect of inspection

j—l equals the sum of the j coefficient plus all earlier HSEQNUM

coefficients. A longer—term effect seems more appropriate when

compliance predominantly involves making capital investments with long

time horizons; the short-term effect seems more appropriate when

compliance primarily requires the payment of operating expenses.

Conventional wisdom suggests safety compliance is more oriented toward

operating expenditures and health to capital expenditures.
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sequence variables are all precisely estimated, with the exception of the

HSEQNUMS variables.

For NUMCITE [mean=2.5, sd=5.2J, the pattern of inspection effects is

very similar for models 1, 2, and 3. The log—linear results (Col. 2.2)

indicate that the first—inspection effect is to reduce citations by —2.0,

with subsequent inspections yielding reductions of - .5, — .4, and —.14

citations each, for an estimated total impact of the OSHA inspection

pattern for the average manufacturing plant of -2.4 (-.5 Sd). For the

Poisson model, the estimated total effect is approximately the same, -2.7

citations (—.5 Sd); with reductions declining across inspections, -1.9,

—1.0, —.4, —.2. The negative binomial model estimates OSHA's total effect

to be 20% lower than the other three models: —1.9 citations (-.2), with

the reductions concentrated on the first inspection (—1.8 citations), with

subsequent inspections yielding reductions of —.15, —.15, —.01 citations.

Note the effect of an inspection is observed in the subsequent

inspection. The estimates of total effects cited above assume that the

(unobserved) effect of the last inspection for each plant is equal to the

effect measured for that inspection sequence number in the sub-set of the

sample receiving additional inspections.27 Alternatively, "more

conservative" estimates of the effect of OSHA inspections during 1972—83,

based on the assumption that there is no effect of the last inspection in

any plant, range from —1.2 (—.2 Sd) to —1.6 (—.3 sd) for the Poisson

model. (See the notes to Table 3 for further details on the calculations.)

27. It follows that we have no measure of the effect of the fifth
inspection, and so we must assume a zero impact. The calculation
attributes the estimated first—inspection effect to plants receiving
only one inspection; these plants were not included in the analysis
sample.
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The results for the number of violations of worker exposure limits

(NUMBADI reported in Tables 2 and 3 follow similar patterns. In the

fixed—effects versions (which are not rejected for any of the models), the

coefficients tend to be slightly larger. The Sargan test, comparing the

linear and log—linear forms, again indicates that the log—linear model is

preferred.2 Between the two count models, the negative binomial model is

strongly preferred according to the X2 test. With NUMBAD, the estimated

over—dispersion in the variance/mean ratio in model 4.1 is smaller:

(1+8)/5.3. The parameter estimates for the HSEQNUM variables are

significant except for the HSEQNUM5 variable (for all models) and for

HSEQNUM4 with the negative binomial model.

The estimates of the total effect of OSHA health inspections on

over—exposures [mean.75, sd2.51 are summarized in the last four columns

of Table 3 for the fixed—effects version of the models. All four models

again produce similar estimates of the total impact of OSHA: - .4

overexposures for the log-linear and negative binomial models, and -.5

overexposures for the linear and Poisson models. In the log-linear model,

the inspection effects are —.3, —.1, —.1, and —.06, for a weighted average

of —.4 over—exposures, (—.2 sd) or, according to the more conservative

calculation, —.2 over—exposures (—.1 sd). In the negative binomial model

(4.2), the estimates of individual inspection—effects are —.4, —.04, -.03,

and —.02, for a total impact of —.4 citations (—.2 sd) or, more

conservatively, —.3 citations (—.1 Sd). Though all models indicate large

first—inspection reductions with smaller effects from subsequent

28. The value of (1/g2) was 3.4 for the fixed—effects model and 3.3 for

the non—fixed—effects model.
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inspections, it is notable how much more pronounced the effect is with the

negative binomial model.

VI. SUMMARY AND DISCUSSION OF RESULTS

In this paper, we provide the first estimates of the impact of OSHA

health—related enforcement on compliance throughout the manufacturing sector.

We resolved the lack—of-data impediment to research on OSHA's health effects

by creating violation measures from the data on exposure samples and citations

recorded by OSHA inspectors in the agency enforcement MIS.

Two major conclusions are robust across the range of linear and count

models estimated in the paper: (1) both the number of citations of OSHA

standards and the number of violations of worker exposure limits decrease with

additional health inspections in manufacturing plants; and (2) the first

health inspection has the strongest impact. The best estimates, based on the

fixed—effects negative binomial models, suggest that in ever-inspected

manufacturing plants, OSHA health inspections during the first twelve years of

the agency operation have reduced the number of citations on average by -2 or

-.4 sd and have reduced the number of detected exposure violations by - .4 or

—.23 sd.29 The ranges of estimates across the models are for reductions from

—1.9 to —2.7 citations and for reductions of —.4 to —.5 worker over-

exposures samples. The methodology does not allow us to estimate the

29. The estimated reduction in citations induced by health inspections
presented In this paper is of comparable magnitude to the estimated
reduction reported in our earlier study, focusing on safety inspections
(80Z of all OSHA inspections). With a Tobit model, we estimated
inspection effects on citations of (-2.3, —.6, —.5 and -.3); with a linear
fixed—effects model, the estimated inspection effects were somewhat larger
(—2.9, —1.4, —.8, and —.9). The average effect of OSHA inspections
throughout the 12—year panel period (based on the Tobit coefficients), ias
to reduce citations by —3 or —.36 sd.
Because the dataset involved in the safety analysis was substantially

larger, we did not employ the difficult-to—estimate count models.
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indirect or general deterrent effects of inspections on other non—inspected

plants, for example in the same industry or the same geographical area.

Also the analysis is strictly limited to federal OSHA inspections: it does

not necessarily measure the impact of enforcement efforts in states with

federally_approved state enforcement programs.

We assume that the future incidence of occupational disease will tend

to decline with an increase in compliance with OSHA standards and a

reduction in violations of worker exposure restrictions. Based on this

assumption, the results demonstrating OSHA's efficacy in promoting

compliance with health standards suggest that OSHA is making a valuable

contribution to the reduction of workplace risks. By focusing on the

limited impact of safety regulations, prior evaluations of OSHA may have

substantially under—estimated OSHA' s workplace impact.

To make recommendations for future enforcement policy would require

extrapolations beyond the plants ever—observed in the sample. Nonetheless,

one particularly robust result observed in both our previous safety

inspection study and the current health inspection study deserves comment.

Within the 12—year panel period, the large reduction in citations and

exposure violations following the first inspection of a plant contrasts

greatly with the small measured effect of later inspections. The results

suggest that, on the margin, substantial gains could occur if inspection

resources were reallocated from the intensive margin to the extensive

margin of OSHA's inspection strategy.
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TABLE Al. Descriptive statistics for the analysis sample

Sample I — Health Inspections (1 — 5), N — 60,474.
Sample II Health inspections (1. — 5) in plants receiving at least

2 health inspections, N 35,427.
I II
Mean Mean

Name Description (s.d) (s.d)

NIJMCITE Number of citations In this 2.518 2.545
inspection (4.954) (5.214)

NUMBAD Number of worker exposure samples .614 .759

violating exposure restrictions. (2.233) (2.551)

HSEQNUM Health sequence number of this Inspection
of this establishment (Dummy variables).

USEONUM1 =1 if [Sequence number �1J 1.000 1.000
HSEQNIJH2 >2] .378 .645

HSEONUM3 >3] .169 .289

HSEQNUM4 4J .076 .130

HSEQNUM5 �51 .028 .047

HNUHINSP Number of total health Inspections of
this establishment (Dummy variables).

HNUMINS?1 =1 if [Total inspections 1J .413 0

HNUMINSP2 = 2] .231 .393

HNUHINSP3 31 .133 .226

HNUMINSP4 4] .085 .145

HNUHINSP5 � 51 .138 .236

GENERAL =1 if origin of inspection was a .437 .335

general schedule (targeted) inspection

0 if origin was complaint, accident .563 .665

or follow—up

FORD =1 if inspection occurred in 72—76 .261 .282

O otherwise

CARTER =1 if inspection occurred in 77-80 .456 .51
0 otherwise

REAGAN =1 if inspection occurred in 81—mid83 .283 .199

0 othervise

SMALL =1 if Number of employees < 100 .549 .42()

0 if Number of employees > 100 .451 .580
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TABLE A2. Detailed descriptive statistics for the violation variables.

NUNCITE NUMBAD

*
Sample I II I II

Mean 2.518 2.545 .614 .759

Std. dev. (4.954) (5.214) (2.232) (2.551)

N 60,474 35,427 60,474 35,427

Frequency counts:

cumX cumZ cumZ cumZ

0 49.8 51.4 80.9 77.2

1 62.0 63.2 88.5 85.9

2 71.2 72.0 92.6 90.9

3 77.8 78.1 94.9 93.7

4 82.3 82.2 96.4 95.6

5 85.7 85.5 97.4 96.7

6 88.4 88.1 98.0 97.5

7 90.4 90.1 98.5 98.1

8 92.1 91.7 98.8 98.5

9 93.4 93.1. 99.0 98.8

10 94.4 94.1 99.2 99.0

Highest extremes: 88 85 64 64

88 88 67 67

99 99 71 71

115 115 75 75

123 123 88 88

*
Sample definitions: I refers to health inspections 1-5 for all plants

II refers to health inspections 1—5 for all plants

with 2 or more health inspections



NUMBAD

=0

NUMCITE =0 28,750 1,359 30,

(11.8%)

109

Total 48,937 11,537

(100.0%)

60,474

TABLE A2 - cont'd

Sample I:

29

>0 Total

>0 20,187

(66.5%)

10,178

(88.2%)

(33.5%)

30,365

(100.0%)
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