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ABSTRACT

Participants in prediction markets such as the Iowa Electronic Markets trade all-or-nothing contracts

that pay a dollar if and only if specified future events occur. Researchers engaged in empirical study

of prediction markets have argued broadly that equilibrium prices of the contracts traded are "market

probabilities" that the specified events will occur. This paper shows that if traders are risk-neutral

price takers with heterogenous beliefs, the price of a contract in a prediction market reveals nothing

about the dispersion of traders' beliefs and partially identifies the central tendency of beliefs. Most

persons have beliefs higher than price when price is above 0.5, and most have beliefs lower than

price when price is below 0.5. The mean belief of traders lies in an interval whose midpoint is the

equilibrium price. These findings persist even if traders use price data to revise their beliefs in

plausible ways.
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1 The Iowa Political Markets have also offered linear vote-share contracts which pay $1 times the
percentage of votes received by a candidate.  In this case, researchers have interpreted the price of a contract
as a market-generated best point prediction of the vote share that the candidate will receive.

2 The website www.tradesports.com offers online trade in all-or-nothing contracts for many political,
financial, and sporting events.  An April 1, 2003 BBC report “Markets hold key to Saddam’s survival”
illustrates the press coverage of Saddam Securities. See http://news.bbc.co.uk/2/hi/business/2906143.stm.

1. Introduction

Prediction markets are futures markets “run for the primary purpose of using the information content

in market values to make predictions about specific future events” (Berg and Rietz, 2003, p. 79).  The

operation since 1988 of the Iowa Electronic Markets (IEM) has stimulated considerable interest in such

markets.  The Iowa Political Markets, which trade futures contracts on U. S. election outcomes, have become

especially well-known (Forsythe et al., 1992).  During each recent presidential campaign, market participants

have been able to trade “all-or-nothing” contracts which pay one dollar if a specified candidate wins the

popular vote and nothing otherwise.  Researchers associated with the IEM have interpreted the equilibrium

price of such a contract as a market-generated probability that the specified candidate will win the popular

vote (Berg and Rietz, 2003; Berg, Nelson, and Rietz, 2003).1

Prediction markets have attracted substantial public attention recently.  In late 2002 and early 2003,

the firm Tradesports.com enabled online trade in “Saddam Securities,” all-or-nothing futures contracts for

the event that “Saddam Hussein is not President/Leader of Iraq” by a specified date .2  Leigh, Wolfers, and

Zitzewitz (2003) have interpreted the price of a Saddam Security as a market-generated probability of war

with Iraq prior to the specified date.

Prediction markets achieved some notoriety in the summer of 2003, when, following public criticism,

the Defense Advanced Research Projects Agency (DARPA) of the U.S. Department of Defense terminated

development of its “Future Markets Applied to Prediction” (FutureMAP) program (see Carl Hulse, The New

York Times, July 29, 2003, page A1).  The DARPA News Release announcing cancellation of FutureMAP
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3 See www.darpa.mil/body/newsitems/pdf/futuremappressrelease2.pdf.  The DARPA assertion of the
power of future markets to predict election results presumably refers to the conclusions of researchers
associated with the IEM, who have examined the predictive accuracy of the Iowa Political Markets (Berg,
Nelson, and Rietz, 2003).

4 Hayek put it this way (p. 526): “The mere fact that there is one price for a commodity . . . . brings
about the solution which . . . . might have been arrived at by one single mind possessing all the information
which is in fact dispersed among all the people involved in the process.”

motivated the program as follows:3 “The FutureMAP research project was meant to explore the power of

futures markets to predict and thereby prevent terrorist attacks.  Futures markets have proven themselves to

be good at predicting such things as elections results; they are often better than expert opinions.”

What is the logical basis for interpreting the price of an all-or-nothing futures contract as a market

probability that the event will occur?  Researchers engaged in empirical study of prediction markets have

been uncomfortably vague.  Forsythe et al. (1992) and Berg, Nelson, and Rietz (2003) refer to Hayek (1945),

who argued broadly that market prices aggregate information.4  Leigh, Wolfers, and Zitzewitz (2003) write

(p. 2): “Markets aggregate opinions and, by requiring a trader to ‘put your money where your mouth is,’ they

lessen the cheap-talk problem and create incentives for individuals to reveal their true beliefs.”  These and

other recent papers on prediction markets provide no formal analysis showing how such markets aggregate

information or opinions.

This paper shows, under special assumptions that may constitute a best-case scenario, what prices

in prediction markets reveal about the beliefs of traders.  Consider a market offering all-or-nothing contracts

on the occurrence of a binary event; one contract pays a dollar if event m occurs and the other pays a dollar

if the contrary event n / (not m) occurs.  Let the prices of these contracts be Bm and Bn.  Suppose that a

population J with heterogeneous beliefs participates in this market.  Each person j 0 J has a fixed trading

budget of yj dollars and a subjective probability qjm that event m will occur; thus, qjn = 1 ! qjm.  Let P(qm, y)

denote the cross-sectional distribution of beliefs and budgets.  Assume that the distribution of beliefs is

continuous and that budgets are statistically independent of beliefs.  Finally, assume that persons are price

takers and maximize the subjective expected value of their contracts.
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Section 2 shows that, under these assumptions, the unique equilibrium price for contract m in a

market such as the IEM solves the equation

(1)    Bm  =  P(qm > Bm).

The mean belief of the population of traders can take any value in the open interval below:

(2)   E(qm)  ,  (B 2
m, 2Bm ! B 2

m).

Thus, price does not generally equal the mean belief of traders, but Bm is the midpoint of an interval of width

2(Bm ! B 2
m) that contains E(qm).

To illustrate, consider the price at the beginning of October 2002 of the Saddam Security paying off

if Hussein is ousted by June 2003.  Leigh, Wolfers, and Zitzewitz (2003, Figure 1) report that this price was

0.75.  Under the maintained assumptions, this reveals that 75 percent of traders believed the probability of

the event to be larger than 0.75.  The mean subjective probability of Hussein’s ouster lay somewhere in the

range (0.5625, 0.935).

Equations (1) and (2) show what price reveals about beliefs if traders are risk-neutral with fixed

beliefs and with budgets that are statistically independent of beliefs.  These assumptions may or may not be

realistic, but they provide a simple baseline for efforts to study more complex situations.  One possibility is

that, instead of beliefs being fixed, traders may use price data to revise their expectations.  Thus, suppose that

person j holds prior subjective probability qjm when the market opens and revises this belief to qjm(Bm) after

observing trades take place at price Bm.  Section 3 shows that such revisions to beliefs do not change the

equilibrium if prior and posterior beliefs bear the same ordinal relation to price.  In particular, equation (1)

continues to hold if each posterior belief qjm(Bm) is a weighted average of price Bm and the prior belief qjm.
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5 Equation (1) here corresponds to Ali(1977), page 810, equation (4).  His derivation rests on stronger
assumptions than those used here; in particular, he assumed that all bettors wager the same amount.  The Ali
article is primarily an empirical analysis of pari-mutuel betting.  He utilized extensive data on race outcomes
to demonstrate the favorite-longshot bias, and he attempted to infer from these data the risk preferences of
a representative bettor.

The concluding Section 4 observes that the information about beliefs contained in equations (1) and

(2) is fragile.  If budgets are not statistically independent of beliefs, prices in prediction markets are

determined by the joint distribution of expectations and budgets rather than by the distribution of expectations

alone.  If traders are risk averse, price reflects their risk preferences as well as their expectations and budgets.

For these and other reasons, I suggest that direct measurement of expectations may be preferable to inference

on expectations from prices in prediction markets.

Although there appears to be no precedent study of the logic of price determination in prediction

markets, relevant analysis has been performed in studies of pari-mutuel betting on horse races.  Under

behavioral assumptions similar to those used here, Eisenberg and Gale (1959) demonstrated the existence and

uniqueness of equilibrium prices.  Considering races with two horses, Ali (1977) reported equation (1) and

suggested that this may explain the “favorite-longshot bias,” where horses with high equilibrium prices (i.e.,

favorites) empirically tend to win more often and those with low prices (i.e., longshots) tend to win less often

than they should if their prices are interpreted as market probabilities of race outcomes.5  Brown and Lin

(2003) shed further light on the favorite-longshot bias, showing that if the expectations of bettors are

distributed Dirichlet, then the equilibrium prices of favorites are lower than the mean subjective probabilities

that bettors hold for these horses to win.
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2. Beliefs and Prices in an Idealized Prediction Market

This section proves equations (1) and (2) under the assumptions of Section 1.  Without loss of

generality, let the unit interval index the members of J.  Let (Bm, Bn) be any price vector such that Bn = 1 !

Bm.  It will be shown below that the equilibrium price vector satisfies this “no-arbitrage” condition.

Consider a person with trading budget y who places subjective probability qm on occurrence of event

m.  Price taking and maximization of subjective expected value imply that this person invests his entire

budget in contract m if qm > Bm and in contract n if qm < Bm.  Thus, the person purchases y/Bm units of contract

m if qm > Bm and y/Bn units of contract n if qm < Bm.  All portfolios are optimal if qm = Bm, but the assumption

that P(qm) is continuous implies that this equality almost never occurs among the members of J.  Hence,

aggregating individual behavior across the population, the market demands for contracts m and n are

(1/Bm)@E{y@1[qm > Bm]} and (1/Bn)@E{y@1[qm < Bm]} respectively.

In the IEM, a person with budget y is given an endowment of y units of contract m and y units of

contract n.  Hence, the market supply of each contract is E(y).  Equilibrium requires that the market demand

for each contract equal this common supply.  Thus, (Bm, Bn) is an equilibrium price vector if and only if

(3)   E(y)  =  (1/Bm)@E{y@1[qm > Bm]}  =  (1/Bn)@E{y@1[qm < Bm]}.

If y and qm are statistically independent, then E{y@1[qm > Bm]}  =  E(y)@P(qm > Bm) and E{y@1[qm < Bm]}  =

E(y)@P(qm < Bm).  Hence, equation (3) reduces to

(4a)   Bm  =  P(qm > Bm),

(4b)   Bn  =  P(qm < Bm).
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6 Pari-mutuel markets differ institutionally from the IEM, but the same equilibrium condition holds
if the “track take” is zero; that is, if the track returns all money to the bettors.  Then the price of a “win” bet
on a horse is the fraction of the total betting pool that is wagered on this horse.  Consider a race with two
horses, say m and n.  In the notation of this paper, the aggregate amount bet on horse m is E{y@1[qm > Bm]}
and the betting pool is E(y).  Hence, the equilibrium price of a bet on horse m solves the equation Bm =
E{y@1[qm > Bm]}/E(y).  If y is statistically independent of qm, this reduces to (1).

Equality (4a) is equation (1).  Continuity of P(qm) implies that P(qm < Bm)  =  1 ! P(qm > Bm), so (4a) and (4b)

yield the no-arbitrage condition.  Equation (1) has a unique solution because P(qm > Bm) is a continuous

function of Bm that decreases in value from 1 to 0 as Bm increases from 0 to 1.6

The bound (2) on E(qm) follows from (1).  To obtain the upper bound, observe that the distribution

that satisfies (1) and has the largest possible mean is the two-point distribution with P(qm = Bm) = 1 !Bm and

P(qm = 1) = Bm.  This distribution has mean 2Bm ! B 2
m.  The assumption that P(qm) is continuous implies that

this two-point distribution is not feasible.  However, for 0 < * < min(Bm, 1 !Bm), all continuous distributions

placing probabilities 1 !Bm and Bm on the intervals (Bm ! *, Bm) and (1 !*, 1) satisfy (1).  Such distributions

have means that are smaller than 2Bm ! B 2
m but that approach this value as * 6 0.

To obtain the lower bound, replace (1) by the equation

(1N)   Bm   =  P(qm $ Bm),

which is equivalent to (1) if P(qm) is continuous.  The distribution that satisfies (1N) and has the smallest

possible mean is the two-point distribution with P(qm = 0) = 1 !Bm and  P(qm = Bm) = Bm.  This distribution

has mean B 2
m, but is not feasible.  However, for 0 < * < min(Bm, 1 !Bm), all continuous distributions placing

probabilities 1 !Bm and Bm on the intervals (0, *) and (Bm, Bm + *) satisfy (1).  Such distributions have means

that are larger than B 2
m but that approach this value as * 6 0.

It remains to show that E(qm) can take any value in the interval (B 2
m, 2Bm ! B 2

m).  The argument above

shows that, for small positive values of 8, there exist continuous distributions that satisfy (1) and that have

means B 2
m + 8 and 2Bm ! B 2

m ! 8.  Let 0 < " < 1 and consider a (1 ! ", ") mixture of such distributions.  The
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mixture is continuous, satisfies (1), and has mean (1 ! ")(B 2
m + 8) + "(2Bm ! B 2

m ! 8).  Considering all " ,

(0, 1) and letting 8 6 0 proves the result.

3. Using Price Data to Revise Expectations

Section 2 assumed that persons hold fixed beliefs about the likelihood of event m.  A prominent

theme of theoretical research in information economics has been that prices may reveal private information

held by market participants.  Extrapolating from this research to prediction markets, one might conjecture that

traders in prediction markets use price data to revise their expectations.

Whether and how traders in prediction markets use price data to revise their expectations is an open

empirical question that cannot be addressed here.  Instead, the analysis in this section makes two assumptions

about the posterior beliefs that traders hold.  First, trading budgets are statistically independent of posterior

beliefs.  Second, each person j’s posterior belief qjm(Bm) bears the same ordinal relationship to price as did

his prior belief qjm; that is, 

(5)     sgn[qjm(Bm) ! Bm]  =  sgn[qjm ! Bm].

These assumptions do not mandate a particular rule for revision of expectations, but are consistent with many

possible rules.  For example, the assumptions hold if qjm(Bm) is a weighted average of Bm and qjm of the form

qjm(Bm) = 2jqjm + (1 ! 2j)Bm, where 2j 0 (0, 1], and if budgets are statistically independent of (qm, 2).

Repeating the derivation of Section 2, (Bm, Bn) is an equilibrium price vector if and only if

(6)   E(y)  =  (1/Bm)@E{y@1[qm(Bm) > Bm]}  =  (1/Bn)@E{y@1[qm(Bm) < Bm]}.
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Statistical independence of budgets and posterior beliefs implies that (6) reduces to

(7a)   Bm  =  P[qm(Bm) > Bm],

(7b)   Bn  =  P[qm(Bm) < Bm].

Condition (5) implies that

(8a)    P[qm(Bm) > Bm]  =  P(qm > Bm),

(8b)    P[qm(Bm) < Bm]  =  P(qm < Bm).

Combining (7a)-(7b) and (8a)-(8b) yields (4a)-(4b).  Hence, the equilibrium price using posterior beliefs is

the same as the one using prior beliefs.

4. Discussion

The above analysis refutes the notion that prices in prediction markets are “market probabilities.”

Under the maintained assumptions, the price of an all-or-nothing futures contract does not equal the mean,

median, or any other measure of the central tendency of traders’ beliefs.  Instead, price solves equation (1).

Thus, most persons have beliefs higher than price when price is above 0.5, and most have beliefs lower than

price when price is below 0.5.

The analysis shows that price reveals nothing about the dispersion of traders’ beliefs.  Equation (1)

can hold if beliefs are very homogeneous, with all of the probability mass of P(qm) concentrated in a small

neighborhood of the value Bm.  It can also hold if beliefs are highly heterogeneous, with some traders giving
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event m probability close to zero and the rest giving it probability close to one.  The invariance of equilibrium

to changes in the dispersion of beliefs underlies the finding of Section 3 that the equilibrium stays the same

if traders use price data to revise beliefs.  If posterior beliefs satisfy equation (5), the distributions of prior and

posterior beliefs may have different dispersions but equation (1) holds both a priori and a posteriori.

The analysis shows that price does reveal something about the central tendency of traders’ beliefs.

Equation (2) shows that E(qm) lies in the interval (B 2
m, 2Bm ! B 2

m).  This interval has midpoint Bm, shifts

rightward as Bm increases, and has width 2Bm(1 ! Bm).  Thus, prices near zero or one are very informative

about the mean beliefs of traders, but prices near 0.5 are much less informative.

Although the simple model studied here implies that price reveals something about beliefs, it does

not support the efficient markets hypothesis that price is a sufficient statistic for all private information held

by traders.  Demonstrations that markets can be efficient, such as Theorem 1 of Grossman (1976), have

assumed that traders initially view the world in the same way (i. e., have common priors), observe different

data (or private signals) about this world, use Bayes rule to integrate data and initial beliefs, trade based on

their posterior beliefs, and further revise their beliefs after observing the price at which trades take place.

Theorists have assumed specific forms for the common prior (e. g., a normal prior distribution for the value

of an asset) and for the private signals that traders observe (e. g., the signal equals the value of the asset plus

normal white noise).  Moreover, they have assumed that all of this structure is common knowledge.  The

present analysis of all-or-nothing prediction markets maintains none of these assumptions; hence, it is no

surprise that efficient markets do not emerge here.

Application of equations (1) and (2) to real prediction markets should be cautious, because these

results may not be robust to relaxation of the assumptions used to derive them.  Among the many ways to

relax the assumptions, here are two.  First, suppose that budgets and beliefs may be statistically dependent.

Then equation (3) shows that price depends on the conjunction of traders’ budgets and beliefs rather than on

their beliefs alone.  Equilibrium condition (1) does not hold as stated but does hold if one redefines J to be
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7 The expectations surveys which did draw some attention, such as the Livingston Panel and the
Survey of Professional Forecasters, only ask respondents for point predictions of future events rather than
for the subjective probabilities that they hold.  I have shown elsewhere that point predictions at most yield
a bound on the mean beliefs of respondents; indeed, this bound is related to equation (2).  See Manski (1990),
Section 3.3.

the population of dollars traded rather than the population of traders.  Then equation (2) gives a bound on

budget-weighted mean beliefs.

Now suppose that traders may be risk averse rather than maximizers of expected value.  Should a

risk-averse person invest in a prediction market, he will invest in contract m only if qm > Bm.  However, such

a person may choose not to invest his entire trading budget but rather an amount that depends on price and

on his beliefs and risk preferences.  Hence, price solves the equation

(9)  Bm  =  E[x(qm, y, r; Bm)*qm > Bm]@P(qm > Bm)/E[x(qm, y, r; Bm)],

where x(qm, y, r; Bm) is the amount that a person with beliefs qm, budget y, and risk preferences r invests at

price Bm.  Thus, price depends on the joint distribution of (beliefs, budgets, risk preferences).

If one wants to predict a future event, an alternative to study of prices in prediction markets is direct

measurement of the expectations of persons who may have informed beliefs about this event.  Until recently,

economists largely refrained from measurement of expectations.7  In the past decade, however, economists

have amassed considerable experience eliciting from survey respondents probabilistic expectations of diverse

events, from mortality (Hurd and McGarry, 1995) to job loss (Dominitz and Manski, 1997) to stock market

returns (Dominitz and Manski, 2004); Manski (2004) reviews this literature.  Whereas prediction markets

only provide data on persons who choose to trade, surveys enable measurement of the expectations of random

samples of populations of interest.  Whereas prediction markets at most provide information on the central

tendency of beliefs, measurement of subjective probabilities can reveal the dispersion of beliefs as well.  A

possible advantage of prediction markets relative to recent work eliciting expectations is that prediction
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markets provide monetary incentives for accuracy, whereas surveys of expectations have not done so.  To

address this concern, survey researchers could provide incentives through the use of proper scoring rules,

which reward respondents for accurate probabilistic prediction (e.g., Shuford, Albert, and Massengill, 1966;

Savage, 1971).
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