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s u m m a r y

A class of composite estimators of small area quantities that exploit spatial (distance-
related) similarity is derived. It is based on a distribution-free model for the areas, but the
estimators are aimed to have optimal design-based properties. Composition is applied also
to estimate some of the global parameters on which the small area estimators depend.
It is shown that the commonly adopted assumption of random effects is not necessary
for exploiting the similarity of the districts (borrowing strength across the districts). The
methods are applied in the estimation of the mean household sizes and the proportions of
single-member households in the counties (comarcas) of Catalonia. The simplest version of
the estimators is more efficient than the established alternatives, even though the extent
of spatial similarity is quite modest.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Small area estimation is concernedwith inferences about quantities associatedwith a partition of the studied population.
The population is usually a country or a region and the subpopulations its counties or districts. In most applications, the
quantities of interest (targets) are means or proportions of recorded variables or of their transformations, although within-
district totals, quantiles and extremes, as well as summaries of (latent) variables that are recorded subject to measurement
error or another kind of distortion may also be the targets of inference. The development presented in this article is for
within-district means and proportions; its extension to other quantities is outlined in Section 7.We focus first on the setting
of a single variable, and in Section 5 a multivariate shrinkage adaptation is described that exploits the auxiliary information
contained in other variables recorded in the same survey, similar variables recorded in other surveys or administrative
registers (censuses), or in variables defined directly for the districts.
Composite estimators for small areas are defined as convex combinations of direct (unbiased) and synthetic (biased)

estimators. A simple example is the composition µ̃d = (1− bd)µ̂d + bdµ̂ of the subsample mean µ̂d for the target district d
and the national samplemean µ̂ of the target variable. The (area-specific) coefficients bd and 1−bd in this composition are set
with an intent tominimise itsmean squared error (MSE). The coefficients forwhichminimumMSEwould be attaineddepend
on some unknown parameters, which have to be estimated. As a consequence, some efficiency is lost and composition may
even be counterproductive for some districts. Estimators based on empirical Bayes (EB) models have the same problem,
even when a valid model is applied.
The contribution to a composite estimator for district dmade by a district d′ 6= d depends solely on the sampling variance

var(θ̂d) of its direct estimator θ̂d , irrespective of the distance between districts d and d′. This article develops a class of
composite estimators,which address thisweakness bymaking the contribution of each district d′ to the estimator dependent
on both var(θ̂d′) and its distance from the target district. The estimators combine direct estimators associatedwith the target
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districts and the districts in given distances from the target. For alternative model-based solutions, see Temiyasathit et al.
(2009) and Kang et al. (2009). In contrast to these andmost other methods for small area estimation, we adhere to a design-
based perspective, because we wish to avoid any assumptions related to underlying distributions and the functional form
(linearity) of any associations. Further arguments that support this choice are presented in Section 2.1.
Section 2 introduces the setting, terminology and notation and discusses the design- and model-based perspectives.

Section 3 gives details of composite estimators for the setting with no auxiliary information. Section 4 develops some
refinements of the method by reusing the general idea of composition for estimating quantities that are intermediaries for
small area estimation: the national mean and the between-district variance. Section 5 incorporates auxiliary information in
themultivariate composite estimator, paralleling the extensions of Longford (1999, 2004). The simulation study in Section 6
compares the proposed composite estimators with their established counterparts. The estimators are for household
characteristics in the counties of Catalonia. The concluding section summarises the results and discusses our experience
with the proposed composite estimators.

1.1. Household size in the counties of Catalonia

Catalonia is an autonomous region of Spain (comunitat autonoma in Catalan),with a population of about 7million, in about
2.5 million households, and comprises 41 counties (comarques in Catalan). Barcelona, which forms the county of Barcelonès,
is by far the largest city in the region; it accounts for over 30% of the region’s population and an even greater share of
the region’s economic activity. The neighbours of Barcelonès are within the city’s urban sprawl and are also populous. In
contrast, several counties, especially in the north and west of the region are distinctly rural and sparsely populated.
The inferential targets, the mean household size and the proportion of single-member households in each county, are of

obvious interest to social scientists and the industries and services associated with residential housing. We use the results
of the 2001 Spanish Census for Catalonia as the population on which we replicate the processes of sampling and estimation
and empirically evaluate the MSEs of the estimators. Further background about the Census is given in Longford (2008).
In the simulations described in Section 6, we assess the gains made by assuming that counties in close proximity, and

neighbouring counties in particular, havemore similar summaries (profiles) of household sizes than counties located further
apart and relate them to methods that disregard any spatial aspects. As a special challenge, we study the estimation for
county Pla de l’Estany, which, according to the 2001 Census, has a substantially smaller average household size of 2.18 than
any other county including its neighbours, even though its average in 1996was 3.14, the highest in Catalonia.We have failed
to identify any source for this discrepancy, although different administrative procedures were in place during 2001 than at
earlier censuses.
The modal household size for most counties is two. The number of households with two, three and four members are

similar formost counties, and the number of five-member households is several times smaller. This suggests that no familiar
discrete distribution is suitable for modelling the household sizes.
Wewant to anticipate the precision of the small area estimators ofmean household size in the counties in a future region-

wide or national population survey, to inform the decision about the sampling design and to decide which estimators to
apply. This we do by turning the clock back to 2001, when the last Population Census was conducted in Spain, and treating
it as a sampling frame for simulated survey replicates. The distributions of household sizes in the counties are available
also for 1996. We use them as auxiliary information for the estimation for 2001, mimicking the setting of a future analysis
in which the direct information is from a recent population survey and the auxiliary information from a census conducted
about five years earlier.

2. The setting, notation and perspectives

Suppose a population (domain or country)P is partitioned into D small areas (subdomains or districts)Pd , d = 1, . . . ,D.
We are interested in a within-district summary θd of a variable Y for each district d. This summary is defined by a function
Θ that can be evaluated for any subpopulation of P . Thus, θd = Θ(Pd). A sample S from P has a partitioning compatible
with (P1 , . . . ,PD) into the within-district subsamples Sd = S ∩ Pd .
We assume that (unbiased) direct estimators θ̂d of θd , d = 1, . . . ,D, are defined so that they are connected by an estimator

function Θ̂ , such that θ̂d = Θ̂(Sd), and that Θ̂ can be evaluated on any subsample of S. In particular, we will evaluate
Θ̂ on various unions of Sd . Most of the results are derived for estimating the districts’ population means from a survey
with stratified simple random sampling, with strata coinciding with the districts. Such a design is referred to as SSRSd. The
population and sample sizes of the districts are denoted by Nd and nd , respectively. Their respective national counterparts
(totals) are N and n. The within-district sampling fractions fd = nd/Nd need not be identical. Denote vd = var(θ̂d) and
assume that these sampling variances are known; in Section 7, we explore the impact of the uncertainty about them on the
new composite estimators. For the samplemeans in SSRSd, vd = σ 2W,d/nd , where σ

2
W,d is the variance of Y in district d. When

σ 2W,d coincide, we denote their common value by σ
2
W. For a district with nd = 0 (no data), we set vd to a very large quantity.

The estimators we develop in Sections 3–5 do not depend on θ̂d when nd = 0, so the value of θ̂d is immaterial in that case.
All the expectations (and variances) introduced so far relate to replications of the sampling process. We consider also

expectations (averages) over the finite set of districts. For the collection (θ1 , . . . , θD), we define their (finite-population)
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mean and variance as

θ =
1
D
(θ1 + · · · + θD) , σ 20 =

1
D

D∑
d=1

(θd − θ)
2 ,

respectively. In general, θ differs from the national mean θĎ = (N1θ1 + · · · + NDθD)/N . To avoid any confusion, we indicate
the expectation with respect to sampling and districts by the respective subscripts S and D . Thus, vd = varS(θ̂d) and
σ 20 = varD(θd). For S, the index d stands for a particular district, whereas for D it indicates the variable with values
d = 1, . . . ,D. When applyingD-expectation, not only θd , but also nd and vd are treated as random variables.

2.1. Design- and model-based perspectives

We contrast two perspectives, (sampling-) design-based and model-based. In the former, there is a fixed (unchanging or
frozen) population, with set values of all attributes, including the target variable Y and the assignment to a district, for every
member of the population. At any given point of time, the populations and their divisions to districts considered in hypothet-
ical replications of the data collection process (a survey) are identical; the sampling process is the sole source of variation.
In the model-based perspective, a (linear) model is formulated for Y as outcome in terms of some covariates X and with

district-specific regressions:

yd = Xdβ + Zdδd + εd, (1)

where yd is the nd×1 vector of outcomes,Xd the regression designmatrix and Zd the district-level variation designmatrix for
district d = 1, . . . ,D,β the vector of regression coefficients, δ1 , . . . , δD a randomsample froma centredmultivariate normal
distribution, and the n = n1+· · ·+nD elements of εd are a random sample from a centred univariate normal distribution; δd
and εd aremutually independent; see Goldstein (2002) and Longford (1993) for further background. The adaptation of (1) to
generalised linear models involves a conditional distribution and a link function that connects the conditional expectation
E(yd | δd ;Xd , Zd) to the conditional linear predictor Xdβ + Zdδd ; see Pinheiro and Bates (2000) and Nelder et al. (2006).
In the model-based perspective, a random (fresh) set of districts is drawn in every replication, each with a fresh set of

subjects, but their values of Xd and the sample sizes nd are fixed. If a subject happened to appear in two replications he or
she might not be in the same district, is likely to have different values of the covariates, and the outcome will be subject to
a freshly drawn deviation ε. Such a scheme is neither natural nor tenable when we seek inferences about specific (labelled)
districts.
Assuming that the sampling design is well described and perfectly implemented, we regard the design-based perspective

as the correct one. The model-based perspective, even with a carefully selected model, is at best an analyst’s construct,
because the complex processes that generate the studied population could not be credibly incorporated in a statistical
model. However, in the past, design-based methods for estimating quantities associated with many subdomains (districts)
have proved to be inefficient because they fail to take advantage of the similarity of the districts. This void has been filled
by methods that enable borrowing strength across districts, as originally proposed by Efron and Morris (1972). Motivated
by James and Stein (1961), Fay and Herriot (1979) obtained the same effect by applying shrinkage. The methods improve
the estimation, especially for districts with very small sample sizes in the survey.
According to Longford (2007) the replication scheme, related to the status of the districts as fixed or random units,

is not ignorable. The standard errors of estimators, derived from the model in (1) are, in the design-based perspective,
approximately unbiased only for districts with deviations δd

.
= ±σ0 . A more subtle cause of nonignorability of the sampling

design, which cannot be corrected by the traditional approaches, such as weighting, was discovered by McCullagh (2008).
In the context of mixed logistic regression, he showed that the targets of inference in prediction differ when the values of
a covariate are passively observed on units and when the values are assigned to them. Admittedly, this difference does not
arise in the model in (1) with the normality assumptions, but it does in its adaptation to logistic regression, and also very
likely in other generalised linear mixed models.
Maximum likelihood (ML) estimators, on which the model-based methods rely, are efficient only asymptotically, yet

some aspects of small area estimation involve small effective samples. For example, if the value of each (univariate) deviation
δd in (1) for a country with D districts were known, their variance σ 20 = varD(δd) would have an estimator with a scaled
χ2 distribution with D− 1 degrees of freedom; that is, (D− 1)σ̂ 20 /σ

2
0 would have χ

2
D−1 distribution. With finite subsample

sizes nd there is less information about σ 20 , and an efficient estimator or σ
2
0 is associated with fewer degrees of freedom. The

estimators ofσ 20 applied in Section 6 to data from41Catalan counties,with total sample size n
.
= 11 600, have approximately

χ2 distributions with only 5–6 degrees of freedom. For a detailed discussion and approximations, see Longford (2000) and,
in a more general context, Potthoff et al. (1992).
We define the MSE of an estimator θ̂d for target θd as

MSE
(
θ̂d; θd

)
= ES

{(
θ̂d − θd

)2∣∣∣∣ θd} ; (2)

that is, we regard each θd as a fixed quantity, as it is in the design-based perspective, evenwhen it is a randomquantity in the
model. The conventional model-based estimators of the MSEs of small area estimators are biased. One source of bias is our
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failure to account for uncertainty about some of the (global) parameters involved in θ̂d ; see Rao (2003) for addressing this
problem. Another is the assumption of random effects, which from the design-based perspective is not valid. We illustrate
this problem on the following example.
Suppose districts 1 and 2 have identical sample sizes in a SSRSd, the districts have a common variance σ 2W , and the values

of the target variable Y on the subjects in the sample are the sole information that is available. The model-based estimators
of their population means θd , d = 1, 2, are

θ̃d =
(
1− b̂d

)
θ̂d + b̂d θ̂ , (3)

where b̂d = 1/(1+ nd ω̂). They have identical model-related MSEs, equal to

E
{(
θ̃d − θd

)2}
=

σ 20

1+ ndω
, (4)

ignoring the uncertainty about θ andω and, unlike in (2), not conditioning on θd . This expectation is over both sampling and
districts, with θd like a goalpost that is moved at every replication. Any (estimated) adjustment for the uncertainty about θ
and ω would be the same for both districts; see Prasad and Rao (1990). Suppose the mean for district 1 differs from θ to a
greater extent, say, θ1 = θ + 2σ0 , and for district 2 is close to it; θ2

.
= θ . Then varS(θ̃1) = varS(θ̃2); but the biases of θ̃1

and θ̃2 for their respective targets θ1 and θ2 differ, so MSE(θ̃1 ; θ1) > MSE(θ̃2 ; θ2). This contradicts the equality in (4). The
assumption of randomness of the districts is, therefore, not innocuous.
Most model-based estimators can be expressed as compositions of a direct and another (synthetic) estimator. This

motivates the direct construction of a general composite estimator (Longford, 2004, 2005, Chapters 8 and 11). A set of
alternative estimators θ̂ (h)d , h = 0, 1, . . . ,H , of the same target θd is considered, and their convex combination

θ̃d =

H∑
h=0

b(h)d θ̂
(h)
d (5)

is sought with the coefficients b(1)d , . . . , b
(H)
d and b(0)d = 1 − b

(1)
d − · · · − b

(H)
d , for which MSE(θ̃d ; θd) is minimised. The

estimator θ̂d = θ̂
(0)
d is assumed to be unbiased (or to have a known bias), to ensure that the estimation problem is well

posed. The estimators θ̂ (h)d are called constituent or basis estimators.
The estimator in (3) is a special case of θ̃d in (5), withH = 1. In (3), information fromoutside the target district d, mediated

in θ̂ through θ̂d′ , d′ 6= d, is used symmetrically. Even if the sampling variances of θ̂d′ , d′ 6= d, were identical, we would like
to give more weight to the estimators θ̂d′ for neighbouring districts than for more distant districts, to reflect a reasonable
assumption that similarity declines, or merely differs, with distance.

3. Spatial similarity

Spatial similarity is a familiar feature in a variety of contexts. Neighbouring districts tend to have similar attributes
and characteristics. In environmental studies, similarity of the neighbouring geographical units adds realism to the models
considered; see Elliott and Wakefield (2001), Congdon (2004), Pfeffermann and Tiller (2006). Validity of the distributional
assumptions (normality) in such models is often an obstacle to their principled application. We define a class of composite
estimators of θd, which involve no distributional assumptions and which assume a natural distance-related correlation
structure of the targets θd , d = 1, . . . ,D.
We assume that a distance, ξ(d, d′), is defined between any twodistricts d and d′. This function is symmetric, nonnegative,

and ξ(d, d′) = 0 only when d = d′. The triangular inequality is unimportant to what follows. We assume that, in addition
to zero, ξ attains only a small number H of distinct values. In our development, no generality is lost by assuming that these
values are the integers 1, 2, . . . ,H , but it is essential that for each h there be many pairs of districts (d1 , d2) for which
ξ(d1 , d2) = h. Then, H will have the same role as the upper limit in (5). We associate each possible distance h = 1, . . . ,H
with a nonnegative (district-level) covariance γh = covD{θd1 , θd2 | ξ(d1 , d2) = h}. The average squared deviation between
two districts that are in distance h is(

σ 2h =
)
ED

{(
θd1 − θd2

)2
| ξ(d1 , d2) = h

}
= 2

(
σ 20 − γh

)
,

where σ 20 = varD(θd) is the district-level variance. Let 0 = varD{(θ1 , . . . , θD)}; the elements of this D × D matrix are
Γd1,d2 = γξ(d1,d2) when d1 6= d2 and Γd,d = σ

2
0 otherwise. Note that H = 1 corresponds to compound symmetry (no spatial

similarity). Then 0 = (σ 20 − γ1)I+ γ111
>, where I is the identity matrix and 1 the vector of unities of length implied by the

context. It is easy to show that H = 1 implies that γ1
.
= 0.

For every district d, we define its h-ring as the subpopulation of all districts in distance h from it. In particular,P (0)
d = Pd .

The subpopulationsP (h)
d , h = 0, 1, . . . ,H , define a district-specific partitioning ofP to rings aroundPd . Denote by d

(h)
d the

set of districts that form P
(h)
d and by S

(h)
d the corresponding subsample. Further, let θ (h)d = Θ(P

(h)
d ) and θ̂ (h)d = Θ̂(S

(h)
d ),
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its direct (unbiased) estimator. For example, whenΘ is a (population) mean, then

θ
(h)
d =

1

N (h)d

∑
d′∈d(h)d

Nd′θd′ ,

where Nd and N
(h)
d are the respective population sizes of district d and its h-ring; n

(h)
d is defined as the sample counterpart

of N (h)d . Under SSRSd, the sampling variance of θ̂
(h)
d is

v
(h)
d =

1

N (h)d
2

∑
d′∈d(h)d

N2d′ vd′ .

When vd = σ 2W/nd and the sampling fractions fd = nd/Nd coincide, this reduces to v
(h)
d = σ

2
W/n

(h)
d .

For each district d, we consider the compositions of the direct estimators for its rings, (5), inwhich b(0)d +b
(1)
d +· · ·+b

(H)
d =

1. We study MSE(θ̃d ; θd) as a function of the vector bd = (b
(1)
d , . . . , b

(H)
d )>, and later consider arguments of θ̃d = θ̃d(bd) that

are estimates ofbd . Let1θ
(h)
d = θ

(h)
d −θd (Note that1θ

(0)
d = 0.). The estimators θ̂

(h)
d are independent andE(θ̂

(h)
d )−θ = 1θ

(h)
d .

Therefore, the MSE of θ̃d is

MSE
(
θ̃d ; θd

)
=

H∑
h=0

b(h)d
2 (
v
(h)
d +1

2θ
(h)
d

)
. (6)

The minimum of this function of bd is found by differentiation. We obtain the conditions b
(h)
d = b

(0)
d u

(h)
d , h = 1, . . . ,H ,

where u(h)d = vd/(v
(h)
d +1

2θ
(h)
d ). Of course, u

(0)
d = 1. There is a unique solution b

∗

d , and its components are

b(h)d
∗

=
u(h)d
u(+)d

, (7)

where u(+)d = 1+ u
(1)
d + · · · + u

(H)
d . When nd = 0 and nd′ > 0 for all d

′
6= d, u(h)d � 1 for all h > 0, and so b

(h)
d
∗ .
= 0. Then,

θ̃d in effect does not depend on θ̂d .
We refer to θ̃d(b∗d) as the ideal estimators. In practice, the coefficients b

(h)
d have to be estimated. Obviously, for any

estimator b̂
∗

d of b
∗

d , θ̃d(b̂
∗

d) is less efficient than its ideal version θ̃d(b
∗

d). If the squared deviations1
2θ
(h)
d were known, θd could

be estimated in the class of convex combinations (5)more efficiently thanby anyof the basis estimators θ̂ (h)d ,h = 0, 1, . . . ,H .
This is so, because each θ̂ (h)d is itself a (trivial) convex combination with bd equal to 0 (for h = 0) or to an indicator vector, a
vector comprising H − 1 zeros and one unity, whilst all the components of b∗d are positive.
When H = 1 and no distance is defined for the districts, the optimal coefficients for the composition of θ̂d with

θ̂
(1)
d = θ̂−d , the direct estimator for the complement of district d, are b

(0)
d
∗

= 1/[1 + vd/{v
(1)
d + (θ

(1)
d − θd)

2
}] and

b(1)d
∗

= 1 − b(0)d
∗

. The resulting estimator, (1 − b(1)d
∗

)θ̂d + b
(1)
d
∗

θ̂ , is similar, but not identical to the composition of θ̂d
and θ̂ with bd = (vd − v)/{vd − v + (θd − θ)2} or bd = vd/(vd + σ 20 ), see (3), because the districts are accorded weights
proportional to the population size in θ̂−d and equal weights in θ̂ .
As an alternative, a model, usually referring to a superpopulation of districts, is adopted and its district-level variance is

estimated. Because of the uncertainty about (θd − θ)2, or about σ 20 , the estimator θ̃d(b̂d), or θ̃d(b̂d), is not optimal in either
perspective (a finite set of districts or a superpopulation) and may even be less efficient than one of the basis estimators.
However, the losses in efficiency for a few districts are usually far outweighed by the gains for many, and there are various
adaptations to make the estimation more conservative, to avoid substantial losses for any of the districts. These adaptations
underestimate bd (or every element of bd) and may err on the side of assigning more weight to the direct estimator.
To estimate the squared deviations12θ (h)d , we adopt a similar approach as in the settingH = 1. For district d and distance

h, we estimate 12θ (h)d from the average of the squared distances (θ̂d1 − θ̂d2)
2 for the subset of all pairs (d1 , d2) that are in

distance h. We evaluate the district-level expectation

U (h)d = ED

(
12θ

(h)
d

)
=

1

N (h)d
2 ED



∑
d′∈d(h)d

Nd′ (θd′ − θd)


2

in terms of the variance σ 20 and the covariances γh′ , h
′
= 1, . . . ,H . In Appendix A, we derive the expression

U (h)d = r(h)d
>

0
(h)
d r(h)d + σ

2
0 − 2γh, (8)

where r(h)d is the vector of all the fractions Nd′/N
(h)
d for districts d

′
∈ d(h)d , and 0

(h)
d is the corresponding submatrix of 0.
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The district-level variance σ 20 can be estimated from the statistic S0 =
∑D
d=1

(
θ̂d − θ̂

)2
by moment matching. We have

the identity

ES(S0) =
D∑
d=1

{(
1− 2

qd
q+

)
vd + v

}
+

D∑
d=1

(θd − θ)
2 ,

where qd are the coefficients in the estimator θ̂ = (q1θ̂1+· · ·+qDθD)/q+ , and q+ is their total. Hence, themoment-matching
estimator

σ̂ 20 =
S0
D
−
1
D

D∑
d=1

(
1− 2

qd
q+

)
vd − v . (9)

Although unbiased when all the variances vd are exact or are estimated without bias, σ̂ 20 is inefficient when vd are in a wide
range and is especially problematic when some districts are not represented in the sample. An improvement is derived in
the next section.
The covariance γh is estimated from the squared differences between pairs of districts in distance h. Let m

(h)
d be the

number of districts in the h-ring of district d andm(h)+ = m
(h)
1 + · · · +m

(h)
D . Then

σ̂ 2h =
1

m(h)+


D∑
d=1

∑
d′∈d(h)d

(
θ̂d − θ̂d′

)2
− 2

D∑
d=1

m(h)d vd

 (10)

is an unbiased estimator of the variance σ 2h = 2(σ
2
0 − γh) of the deviations between pairs of districts that are in distance

h. Hence, γ̂h = σ̂ 20 −
1
2 σ̂
2
h is an unbiased estimator of γh . It may attain negative values and so its version truncated at zero

should be used, even if the resulting estimator is biased.When γh > 0 and the ‘sample’ sizem
(h)
+ is large, the probability that

γ̂h < 0 is small. That is the rationale for defining the distance coarsely, with a small number of frequently occurring values.
Estimation of θd now proceeds by evaluating û

(h)
d , h = 1, . . . ,H , with (θd − θ)

2 replaced by its estimated district-level
expectation based on (8), scaling û(h)d according to (7), and using the resulting vector of coefficients b̂

∗

d in place of bd in (5).

4. Some refinements

This section explores improvements in estimating the parameters θ and σ 20 , which are intermediate quantities in
estimating the targets θd. For both parameters, we reuse the general idea of composition and combine an unbiased and
a small-variance estimator.
Although the uncertainty about θ is taken into account in our derivations, its more efficient estimation is bound to be

useful, especially for estimating σ 20 . There are two obvious candidates for estimating θ = ED(θd): θ̂ (A) = (θ1 + · · · + θ̂D)/D
and θ̂ (B) = (w1θ̂1+ · · ·+wDθ̂D)/w+, wherewd = 1/vd is the precision of θ̂d andw+ = w1+ · · ·+wD. When every district
is represented in the sample and all vd are finite, θ̂ (A) is unbiased, but a district with a large sampling variance vd makes a
large contribution to the variance

V (A) = var
(
θ̂ (A)

)
=
1
D2

D∑
d=1

vd.

When a district is not represented in the survey, θ̂ (A) is either not defined, or its formally defined version has a very large
(or infinite) variance. In contrast, the influence of districts with large vd in V (B) = var(θ̂ (B)) is reduced, but θ̂ (B) is biased. We
have

MSE
(
θ̂ (B); θ

)
=
1
w2+

D∑
d=1

w2dvd +

{
1
w+

D∑
d=1

wd (θd − θ)

}2

=
1
w+
+

{
D
w+
covD (wd, θd)

}2
= V (B) + B2.

To evaluate the MSEs of the compositions θ̃ = (1− c)θ̂ (A) + cθ̂ (B), we require the identity

cov
(
θ̂ (A), θ̂ (B)

)
=

1
Dw+

D∑
d=1

wd vd =
1
w+
= V (B),

assuming that the estimators θ̂d are pairwise independent. The MSE of θ̃ = θ̃ (c) is

MSE
{
θ̃ (c); θd

}
= (1− c)2V (A) + 2c(1− c)V (B) + c2

(
V (B) + B2

)
,
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and this quadratic function of c attains its minimum for

c∗ =
V (A) − V (B)

V (A) − V (B) + B2
. (11)

The numerator can be expressed as

V (A) − V (B) =
1
D

{
ED(vd)−

1
ED(wd)

}
.

Its D-multiple is the difference of the arithmetic and the harmonic means of the (positive) variances vd , so it is nonnegative,
and equal to zero only when all vd coincide. In that case, θ̂ (A) = θ̂ (B) and the value of c is immaterial. Therefore c∗ ∈ [0, 1],
and c∗ = 0 only when v1 = · · · = vD . Further, c∗ = 1 only when the bias B vanishes, that is, when corD(wd , θd) = 0. In
practice, the bias B of θ̂ (B) is not known, and its estimation has to be based on the estimates θ̂d ; θ̂ (B) − θ̂ (A) is an unbiased
estimator of B. An alternative approach based on an upper bound for B2 as prior information is explored in Longford (2008).
Composition can be applied also to the estimation of the district-level variance σ 20 . Unlike for estimating θ , we require

that the district-level distribution of θd be symmetric. We consider two candidate statistics from which we derive basis
estimators of σ 20 by moment matching:

SA =
D∑
d=1

(
θ̂d − θ̃

)2
, SB =

D∑
d=1

nd
(
θ̂d − θ̃

)2
.

Let Cd = covS
(
θ̂d , θ̂

)
and Bθ = ES

(
θ̃
)
− θ . The two estimators of σ 20 are obtained from expressions for ES(SA) and ES(SB):

σ̂ 2A =
SA
D
− B̂2θ −

1
D

D∑
d=1

(v̂d − 2Ĉd)
.
=
SA
D
−
1
D

D∑
d=1

v̂d,

σ̂ 2B =
SB
n
− B̂2θ + 2B̂θ

(
θ̂Ď − θ̂

)
−
1
n

D∑
d=1

nd (v̂d − 2Ĉd)

=
SB
n
+ B̂2θ c(2− c)−

1
n

D∑
d=1

nd (v̂d − 2Ĉd),

after substituting B̂θ = c(θ̂Ď− θ̂ ) and, in the first line, omitting B2θ , C1+· · ·+CD and v, which are of lower order ofmagnitude
than SA/D and v1 + · · · + vD . When vd = σ 2W/nd and θ̂ =

∑
d nd θ̂d , some simplification takes place, as Cd = σ

2
W/n, and so

the last summation reduces to (D− 2)σ 2W . The bias of σ̂
2
B is

Bσ 2B =
1
n

D∑
d=1

nd12θd −
1
D

D∑
d=1

12θd = covD
(nd
n
,12θd

)
.

Instead of selecting σ̂ 2A or σ̂
2
B , we combine these two estimators. To avoid some complexity, we ignore the uncertainty

about B2, v, vd and Cd , which is insubstantial in relation to the uncertainty about12θd . Both estimators have the form σ̂ 20 =

ψ̂
>

Gψ̂−e for ψ̂ = (θ̂1 , . . . , θ̂D)>, a symmetricmatrixG and a constant e. For σ̂ 2A ,GA = D
−1(I−1q>)(I−q1>) and for σ̂ 2B ,GB =

(I−1q>)R(I−q1>), where R is the diagonal matrix with the vector r = (n1/N1 , . . . , nD/ND)> on its diagonal; R = diag(r).
In Appendix B, assuming symmetry of the sampling distribution of each θ̂d , the following expression is derived:

var
(
ψ̂
>

Gψ̂
)
=

D∑
d=1

G2dd(κd − 3)v
2
d + 2v

>G2v+ 4ψ>GVGψ,

where v is the vector of the variances vd , V = diag(v), ψ = (θ1 , . . . θD)> and κd the kurtosis of the sampling distribution
of θ̂d . A similar expression is derived for cov(ψ̂

>

GAψ̂, ψ̂
>

GBψ̂). They yield the following ideal coefficient of σ̂ 2B in the
composition of σ̃ 2 = (1− c∗)σ̂ 2A + c

∗σ̂ 2B :

c∗ =
var

(
ψ̂
>

GAψ̂
)
− cov

(
ψ̂
>

GAψ̂, ψ̂
>

GBψ̂
)

var
{
ψ̂
>

(GA − GB) ψ̂
}
+ B2

σ 2B

=
cnu
cde
,

where

cnu =
D∑
d=1

(κd − 3)GA,dd
(
GA,dd − GB,dd

)
v2d + 2v

>GA (GA − GB) v+ 4ψ>GAV (GA − GB)ψ

cde =
D∑
d=1

(κd − 3)
(
GA,dd − GB,dd

)2
v2d + 2v

> (GA − GB)2 v+ 4ψ> (GA − GB)V (GA − GB)ψ + B2σ 2B
. (12)
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For normally distributed θ̂d , κd = 3, so the summations in cnu and cde both vanish. By underestimating the ratio c∗, we
tend to err on the side of the unbiased estimator of σ̂ 2A of σ

2
0 . This is preferable to overestimating c

∗, which exposes us,
in principle, to the risk of unlimited squared bias B2

σ 2B
. The terms involving ψ in (12) are estimated elementwise naively,

using the composite estimator ofψ. An alternative is to replaceψψ> by itsD-expectation matrix implied by the parameter
estimates σ̂ 20 , γ̂1 , . . . , γ̂D . Composition can also be applied to estimate vd and1

2θ
(h)
d ; see Longford (2008) for details.

4.1. MSE estimation

Estimation of MSE(θ̃ (h)d ; θd) is complicated because of its dependence on the squared deviations1
2θ
(h)
d , which are poorly

estimated when the variances vd and v
(h)
d are large. The MSE of the ideal composition can be estimated by substituting the

estimates of the coefficients (7) in (6). This yields an (approximately) unbiased estimator of the ideal MSE, and therefore an
underestimate of the MSE of θ̃d(b̂d) for a district with | δd | = σ0 . The estimator is always positive.
In the design-based perspective, this is the same approach as for estimating the MSE of an EB estimator, and the two

types of estimators have the same deficiency of substituting σ̂ 20 for 1̂
2θ
(h)
d . In the simulations in Section 6, the extent of

underestimation is much smaller than the bias due to | δd | 6= σ0 . Instead of the estimate 1̂2θ
(h)
d , we can substitute some

plausible values of12θ (h)d to obtain a range of plausible values of the MSE.
As we estimate D quantities, one per district, comparing two sets of estimators entails summarising D pairwise

comparisons of MSEs, say, m(A)d = MSE(θ̃
(A)
d ; θd) and m

(B)
d = MSE(θ̃

(B)
d ; θd), d = 1, . . . ,D. In Section 6, we evaluate three

summaries for this purpose: the geometric mean of the root-MSE ratios,

r (AB) = exp

{
1
2D

D∑
d=1

log

(
m(A)d
m(B)d

)}
,

the arithmetic mean of the root-MSE differences,

f (AB) =
1
D

D∑
d=1

(√
m(A)d −

√
m(B)d

)
,

and the number of districts for which m(A)d < m(B)d , denoted by #
(AB). The first two indices compare the average efficiency

of one set of estimators (A) to another (B), and #(AB) indicates how uniformly superior one set is to another. The summary
f (AB) is strongly influenced by the largest MSEs (smallest districts), for which a relatively small difference (say, in percentage
terms) converts to a substantial difference on the linear scale of the root-MSEs. This influence is much less pronounced
in r (AB); that is the rationale for comparing the root-MSEs on the multiplicative scale. The standard deviation s(AB) =√
varD

(√
m(A)d −

√
m(B)d

)
, in conjunction with f (AB), is an alternative to #(AB).

5. Multivariate composition

Suppose auxiliary information is available in the form of vectors of district-level summaries xd , d = 1, . . . ,D, and their
national version x. The components of xd and x may be direct estimators of the means or proportions of variables other
than the target variable Y , obtained from the same or one or several other surveys. The components of xd and x may also
be population quantities obtained from censuses or administrative registers, or may be defined for the districts directly.
There are obvious advantages if these variables are closely related to and highly correlated with Y . We require that these
quantities, regarded as functions of subsamples, be well defined for every non-empty ringP

(h)
d , for which they are denoted

by x(h)d .
Let θ̂d =

(
θ̂d
xd

)
, θ̂ =

(
θ̂
x

)
, θd = ES(θ̂d), θ = ES(θ̂), Vd = varS(θ̂d) and V = varS(θ̂). We assume that the variance matrices

Vd and V are finite. We are concerned with estimating θd = θ>d e, where e = (1, 0, . . . , 0)
> is the indicator of θd , the first

component of θd . The derivations that follow apply for any vector e.
We define the ideal estimator of θd as the (multivariate) composition

θ̃d =

H∑
h=0

b(h)d
>

θ̂
(h)
d , (13)

with the vectorsb(h)d , h = 0, . . . ,H , forwhichMSE(θ̃d ; θd) isminimised, subject to the constraint thatb
(0)
d +b

(1)
d +· · ·+b

(H)
d =

e. The optimal vectors of coefficients b(h)d are found by differentiating the MSE

MSE
(
θ̃d ; θd

)
=

H∑
h=0

b(h)d
>
(
V(h)d +1θ

(h)
d 1θ

(h)
d
>
)
b(h)d ,
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Table 1
Comparisons of the sets of small area estimators. Quantities r (AB) and [#(AB)] below and f (AB) and (s(AB)) above the diagonal. The quantities are defined in
Section 4.1.

Direct U-Comp-1 U-Comp-2 U-Comp-3 B-Comp-1 B-Comp-2

Direct 0.0804 0.0904 0.0881 0.0965 0.1028
(0.0996) (0.1111) (0.1130) (0.1256) (0.1280)

U-Comp-1 0.634 [39] 0.0101 0.0077 0.0162 0.0224
(0.0219) (0.0308) (0.0377) (0.0521)

U-Comp-2 0.546 [35] 0.861 [29] −0.0023 0.0061 0.0123
(0.0123) (0.0339) (0.0438)

U-Comp-3 0.539 [34] 0.851 [27] 0.988 [18] 0.0084 0.0146
(0.0386) (0.0450)

B-Comp-1 0.533 [39] 0.841 [37] 0.977 [22] 0.989 [22] 0.0000
(0.0243)

B-Comp-2 0.466 [39] 0.735 [37] 0.853 [31] 0.864 [28] 0.874 [35]

where1θ(h)d = θ
(h)
d − θd . We obtain the conditions

b(h)d =
(
V(h)d +1θ

(h)
d 1θ

(h)
d
>
)−1

Vdb
(0)
d

and the unique solution

b(h)d
∗

=

{
I+

H∑
h′=1

(
V(h
′)
d +1θ

(h′)
d 1θ

(h′)
d

>
)−1

Vd

}−1 (
V(h)d +1θ

(h)
d 1θ

(h)
d
>
)−1

Vde,

if each matrix inverse exists. A sufficient condition for these inverses to exist is that each V(h)d is non-singular. A special case
of b(h)d

∗

, when there is no auxiliary information, is the univariate solution given by (7).

The vectors b(h)d
∗

have to be estimated. This entails estimating the matrix 1θ(h)d 1θ
(h)
d
>

by moment matching or by its
estimated D-expectation, which in turn is a function of the variance matrices 60 and Υ (h), h = 1, . . . ,H , the respective
multivariate counterparts of the district-level variance σ 20 and covariances γh .
The variancematricesVd = ES(θ̂d) andV = ES(θ̂) can be estimatedwithout bias by themultivariate version of the Yates-

Grundy estimator, see Särndal et al. (1992). The estimators can be pooled when multivariate homoscedasticity is assumed.
Thematrices60 andΥ (h) are estimated elementwise. Their diagonal elements are estimated by the samemoment-matching
method as in the univariate composition. For the off-diagonal elements, the method is adapted by matching the moments
of a (weighted) sample covariance matrix.

6. Empirical evaluation

Weconsider a surveywith SSRSd and the same sampling fraction of 1/200 of households in every county of Catalonia. The
targets are the within-county average household sizes. The within-county subsample sizes have binomial distributions, so
that the sample sizes for the two least populous counties are zero or onewith non-trivial probabilities. The direct estimators
are sufficiently precise for any conceivable purpose for a few most populous counties, but they are of next to no value for
the least populous counties. The simulation of the sampling and estimation processes is conducted with 500 replications.
In bivariate composite estimation, we use the population data from 1996 as the auxiliary information. It is without any

sampling variation, but we nevertheless associate each county-level mean for 1996 with a token variance of 0.0001, to
represent the presumed imperfection of the data. The county-level average household sizes have dropped from 1996 to
2001 by 0.10–0.34, except for Pla de l’Estany, for which the drop was by 0.96.
The comparisons of the sets of estimators are summarised in Table 1. The rows and columns of the table correspond to

the sets; the cells under the diagonal contain the geometric mean of the root-MSE ratios, r (AB), for row A and column B,
with the number of counties for which A is more efficient than B, #(AB), in brackets. The cells above the diagonal contain
the arithmetic mean f (AB) and, in parentheses, the standard deviation s(AB) of the differences of root-MSEs. The notation
is explained below and the definitions of the estimators are listed in Table 4 in the Appendix. Using H = 2 corresponds
to distinguishing between neighbours (distance 1) and non-neighbours, and H = 3 to classifying the non-neighbours as
neighbours’ neighbours (distance 2) and more distant counties.
The geometric means of the ratios, r (AB), are compatible with the ordering of the estimators from the top (Direct) to the

bottom row (B-Comp-2) of the table. Thus, the univariate composition without distance similarity (U-Comp-1) is on average
more efficient than the direct estimation by 100 × (1 − 0.634) = 36.6%. The univariate composition with the distance
truncated at H = 2 (U-Comp-2) is 13.9% on average more efficient than the estimation with U-Comp-1, and the univariate
composition with the distance truncated at H = 3 (U-Comp-3) is only slightly more efficient on average than U-Comp-2.
The bivariate composition without distance similarity (B-Comp-1) is only slightly more efficient than U-Comp-3, but the
composition with the distance truncated at H = 2 (B-Comp-2) is more efficient on average than B-Comp-1 by 12.6%.

Please cite this article in press as: Longford, N.T., Small area estimation with spatial similarity. Computational Statistics and Data Analysis (2009),
doi:10.1016/j.csda.2009.09.005



ARTICLE  IN  PRESS
10 N.T. Longford / Computational Statistics and Data Analysis ( ) –

Table 2
Comparisons of the sets of small area estimators for Catalonia without county Pla de l’Estany. The same layout is used as in Table 1.

Direct U-Comp-1 U-Comp-2 U-Comp-3 B-Comp-1 B-Comp-2

Direct 0.0874 0.0980 0.0956 0.1195 0.1135
(0.0940) (0.1017) (0.1020) (0.1142) (0.1131)

U-Comp-1 0.603 [39] 0.0106 0.0082 0.0321 0.0262
(0.0156) (0.0223) (0.0331) (0.0420)

U-Comp-2 0.523 [35] 0.867 [28] −0.0024 0.0214 0.0155
(0.0117) (0.0369) (0.0466)

U-Comp-3 0.521 [34] 0.864 [25] 0.997 [17] 0.0239 0.0180
(0.0417) (0.0513)

B-Comp-1 0.432 [39] 0.716 [37] 0.826 [27] 0.828 [25] −0.0059
(0.0260)

B-Comp-2 0.451 [36] 0.747 [34] 0.862 [27] 0.864 [24] 1.043 [17]

The ordering of average efficiency implied by the summaries f (AB) differs from the ordering implied by r (AB) only by the
elementary swap of the setsU-Comp-2 andU-Comp-3. The average reduction of root-MSEs forU-Comp-2 overDirect (0.0904)
is greater than for U-Comp-3 over Direct (0.0881). The arithmetic means of the root-MSE reductions require a reference to
the scale of the outcome variable, whereas the geometric means r (AB) are on an absolute scale; 0.466 for the comparison of
B-Comp-2withDirect corresponds to 53.4% average reduction of root-MSE and 100×(1−0.4662) = 78.3% reduction ofMSE.
In univariate composition, truncating the distances at H = 3, using U-Comp-3, yields an average root-MSE reduction of

only 1.2% over U-Comp-2, and less truncation, setting H > 3, is counterproductive, as assessed by both r (AB) and f (AB). An
improvement from H = 2 to H = 3 is recorded for only 18 counties. In bivariate composition, truncating the distances at
H > 2 is counterproductive; the only spatial feature worth incorporating is whether two counties are neighbours or not.
The values of the parameters σ 20 and γh , obtained with precision from the census data, provide a partial explanation

for the performance of the composite estimators. We have σ 20 = 0.0244. When H > 1, γ1 = 0.0109, when H > 2,
γ2 = 0.004 58, and when H > 3, γ3 = 0.002 01, so that the covariances decline about 2.3 times per unit distance. However,
γ4 and γ5 are negative when H > 5. The values of γh do not depend on the truncation applied, as long as H > h. When
H = 1, γ1 = 0; otherwise γH < 0 for H > 1.

6.1. Pla de l’Estany and other extreme counties

The univariate composite estimators (U-Comp-h, h = 1, 2, 3) are more efficient than the direct estimators for
most counties (34–39), and the bivariate composite estimators (B-Comp-1 and B-Comp-2) are more efficient than the
corresponding univariate estimators (U-Comp-1 and U-Comp-2) for 37 and 31 counties (out of 41), respectively. In all these
comparisons, the estimator for Pla de l’Estany is in the minority. For example, only two counties have the root-MSEs for
U-Comp-1 greater than for Direct, Pla de l’Estany by 63% and Vallès Occidental by only 1%. Composite estimation for Pla de
l’Estany is unsuccessful because the county is a distinct outlier, and using any auxiliary information in the estimation for it
is, in effect, misleading.
Even setting aside Pla de l’Estany, the root-MSE reductions of one set of estimators over another are not closely related to

the average sample size. As an extremeexample, the root-MSE forU-Comp-1 is five times smaller than for thedirect estimator
for Val d’Aran, the county in the northwest corner of the region. The corresponding reduction for Alta Ribagorça, the least
populous county, is ‘only’ 3.45-fold. Composite estimation for Val d’Aran is so effective, because its deviation θd−θ = 0.03 is
very small. Models for spatial similarity, using H > 1, are not useful for Val d’Aran, because it has only two neighbours, both
of them sparsely populated and with very different means θd . Montsià, the southernmost county, has only one neighbour,
Ribera d’Ebre. The two counties happen to have very similar population means of household sizes (2.80 and 2.82), so the
composition for Montsià with H ≥ 2 is useful.
The results are negatively affected by Pla de l’Estany, because the county is so exceptional. Table 2 summarises the

estimators applied to the 40 counties, excluding Pla de l’Estany. It shows greater average gains by the composite estimators
over the direct estimators. They are greatest for B-Comp-1 (r (AB) = 0.533 vs. 0.432 without Pla de l’Estany). Care has to be
exercised when comparing the entries in Tables 1 and 2 because all the entries are by themselves comparisons. The impact
of excluding Pla de l’Estany can be described more compactly by comparing the summaries for the other 40 counties in the
two analyses, one with data from Pla de l’Estany used as auxiliary information and the other without. The root-MSEs are
reduced for a majority of the counties, and so are the summaries r (AB) and f (AB), by between 4% (for U-Comp-3) and 25%
(B-Comp-1). The reductions are smaller with the models for spatial similarity.

6.2. MSE estimation

The root-MSEs of the six sets of estimators are compared for the individual counties in the pairwise plot in Fig. 1. Each
off-diagonal panel has the same scale, with the counties in the ascending order of their population sizes on the horizontal
axis and the root-MSEs for each set of estimators on the vertical axis. Further details are given in the figure caption. The
reductions of the MSE from direct to univariate composite estimators are substantial for the less populous counties and are
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Fig. 1. The empirical root-MSEs of the small area estimators of the mean household sizes in the counties of Catalonia. Each vertical line connects the root-
MSEs of estimator A (row)with the estimator B (column) for a county. The root-MSEs for A aremarked by filled circles. The counties on each horizontal axis
are in the ascending order of population size, with gaps and ticks placed at the top and bottom of each panel at population sizes 4000, 10000, 44000 and
100000. The diagonal panels list themeans and standard deviations of the root-MSEs and plot the root-MSEs at their left-handmargins, spread horizontally
at random to avoid extreme overprinting.

more modest from univariate to bivariate composite estimators. There are a few reversals, but the poor performance of all
the composite estimators for Pla de l’Estany stands out.
From a single sample, theMSEs of the composite estimators θ̃d(b̂

∗

d) can be estimated naively, asminima of theMSEs of the
corresponding ideal estimators θ(b∗d), with the squared deviations (θd− θ)

2 or (θd− θ
(h)
d )

2 replaced by σ̂ 2B . Composition can
be applied also to estimate these MSEs; see Longford (2007) for details. However, the application of this method is feasible
only for those estimators that ignore the distance.
Fig. 2 compares the empirical (simulation-based) and analytical (data-based) estimators of the root-MSEs of the

univariate composite estimators with the distance ignored and with distance used with a truncation at H = 2. The counties
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Fig. 2. The empirical and data-based estimators of the root-MSE of the univariate composite estimators. Filled circles indicate the size of the absolute
deviation | θd − θ |, and crosses the population size of the county. The values for counties Priorat and Vallès Oriental are marked by their respective
acronyms, PR and VR.

are represented in both panels by filled circles (•) with diameters linearly related to the absolute deviations | θd − θ | and
crosses (×) of size linearly related to the fourth root of the population sizes. In the left-hand panel, we have two sets of
data-based estimators; one estimates each12θd by σ̂ 20 (averaging), and the other estimates each1

2θd by composition. They
are connected by vertical segments and the filled circles are placed at the latter values. County Pla de l’Estany is omitted
from both panels; its root-MSEs are grossly underestimated.
The diagram shows that the estimators of the root-MSEs tend to be positively biased for counties with small absolute

deviations and negatively biased for counties with large absolute deviations. Estimation of the root-MSE is more precise for
more populous counties. Underestimation is substantial for several counties, which have small population sizes and large
absolute deviations.
Estimation of the root-MSEs entails much less bias when distance is ignored than when it is taken into account. When

the distance is ignored, replacing (θd − θ)2 with σ 20 entails no ‘error’ only when | θd − θ |
.
= σ0 . Two such counties, Priorat

(PR) and Vallès Oriental (VR), are marked in the diagram. When the distance is ignored, the root-MSEs are estimated with
only slight bias, whereas with H = 2 they are underestimated substantially. In bivariate composition and with H > 2,
the uncertainty is even more pronounced. When the distance is ignored, the root-MSEs are estimated with much greater
precision even in bivariate shrinkage. Without Pla de l’Estany, the estimators of the root-MSEs have much smaller biases.
Details are omitted.

6.3. Empirical Bayes estimation

Every set of composite estimators has its counterpart set of estimators based on the EB models in which the counties
are associated with random effects. Univariate composition corresponds to models with no covariates. The random effects
are independent when H = 1 (no spatial similarity), and otherwise have the covariance matrix 0 defined in Section 3;
they correspond to spatial EBLUP. With the normality assumptions, which admittedly are grossly violated, such models can
be fitted by an iterative (Newton–Raphson) algorithm that maximises the corresponding log-likelihood. Conditionally on
the regression and the within-county variance, they use the same sufficient statistics as their composition counterparts.
We fitted these models for the counterparts of the estimators V-Comp-h, V = U or B, and h = 1, 2, 3. The sets of these EB
estimators are for amajority of districts, aswell as on average, less efficient than their composition counterparts. The average
root-MSEs are greater by between 8% and 24%. For the most populous counties, the EB estimators are almost uniformly,
although only slightly, less efficient than the composite estimators. In contrast, EB estimators are more efficient for a few
sparsely populated counties, but these sets of counties differ from one model to the other.
The MSEs of the estimators are estimated from the conditional variances evaluated in the concluding iteration. They

display similar features as the MSEs estimated in the composite estimation: they are approximately unbiased for ‘typical’
counties, overestimate theMSEs for countieswithmeans close to thenationalmean andunderestimate them for the counties
with large deviations from the national mean.

6.4. The proportions of single households

The county-level percentages of single-member households are estimated by the same methods as the mean household
sizes. The dichotomous nature of the outcome variable entails no additional complexity to the analysis of continuous vari-
ables. We found that the root-MSE reductions are in general smaller than for estimating the mean household sizes, but are
nevertheless substantial. For bivariate composition, taking into account the distance truncated at H = 2 yields substan-
tial gains. With a truncation at H = 3, the root-MSE reductions largely cancel out, although the differences between the
root-MSEs for H = 2 and H = 3 are substantial for a few counties. The comparisons of the MSEs are summarised in Table 3.
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Table 3
Comparisons of the sets of small area estimators of the proportion of single-member households in the counties of Catalonia. The same layout is used as in
Table 1.

Direct U-Comp-1 U-Comp-2 U-Comp-3 B-Comp-1 B-Comp-2

Direct 0.0200 0.0228 0.0217 0.0243 0.0263
(0.0306) (0.0377) (0.0400) (0.0399) (0.0441)

U-Comp-1 0.684 [36] 0.0028 0.0017 0.0043 0.0063
(0.0119) (0.0151) (0.0118) (0.0179)

U-Comp-2 0.560 [35] 0.819 [29] −0.0011 0.0015 0.0035
(0.0044) (0.0118) (0.0116)

U-Comp-3 0.560 [35] 0.819 [29] 1.001 [19] 0.0026 0.0046
(0.0138) (0.0122)

B-Comp-1 0.590 [39] 0.863 [39] 1.054 [15] 1.053 [20] 0.0002
(0.0096)

B-Comp-2 0.493 [37] 0.722 [35] 0.882 [31] 0.881 [27] 0.837 [31]

7. Discussion

Composition in small area estimation can be broadly interpreted as a way of exploiting the similarity of the districts.
When similarity is related to the distances among the districts the composition can be based on the direct estimators for the
rings of the target district. Efficient inference about the extent and pattern of similarity is a key to its successful application.
In distinctly non-asymptotic settings, this calls for a parsimonious model for similarity, in which uncertainty about the
estimated parameters is more than offset by the improved description of similarity. This balancing act is as important as in
the EB estimation. In composite estimation we do not have to associate districts with random effects, nor these effects with
a distribution, which are essential elements of the EB analysis.
When distance is ignored, the composite estimators attain greater stability because direct estimators are combined only

with the estimator of the overall mean.When distances are used, the basis estimators for some rings have large variances (as
domany direct estimators θ̂d), so composite estimators are effective onlywhen this drawback is compensated by advantages
flowing from a well-specified distance function ξ for the districts.
The magnitudes of the MSEs can be anticipated with neither EB nor composite estimators, because they depend on the

targets θd . However, we can identify likely problems with the composition solely from the counties’ neighbours and their
population sizes (and other auxiliary information, such as a past census, when we intend to use it). The problems may be
addressed by altering the definition of the distance.
The replacement of the various squared deviations, such as (θd−θd′)2 and (θd−θ

(h)
d )

2, by their district-level expectations
is a source of imprecision (uncertainty) in the design-based perspective. Validity of the model helps us only to attain an
approximate balance of the errors due to such substitution. This issue is moot only when the similarity is perfect (e.g., when
σ 20 = 0 or γ1 = σ

2
0 ). The estimation ofmodel parameters introduces another layer of uncertainty, which affects this balance.

The composite estimators are nonlinear functions of these deviations, and so unbiased estimation of their district-level
expectations (averages) is of mainly illusory value.
The estimation of district-level counts and totals has to be based on the estimation of the respective proportions and

means, because the former are much less likely to be similar than the latter. The estimation of nonlinear summaries of
the target variable Y , such as percentiles and extremes, presents considerable challenges. These can be traced through the
steps in the estimation of the means and proportions: finding (approximately unbiased) direct estimators of the targets
and of their sampling variances; extending them to all the ringsP (h)

d ; evaluating the district-level expectations (averaging);
and estimating the coefficients in the composition for estimators θ̂ that are linear functions of θ̂d . Approximations (e.g., by
linearisation) may be necessary, weighing the choice of the model (the distance structure) toward parsimony. In designs
other than SSRSd, the direct estimators θ̂d are correlated. Estimating means and proportions directly remains tractable, but
all the expressions involving disjoint sets of districts, are more complex. In practice, these correlations are presumed to be
small and are often ignored.
Uncertainty about the variances of the direct estimators, vd , can be addressed together with the uncertainty about

the district-level variance σ 20 , because the MSEs of the composite estimators depend on the sums of their reciprocals,
1/vd + 1/σ 20 , or their matrix versions V

−1
d + 6

−1
0 . Inflation or overestimation of these scalar sums (or diagonals of the

matrices) injects stability. Erring on the side of positive bias in estimating vd or ω is, therefore, less harmful than erring by
the same amount in converse. Estimators of σ 20 are negatively associated with vd , so overestimation of vd is reflected by
underestimation of σ 20 . The impact of the uncertainty about vd (or ω) can be studied empirically by replacing its estimation
in the algorithmused in the replicationswith the (fixed) population quantity vd , and comparing the results of the two sets of
replications, before and after the replacement. We found that the uncertainty about vd has a much weaker impact than the
uncertainty about σ 20 . Various implementations of the bootstrap, Efron and Tibshirani (1993), are effective for data-based
estimation of the sampling variance of small area estimators, but they are even more difficult to adapt for the estimation of
the (design-based) bias.
The EB methods are the obvious alternative to the method presented in this article. For small area estimation, the main

source of bias in the MSE estimation is the model assumption of randomness of the districts, which is in conflict with the
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design-based perspective. The uncertainty about the variance and covariance parameters contributes to the bias much less,
although this contribution increases with model complexity. The distributional assumptions and the functional form of the
regression inML are an unnecessary burden for the analysis, more so that the target variables rarely have an easy-to-identify
distribution, except for the binary.
Setting the details of a composite estimator presents a problem analogous to the model selection in the EB and spatial

methods. Models can be compared by various information criteria, but no such framework is available for composite
estimators. However, the correspondence of sets of the EB and composite estimators can be exploited by selecting an EB
model, and using the corresponding composite estimators. In our simulations, model selection prefers the spatial structure
with H = 3 in more than 50% of replicates, but the more parsimonious neighbourhood structure (H = 2) yields more
efficient estimators on average, although only by a narrow margin and not uniformly for all the counties.
The summaries f (AB), r (AB) and #(AB) can be adapted to reflect the greater importance of gains in efficiency for the less

populous counties by associating them with unequal weights. At an extreme, we may focus on the counties up to a certain
population size and ignore the rest. Although the gains or losses for the most populous counties are modest with all the
methods (vis-à-vis direct estimation), some methods may be particularly effective for the least populous counties.

7.1. Conclusion

Themethod described and applied in this article combines design-based (direct) estimation and a distribution-freemodel
that relates the degree of similarity of the target quantities θd to the distances of the correspondingdistricts. The consequence
of thismodel is that the auxiliary information for a district is ‘packaged’ within the rings (sets of equidistant districts) around
the target district. Any reference to a model can be completely dispensed with; for inference about a particular district, we
regard the districts as more or less relevant depending on their distance from it.
Composition is a general principle, applicable whenever there are alternative estimators of a target. It requires no model

and does not rely on any asymptotics. The combination of the estimators is target-specific; the coefficients depend on
the (estimated) joint distribution of the basis estimators. Having to estimate the coefficients of the ideal composition is
a drawback of the composition, comparable to the uncertainty associated with the estimation of the model parameters and
with the validity of the model in an EB approach.
There are no constraints on how the distance is defined, although each value of the distance should occur for many pairs

of districts, so that the covariances γh are estimatedwith high precision andmost districts have several districts in their rings
for each distance. In our application, we found that the estimation of even a single covariance, γ1 , when we distinguish only
between neighbours and non-neighbours, introduces a lot of uncertainty in the estimation of the targets, and the estimation
of the MSE is degraded a lot in comparison with the estimators that ignore the distance. Parsimony issues apply equally to
the number of distinct distances H and to the choice of auxiliary variables to be used, as they do in model-based estimation.
In applications not reported here, we found that setting H = 2 is sufficient and defining the distance ξ = 1 for geographical
neighbours to be adequate.
Unlike ML, composite estimation involves no iterations, and so even more intensive simulations can be conducted with

it. All the computing described in this article was conducted in R, R Development Core Team (2007), and the code, in the
form of functions, can be obtained from the author on request.
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Appendix A. Derivation of the identity in (8)

We express θ (h)d in terms of the district-level quantities θd and expand the square:

ED

(
12θ

(h)
d

)
=

1

N (h)d
2

∑
d′∈d(h)d

N2d′ ED

{
(θd′ − θd)

2}
+

1

N (h)d
2

∑
d1

∑
d2

Nd1Nd2 ED

{(
θd1 − θd

) (
θd2 − θd

)}
, (14)

where the double summation is over the pairs of districts d1 6= d2 , both of which belong to d
(h)
d . Since ξ(d, d

′) = h for every
d′ ∈ d(h)d , the first summation is equal to∑

d′∈d(h)d

N2d′ ED

{
(θd′ − θd)

2}
= σ 2h

∑
d′∈d(h)d

N2d′ .

An expectation in the double summation in (14) is expressed in terms of the variances σ 2h and covariances γh as

ED

{
(θd1 − θ)(θd2 − θ)− (θd1 − θ)(θd − θ)− (θd2 − θ)(θd − θ)+ (θd − θ)

2}
= γξ(d1 ,d2) − 2γh + σ

2
0 .
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Table 4
Composite estimators. Definitions and notation.

Estimator Notation Description

Direct θ̂d Based on the data from district d only
Composite (general) θ̃d Convex combination of basis estimators
Univariate composite
– without spatial similarity θ̃

(1)
d U-Comp-1 — composition of the direct estimators of the target district θ̂d and of its

complement θ̂−d
– with neighbourhood similarity θ̃

(2)
d U-Comp-2 — composition of the direct estimators of the target district, its

neighbourhood (1-ring) and the remainder of the country (2-ring)
– with spatial similarity (general) θ̃

(H)
d U-Comp-H — composition of the direct estimators of the target district and of its

h-rings, 1 ≤ h ≤ H
Bivariate composite
– without spatial similarity θ̃

(1)
d B-Comp-1 — bivariate composition of the direct estimator and auxiliary information

for the target district, θ̂d , with vector θ̂−d for the complement

– with neighbourhood similarity θ̃
(2)
d B-Comp-2 — bivariate composition of the vector θ̂d with corresponding vector θ̂

(1)
d for

the neighbours (1-ring) and θ̂
(2)
d for the 2-ring of district d

– with spatial similarity (general) θ̃
(H)
d B-Comp-H — bivariate composition of the vector θ̂d with the vectors θ̂

(h)
d for the

h-rings of district d; 1 ≤ h ≤ H
Multiariate composite (general) Composition of θ̂d , containing multivariate auxiliary information, with its

counterpart vectors θ̂
(h)
d for the h-rings of district d

After completing the double summation in (14) by the ‘diagonal’ contributions that correspond to d1 = d2 , we obtain the
identity

ED

(
12θ

(h)
d

)
= M(h)

d σ 2h + r(h)d
>

0
(h)
d r(h)d −M

(h)
d σ 20 +

(
σ 20 − 2γh

) (
1−M(h)

d

)
= r(h)d

>

0
(h)
d r(h)d +M

(h)
d

(
σ 2h − 2σ

2
0 + 2γh

)
+ σ 20 − 2γh

= r(h)d
>

0
(h)
d r(h)d + σ

2
0 − 2γh,

whereM(h)
d = r(h)d

>

r(h)d , and 0
(h)
d and r

(h)
d are as defined in (8).

Appendix B. An expression for var(ψ̂
>

Gψ̂)

The derivation follows in outline the proof of Theorem 1.8 in Seber (1977), in which a similar statement is proved. We
assume that the direct estimators θ̂d are independent and that each has a symmetric sampling distribution.
Recall that ψ = (θ1 , . . . , θD)> and ψ̂ is the vector of the corresponding direct estimators, so that ES

(
ψ̂
)
= ψ. Further,

let q be the vector for which θ̂ = q>ψ̂. Both σ̂ 2A and σ̂
2
B have the form ψ̂

>

Gψ̂ − e, with G = (ID − 1q>)>U(ID − 1q>). For
σ̂ 2A , U = D

−1I, and for σ̂ 2B , U = diag(r), where r is the vector of sampling fractions nd/Nd . Let γ̂ = ψ̂ − ψ. Then

var
(
ψ̂
>

Gψ̂
)
= var

(
γ̂
>Gγ̂ + 2ψ>Gγ̂

)
= var

(
γ̂
>Gγ̂

)
+ 4ψ>GVGψ + 4cov

(
γ̂
>Gγ̂, γ̂

)
Gψ. (15)

The expansion of the covariance to terms cov(Gijγ̂iγ̂j , γ̂k) comprises the expectations of products of powers of γ̂d , at least
one of which has an odd exponent. Owing to the symmetry of the underlying distribution, each such term vanishes, and
therefore so does the covariance in (15).
Further, var(γ̂>Gγ̂) = E(γ̂>Gγ̂ γ̂>Gγ̂) − {tr(GV)}2. In the expansion of the expectation to a four-way summation, only

the terms that involve γ 4d and γ
2
d1
γ 2d2 are non-zero, and so

E
(
γ̂
>Gγ̂ γ̂>Gγ̂

)
=

D∑
d=1

G2dd E
(
γ̂ 4d
)
+

∑
d1

∑
d2

Gd1d1 Gd2d2 vd1 vd2 + 2
∑
d1

∑
d2

G2d1d2 vd1 vd2 ,

where each double summation is over the pairs of distinct districts (d1 6= d2). They correspond to the three kinds of pairwise
agreements among four subscripts. Adding to these summations the ‘diagonal’ terms, which correspond to d1 = d2 and are
equal to

∑
d G
2
dd v

2
d in each instance, yields the expression

E
(
γ̂
>Gγ̂ γ̂>Gγ̂

)
=

D∑
d=1

(κd − 3)G2dd v
4
d + {tr (GV)}

2
+ 2v>G2v,
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where v = (v1 , . . . vD)> is the diagonal of V. Therefore

var
(
ψ̂
>

Gψ̂
)
=

D∑
d=1

(κd − 3)Gdd v4d + 2v
>G2v+ 4ψ>GVGψ. (16)

The summation that involves the kurtoses vanishes when the estimators θ̂d are normally distributed. We also require the
identity

cov
(
ψ̂
>

GAψ̂, ψ̂
>

GBψ̂
)
=

D∑
d=1

(κd − 3)GA,ddGB,ddv4d + 2v
>GAGBv+ 4ψ>GAVGBψ.

It is derived directly by substituting (16) in the identity

cov (YA, YB) =
1
4
{var (YA + YB)− var (YA − YB)} ,

where YC = ψ̂
>

GC ψ̂ and C = A, B.
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