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Abstract:

In a previous article Ramsey and Rothman warned against incautious
use of the Grassberger-Procaccia procedure to estimate correlation
dimension with relatively small data sets and recommended an
improved procedure. In this paper we apply those techniques to a
series used by DeCoster and Mitchell who claimed that their
dimension calculations produced evidence of chaos. We show that
even with the enhanced procedures of Ramsey and Yuan, there is no
evidence for a simple attractor in these data. However, dimension
calculations do not provide evidence either for or against the
presence of nonlinear dynamical processes that are not restricted to
attracting sets,
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1. Introduction

Dimension is an important concept. Unfortunately, there seems to be some
lack of clear understanding about the concept, its uses, and the difficulties
in the empirical determination of its values. A recent article in the JBES,
DeCoster and Mitchell (1991), illustrates our contention.

The remainder of this article is in three sections. The first reviews
the concept and use of a commonly used measure of "dimension" and its
relationship to dynamics. The second summarizes the practical difficulties in
estimating the Procaccia and Grassberger (1983) concept, and recommends an
alternative method that mitigates some of the problems that stem from small
sample sizes. The last section re-estimates one of DeCoster and Mitchell’s
results and shows that the "finding of nonlinearity in Divisia M2" (see
DeCoster and Mitchell [1991, p. 460]) cannot be sustained by the procedures
cited. We hasten to add that our result in no way denies that nonlinearity of
some form may exist in measures of money, but that there is no evidence of an

attractor from the procedures used.

2. Concepts of Dimension and their Interpretation

The basic concepts involved in the application of dimension concepts to
dynamical systems can be briefly summarized. A dynamical system with p

degrees of freedom can be expressed in terms of a flow:

x(t) = £(x(t),t),



where x(t) is a p dimensional vector of first derivatives of the p dimensional
state vector state vector x(t) with solution orbit x(t) = §,(t), given initial

conditions x(0) = x,. Or the system can be expressed as a mapping:

Reyy = FX,, t)

that defines the evolution of the system from specified initial conditions X,
- %,

An attractor is an attracting set for the evolution of the flow &,(t) or
for the mapping F(+) in that once the state variables are contained in the
attracting set under the influence of the flow or mapping they will remain
there indefinitely. Attractors are the limit sets for the paths of asymptotic
steady state behavior.

As has been discussed in a wide variety of sources (see, for example,
Ramsey, Sayers, and Rothman [1990] and Casdagli, et. al. [1991]), the
topological and some metrical properties of attracting sets can be determined
from a sequence of time series observations on a single component of the p
dimensional vector x(t), or even of a homeomorphism of it, where a
homeomorphism is a one to one onto continuous mapping with continuous inverse.

One way to achieve this, but only one of several alternatives, is known
as "delay reconstruction". Delay reconstruction at a delay of r creates a k
dimensional vector from a single series {y(t)}, by defining the k dimensional

vector w(t):

(w(t)} = {y(t+r), y(t+27), ..., y(t+kr)}.

For a full discussion of the justification for and an evaluation of the

strengths and weaknesses of this approach, see Casdagli et. al. (1991).



Dimension is fundamentally a topological concept, although it can
usefully be formulated in either measure theoretic or metric terms. Ramsey,
Sayers, and Rothman (1990) contains a succinct review of some alternative
definitions of dimension as well as definitions of all other dynamical terms
used in this paper. The root importance of dimension in any of its various
forms is that it is a topological invariant, that is, it is invariant to
homeomorphisms. In some cases a stronger form of invariance, metric
invariance, is required.

In principle dimension can be determined without having to specify the
actual dynamical system that is involved, list all the relevant variables, or
even specify an appropriate coordinate system. Dimension concepts can
indicate:

(a) the amount of information needed to specify a point on an attractor,
if one exists;
(b) the lower bound on the number of essential variables that are needed
to model a dynamical system within an attractor;
(c) the relative density of points over an attractor.
For a discipline such as economics, these properties are extremely useful.

In the physics literature, much excitement was created in trying to
establish the "fractile nature of certain observed phenomena" so that the
estimation of fractional measures of dimension was important. In economics,
however, our demands can be far more modest in that it is very useful for us
to know if a variable is from a system of "low" dimension, or is from one that
has "high" dimension. The Fformer provides some hope that we can model the
system, the latter indicates that there is little hope in finding a

parsimonious description of the data besides specifying its probability



distribution. We do not need to know whether a data set has a dimension of
3.6: merely to know that the dimension is "about 4" is extremely useful.
Consequently, our demands on dimension calculation can be far less rigorous.

Attractors, or the attracting sets of dynamical systems, have the
topological property of "dimension", dynamical systems as such do not;
although the word "dimension" in this context is often used as a synonym for
degrees of freedom. Consequently, dimension is not a relevant concept for the
description of dynamical systems themselves. Not finding a low dimension for
some set of data does not imply that there is no underlying dynamical system,
merely that there is no low dimensional attracting set. Further, we should
recall that attractors by definition represent long term steady state
behavior, no matter how complicated the time path of the orbit might appear teo
be. Consequently, if the observed system is evolutionary, or if the system is
constantly being "kicked off" the attracting set, it is unlikely that evidence
of an attractor will be found.

An opposing problem is that even linear stationary stochastic processes
produce orbits that yield low dimension estimates. This statement is
illustrated in Figure 1, which shows the path of one realization of a
univariate Gaussian fourth order stationary autoregressive process. This
result is plausible in that a stationary autoregressive process is in fact a
simple dissipative dynamical system whose energy level is maintained by the

constant inflow of random shocks and this produces an attractor-like result.

3. Some Practical Difficulties in Estimating Correlation Dimension

The correlation integral measure developed by Grassberger and Procaccia

(1983) is based on counting the average number of delay reconstructed points



in k-dimensional points that are within an ¢ distance of each other. This
number Ci, where N is the sample size used, approaches under general

conditions a limit, €, as N » =« and ¢ » 0 such that:

where dc is the relevant dimension.

In any dimension calculation, a first choice is to pick both the r lag
for delay reconstruction and to find the appropriate embedding dimension;
neither are trivial matters. A useful insight into the role of the embedding
dimension is illustrated by considering a 1 degree of freedom dynamical system
represented on a two dimensional surface as a figure of eight; so that in
2—space the attractor "self-intersects," whereas if we increase the space by 1
to 3—-space we can, as it were, unravel the orbit to remove the self-
intersection. Adding each embedding dimension reduces the self-intersection
possibilities of a "d" dimensional system by 1. This is why we need at most
2d + 1 embedding dimensions to ensure that we can represent any dynamical
system by a non self-intersecting orbit. We also see that very simple orbits
may only need "d" embedding dimensions; see, for example, Casdagli, et. al.
(1991).

Similarly, the choice of r is not to be made by "convention." Reconsider
Figure 1, which was constructed with a r lag of 3. A shorter lag would yield
little more than a straight line and a much higher choice would yield nothing
but noise. If we were observing a cyclic orbit, the phase diagrams would
themselves oscillate between straight diagonal lines and ones that fully
reveal the structure as the choice of the delay in the reconstruction is

increased from 1. While the precise value of 7 is not critical (that is, if



the optimal value of r is 5 a choice of 4 or 6 would be reasonable), the
choice of the appropriate regiom for 7 is.

Casdagli et. al. (1991) review several alternatives for choosing an
optimal region for 7. But a useful first choice for limited noisy data sets
and no prior information about the supposed attractor, is to pick the lowest
value for which the autocorrelations have died out. While this procedure is
not optimal, it is simple and in most circumstances met in practice is a very
reasonable choice. In noisy systems, one wants to keep the r lag as small as
possible in order to reduce buildup of noise, but one also has to separate the
points to be able to provide an informative reconstruction.

The estimation procedure that is used to estimate dimension and how one
interprets the results involves many more difficulties than DeCoster and
Mitchell (1991) seem to realize. The rest of this section is based on Ramsey
and Yuan (1990) and Ramsey, Sayers, and Rothman (1990), to which references
the interested reader is referred. We would like to emphasize that the
Grassberger and Procaccia (1983) procedure used by DeCoster and Mitchell as
well as many others has the following characteristics:

"(a) dimension can be estimated with substantial upward bias for

attractors;

(b) dimension is always estimated with downward bias for random noise;

(¢) the bias effect increases with embedding dimension, but decreases
with sample size;

(d) dimension estimates are normally distributed for sample sizes larger
than 1000;

(e) the rate of increase in estimated dimension to embedding dimension
for random noise is an increasing function of the distribution’'s

entropy;



(f) the actual variance of dimension estimates can be as high as 64
times larger than that estimated by the usual least squares
approach;

(g) the variance of the dimension estimate decreases with sample size,
but increases very rapidly with embedding dimension;" Ramsey and
Yuan (1990, p. 156).

Each of these points is important for being able to interpret usefully
the results of dimension calculations. At the least some healthy skepticism
should be maintained about results that do not consider these comments. For
example, DeCoster and Mitchell (1991) place stress on their coefficient H,
which is the lowest discrete rate of change of dimension estimate to the
change in embedding dimension. Unfortunately, limited data sets induce a
decline in the rate of growth of dimension with embedding dimension even for
random data.

An important, but neglected aspect, of dimension calculation is that
delay reconstructed points within an ¢ distance of any reference point should
not be included merely because they are the next points in the series, i.e.,
are nearby in time and only through this condition are recorded as nearby in
space; see Theiler (1986). In our calculations we have allowed for such
effects, which, if neglected, seriously bias the dimension estimates
downwards .

The dimension estimation procedures recommended in Ramsey and Yuan (1990)
go a long way to offset these difficulties. In addition, they provide useful
graphical evidence for distinguishing attractors as well as a parametric test
for choosing between noise and simple attractors. The key to understanding

the benefit from the Ramsey and Yuan procedure is to recognize the joint



interdependence between sample size and embedding dimension on dimension
estimates and on the evaluation of the variance of the estimates. Plots of
dimension estimates on both embedding dimension and sample size are most
revealing about the presence or absence of attractors; see for example Ramsey,
Sayers, and Rothman (1990) and Ramsey and Yuan (1990). These results are
summarized in equation (5.1) and (5.2) in Ramsey and Yuan (1990) which are
reproduced below.

Ramsey and Yuan demonstrated empirically that the conditional mean of the
estimate of dec depends both upon the sample size and the embedding dimension

in the following manner:
In (de) = v, + v,N™ + vy N'5 [Exp (v4/ED'7) - 1.0], (3.1)

where dec is the mean of the dimension estimator da, N is sample size, and ED
is embedding dimension.

This equation is not as parameter extensive as it would appear. The
expression (v, + 72N’3) indicates the main effect of small sample size on the
expected value of the estimator dg. For random variables that scale
monotonically in ED, v, = 0 and both +y, and v, are positive. The higher
the entropy of the distribution for equivalent ranges of the support of the
distribution, the larger the values of vy, and v;.

I1f, however, one has an attractor, then ¥, > 0 and v, < 0, so that as
N - « the small sample bias provided by the term y,N'? goes to zero. The
asymptote as both N and ED - «, but such that %%ﬂ ED/N - 0 1is given by ;.

The second part of the expression in equation (3.1) summarizes the joint
effect of sample size and embedding dimension on dimension estimates,

especially when sample size is modest. v, depends on the units of measurement



chosen for ED and the relative weight of the ED effect to sample size, N. 74
seems to be negative for attractors and zero for random variables. For both
random and attractor generated data, one expects <7y to be negative, but 74
to be positive,

The relationship expressed in equation (3.1) contains a potential test
for differentiating between low dimensional processes and random phenomena. If
the underlying model is a random process, then y; = 0, and v,, v; > 0. If the
observations are being generated by a low dimensional process, then 7y, > 0,
and y, < 0. We used this procedure to reassess the empirical results of
DeCoster and Mitchell as discussed in the next section.

Ramsey and Yuan also found that the actual variance of the dimension
estimates is much larger than that given by the usual least squares variance.
The equation that expresses the relationship between the actual standard

deviation and the design parameters, N and ED, is:

In(Std) = a; + a, In N + o, 1n ED + a, ED/N (3.2)

where Std is the actual standard deviation of the dimension estimate.

The parameters {(v;} and {a;} must be estimated from the data.

4. Re-Analysis of the Divisia M2 Data

DeCoster and Mitchell (1991) reported correlation dimension estimates for
various weekly monetary aggregates, their components, the monetary base, and
the money multipliers. We focused on the estimated residuals from fitting an
AR(4) model to the growth rates of the demand Divisia M2 weekly series

constructed by Fayyad (1986). Our reasons for concentrating on this filtered
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series are twofold. First, as noted above, it is a mistake to perform
dimension analysis on data that are highly autocorrelated, since such a
practice can lead to spurious evidence of chaos. Second, within the set of
prevhitened series considered by DeCoster and Mitchell, the AR(4) filtered.
Divisia M2 growth rates provided the strongest evidence of saturation in the
dimension calculations.

Barnett and Chen (1988) initially asserted evidence of chaos in the
demand Divisia M2 series. The sample period is weekly from January 1969 to
February 1985. This weekly series was generated as follows. The Divisia
procedure was applied to the components of monthly M2, as published by the
Federal Reserve Board. Barnett’'s (1980, 1987) Divisia procedure provides
second order approximations to the exact monetary aggregates of ecomnomic
theory under the assumption of risk neutrality. The weekly series was defined
from the monthly data by spline interpolation at an approximate peried of 0.23
to represent a week’'s fraction of a month. Barnett and Hinich (1991, p. 12)
argue that given the paucity of actual weekly data, some interpolation for
construction of a weekly series is inevitable. While this is true, we note
that the spline interpolation procedure used by Fayyad means that only one
quarter of the total number of observations are observed data. Consequently,
the splining procedure is most likely to dominate the analysis.

Our first step was to replicate the correlation dimension results
reported in Table 1 of DeCoster and Mitchell (1991, p. 458) for the
prevhitened Divisia M2 series. In addition, we simulated a series of the same
length using the AR(4) coefficient values that were obtained by estimation
from the original data. These coefficient estimates were combined with Normal

independently and identically distributed deviates with the same variance as
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estimated in the original data to produce the simulated series. 1In Table 1 we
have presented the same type of dimension calculations for these simulated
data as were performed on the original log first differenced data for Divisia
M2, Figure 1 is a phase space diagram of these simulated data at a lag of 3.
There is little to choose between the dimension calculations for the actual
data and the linear autoregressive simulated data. This result illustrates
clearly that it is vital for the detection of an attractor by means of
dimension calculations to use relatively uncorrelated data and to choose a 7
lag that is greater than any residual autocorrelation.

The next step was to split this series into sub-samples of 200, 300, 400,
etc. observations in order to estimate equation (3.1). For each set of sub-
sets of data, we estimated dc for ED = 2,3,...14, if the data set could
sustain such a high embedding dimension. Our practical decision rule was to
stop increasing the embedding dimension as soon as the estimated dimension é&
fell, indicating that the extreme limits of the data had been exceeded. For
example, the highest sustainable dimension was 8 for the sub-sample of length
200. The final step was to regress the estimated dc on N, sample size, and ED,
embedding dimension, using equation (3.1). The estimated equation was then
analyzed in accordance with the discussion above in order to try to resolve
the issue of whether the observed time series indicated the presence of a
chaotic attractor,

A time series plot and the estimated autocorrelation function for the
AR(4) filtered Divisia M2 growth rates appear in Figures 2 and 3. The
dimension calculations were performed at a lag of 7, i.e., 7 = 7, the first
lag with zero autocorrelation.

A plot of estimated dimension against embedding dimension and sample size

is found in Figure 4. There is a characteristic sequence of shapes to the
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plots for attractors that differs significantly from the sequence of shapes of
plots for noise generated data. Attractor data yield plots in which the
sequence of estimated dimensions plotted against embedding dimension for
higher levels of sample size decay towards the actual dimension. Such plots
for random data do not show this characteristic decay.

The plot in Figure 4 clearly demonstrates the tendency for estimated
dimension to increase as both sample size and embedding dimension are
increased. This plot is not consistent with the results expected from an
attractor and suggests essentially no evidence of an attractor in the series.

The results of estimating equation (3.1) appear in Table 2. The signs of
all parameter estimates are consistent with this series being stochastic. If
the series is noise, then the expected value of ¥, is 0 and both vy, and v, are
expected to be positive. The estimated value for v, is -0.761 and its t-ratio
is only -0.788. The estimates for both vy, and 7, are positive. Thus, the
results in Table 1 suggest that the AR(4) filtered Divisia M2 growth rates are
stochastic.

In light of these results, we reestimated equation (3.1) under the
restriction that vy, = 0. The results for this regression appear in Table 3.
All parameter estimates are consistent with this serles being random and the
estimated t-ratios are substantial. R? is virtually unaffected by the
restriction of y, = 0.

1f a series is generated by a chaotic attractor, then vy, is an estimate
of the asymptotic value of the natural logarithm of the dimension of the data.
We reestimated equation (3.1) under the restriction that 7y, = 1n(4.98), where
4.98 is the dimension estimate obtained by DeCoster and Mitchell at embedding
dimension 14. The results appear in Table 4. Under this restriction all t-

ratios are now extremely small and the R? value has fallen to 0.54.
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A comparison of these three regressions shows clearly that the data favor

the random and not an attractor model.

5. GConclusions

The results presented here indicate most clearly that there is no
evidence from these calculations for the presence of an attractor. One should
be careful about the interpretation of these results. A more complicated
higher dimensional attractor may in fact exist for these data, but our
existing tools, even given the enhanced capability of the Ramsey and Yuan
procedure to discover attractors with limited data sets, are incapable of such
discovery.

More importantly, the above results do not, as we indicated in the first
section of this paper, provide evidence either for or against the existence of
nonlinear dynamical systems in these data. Indeed, the authors have already
indicated that during the Volker experiment from 1979 to 1981 there was a most
significant shift in the dynamic structure of the M2 data. We have also with
a number of other data sets more than convinced ourselves, if not others, that
there is abundant and varied evidence for the presence of nonlinear dynamics
in economic, if not yet in financial data.

But, we must carefully distinguish complicated long term steady state
dynamics as captured by an attractor from evolutionary or frequently shocked
systems that produce time series with relatively few observations, if any,
within an attractor. Tools for detecting attractors, such as dimension
calculations, are not designed for, nor effective in, discovering nonlinear

dynamical paths.
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Table 1

Estimated Dimensions for Simulated Gaussian AR(4) Process as
Compared to the DeCoster and Mitchell Results for Divisia M2 Growth Rates

-~ -~

Embedding Dimension de® dc®
4 2.49 2.07
6 2.68 2.53
8 3.00 2.88
10 .24 3.11
12 3.40 3.21
14 3.54 3.24
H=0.07"° H==0.02""°

% Results for simulated Gaussian AR(4) process.
P Results cited by DeCoster and Mitchell (1991, p. 458), Table 1, Row 2.

© H = lowest value of A(estimated dimension)/A(embedding dimension) in this
column, as defined in DeCoster and Mitchell (1991).
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Table 2
Regression Results from Fitting
In (dc) = v, + 7, N + v, N'5[Exp (7,ED"7)) - 1]

to AR(4) Residuals of Barnmett Divisia M2 Growth Rates

Estimated Estimated
Restrictions v Coefficient t-ratio R? Value
None 1 -0.761 -0.788 0.992
2 0.216 2.391 69 DOF
3 2.496 1.370
4 10.431 2,741
5 0.058 2.026
6 -0.352 -9.427

7 0.685 3.134
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Table 3
Regregsion Results from Fitting
In (dc) = 7, + 7, N + v, N'S[Exp (yED"7)) - 1]

to AR(4) Residuals of Barnett Divisia M2 Growth Rates

Estimated Estimated
Restrictions Y Coefficient t-ratio R? Value
v, =0 2 0.222 3.206 0.991
3 2.301 2.129 70 DOF
4 7.391 20.627
5 0.087 3.023
6 -0.337 -11.486

7 0.963 19.249
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Table 4
Regression Results from Fitting
In (dc) = 9, + v, N™ + v, N'5S[Exp (7,ED"7)) - 1]

to AR(4) Residuals of Barnett Divisia M2 Growth Rates

Estimated Estimated
Restrictions Ty Coefficient t-ratio R? Value
v, = In(4.98) 1 2 -8.090 -0.008 0.538
3 0.102 0.056 70 DOF
4 26.905 0.009
5 0.117 0.300
6 -0.145 -0.010
7 0.323 0.043

1 4,98 = dimension estimate obtained by DeCoster and Mitchell (1991) at
embedding dimension 14 through the Grassberger-Procaccia algorithm.
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Figure 1

Phase Space Diagram of a
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Figure 2

Time Series Plot: ARG Residuals

of Barnett Divisia M2 Growth Rates
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Figure 3

Estimated autocorrelations: AR(4)

Residuals of Divisia M2 Growth Rates
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Figure 4

plot of LNt(de) on N and ED for AR4)
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