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Abstract

In this paper I review what insights we have gained about economic

and financial relationships from the use of wavelets and speculate on what
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1. Introduction

The development of any new statistical procedure potentially yields

one or more of four types of gain on the existing set of statistical

tools. A new procedure could provide estimators for novel situations,

improve the efficiency of estimation or reduce bias, enhance the robust-

ness to modeling errors, or provide new insights into the properties of

the cognate discipline. While each of these goals is worthy in its own

right and provides useful gains to the profession, the last goal is for

me the most important potential gain of all. While not denying the

benefits of enhanced estimation efficiency and bias reduction, or the

improvement in robustness, the ability to apply a new “lens” to in-

spect the relationships in economics or finance provides great promise

for the development of the discipline. This is particularly applicable in

economics and finance where the potential for experimentation is lim-

ited and the measured variables are complex aggregations of disparate

components.

Wavelets provide a unique decomposition of time series observa-
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tions that enable one to deconstruct the data in ways that are po-

tentially revealing. The situation is similar to, but distinct from, the

insights gained from analyzing data using Fourier series. In so far

as Fourier series are applicable to data sets under examination, the

application of Fourier analysis yields many interesting insights into

dynamic relationships. Even the failure of Fourier analysis in the con-

text of many data sets provides insights into the underlying dynamical

relationships., For example in the GDP indices of production, we can

discover that there are no simple Fourier components except in the

context of non-durable goods. Using advanced techniques, Fourier

analysis can be used to clarify and confirm the nature of the non-

stationarity that has long been suspected. See for example, Ramsey

and Thomson (1999), who demonstrate non-stationarity for a variety

of macro variables. They do so by using a more efficient estimation

procedure than the standard FFT. The procedure capitalizes on the

properties of oblate spheroid wave functions that enable one to esti-

mate efficiently the time rate of change in the spectrum.
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The balance of this paper is in three sections. The first reviews

schematically the structure of wavelets and atomistic decomposition

using waveform dictionaries. The second and largest section discusses

the insights obtained from applying wavelets and waveform dictio-

naries to economic and financial data. This section will examine the

crucial distinction between noise smoothing and de-noising, the criti-

cal role of time scale in economics, the analysis of non-stationary and

complex functions, the discovery of time delays in economic relation-

ships that are functions of the state space, the discovery of Fourier

frequencies that wax and wane over time, and lastly, insight is gained

on the long standing complaint that economists can fit data well, but

forecasts are routinely poor. The last section provides a brief sum-

mary and speculates about some areas in which wavelet analysis may

generate further insights into the analysis of economic and financial

data.

An earlier review of the contribution of wavelets to the analysis

of economic and financial data is in Ramsey (1999) that contains a
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different perspective and further details.

2. Schematic Review of Wavelets and Waveform Dictionar-

ies

In this paper I will only give a brief schematic review of wavelets

and atomistic decomposition by waveform dictionaries. There are

many excellent expositions in the literature, for example, Chui (1992),

Gencay et al. (2002), Carmona et al (1998), Hardle et al. (1998), Per-

cival and Walden (2000), and Strang and Nguyen (1996) to which the

interested reader is recommended. In particular, Gencay et al. (2002)

is useful for economists as it contains a number of economic and fi-

nancial applications. Both Percival and Walden (2000) and Strang

and Nguyen (1996) are very well written books that stress the fil-

ter development of wavelets. Brillinger (1994), Brillinger (1996) and

Ramsey (1999a) develop some of the distribution theory for wavelet

analysis. Mallat and Zhang have developed the use of projection pur-

suit methods in the atomistic decomposition of waveform dictionaries,
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see Mallat (1989) and Mallat and Zhang (1993).

There are some points of comparison between wavelets and Fourier

series, but there are also important points of difference; the latter

are more important to keep in mind than the former. The points

of comparison are that both wavelets and Fourier representations are

exactly that, representations, and both are obtained by projecting the

signal onto a basis space.

The differences stem from the differences in the bases used by the

two procedures. In the Fourier integral representation, one is project-

ing on to an expansion in terms of trigonometric functions assuming

stationarity over the entire history of the signal. Fourier series ex-

pansions are defined over the space L2(0, 2π), with infinite energy, but

finite power, when extended to the whole real line. The decomposi-

tion that is achieved using Fourier analysis is in the frequency domain.

Further, recall that a single disturbance in the time domain affects all

frequencies and that a single disturbance is treated by Fourier analysis

as an event of period T, where T is the length of the observed series.
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In Fourier analysis all frequencies are obtained by “rescaling” the

fundamental frequency; that is, we project the signal onto a sequence

of functions of the form:

{e−inω0} (1)

where ω0 is the fundamental frequency and “n” provides the scaling.

In contrast wavelets are functions defined over Besov spaces and

provide a basis for functions that are defined in such spaces. In par-

ticular, each wavelet is compact and therefore must be indexed in the

time domain. More precisely, each basis function is expressible as:

g(t) =
1√
s
g

Ã
t− k
s

!
(2)

where k is the time domain index and s is the scale at which g(.)

is evaluated. Consequently, we have defined in the time domain a

sequence of functions that are doubly indexed, once by location in

the time domain, once by the scale; the preceding division by
√
s in

equation 2 ensures that the norm of g(.) is one. Each function g(.) is

centered at k with a scale, or dilation, of s. Scaling in Fourier analysis
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is in terms of frequency, scaling in wavelet analysis is in terms of time.

This distinction is important for applications.

Because of the compactness of the wavelets and their time indexing,

all projections of a signal onto the wavelet space are essentially local.

In contrast, in Fourier analysis the projections are essentially global,

although localization can be achieved by convolving the observed series

with a filter that is centered at a given point, t0, with rapid decrease

in the modulus of the weights on either side of t0 .

Wavelets can either be defined in terms of a sequence of pairs of

filters, to be discussed below, or in terms of functions created through

splines that satisfy certain properties. The choice of wavelet to be

used in the analysis of actual data will depend on the weights that

the researcher places on the various criteria. This is a great strength

of wavelets as a tool because one can choose that class of wavelet

function that is most suitable to the properties of the function to be

represented.

Symmetry of the function g(.) is one such criterion and is the one
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that is seldom satisfied, except approximately; the Haar wavelet is

an example of an orthogonal symmetric wavelet. Symmetry of the

wavelet is useful for representing functions that exhibit local symme-

tries, but the most important benefit of symmetry is that phase shifts

are not introduced into the coefficients created by the projection op-

eration. The effect of a phase shift is to displace events along the time

axis; that is, if a maximum in the original series occurs at time t0,

the phase shifted maximum occurs at time t0 + δ, where δ may be

positive or negative. Non-symmetric filters introduce phase shifts, see

for example, Percival and Walden (2000) and Gencay et al. (2002).

Orthogonality is a very useful property of wavelets as it is of any

transformation procedure, but does not hold universally for all wavelet

classes. While orthogonality does not in the least ensure zero-phase

transformations, recent efforts have been made to modify procedures

so as to approximate zero-phase filters, see for example, McCoy et

al (1995) and Hess-Nielsen and Wickerhauser (1996). However, even

non-orthogonal wavelets still provide a basis for the space into which
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the function is to be projected. Maximum overlap discrete wavelet

transforms (MODWT) and biorthogonal wavelets are examples, Bruce

and Gao (1996), or Percival and Walden (2000).

Smoothness is sometimes an important property for a wavelet ba-

sis. If the function to be represented is thought to be smooth, then

smoothness is a desirable property. However, there are many func-

tions for which smoothness is definitely not a characteristic in which

case, one does not want to impose smoothness. For example, the Haar

function is the least smooth of all the wavelet classes and is therefore

useful in representing the time path of Poisson processes. The degree

of smoothness is measured by the number of continuous derivatives of

the basis function.

Below I will define precisely “father” and “mother” wavelets; father

wavelets integrate to one and are used to represent the very long scale

smooth component of the signal; mother wavelets integrate to zero

and represent the deviations from the smooth components. Father

wavelets generate what are known as the “scaling coefficients” and the
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mother wavelets generate the differencing coefficients. An alternative

way to view the difference is that the father wavelet acts as a low pass

filter, whereas the mother wavelets act as high pass filters. Different

scales translate into different frequency bands that are passed; this

interpretation is elaborated below.

The number of vanishing moments indicates yet another impor-

tant characteristic of wavelets. If a wavelet basis is said to “have m

vanishing moments,” that means that an m’th order polynomial will

be passed through by the mother wavelets; the projection integrates

to zero and the polynomial component of the signal will be captured

solely by the father wavelet. If a signal contains a polynomial com-

ponent together with more complex elements, using a wavelet with

the appropriate number of vanishing moments is clearly very useful in

decomposing the signal.

For any suitable choice of function Φ(.), we can define the corre-
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sponding father and mother wavelets:

ΦJ,k = 2−
J
2Φ

Ã
t− 2Jk
2J

!
(3)Z

Φ (t) dt = 1

and

Ψj,k = 2−
j
2Ψ

Ã
t− 2jk
2j

!
, j = 1, ..J (4)Z

Ψ (t) dt = 0

ΦJ,k is the father wavelet and Ψj,k is the mother wavelet. For facil-

itating the mathematical development and analysis, the above state-

ments have restricted the scale parameter “s” to the dyadic scale 2j.

Given this family of basis functions, we can define a sequence of co-

efficients that represent the projections of the observed function onto

the proposed basis. We define:

sJ, k =
Z
f(t)ΦJ, k (5)
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and

dj, k =
Z
f(t)Ψj, k; j = 1, ....J (6)

where the sJ,k are the coefficients for the father wavelet at the maximal

scale, 2J , known as the “smooth coefficients,” and the dj, k are the

detail coefficients obtained from the mother wavelet at all scales from

1 to J, the maximal scale. Given the coefficients the function f(.) can

be represented by:

f(t) =
X
k

sJ, kΦJ, k(t) +
X
k

dJ, kΨJ, k(t) + ... (7)

...+
X
k

dj, kΨj, k(t)...+
X
k

d1, kΨ1, k(t)

or f(t) can be represented as:

f(t) = SJ +DJ +DJ−1 + ...Dj + ...D1 (8)

where

SJ =
X
k

sJ, kΦJ, k(t) (9)

Dj =
X
k

dj, kΨj, k(t), j = 1, ..J
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The easiest way to visualize the above is to consider a sequence

of topographical maps; SJ provides a smooth outline and each Dj in

turn provides a higher level of detail. Equation 8 indicates that the

complete function will be obtained by the multiresolution of the signal,

but one can also obtain less detailed representations by examining

only:

Sj = SJ +DJ + ...Dj+1 (10)

or Sj = Sj+1 +Dj+1 (11)

An alternative way to think about wavelets is in terms of solutions

to sets of equations defined by low and high pass filters. Thus, we

define Φ(t) and Ψ(t) by:

Φ(t) =
√
2
NX
k=0

l(k)Φ(2t− k) (12)

Ψ(t) =
√
2
NX
k=0

h(k)Φ(2t− k) (13)

given two linear filters l(k) and h(k). l(k) is a lowpass filter and h(k)
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is a high pass filter. Correspondingly, the low and high pass filters can

be obtained from the father and mother wavelets as follows:

l(k) =
1√
2

Z
Φ(t)Φ(2t− k)dt (14)

h(k) =
1√
2

Z
Ψ(t)Φ(2t− k)dt (15)

or h(k) = (−1)kl(k) (16)

The simplest example is provided by the Haar wavelet for N = 2

l(k) = { 1√
2
,
1√
2
} (17)

h(k) = { 1√
2
,− 1√

2
} (18)

The low pass filter averages, the high pass filter differences.

Strang and Nguyen (1996) and Percival and Walden (2000)develop

the relationship between wavelets and filter banks, that is, sequences

of pairs of high and low pass filters; these are excellent references

for this approach, especially the first chapter of Strang and Nguyen

(1996). The analysis indicates that one can approach the analysis
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of the properties of wavelets either through wavelets themselves or

through the properties of the filter banks. Both approaches are useful

and informative. Many new classes of wavelets are now generated by

specifying properties for the filter banks.

The development of wavelet analysis using filter banks helps to

clarify the relationship between wavelet analysis and Fourier analy-

sis. Because wavelet transforms can be obtained through a cascade

of low and high pass filters one can obtain the transfer function of

the filters, and if one assumes stationarity in the time series, one can

determine the frequency ranges of the series that will be captured by

the filter banks. However, the validity of this interpretation depends

on the assumption of stationarity of the signal. Where the stationar-

ity assumption is violated, the frequency interpretation can only be

approximate and local.

The introduction of filter banks reveals clearly the difficulty of

dealing with boundary conditions that must be faced by any transfor-

mation that relies on filters and two sided filters in particular. This
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problem is of course a general problem and is not one peculiar to

wavelets; note for example the difficulties in this regard for Fourier

analysis. In the standard literature of wavelet analysis there are sev-

eral approaches to the problem. Zero padding at the ends is one

solution that is also a standard approach in Fourier analysis. Other

solutions involve capitalizing on any periodicity in the data, or the use

of polynomials to capitalize on any regularities that can be captured by

polynomial approximation at either end of the observed series. Yet an-

other procedure that has been used involves reflection; that is, extend

the data by a reflection and assume a periodic boundary. Clearly, the

differences between these various boundary rules depend upon differ-

ences in assumptions as to the fundamental nature of the series under

examination.

In economic analysis one seldom wants to use the periodic ap-

proach, but often the polynomial approximation is useful. One can

perhaps devise new procedures that capture special aspects of the

data. However one deals with the issue, there is inevitably an aspect
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of ad hoc justification for the adjustment and one must be very careful

how one interprets the coefficients estimated at the ends of the time

series. One neglected issue is that the optimal choice of boundary rule

may well vary with the scale.

The basics of the distribution theory of wavelets are easily derived

when the model is one of a signal observed with random error. We

can summarize the above development by representing the wavelet

transform by:

w =Wy (19)

where y is the vector of N observations on a signal, w is the N dimen-

sional vector of wavelet coefficients, and W is an N×N orthonormal

matrix that summarizes the transformations listed above. The first

elements of w are the coefficients sJ , the last elements of w are the

coefficients d1. If the number of observations, N, is divisible by 2J , a

mathematical convenience, the number of coefficients of each type is

given by:

• N
2
coefficients d1, k



Wavelets in Economics and Finance: Past and Future 19

• N
22 coefficients d2, k

• ...............................

• N
2J coefficients dJ, k

• N
2J coefficients sJ, k

• N
2
+ N

22 + .....
N
2J +

N
2J = N

Consider the signal given by:

y = f + u (20)

where f is a signal that may well be highly erratic and u is an error

term with zero mean and constant variance. Following equation 19,

we easily see that the coefficient vector w is now:

w =Wy =Wf +Wu (21)

so that we see that the noise affects every coefficient, at least in the-

ory. If we define Z = Wu, the vector of transformed error terms, the
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covariance of the error is:

Cov(Z) = V = WGW 0 (22)

G = E{uu0} (23)

If u is multivariate Gaussian, then so is Z. More importantly, even

if u is not multivariate Gaussian, the wavelet coefficient estimates

are asymptotically unbiased and approximately Gaussian under rea-

sonably weak conditions. Further, the correlation of coefficient es-

timators across scales approaches zero as the scales separate under

equally weak conditions; see for example, Percival and Walden (2000),

Brillinger (1994) or Brillinger (1996), or Ramsey (1999a). Finally,

the coefficient vector w is sparce; that is, many of the coefficients are

zero or near zero. From a functional approximation perspective, this

pragmatic result is important in that wavelets provide excellent data

compression as will be demonstrated below.

The atomistic decomposition of waveform dictionaries using pro-

jection pursuit methods introduces another aspect to the general class



Wavelets in Economics and Finance: Past and Future 21

of wavelet transforms and an alternative way to explore the properties

of wavelets. An important shift in approach is introduced using these

methods in that one includes the wavelet coefficients in terms of an or-

dering on the size of their moduli. This is in contrast to the methods

stressed so far that presented the wavelets either according to scale

for a given time instant or according to time for a given scale. The

new approach is designed predominately for the exploratory phase in

empirical analysis in which one begins with very little information on

the nature of the signal being analyzed.

We begin by specifying a structural “atom” gγ(t):

gγ(t) =
1√
s
g

Ã
t− k
s

!
eiζt (24)

where g(.) is a mother or father wavelet from one of the classes defined

above. But the basis function has now been augmented by multiplying

the fundamental function g(.) by the transform, eiζt. In this formula-

tion, the basis function gγ(.), as is g(.) itself, is centered at k and its

energy is concentrated in a neighborhood of k that is proportional to

s, the scale factor. Correspondingly, the Fourier transform of gγ(.), is
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centered at ζ with energy in a neighborhood of ζ that is proportional

to 1/s, see Mallat (1989) and Mallat and Zhang (1993). This condition

clearly indicates that one cannot achieve high resolution in both the

frequency and the time domains, a gain in one necessitates a decline

in resolution of the other. Wavelets allow one to chose the appropri-

ate trade-off between resolution in the time and frequency domains,

Fourier stresses resolution in the frequency domain at the expense of

the time domain.

The initial analytic procedure is the same in that we determine the

coefficients of the projection on to the basis created by the sequence of

functions gγ(.). We define, using the symbol h.i to indicate the inner

product:

αn =
D
f, gγn

(t)
E

(25)

and

f(t) =
NX
n=1

αngγn
(t) (26)

where γn is the nth. selection from a discretized set, γn = {sn,kn,ζn};

and sn is defined in terms of the usual dyadic expansion. N represents
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the total number of observations that for mathematical convenience is

assumed to be divisible by 2J .

There are two major elements of this formulation that require dis-

cussion. First, we note that waveform dictionaries are able in the

context of a single basis function class to represent both highly non-

differentiable functions, certainly non-smooth functions, and functions

that are naturally representable by combinations of harmonic series.

The second distinction to the previous analytical approach is that the

expansion is now ordered in terms of the maximum modulus of the

coefficients irrespective of scale or location. Implicitly in the discus-

sion of the discrete wavelet transform, attention was focused either

on the analysis of the signal at a given scale over varying locations,

or at a particular location over varying scales. Waveform dictionaries

are particularly good at detecting harmonic based signals, as well as

those signals best amenable to analysis by projection onto compact

supports. Wavelets are good at detecting dirac delta functions, chirps

(that is, signals that represent bursts of energy that vary in frequency
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and amplitude), as well as signals that exhibit phase shifts and iso-

lated discontinuities. In short, when basic prior information about the

nature of a signal is sparce, waveform dictionaries provide an excellent

exploratory tool.

The main type of wavelet discussed so far is known as the “dis-

crete wavelet transform, DWT, or “atoms” in the waveform dictionary

expansions. There are in fact many generalizations that we could

examine; such as the maximum overlap discrete wavelet transform,

MODWT, also known as the “non-decimated wavelet transform,” or

the “stationary DWT,” or the “translation invariant DWT,” that gains

in resolution of a signal, but loses the property of orthogonality. The

MODWT transform can provide a multiresolution analysis of the

data, its coefficients are associated with zero phase filters, it is trans-

lation invariant as one of its pseudonyms states, and the transform

can be applied to data sets whose length is not divisible by 2J .

We can also consider the continuous wavelet transform, see for
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example, Percival and Walden (2000), pages 9,10. We can define,

W (λ, t) =
Z ∞

−∞
ψλ,t(u)x(u)du (27)

where ψλ,t(u) ≡ 1√
λ
ψ
µ
u− t
λ

¶
(28)

The main difference is that in equation 27 we consider continuous

variations in the scale component, λ, and in the time component, t.

For example, we might define:

ψ
µ
u− t
λ

¶
=



− 1
λ
if t− λ < u ≤ t

1
λ

if t < u ≤ t+ λ

0 if otherwise

(29)

The definition of “wavelet packets,” that is, the discrete wavelet

packet transform, DWPT, enables one to capture periodic compo-

nents within a series, see Percival and Walden (2000). While the

DWT decomposes the frequency range [0,1/2] into adjacent intervals

of frequency bands, the DWPT coefficients can be localized to a par-

ticular narrow band of frequencies and at a particular interval of time;

thereby creating a “time-frequency” decomposition. The DWPT pro-
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vides a link between time-scale and time-frequency decompositions;

Percival and Walden (2000), page 206.

In particular we might mention in passing the 2-D wavelet trans-

forms that may well in the future prove to be very useful in the analysis

of economic data, especially in the context of economic relationships

that are defined with respect to geographic regions or social groups.

3. Wavelets and Insight

3.1. Noise Smoothing versus De-Noising

The standard statement of a noisy signal tends to mask crucial

assumptions about the relationship between the noise and the signal.

For example, the usual statement is:

yt = ft + εt (30)

where yt is the observed signal, ft is the actual signal, and εt is the

noise. In economics and finance, the often unstated assumption is that

the signal, ft is smooth, but the noise is definitely non-smooth. Un-

der these assumptions, the generic answer to approximate ft is to use
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some form of averaging over the noise. However, when the signal is

either non-smooth itself, or contains discontinuities, or regime shifts;

the smoothing recommendation is counter productive in that the very

structure of the signal that one is trying to capture will be lost, or at

least, distorted by the process. Such circumstances require de-noising,

not smoothing. The principle idea behind “de-noising” is that one can

define a “noise threshold” such that variations in the data below the

threshold are to be regarded as noise, whereas variations greater than

the threshold are regarded as “signal.” De-noising and smoothing are

complementary approaches and which is used depends on the char-

acteristics of the data generating mechanism. Economists should be

aware of the benefits from using the de-noising approach in the con-

text of models with regime shifts and other forms of discontinuities or

points of non-differentiability.

Recall the wavelet transform in its orthonormal matrix version:

w =Wy =Wf +Wε (31)
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What is required is Wf, but what we observe is Wy that is contami-

nated by Wε. If it is reasonable to assume that the modulus of Wf is

large relative to the variance of Wε, and if we can obtain a reasonable

estimate of the variance of Wε, we can calculate a noise floor. We

can proceed by shrinking the observed coefficients and setting those

below the noise floor to zero. There are several ways to achieve this re-

sult. One pair of ways is that recommended by Donoho and Johnson

in a series of path breaking articles, Donoho and Johnstone (1995),

Donoho and Johnstone (1998), Donoho et al (1995). They defined

soft shrinkage by:

δs(w) =


0 if |w| ≤ c

sgn(w)(|w|− c) if |w| > c
(32)

and hard,δh(w), by:

δh(w) =


0 if |w| ≤ c

w if |w| > c
(33)

δs(w), soft shrinkage, returns the amount by which |w| exceeds the

threshold, c, zero otherwise. δh(w) returns w itself, or zero in the same



Wavelets in Economics and Finance: Past and Future 29

circumstances. Yet another alternative is to use Breiman’s Garrote,

Breiman (1995):

δg(w) =


0 if |w| ≤ c

w − c2

w
if |w| > c

(34)

In all three cases, the value returned if the estimated coefficient is

below the threshold is the same, zero. The three cases differ in how

they treat the value of the coefficient when the threshold is exceeded.

The main difficulty is that some judgement is needed to settle on

the appropriate value for the threshold given an estimate for the vari-

ance of the noise terms, see for example, Johnstone and Silverman

(1997). As a pragmatic matter, it is customary to regard the “coeffi-

cients” at the d1 level as representing almost entirely noise; often this

assumption is extended to the d2 coefficients. The concept is that at

the d1 level the signal to noise ratio is close to zero, whereas at higher

scales the ratio is increasing rapidly. Johnstone and Silverman (1997)

have recommended that in many cases one should calculate the noise

threshold scale by scale.
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In any event, the sparce matrix characteristic of W is enhanced

by this approach so that the coefficient vector w contains even more

zero terms, especially at the lower scales. The distinction between

zero and non-zero coefficients is sharpened by these procedures with a

potential bias towards eliminating actual, but very small coefficients.

However, the overall impact on the accuracy of the multiresolution

approximation will not be affected to any appreciable degree.

The implications for insight into the analysis of non-homogeneous

signals is very important as the graphs presented by Donoho et al

(1995) demonstrate. In every case the essential and distinctive el-

ements of the signals would have been lost by smoothing. In eco-

nomics and finance much attention has been paid to the issue of regime

shifts and threshold models, see for example, Frances and Dijk (2000).

Clearly, these are situations in which error thresholding of some type

is essential and the thoughtless use of averaging procedures masks, at

least distorts, the signal characteristics being sought.
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A related aspect to detecting regime shifts and discontinuities is

the choice of wavelet to use. Given the discussion above one choice

would be the Haar wavelet. In general, wavelets that are zero phase,

not very smooth, and have very few vanishing moments would be most

suitable for detecting regime shifts and discontinuities. One might well

consider different optimal wavelet properties at different scales. For

example, it might well be the case that at the longest scales the series

is very smooth, but that at periods representing the business cycle,

the series is non-smooth, and at even smaller scales the series is both

smooth and periodic. Wavelet analysis can easily be structured to

deal with these cross scale complexities.

A use of wavelets that may well prove to be exceedingly beneficial

in understanding economic, but more particularly financial data, is the

decorrelation of long memory processes and the consequent improve-

ment in the estimation of long-memory parameters. While no strik-

ing insights have yet been obtained in financial data; the promise is

there; see for example an intriguing series of papers, Fan andWhitcher
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(2001), Jensen (1999), Jensen (1999a), McCoy and Walden (1996),

Whitcher (2000), and Whitcher (2001)

3.2. Time Scale Decompositions of Economic Relationships

The dependence of physical relationships on the concept of time

scale is wide spread and fundamental in all sciences. In Ramsey and

Lampart (1998a) and Ramsey and Lampart (1998) the concept was

reintroduced into the analysis of economic and financial relationships.

Consider for example any discussion of the term structure of inter-

est rates, or the elementary statements of micro economic analysis,

Henderson and Quandt (1980), or the distinction between permanent

and transitory shocks, or the distinction between equilibrium and the

efficiency of dynamic adjustment, Blanchard and Fischer (1992); all

involve the notion, at least implicitly, of time scale. The situation can

be easily illustrated. Imagine a sequence of traders that make deci-

sions over different horizons; for example, one can visualize traders

operating minute by minute, or hour by hour, or day by day, or month
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by month, or year by year. Or consider the difference in time horizon

and its effects on bond holdings between short term money managers

and those determining the investment portfolio for an insurance com-

pany. Alternatively, imagine an individual deciding on the purchase

of a house, a car, groceries, a chocolate bar. In these examples, it is

clear that those variables that would receive the most attention, or

weight in the decision process, and likely the structure of the relation-

ship itself will vary over the different time scales that are implicitly

defined by the different decision making horizons. For the consumer

as one varies the time scale from longest to shortest the relevant time

horizon for decisions shortens, the terms of the relevant interest rates

shorten, the “permanence” of income shortens. In general one would

expect the nature of the relationship between the relevant variables

to vary with scale, not to mention the size of the corresponding co-

efficients. In short, markets are composed of the actions of a variety

of agents that are operating at each moment at different time scales.

Indeed, each agent operates on many scales simultaneously. These
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distinctions have been long enshrined in economics in terms of the

short and long runs. While pedagogically useful, the reality is that

there are many time scales and there may well be a continuum of

scales. Consequently, the time and cross-sectionally aggregated time

series that constitute the economists’ observations are an amalgam of

sub-relationships that are defined over different time scales. An early

application of this is in Serroukh and Walden (1998), where the idea

that the cross covariances between scales might differ was successfully

explored using data on pack ice in the Beaufort Sea. Another example

is Whitcher et al (2000) in which wavelet cross-correlations were used

to investigate short and long term atmospheric relationships. See also

Gencay et al. (2002) for examples in economics and finance.

In Ramsey and Lampart (1998a) and Ramsey and Lampart (1998)

two relationships were examined; that between expenditure and in-

come and that between money and income. With respect to the for-

mer, the claim that the relationship would vary and that the relevant

variables would differ across scales was confirmed. The real interest
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rate was discovered to be a significant variable only for the longest

time scales and only for durable goods. For both durable goods and

for non-durable goods, the degree of fit and the strength of the re-

lationship declined monotonically as the scale decreased. At certain

scales the relationship between expenditure and income was seemingly

more complex than a simple linear relationship; this will be discussed

in full in the next section.

For the money income relationship, the question of major inter-

est is whether “money causes income” or “income causes money” in

the Granger sense. The result of the empirical analysis by Ramsey-

Lampart of this long debated and inconclusively resolved issue is that

at the shortest scale, income causes money, that at intermediate scales,

money causes income, and that at the longest scales, there is a feed-

back mechanism. All of this not only accords with theory, but parts

of this result are aspects of conventional wisdom in the literature.

Recently, in Gencay et al. (2002) the empirical results on the money

income relationship were confirmed by employing the same techniques,



Wavelets in Economics and Finance: Past and Future 36

but using slightly different data definitions, for the U.S., United King-

dom, Japan, and Austria. For all countries, except Austria, the

Ramsey-Lampart results obtained were almost exactly the same qual-

itatively. Austria was different in that the first three scales had money

causing income, but at the longest scales the feedback mechanism pre-

vailed. This substantial confirmation is a remarkable result in econo-

metric analysis.

Gencay et al. (2002) also examined the relationship betweenmoney

growth and inflation. In this example as well as the previous ones the

extant empirical literature is plagued by the fact that the empirical

relationship between money and the price level “changes according

to the sampling period, the level of monetary aggregation, and the

methodology employed to filter the price level and money,” Gencay et

al. (2002), page 157. Six countries were examined; Argentina, Brazil,

Chile, Israel, Mexico, and Turkey. For all countries at the highest

available time scale, 32 months, the relationship is a feedback mech-

anism. The empirical results are clearest for Argentina and Turkey
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for which countries, money Granger causes inflation at the shortest

scales and is a feedback mechanism at the longest scales. The results

are mixed for Israel and Mexico and little can be said for Chile at the

lowest scales. Nevertheless, given the known difficulties with the data

and their limited extent, these are remarkable results.

We can reasonably conclude from this analysis that decomposing

macro-economic time series into their time scale components is a very

successful strategy in trying to unravel the relationship between eco-

nomic variables. Relationships that are at best problematical using

standard methods and aggregated data are revealed in a consistent

manner using time scale decompositions.

But preliminary results indicate that the success of time scale

analysis using stock and foreign exchange market data is less per-

suasive to the economics profession. Presumably this is due to the

much greater degree of “mixing” that is inherent in these data due to

the rapid and extensive arbitrage activities that characterize financial

markets so that the obvious results obtained for macro variables are



Wavelets in Economics and Finance: Past and Future 38

not as prevalent.

However, this is not to claim that wavelet analysis does not have

much to contribute; indeed there is very much to be learned as is

clearly demonstrated in some papers by Gencay and coauthors. In-

teresting examples are represented in a recent series of papers, Gen-

cay et al (2001), Gencay et al (2001a), and Gencay et al (2002a) In

these papers the authors demonstrate the benefits of wavelet analysis

in evaluating variations in foreign exchange volatility by time scale.

They also demonstrate considerable improvements in the estimation

of measures of systematic risk within the CAPM model and provide

insight into the process that can be obtained through deconstructing

the time series by scale. As one might anticipate, the effect of beta

and its relevance to the analysis of portfolios increase with time scale.

3.3. Delays as Functions of the State Space

Mentioned above was the observation concerning both Ramsey and

Lampart (1998a) and Ramsey and Lampart (1998) that at certain
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scales the relationship between the variables expenditure and income

and that between money and income were surprisingly complex. Fur-

ther examination of these data revealed an interesting and potentially

important insight into the nature of the relationship between economic

variables over time. The graphs in Ramsey and Lampart (1998a)and

Ramsey and Lampart (1998)demonstrated that at some scales the

phase relationship between expenditure and income and that between

money and income varies over time. Recall that two series are in phase

if peaks match peaks and troughs match troughs in time. There is a

fixed “delay,” if the time difference between peaks and between troughs

remains constant. In the expenditure-income case the observed his-

torical period is characterized by the two series being out of phase and

moving into phase, whereas for the latter pair of variables the phase

relationship varies continuously.

The standard unchallenged assumption in economics is that if there

are delays between two variables, that delay is fixed. What was dis-

covered in the papers cited above is that the delays at certain scales
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are functions of time and are likely to be functions of the state space.

This is an interesting and challenging research opportunity and one

that opens a number of intriguing possibilities. At the very least one

is encouraged by these results to speculate about the reasons for the

time varying delays. Cursory introspection indicates that the “tim-

ing” of action by economic agents is a neglected aspect of behavior.

Recent events illustrate this remark. For example, the 2001 push by

auto-manufacturers to lower the purchase price on cars presumably

had two effects; one is undoubtedly increased quantity demanded in

reaction to an implicit price decline, but the other was to shorten the

delay between income variation and its assessment and actual expen-

diture. Alternatively, pre-announced price changes will induce both

demanders and suppliers to alter the timing of their market transac-

tions. For example, some years back the Federal Energy Office, F.E.O.

as it was known then, announced on a particular date that it was go-

ing to mandate a new higher price a few days later. Gas stations

were swamped with consumers and gas stations were most reluctant
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to supply gas until the new prices were in effect; most of this change

in excess demand stemmed from the change in timing of supply and

demand.

A more macro aspect of the phase difference between variables is il-

lustrated in terms of leading and lagging indicators and the inevitable

shift in the lead-lag relationship, at least in terms of the timing of the

relationship that is involved, see Diebold (1998). Diebold discusses the

relationship between housing starts and housing completions, Diebold

(1998), page 325-6. It is easy to recognize that while on average there

may well be a standard lag between starts and completions, varia-

tions in economic conditions will impact the lag; either lengthening

it or shortening it. Similar variations between leading and lagging

variables is illustrated for cattle and hogs. The supply of piglets and

calves anticipates the future supply of hogs and cattle for slaughter.

Nonetheless, it is well known that variations in economic conditions

can easily alter the timing of bringing hogs and cattle to market,

Nerlove et al (1979). All of these examples indicate the opportunity
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for varying the lead-lag relationship between variables as a function of

the state of the system. A simple regression between the leading and

lagging components that does not recognize the dependence of phase

on economic conditions will inevitably discover needless complexities

in the relationships.

The general equation that we should consider; perhaps at only

certain time scales, is:

Yt = β0 + β1Xt−d1(Z) + β2Xt−d2(Z) + εt (35)

where the t−d1(Z) and t−d2(Z) represent the state space dependent

delays and Z represents the component of the state space that affects

the timing of the delay. An immediate research agenda that arises

from this observation is to determine the extent to which time varying

delays are present in economic and financial data. The next task of

course is to discover the economic mechanism that generates these

variations. In particular, one might well question why at a time scale

of 32 months, income and expenditure have historically, at least for

the recent past, been related by time varying phase. A corresponding
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question is why this problem is revealed at 32 months, not at other

scales, given of course, that the result is robust to subsampling and

re-estimation using similar, but different data.

An excellent exploratory tool for discovering time varying delays

is to examine the multi-resolution decomposition of economic signals.

By comparing the scale decompositions of time series for variables

that are theoretically linked, one could discover whether at some time

scales phase variation is involved. Under some circumstances, Fourier

analysis could be used to determine the phase relationship. Indeed,

exactly this has been done with some aggregated macro time series

using oblate spheroid wave functions to determine the phase drift, see

for example, Ramsey and Thomson (1999). Any regression analysis

that does not allow for phase variation will fail to reveal what might

well be a simple, even linear, relationship.
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3.4. Atomistic Decomposition using Waveform Dictionaries of Fi-

nancial Data

In a previous section I discussed the notion of atomistic decom-

positions of a time series using waveform dictionaries. This is an

exploratory tool for examining the structure of financial data in the

sense that one would examine the extent to which the data can be

represented by a mixture of wavelets and frequency components. In

particular, the approach enables one to evaluate the extent to which

frequency components of a signal can be detected when one allows

the frequency part of the signal to oscillate in amplitude, including

disappearing altogether at times. In Ramsey et al. (1995) the scaling

properties of daily observations of the Standard and Poor market in-

dex were analyzed and the random walk nature of the data questioned.

These data were discovered to contain properties that indicated that

the data were far more complex than previously assumed. Further in

Ramsey and Zhang (1996) 16384 daily observations of the Standard

and Poor’s 500 index were analyzed by atomistic decomposition using
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waveform dictionaries and in Ramsey and Zhang (1997) one year of

tic by tic data on world wide foreign exchange data were observed

between the U.S. dollar and the Deutschmark for the time period Oc-

tober 1992 to September 1993. The data were obtained from Olsen

Assocs. in Zurich and were also analyzed by atomistic decomposition.

There are some similarities and some differences in the analytical

results using these two similar, but different data sources. The first

general conclusion is that a relatively small number of wavelet coef-

ficients are needed to describe the observed time series; there is, in

short, considerable data compression available using wavelets. For ex-

ample, using the Standard and Poor’s log first differenced data only

about 1000 coefficients were needed to fit the data points very closely,

whereas performing the same procedures on random data would re-

quire 3000 coefficients for the same degree of fit. The results are even

more impressive for the foreign exchange data where only 100 wavelet

coefficients provide a very close fit to the data. However, notwith-

standing the very good fits, the ability to forecast is minimal. Wavelets
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provide an explanation for a widespread phenomenon in economic and

financial research in that while good fits can often be obtained, our

ability to forecast is very poor. For both sets of data, all the power

is in chirps, Dirac delta functions, and for the foreign exchange data,

a few frequencies that come and go, seemingly at random. Further,

there is no pattern in the distribution of the occurrence of the chirps

and of the Dirac delta functions in either case.

In short, while there seems to be in any given historical period a

relatively simple dynamical system as represented by a small number

of wavelet coefficients, the ability to forecast is minimal as there is no

repeatable structure to the distribution of the chirps and Dirac delta

functions. In essence, with these data we seem to have a sequence

of random selections of relatively simple models. I believe that this

circumstance underlies much of the explanation for good fits, but poor

forecasts.

Another common aspect of these two data sets is that while the

signs of differences over most sub-periods seem to be Binomial with
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a probability of 0.5, there is some persistence in the absolute values

of the differences; that is, there is persistence only in the magnitudes

of the changes. These results indicate a common aspect to the fi-

nancial markets. Instead of markets smoothly converging towards a

new temporary equilibrium generated by new information, the mar-

kets instead react with bursts of intense activity covering a narrow

band of frequencies; the adjustment process is itself oscillatory. Fur-

ther, the structure in the data that is observed using the levels data

is removed by differencing, but that the observance of weak structure

is reintroduced when the differenced data are converted to moduli.

3.5. Waxing and Waning of Frequencies

The financial data discussed in the previous section produced a

further important insight. The traditional approach to the application

of spectral techniques to economic and financial data, has focussed

on the discovery of complex, but stable, frequency components; this

research has discovered little evidence of stable frequencies in financial
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data and not much more in economic data. What was discovered in

the financial data using wavelets is that there may be some evidence

of low frequency components that wax and wane in strength, so that

an analysis that seeks to discover the global presence of frequencies

is likely to fail. This result opens up a new and potentially exciting

avenue of research as we seek to determine the factors that give rise to

the oscillation in the strength of the signals and to seek an explanation

for the distribution for the observed frequencies. The other aspect that

is of interest is that the occurrence of the frequencies is concentrated

in the lowest frequencies; indeed, the relative concentration increases

as the frequency is reduced.

3.6. Forecasting and Structural Change

In a previous section, I introduced a key aspect of the forecasting

problem in economics and even more significantly in finance. Wavelets

clarify and put into stark relief the nature of the problem that while

time series fits over historical data periods are uniformly good, indeed,
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often very good, the ability to forecast past the very near future is very

bad. We seldom anticipate major events in either the financial markets

or in the economy generally. The relatively reasonable average GNP

forecast results for projections one quarter, or even one year ahead,

are I claim due primarily to the inevitable inertia in the economy;

witness the difficulty in beating naive forecasts that is so prevalent in

economics and finance.

The key difficulty lies in the forecasts for the intermediate to long

term period. While I have argued elsewhere, see Ramsey (1996), that

on average our forecast errors for intermediate term forecasts lie well

outside any reasonable confidence interval, the question is why. One

obvious answer is that the conditions needed for the forecast error

bounds to be applicable may well have changed since the forecast

was made. For example, the assumption that certain variables would

remain constant, or that estimated relationships would remain fixed, is

violated so that the estimated model no longer applies. The wavelet

results for financial data in particular indicate that the problem is
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more severe. This observation was summarized in Ramsey (1996) by

stating that regression, linear or not, is local, whereas forecasting is

global in structure. Good fits do not, indeed cannot, guarantee good

forecasts.

The main result from the wavelet analysis is that while a very small

number of wavelet coefficients are needed to provide very good fits to

any historical data, (there is very good data compression), the set of

relevant coefficients varies period by period. This is seen more clearly

when one recognizes where the power in the wavelet analysis resides;

the power is in dirac delta functions, chirps, and sporadic occurrences

of harmonic signals. There is no observable pattern to the temporal

distribution of the coefficients. Contrast this situation with that ob-

tained by estimating even a complex combination of harmonic signals.

Forecasting is easy in this alternative case if the presumption of the

continuance of the signal as observed over the historical period holds,

whereas in the former situation, there is nothing forecastable. Express-

ing the matter this way shifts the question from why are forecasts so
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poor, to how do we manage to fit the data with so few wavelet coeffi-

cients. The key is that while the economy is continually evolving and

suffers from random noise effects, the average observed structure at

any one point in time is quite simple, thereby giving rise to a relatively

few coefficients needed to describe the current system. The source of

this observation requires some deep analysis. Inertia obviously plays a

role in that the evolution from one state to another requires time and

the system is robust to small perturbations. However, this is not likely

to be the entire explanation. A guess is that market clearing imposes

sufficient constraints on the system that fluctuations are not entirely

random, but are at least partly constrained. An alternative view is

that over any historical period, our models represent (usually) linear

approximations to a non-linear manifold. It requires only a relatively

small change in the fundamentals to induce a substantial change in

the linear approximation.

Notwithstanding the negative position taken above, there are use-

ful examples of gains in forecasting economic variables using wavelets.
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There are two sets of examples. The first is by Arino, see Arino (1996)

in which the aggregate time series is broken down into a seasonal and

a trend component by a wavelet decomposition and traditional means

are used to forecast the individual components; an aggregate forecast

can be obtained by recombining the component series. The results,

using Spanish car sales figures, are encouraging. An alternative ap-

proach also uses the idea of decomposing the signal to be forecast into

its time scale components, but instead uses neural networks on each

component to produce an overall forecast after recombining the com-

ponents, see Aussem and Murtagh (1997) and Aussem et al (1998);

the former forecasts the sun spot series and the latter forecasts five day

ahead closing equity prices. Another example that illustrates the fore-

casting process using MODWT on the Dow Jones Industrial averages

is Fryzlewicz et al.(2002). A very recent paper indicating the benefits

for forecasting using a wavelet approach is Li and Hinich (2002).

While these approaches are very promising, the basic problem still

remains that forecasting is global, whereas fitting is local. To use the
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latter to determine the former requires strong untestable assumptions;

untestable that is before the occurrence of the forecast events. There

is little evidence that the economy, or financial markets, are any more

representable as steady states than heretofore.

A criticism that might well be levelled against this approach of

separating the time series into its time scale components is that for

the longest time scales in particular, there will be a serious problem

generated by the truncation of the data series. However, this is a

problem with forecasting any series using any non-causal filter; it is

not a problem restricted to wavelets. What may not be appreciated is

that the wavelet approach stimulates innovative solutions to what is a

generic problem, see for example an article on the persistence of output

in the business cycle by time scale; Jensen and Liu (2002). Indeed, in

the wavelet approach, one is not restricted to a single solution for the

entire series; one can separate the series into its time-scale components

and apply the appropriate procedure to each component. For example,

if one component is seasonal, one can extend the series by appending
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projections of the seasonal component, where there is a trend factor

that can often be approximated by a polynomial.

4. Summary and Speculations on Potential Gains from Wavelet

Analysis

Clearly the overwhelming gain in insight into the operation of eco-

nomic forces stems from time-scale decomposition. The analysis has

confirmed that time-scale matters; that allowing for time-scale resolves

some anomalies in the literature, and that the results to date are in

accord with basic economic theory.

The empirical results indicate new avenues for theoretical research.

Either in terms of a market or with an individual, the analysis of agents

operating on several scales simultaneously requires theoretical devel-

opment in order to reconcile the various scale components; that is,

some degree of coordination between scales is needed. This challenge

is particularly acute in the context of a singe agent who is operating

on several time scales simultaneously. The empirical results indicate
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that the individual’s decision making process is more complex than

economists have allowed so far.

Another stimulus to theoretical and empirical research is the dis-

covery that the “delays” between variables in economic relationships

may well be functions of the state space and certainly there is evidence

that they vary over time. Most time series research assumes that the

delays are fixed constants and that if the maximum delay is “k,” then

all delays are present from 1 to k. This latter assumption was ques-

tioned and empirically refuted in Ramsey and Anderson (2002) where

the authors discovered using the time series version of multivariate

adaptive regression splines, MARS, that many of the delays between

1 and the maximum value were zero. Now we recognize that any delay

may well vary over the sample period. This discovery also stimulates

interesting theoretical and further empirical research. First, can we

discover the mechanisms that explain the variation in delays, does the

presence of time varying delays resolve many puzzles about the lack

of stability in economic and financial relationships? To what extent
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are the delays controllable through policy variations.

In a similar vein, the discovery in the context of financial data that

there is evidence of very low frequencies, but that these frequencies

wax and wane in amplitude provides an important insight. Stan-

dard procedures are unlikely to discover these time varying ampli-

tudes. Nevertheless, the empirical result indicates that there is once

again both a theoretical and an empirical challenge in that we need

to confirm the extent of this phenomenon and then to elucidate the

theoretical reasons that explain the occurrence.

The distinction between noise suppression and noise averaging is

a very important innovation in econometric analysis. Increasingly,

economists are paying more careful attention to discontinuities and

regime shifts. The usual approach obfuscates the discontinuous changes

that are being sought, whereas the wavelet approach of noise suppres-

sion by determining a noise threshold facilitates detecting the precise

location of the regime shift or discontinuity in the relationship. If

not wavelets, certainly the use of noise thresholds, should become the
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standard for analysis in models that involve discontinuities and regime

shifts.

Lastly, the empirical results on forecasting introduce some novel

ideas, but the overall benefit is open to debate. As argued above, the

difficulty is not so much with the use of wavelets, but the difficulties

in forecasting in the context of continuously evolving and constantly

randomly shocked economic systems. The major innovation in fore-

casting is to recognize that by deconstructing the total series into

its constituent time scales, it is possible to tailor specific forecasting

techniques to each time scale series and thereby gain in efficiency of

forecast. This approach will be particularly beneficial in those circum-

stances where the relative amplitudes of the constituent time scales are

varying over time. Wavelets provide yet another advance on the stan-

dard approach in that the wavelet procedure facilitates the construc-

tion of approximations to the formation of forecasts that are based on

non-causal filters. That is, in such cases one is faced with the problem

that one has to “forecast” half the length of a non-causal filter merely
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to obtain a one-step-ahead forecast. This is a common problem; the

advantage of the wavelet approach is that one can tailor “optimum”

extensions using time-scale deconstruction.

There are other avenues created by the wavelet approach. One in-

teresting research line that has not yet been explored is to examine the

standard assumption that the important variations in the economy are

in terms of the business cycle and that the period of the business cycle

is between three and six years. If this were true, the wavelet approach

should detect very strong amplitudes for time-scale relationships at

those periods. For non-durable goods production, we know that this

is not true, for example, see Ramsay and Ramsey (2002) where there

is reported a detailed examination of the seasonal and ”business cy-

cle” components of non-durable goods production. One could consider

broadening the scope of the enquiry to examine the extent to which

there are important resonating time-scales of any period. Preliminary

analysis indicates a more complicated picture in that there seems to

be considerable oscillation in the amplitudes of the higher time-scales.
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This result in itself, if confirmed, indicates interesting opportunities

for research in that at the least the business cycle is highly variable

in length and that the variation in relevant time-scale may well be

subject to economic analysis.

An area of application of wavelets that should provide extensive

and deep insights is in the analysis of the term structure of interest

rates. Nowhere else is the role of the horizon of the decision maker

on market outcomes so clearly indicated. Further, the available data

on interest rates and bond maturities encapsulate the distinctions be-

tween decision makers with different time horizons. Wavelet analy-

sis should provide insight into the relationship across time scales and

therefore across bond maturities as well as the dependence of the term

structure on economic conditions.

The comments above have only begun to indicate the opportuni-

ties for research that are introduced by the wavelet approach. There

are many other avenues that I have not introduced in this short arti-

cle. For example, nothing has been said about bivariate wavelets that
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might well prove to be very useful in economic analysis, especially in

those areas examining the dependence of economic relationships on

geographic regions, or on the effects of social contiguity.

It is safe to claim that we will be impressed by the innovations

that will be stimulated by the use of wavelets in empirical economic

research over the next decade.
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