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Abstract

This paper re-examines the Rouwenhorst method of approximating �rst-order autoregressive

processes. This method is appealing because it can match the conditional and unconditional

mean, the conditional and unconditional variance and the �rst-order autocorrelation of any

AR(1) process. This paper provides the �rst formal proof of this and other results. When

comparing to �ve other methods, the Rouwenhorst method has the best performance in approxi-

mating the business cycle moments generated by the stochastic growth model. In addition, when

the Rouwenhorst method is used, moments computed directly o¤ the stationary distribution are

as accurate as those obtained using Monte Carlo simulations.
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1 Introduction

In macroeconomic models, the exogenous stochastic process is typically assumed to follow a sta-

tionary �rst-order autoregressive process. Two well-known examples are the asset pricing model à

la Lucas (1978), and the standard real business cycle (RBC) model. In Lucas�model, the stochastic

dividend stream is assumed to follow a Markov process. In the RBC model, the logarithm of the

productivity shock is assumed to follow a Gaussian AR(1) process. In order to solve these mod-

els numerically, the continuous-valued autoregressive process is usually approximated by a discrete

state-space Markov chain. To this end, researchers typically employ the approximation method

proposed by Tauchen (1986), or the quadrature-based method developed in Tauchen and Hussey

(1991). Although these methods di¤er substantially in details, the underlying idea is the same, that

is to construct a discrete state-space Markov chain with transition probabilities that provide a good

approximation for the conditional density of the autoregressive process. For AR(1) processes with

low persistence, these methods can generate an accurate approximation even when a very coarse

state space is used in the approximate Markov chain. However, the performance of these methods

deteriorates when the serial correlation is very close to one, a problem that has been examined in

the recent studies by Flodén (2008) and Lkhagvasuren and Galindev (2008).1 These studies show

that the accuracies of the Tauchen (1986) and the Tauchen-Hussey method are signi�cantly lowered

when the serial correlation of the underlying process is greater than 0.95, and that the problem

persists even if one increases the number of states in the Markov chain.

This problem with the Tauchen (1986) and the Tauchen-Hussey method raises concerns because

macroeconomic studies often employ highly persistent processes. This calls for a more reliable

technique to approximate highly autocorrelated processes. The main objective of this paper is to

consider such a technique. More speci�cally, the current study re-examines a discrete approximation

method �rst proposed in Rouwenhorst (1995). Similar to the aforementioned methods, the Rouwen-

horst method is about the construction of an approximate discrete state-space Markov chain. But

unlike the other methods, the transition probabilities of the Markov chain are not intended to mimic

the conditional distribution of the underlying AR(1) process. This might seem like a weakness at

�rst, but the Rouwenhorst method has a number of desirable features that are not matched by

1This weakness is also acknowledged in the original papers. In Tauchen (1986, p.179), the author notes that
�Experimentation showed that the quality of the approximation remains good except when � [the serial correlation]
is very close to unity.� In Tauchen and Hussey (1991), the authors note that for processes with high persistence,
�adequate approximation requires successively �ner state spaces.�
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the other methods. First, only a few parameters are used in constructing the approximate Markov

chain under this method. It is thus much more parsimonious and much easier to implement than the

quadrature-based methods. Second, the constructed Markov chain can be calibrated to match �ve

important statistics of any stationary AR(1) process. These are the conditional and unconditional

mean, the conditional and unconditional variance, and the �rst-order autocorrelation. Thus, even

though the transition probabilities of the Markov chain do not mimic the conditional distribution

of the underlying AR(1) process, it can still exactly match the �rst two moments. Third, the

Rouwenhorst method is particularly desirable for approximating Gaussian AR(1) processes. This

is because the invariant distribution of the constructed Markov chain is a binomial distribution,

which converges to the standard normal distribution when the number of states in the state space

is su¢ ciently large.

Some of these features have been mentioned in Rouwenhorst (1995). But a formal proof of these

results is still lacking. It is also unclear whether matching the moments of the AR(1) process is

important in terms of solving dynamic general equilibrium models. In quantitative studies, obtaining

a good approximation for the AR(1) process is seldom an end in itself. Thus a more appropriate

metric for evaluating approximation methods in general would be their impact on the computed

solutions of the general equilibrium models. Very few attempts have been made to assess the

relative performance of the Rouwenhorst method and other approximation methods on this ground.

Thus it remains unclear how the choice of approximation method would a¤ect the accuracies of the

computed solutions in these models. The current study is intended to �ll these gaps.

The main contribution of this paper is two-fold. First, the paper provides formal proofs of all

the results mentioned above. These results encompass the claims made in Rouwenhorst (1995).

They also extend and generalize those claims in two ways. (i) Rouwenhorst mentions that when the

transition matrix of the approximate Markov chain is symmetric, the invariant distribution is given

by a binomial distribution. The current study shows that the invariant distribution is binomial even

if the symmetric assumption is relaxed. (ii) Rouwenhorst also claims that in the symmetric case, the

approximate Markov chain can be calibrated to match the unconditional mean, the unconditional

variance and the �rst-order autocorrelation of any stationary AR(1) process. This paper shows that

the Markov chain can also match the conditional mean and the conditional variance.

The second contribution of this paper is to compare the Rouwenhorst method to �ve other ap-

proximation methods that are commonly used in the literature. These include the Tauchen (1986)
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method, the original quadrature-based method developed in Tauchen and Hussey (1991), two varia-

tions of this method considered in Flodén (2008), and the Adda-Cooper (2003) method. To achieve

this, the prototypical stochastic neoclassical growth model without leisure is used as the analytical

vehicle.2 There are two main reasons why we choose this particular model. First, the neoclassical

growth model is by far the most common analytical framework in macroeconomics. Variations of

the original model have been used to study a wide range of economic issues. Second, it is possi-

ble to derive closed-form solutions for the neoclassical growth model under certain speci�cations.

This property of the model provides tremendous convenience for evaluating the accuracy of the

approximation methods.

The main criterion for evaluating the six approximation methods is the accuracy in approxi-

mating the business cycle moments as predicted by the stochastic growth model. Two approaches

to generating these moments are considered. In the baseline approach, an approximation for the

stationary distribution of the state variables is �rst derived. The moments of interest are then

computed directly from this distribution. In the second approach, the business cycle moments are

generated using the Monte Carlo simulation method. This involves simulating the model using the

actual AR(1) process and the computed policy function, and thus does not require approximating

the stationary distribution. One major di¤erence between these two approaches is the sources of the

errors that they introduce. While both methods su¤er from errors in the computation of the policy

function, under the baseline approach, additional errors arise when approximating the stationary

distribution. However, this approach does not su¤er from the sampling errors that the simulation

method generates.

One important �nding of this paper is that, regardless of which approach is taken, the choice

of approximation method can have a large impact on the accuracy of the computed business cycle

moments. Under the baseline approach, the choice of discretization method has a large impact on

the accuracy of the stationary distribution approximation that is used to compute the moments. In

general, a method that generates a good approximation for the moments of the AR(1) process also

tends to yield an accurate approximation for the stationary distribution. The Rouwenhorst method

has the best performance in this regard, followed by an improved version of the Tauchen (1986)

method. In the sensitivity analysis, it is shown that the superior performance of the Rouwenhorst

2The same model is used in Taylor and Uhlig (1990) and the companion papers to illustrate and compare di¤erent
solution methods. More recently, Aruoba, Fernández-Villaverde and Rubio-Ramírez (2006) use the same model, but
with labor-leisure choice, to compare di¤erent solution methods.
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method is robust under a wide range of parameter values.

When the Monte Carlo simulation method is used to generate the business cycle moments,

no single method dominates all others in all cases. With a logarithmic utility function and full

depreciation, the six methods yield almost identical results. When a more realistic value of the

depreciation rate is used, the relative performance of the six methods depends on the number of

states in the Markov chain. When a rather coarse state space is used, the Rouwenhorst method

again has the best overall performance. However, when the �neness of the state space increases, the

modi�ed Tauchen (1986) method, the original Tauchen-Hussey method and its variation all perform

as well as the Rouwenhorst method.

Another interesting �nding is that the baseline approach, equipped with the Rouwenhorst

method, performs as well as the simulation method in generating the business cycle moments. This

result is of interest because the simulation method is considered standard practice in estimating

unknown statistics of stochastic models. However, our results show that a high degree of accuracy in

the business cycle moments generated from the neoclassical growth model can be achieved without

simulation.

The current study is closest in spirit to Flodén (2008) and Lkhagvasuren and Galindev (2008).

The main objective of Flodén (2008) is to compare the relative performance of various discretization

methods in approximating univariate AR(1) processes. The author �nds that existing methods, such

as the Tauchen (1986) method and the Tauchen-Hussey method, are not suitable for approximating

very persistent processes. He then proposes a variation of the original Tauchen-Hussey method

which is more robust than the other methods. There are two major di¤erences between this and

the current study. First, Flodén does not consider the Rouwenhorst method. Second, this author

does not consider the impact of the discretization procedure on the solutions of dynamic general

equilibrium models. Lkhagvasuren and Galindev (2008) is another recent study on the same issue.

The main objective of this paper is to develop an approximation method for vector autoregres-

sive processes with correlated error terms. Under the proposed method, the original multivariate

process is decomposed into a number of independent univariate AR(1) processes. These indepen-

dent processes are then approximated using the conventional methods. Lkhagvasuren and Galindev

show, through a few numerical examples, that the Rouwenhorst method outperforms other methods

in approximating moments of univariate AR(1) processes. In contrast, the current study formally

proves that the Rouwenhorst method can be used to match exactly a number of key statistics of
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any stationary AR(1) process.

The rest of this paper is organized as follows. Section 2 presents the Rouwenhorst method and

the analytical results pertaining to this method. Section 3 presents the numerical results. Section

4 concludes.

2 The Rouwenhorst Method

Consider the following AR(1) process

zt = �zt�1 + "t; with j�j < 1; (1)

and "t is a white noise with variance �2": The AR(1) process is covariance-stationary with mean zero

and variance

�2z =
�2"

1� �2 : (2)

In addition, if "t is normally distributed in each period, then zt is also normally distributed.

Rouwenhorst (1995) proposes a discrete approximation to the AR(1) process in (1). This involves

constructing an N -state Markov chain characterized by (i) a symmetric and evenly-spaced state

space YN = fy1; :::; yNg ; with y1 = � and yN =  ; and (ii) a transition matrix �N : For any N � 2;

the transition matrix is determined by two parameters, p; q 2 (0; 1) ; and is de�ned recursively as

follows:

Step 1: When N = 2; de�ne �2 as

�2 =

264 p 1� p

1� q q

375 :
Step 2: For N � 3; �rst construct the N -by-N matrix

p

264 �N�1 0

00 0

375+ (1� p)
264 0 �N�1

0 00

375
+(1� q)

264 00 0

�N�1 0

375+ q
264 0 00

0 �N�1

375 ; (3)
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where 0 is a (N � 1)-by-1 column vector of zeros.

Step 3: Divide all but the top and bottom rows by two so that the elements in each row sum to

one.

One problem with the Rouwenhorst method is that the matrix �N generated by the three-step

procedure is very di¢ cult to work with analytically. For this reason, we begin our analysis by

o¤ering a new, analytically tractable procedure for generating the Rouwenhorst matrix. Using this

new procedure, it is shown that a Markov chain with state space YN and transition matrix �N has

a unique invariant distribution in the form of a binomial distribution.

2.1 Reconstructing the Rouwenhorst Matrix

For any p; q 2 (0; 1) ; and for any integer N � 2; de�ne a system of polynomials as follows

� (t;N; i) � [p+ (1� p) t]N�i (1� q + qt)i�1 ; (4)

for i = 1; 2; :::; N: The polynomials in (4) can be expanded to become

� (t;N; i) =
NX
j=1

�
(N)
i;j t

j�1; for i = 1; 2; :::; N: (5)

De�ne an N -by-N matrix �N =
h
�
(N)
i;j

i
using the coe¢ cients in (5). Using the generating function

in (4), one can derive the elements in �N recursively using the elements in �N�1; for N � 1 � 2:

The details of this procedure are described in Appendix A. The main result of this subsection is

Proposition 1 which states that the matrix �N is identical to the Rouwenhorst matrix �N for any

integer N � 2: All proofs can be found in Appendix B.

Proposition 1 For any N � 2; and for any p; q 2 (0; 1) ; the matrix �N de�ned above is identical

to the Rouwenhorst matrix �N generated by Steps 1-3.

The next result states that �N is a stochastic matrix with non-zero entries. To begin with, set

t = 1 in both (4) and (5) to obtain

NX
j=1

�
(N)
i;j = 1; for i = 1; 2; :::; N:
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This means the elements in any row of �N sum to one. If, in addition, �(N)i;j � 0 for all i and j,

then �N is a stochastic matrix. This is proved in the following lemma.

Lemma 2 For any N � 2; the matrix �N de�ned above is a stochastic matrix with no zero entries.

2.2 Discrete State-Space Markov Chain

Consider a Markov chain with a symmetric and evenly-spaced state space YN = fy1; :::; yNg de�ned

over the interval [� ; ] : The transition matrix of the Markov chain is given by �N =
h
�
(N)
i;j

i
as

de�ned above. The following result follows immediately from Lemma 2.

Proposition 3 For any N � 2; the Markov chain with state space YN = fy1; :::; yNg and transi-

tion matrix �N has a unique invariant distribution �(N) =
�
�
(N)
1 ; :::; �

(N)
N

�
, where �(N)i � 0 andPN

i=1 �
(N)
i = 1:

Rouwenhorst mentions that in the symmetric case where p = q; the unique invariant distribution

is a binomial distribution with parameters N � 1 and 1=2: The main result of this subsection is to

show that the unique invariant distribution is binomial for any p; q 2 (0; 1) :

Since the invariant distribution is unique, it can be solved by the guess-and-verify method. Let

s � 1�q
2�(p+q) 2 (0; 1) : The guess for �(N); represented by b�(N); is a binomial distribution with

parameters N � 1 and 1� s: This means

b�(N)i =

�
N � 1
i� 1

�
sN�i (1� s)i�1 ; for i = 1; 2; :::; N: (6)

It is easy to check that this is the actual solution when N = 2: The result for the general case is

established in Proposition 4.

Proposition 4 For any N � 2; the invariant distribution of the Markov chain de�ned above is a

binomial distribution with parameters N � 1 and 1� s:

Some of the conditional and unconditional moments of the Markov chain are listed in Table 1.

The mathematical derivations of these results can be found in Appendix C.
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Table 1: Selected Moments of the Markov Chain

Conditional Mean E (yt+1jyt = yi) (q � p) + (p+ q � 1) yi

Conditional Variance var (yt+1jyt = yi)
4 2

(N�1)2 [(N � i) (1� p) p+ (i� 1) q (1� q)]

Unconditional Mean E (yt)
(q�p) 
2�(p+q)

Unconditional Second Moment E
�
y2t
�

 2
n
1� 4s (1� s) + 4s(1�s)

N�1

o
First-order Autocovariance Cov (yt; yt+1) (p+ q � 1) var(yt)

First-order Autocorrelation Corr(yt; yt+1) p+ q � 1

2.3 Approximating AR(1) Processes

The task at hand is to approximate a given stationary AR(1) process with an N -state Markov chain.

Let fztg be a stationary AR(1) process as de�ned in (1). Conditional on the realization of zt�1; the

mean and variance of zt are given by

E (ztjzt�1) = �zt�1 and var (ztjzt�1) = �2":

Next, de�ne an N -state discrete Markov process fytg as in Section 2.2 with

p = q =
1 + �

2
and  =

p
N � 1�": (7)

Using the equations listed in Table 1, it is immediate to see that the resulting Markov chain has the

same unconditional mean, unconditional variance and �rst-order autocorrelation as fztg : Suppose

yt = yi for some t � 0 and for some yi in the state space YN : The conditional mean and conditional

variance of yt+1 are given by

E (yt+1jyt = yi) = �yi and var (yt+1jyt = yi) = �2":

Thus the Markov chain fytg has the same conditional mean and conditional variance as the AR(1)

process fztg :

Two remarks regarding this procedure are worth mentioning. First, under the Rouwenhorst

method, the approximate Markov chain is constructed using � and �2" alone. In particular, the
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transition matrix �N is not a discretized version of the conditional distribution of zt: This is the

fundamental di¤erence between this method and the ones proposed by Tauchen (1986) and Tauchen

and Hussey (1991). Second, the above procedure can be applied to any stationary AR(1) process,

including those with very high persistence. Thus, unlike the other two methods, the one proposed

by Rouwenhorst can always match the unconditional variance and the persistence of zt:

Suppose now that the disturbance term "t in the AR(1) process is normally distributed in each

period t: Then the distribution of zt is a normal distribution. In this case, the invariant distribution

of the Markov chain fytg can provide a good approximation for the distribution of zt: As shown in

Proposition 4, the invariant distribution of yt is always given by a binomial distribution. Under (7),

the mean and variance of the invariant distribution are zero and �2 � �2"=
�
1� �2

�
, respectively.

Thus the standardized process fyt=�g would converge to the standard normal distribution when N

is made su¢ ciently large. According to the Berry-Esséen Theorem, the rate of convergence is on

the order of N�1=2: This property is also mentioned in Rouwenhorst (1995).

3 Stochastic Neoclassical Growth Model

Consider the planner�s problem in the stochastic neoclassical growth model,

max
fCt;Kt+1g1t=0

E0

" 1X
t=0

�tU (Ct)

#

subject to

Ct +Kt+1 = AtK
�
t + (1� �)Kt;

Ct;Kt+1 � 0;

where Ct denotes consumption at time t; Kt denotes capital and At is the stochastic technological

factor. The function U (�) is the per-period utility function. The parameter � 2 (0; 1) is the

subjective discount factor, � 2 (0; 1) is the share of capital income in total output and � 2 (0; 1] is

the depreciation rate of capital. The logarithm of the technological shock, represented by at � lnAt;

is assumed to follow an AR(1) process,

at+1 = �at + "t+1; (8)
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where "t+1 � i.i.d. N
�
0; �2"

�
and � 2 (0; 1) : Conditional on at = a; the random variable at+1

is normally distributed with mean �a and variance �2": Let F (�ja) be the conditional distribution

function. For any given value of a, de�ne K (a) by

K (a) =

�
exp (a)

�

� 1
1��

:

Then, conditional on at = a; the state space of capital can be restricted to K (a) =
�
0;K (a)

�
: The

state space of the stochastic growth model is given by

S = f(K; a) : K 2 K (a) ; a 2 Rg :

The Bellman equation for the planner�s problem can be written as

V (K; a) = max
K02K(a)

�
U
�
exp (a)K� + (1� �)K �K 0�+ � Z V

�
K 0; a0

�
dF
�
a0ja

��
: (9)

The solution of this problem includes a value function V : S ! R and a policy function g :

S ! R: The latter speci�es the law of motion for capital. With logarithmic utility function and

full depreciation, the policy function and the stationary distribution can be derived analytically.

Speci�cally, the policy function for next-period capital (in logarithmic terms) is given by

kt+1 = g (kt; at) � ln�� + at + �kt: (10)

The stationary distribution of (k; a) is a bivariate normal distribution with mean vector

�0 =

�
ln(��)
1�� 0

�
;

and variance-covariance matrix

� =

264 �2k �ka

�ka �2a

375 ;
where

�2k =
(1 + ��)�2a

(1� �2) (1� ��) ;

�ka =
��2a
1� ��; and �2a =

�2"
1� �2 :
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Using these closed-form solutions, we can derive analytically the business cycle moments. These

results are then used to assess the relative performance of six di¤erent discretization methods.

3.1 Discretizing the AR(1) Process

The �rst step in solving the Bellman equation is to devise an approximation for the integral in the

objective function. This typically involves replacing the AR(1) process in (8) with a discrete state-

space Markov chain. Formally, de�ne an N -state Markov chain with state space A = fa1; :::; aNg

and transition matrix � = [�i;j ] : The Bellman equation can then be written as

eV (K; ai) = max
K02K(ai)

8<:U �exp (ai)K� + (1� �)K �K 0�+ � NX
j=1

eV �K 0; aj
�
�i;j

9=; ; (11)

for every ai in A. The solution of this problem, eV ; is an approximation of the actual value function.
In the following section, six di¤erent methods for constructing the Markov chain are compared.

These include the �ve described below and the Rouwenhorst method.

Tauchen (1986) method

Under this method, an evenly-spaced state space A = fa1; :::; aNg is used, with

aN = �a1 =
M�"p
1� �2

; (12)

where M is a positive real number. The step between any two grid points is given by h =

(aN � a1) = (N � 1) : Let � be the probability distribution function for the standard normal dis-

tribution. For any i = 1; :::; N; the transition probabilities of the Markov chain are given by

�i;1 = �

�
a1 � �ai + h=2

�"

�
;

�i;N = 1� �
�
aN � �ai � h=2

�"

�
;

and

�i;j = �

�
aj � �ai + h=2

�"

�
� �

�
aj � �ai � h=2

�"

�
;
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for j = 2; :::; N � 1: Tauchen states that if the state space A is su¢ ciently �ne, then the conditional

distribution of the discrete process will converge to the conditional distribution function F (a0jai) :

One drawback of this method is that its performance is strongly a¤ected by the choice of M in

(12). To the best of our knowledge, there is no established rule for determining this parameter. In

Tauchen (1986), the author sets M = 3 but o¤ers no justi�cation for this choice. Flodén (2008)

sets M = 1:2 ln (N) : Hence the width of the state space is increasing in the number of states.

As explained in the results section, Flodén�s choice of M is the main reason why he �nds that

the Tauchen (1986) method performs poorly in approximating highly persistent processes. In all

the results reported below, M is calibrated to match the standard deviation of the original AR(1)

process. This approach gives the method its best chance in approximating the AR(1) process.

We choose to target �a instead of � because, relative to �a, the persistence parameter � is well

approximated under this method for a range of values of M and degrees of persistence.

The Quadrature-Based Methods

This class of methods is based on the Gauss-Hermite quadrature. The general procedure is as

follows. First, the elements of the state space A are determined by

ai =
p
2�xi; for i = 1; 2; :::; N;

where fxig are the Gauss-Hermite nodes over [�1;1] : Let
�
�j
	
are the corresponding Gauss-

Hermite weights. The elements in the transition matrix � are then given by

�i;j =
f (aj jai)
f (aj j0)

wj
si
;

where wj = �j=
p
�; the function f (aj jai) is the density function for a normal distribution with

mean �ai and variance �2; and

si =

NX
n=1

f (anjai)
f (anj0)

wn:

The only di¤erence between the original method considered in Tauchen and Hussey (1991) and

the variations considered in Flodén (2008) is the choice of �: In the original version, the standard

deviation � is taken to be �": In the �rst variation, the standard deviation of at is used instead, i.e.,

� = �a = �"=
p
1� �2. In the second variation, � is a weighted average of �a and �": In particular,

13



� = !�" + (1� !)�a; with ! = 0:5 + 0:25�:

The Adda-Cooper Method

The �rst step of this method is to partition the real line into N intervals. These intervals are

constructed so that the random variable at has an equal probability of falling into them. Formally,

let In = [xn; xn+1] be the nth interval with x1 = �1 and xN+1 = +1: The cut-o¤ points fxngNn=2
are obtained by solving the following system of equations:

�

�
xn+1
�a

�
� �

�
xn
�a

�
=
1

N
; for n = 1; 2; :::; N;

where � is the probability distribution function for the standard normal distribution. The nth

element in the state space A = fa1; :::; aNg is then given by the mean value of the nth interval,

i.e., an = E [aja 2 In] : For any i; j 2 f1; 2; :::; Ng ; the transition probability �i;j is de�ned as

the probability of moving from interval Ii to interval Ij in one period. Formally, this is given by

�i;j = Pr [a
0 2 Ij ja 2 Ii] :

3.2 Experiments and Evaluation

The objective of this section is to evaluate the performance of di¤erent discretization methods. To

achieve this, we focus on the business cycle moments generated by the stochastic growth model.

The main criteria for evaluating the six discretization methods is the accuracy in approximating

these moments.

Solution Method

The �rst step in computing the business cycle moments is to choose a speci�c form for the utility

function and a set of values for the parameters f�; �; �; �"; �g : In the baseline model, the utility

function is logarithmic and there is full depreciation. The full depreciation assumption is later

relaxed in Section 3.4. The other parameter values are chosen to be the same as in King and Rebelo

(1999): � = 0:33; � = 0:984; �" = 0:0072 and � = 0:979:

The next step is to discretize the state space S. First, the AR(1) process in (8) is approximated

using the methods mentioned above. The resulting N -state Markov chain is characterized by a

state space A = fa1; :::; aNg and a transition matrix � = [�i;j ] : Second, the continuous state space
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for capital is replaced by an evenly-spaced grid. De�ne the variable k � lnK: The set of grid points

for k is represented by K =
�
k1; :::; kM

	
. The discretized state space can be expressed by

bS = ��km; an� : km 2 K; an 2 A	 : (13)

In the baseline case, the number of states in the Markov chain is set to �ve and the number of

grid points for capital is 1000. After the discrete state space bS is formed, the value function and
the associated policy function are solved using the value-function iteration method described in

Tauchen (1990) and Burnside (1999). The outcome of this procedure includes a set of N�M values

of the policy function evaluated on bS. This set of values is represented by �bg �km; an�	 :
The �nal task is to compute the stationary distribution of the state variables (k; a) : The �rst

step to achieve this is to construct the transition matrix for these variables. Under the discrete

state-space method, the probability of moving from state
�
km; an

�
in bS to state �kl; aj� in bS in one

period is speci�ed by

Pr
��
k0; a0

�
=
�
kl; aj

�
j (k; a) =

�
km; an

��
=

8><>: �n;j ; if kl = bg �km; an�
0; otherwise.

(14)

The resulting NM -by-NM transition matrix is denoted P: Let b�=(b�1; :::; b�NM ) be the stationary
distribution associated with P: Formally, this is de�ned by

b�P = b�:
In principle, b� can be obtained as the eigenvector of P corresponding to eigenvalue 1, with the

normalization
PNM

i=1 b�i = 1: This method, however, is not practical when the number of grid points
in the state space is large. In the following experiments, an approximation for the stationary

distribution is obtained by iterating the equation

e�lP = e�l+1: (15)

A good approximation for b� can be obtained when l is su¢ ciently large. Given the approximate
stationary distribution e�l and the policy function bg; the business cycle moments of interest can
be computed. This process of computing the business cycle moments is referred to below as the
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baseline approach.

An alternative route to compute the business cycle moments is to use Monte Carlo simulations.

The standard procedure involves the following steps. Draw a sequence of pseudorandom numbers

of length T = 1; 010; 000 for the disturbance term ":3 Construct the random variable at using the

actual AR(1) process given in (8). The resulting sequence is denoted featgTt=0 : Construct a sequence
of capital

nektoT
t=0

according to

ekt+1 = bg �ekt;eat� ; with ek0 given.
In general, the generated values of ekt and eat will not coincide with the grid points in bS: In this
case, linear interpolation is used to compute the value of bg �ekt;eat� : To ensure that the generated
values of ekt and eat are drawn from the stationary distribution, the �rst 10; 000 observations in either
sequence are deleted. Next, compute the sample variances and covariance as follows,

sxx =
1

T

TX
t=0

ex2t �
 
1

T

TX
t=0

ext!2 ; for x = k; a;

sak =
1

T

TX
t=0

eatekt � 1
T

TX
t=0

eat! 1
T

TX
t=0

ekt! :
The sample moments, (skk; saa; sak) ; then serve as an estimate for the variance-covariance matrix

of (k; a) :4 The moments for the other variables are obtained in the same fashion.

Baseline Results

Table 2 presents the baseline results. The six discretization methods are compared on three grounds:

(i) the accuracy in approximating the AR(1) process, (ii) the precision in approximating the sta-

tionary distribution of the state variables, and (iii) the accuracy in approximating the business cycle

moments. The table gives the ratio of the statistics computed following the above procedure to their

true values. The true values are derived using the closed-form solutions as mentioned in Section

3.1.
3The generated sequence is �rst adjusted to remove any �rst-order serial correlation in it that may be introduced

by the pseudorandom number generator. The resulting sequence is then transformed to one with mean zero and
variance �2:

4Santos and Peralta-Alva (2005) suggest that generating one single sample path of extremely long length is more
appropriate than having a large number of sample paths with much shorter length.
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Panel (A) of Table 2 shows the performance of these methods in approximating the AR(1)

process.5 As explained in Section 2.3, the transition matrix in the Rouwenhorst method (R) can be

calibrated to match exactly the persistence parameter, the standard deviation of " and the standard

deviation of a: Similarly the parameter M in the Tauchen (1986) method is calibrated to match

exactly the standard deviation of a: The required value is M = 1:6425: With this choice of M; the

Tauchen (1986) method has a relative error of about one percent in approximating the persistence

parameter. These results are in stark contrast to those reported in Flodén (2008) Table 2. In

this study, the author chooses M = 1:9313 when N = 5: As a result, the Tauchen (1986) method

generates a 12 percent error in approximating �a and a 1.5 percent error in approximating �: This

illustrates that the performance of this method is very sensitive to the choice of M:

Next, we consider the accuracies of these methods in approximating the stationary distribution of

the state variables. Panel (B) of Table 2 shows the performance of these methods in approximating

the standard deviation of k and the covariance between a and k. In general, a discretization

method that generates an accurate approximation for �a also has high precision in approximating

these two moments. Among these six methods, the Rouwenhorst method has the highest accuracy

in approximating these two moments. The relative errors for the two are about 0.14 percent.

The Tauchen (1986) method is the second best. These two methods outperform the others by a

signi�cant margin.

Next, we compare the performance of these methods in approximating the business cycle mo-

ments. In particular, we focus on the standard deviation of output, consumption and investment

(in logarithmic terms) and the �rst-order autocorrelation of output (in logarithmic terms).6 The

results are shown in panel (C) of Table 2. Again the Rouwenhorst method has the best overall per-

formance in terms of approximating all these moments. However, with M = 1:6425; the Tauchen

(1986) method can produce highly accurate approximations that are comparable to those generated

by the Rouwenhorst method. As mentioned above, the performance of this method is very sensitive

to the choice of M: If we set M = 1:9313 as in Flodén (2008), then the Tauchen (1986) method

would generate a 12-percent error in approximating the standard deviations.7

5The relative errors reported in panel (A) are directly comparable to those reported in Flodén (2008) Table 2 for
n = 5 and � = 0:98 except for two di¤erences. The �rst di¤erence is that Flodén did not consider the Rouwenhorst
method. The second di¤erence lies in the choice of M in the Tauchen (1986) method. This point is elaborated below.

6The �rst-order autocorrelation of consumption and investment (in logarithmic terms), and the cross-correlation
between output and these variables are not shown in the paper. These results are available from the authors upon
request.

7These results are not shown in here but are available from the authors upon request.
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Finally, two things can be observed when comparing across all three panels. First, the relative

errors in approximating �a are very similar to those in approximating the standard deviation of

capital, output, consumption and investment. Second, the relative errors in approximating � are

close to those in approximating the �rst-order autocorrelation for output. These results suggest that

a good approximation for the moments of the AR(1) process is important in obtaining an accurate

approximation for the business cycle moments.

Error Analysis

The relative errors reported in Table 2 have a number of sources. For the purpose of this discussion,

we classify these into two groups. The �rst group of errors arises when solving the Bellman equation

in (9). This includes the errors that arise when we restrict the choice of next-period capital to

a discrete set of values, and the truncation errors that emerge when we approximate the �xed

point of the Bellman equation using a �nite number of iterations. The second group of errors

occurs during the computation of the stationary distribution of the state variables. First, the

transition matrix P , constructed using the discrete Markov chain and the computed policy function,

is an approximation of the actual transition function. Second, truncation errors arise when we

approximate the stationary distribution using a �nite number of iterations. The second group of

errors would not occur if Monte Carlo simulations are used to generate the business cycle moments.

In this case, however, a new source of error arises when we estimate the actual moments by a �nite

sample.

Using the actual policy function, it is possible to disentangle the two groups of errors. Con-

sider the following experiment. Construct a discrete state space bS as in (13) using one of the

six discretization methods. Construct the transition matrix P as in (14) but replace the computed

policy function bg (k; a) with the actual one in (10). Iterate equation (15) successively to obtain
an approximation for the stationary distribution of the state variables. Finally, use the approxi-

mate stationary distribution and the actual policy function g (k; a) to compute the business cycle

moments. By replacing bg (k; a) with the actual policy function, this procedure e¤ectively removes
all the errors involved in solving the Bellman equation. The remaining errors are thus due to the

approximation of the stationary distribution of the state variables. The results of this procedure

are reported in panel (B) of Table 3. To facilitate comparison, the baseline results are shown in

panel (A) of the same table.
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It is immediate to see that the �gures in the two panels are almost identical. Replacing the

computed policy function with the actual one does not a¤ect the approximation of the technology

shock process. As a result, the approximated values for �; �" and �a are identical in the two sets

of results. As for the standard deviations of the endogenous variables, only minor discrepancies

are observed in the two panels. In other words, even though we have removed all the errors

in computing the policy function, the baseline results remain largely unchanged. This has two

implications. First, this implies that almost all the relative errors in the baseline case are due to

the approximation of the stationary distribution b�: Second, this means the choice of discretization
method has only a relatively minor impact on the solution of the Bellman equation. In sum, this

experiment illustrates that the choice of discretization method matters because it would signi�cantly

a¤ect the approximation of the stationary distribution.

The same conclusion can be drawn from another experiment. Suppose now the business cycle

moments are computed using Monte Carlo simulations. More speci�cally, after solving the dynamic

programming problem in (9), the model is simulated using the actual AR(1) process and the com-

puted policy function bg (k; a) : Under this procedure, the choice of discretization method only a¤ects
the simulated moments through the computed policy function. Table 4 presents the relative errors

obtained under this procedure alongside with the baseline results. The two methods of generating

business cycle moments have produced very di¤erent results. When the model is simulated using

the actual AR(1) process, all six discretization methods generate almost identical results. This

again implies that the di¤erences in the baseline results across the six discretization methods are

due to the approximation of the stationary distribution b�:
Finally, when comparing between the two panels of Table 4, one can see that the baseline

approach, when combined with the Rouwenhorst method, can generate estimated moments that are

as accurate as those produced by the simulation method with one million draws.

3.3 Robustness Check

In this section, it is shown that the relative performance of the six discretization methods are robust

to changes in (i) the number of points in the discrete state space N , (ii) the persistence parameter

�, and (iii) the standard deviation of the white noise process �":
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Changing the Number of States

Table 5 compares the performance of the six methods under di¤erent choices of N . Intuitively,

increasing the number of states in the Markov chain should improve the performance of the dis-

cretization methods. This is true for the Rouwenhorst method, the Tauchen (1986) method, the

original Tauchen-Hussey method, the F-2 method, and the Adda-Cooper method. However, this is

not true for the F-1 method.

The results in Table 5 show that the superior performance of the Rouwenhorst method is robust

even when there are only two states in the discrete Markov chain. The relative errors in approx-

imating the standard deviations of output, capital, consumption and investment are similar in all

three cases. In particular, increasing the number of states from �ve to ten increases the precision

only marginally. The original Tauchen-Hussey method has the lowest precision among the six in all

three cases. Even when the number of states is increased to ten, the Tauchen-Hussey method can

only replicate 57 percent of the actual value of �y. The performance of this method is much better

when approximating �y but the precision is still the lowest among the six.

Next, we consider the performance of the Tauchen (1986) method. For each value of N; we adjust

the parameter M so as to match the actual value of �a: The required values for N = 2 and N = 10

are 1.0000 and 1.9847, respectively. In other words, in order to match the standard deviation �a; a

wider state space (i.e., a larger value ofM) is needed when the number of states increases. WhenM

is adjusted in this fashion, increasing the number of states in the Tauchen (1986) method increases

the precision only marginally. For instance, the relative error in approximating �y reduces from

0.35 percent to 0.22 percent when N increases from �ve to ten.

Changing the Persistence Parameter

Table 6 compares the performance of the six methods under di¤erent values of �: The superior

performance of the Rouwenhorst method is robust to changes in this parameter. In particular,

increasing the persistence of the AR(1) process from 0.5 to 0.979 has very little impact on its

precision. This shows that the Rouwenhorst method is a reliable technique for approximating

stationary AR(1) process in general.

Similar to the results in Table 5, the parameter M in the Tauchen (1986) method is adjusted

in each case so as to match the actual value of �a: The resulting values are shown in Table 6. In
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general, a wider state space (i.e., a larger value of M) is needed for less persistent processes. When

M is calibrated to match �a, the Tauchen (1986) method has better performance in approximating

highly persistent processes. For instance, when � = 0:5 the relative errors in approximating �ka and

�y are 4.66 percent and 1.84 percent, respectively. These become 1.34 percent and 0.36 percent,

respectively, when � = 0:979: The precision of this method in approximating the standard deviations

is not sensitive to changes in �:

The performance of the three quadrature-based methods is very sensitive to the value of �:

Similar to Flodén (2008), our results show that the quadrature-based methods work best in approx-

imating AR(1) processes with low persistence. But unlike Flodén (2008) which only focuses on the

parameters of the AR(1) process, the current study also considers the impact of these methods on

the moments of the endogenous variables. When � equals to 0.5 or 0.6, the original Tauchen-Hussey

method and its two variations can generate highly accurate approximations that are comparable to

those generated by the Rouwenhorst method. The relative errors for the business cycle moments

are all less than one percent. Within this range of �; the three quadrature-based methods are more

accurate than the Tauchen (1986) method, especially in approximating �ka and �y. However, the

accuracies of the Tauchen-Hussey method and the F-2 method deteriorate quickly when the persis-

tence parameter approaches one. For instance, the Tauchen-Hussey method has a relative error of

25 percent in approximating �y when � equals to 0.9 and an error of 61 percent when � is 0.979.

Finally, it is worth mentioning that the results of the two experiments conducted in the error

analysis section are also robust to di¤erent values of the persistence parameter. These results

are summarized as follow.8 First, the �gures reported in Table 6 are largely una¤ected when we

replace the computed policy function with the actual one. Second, when the business cycle moments

are computed using Monte Carlo simulations, all six discretization methods generate very similar

results.

Changing the Standard Deviation of the White Noise Process

The performance of the six methods under di¤erent values of �" are shown in Table 7. In terms

of approximating the AR(1) process, increasing the value of �" from 0.001 to 0.1 does not seem to

a¤ect the performance of these methods. In terms of approximating the standard deviations of the

endogenous variables and the covariance between a and k; the accuracies of the F-2 method and

8The numerical results are not shown in the paper but are available from the authors upon request.
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the Adda-Cooper method improve when the AR(1) process is less volatile. The opposite is true for

the Rouwenhorst method and the Tauchen (1986) method. The variations in the relative errors,

however, are not signi�cant. More speci�cally, increasing �" from 0.001 to 0.1 changes the relative

errors by less than two percentage points in most cases. Unlike the other methods, the performance

of the F-1 method is more sensitive to the value of �": For instance, when �" equals to 0.001 the

relative errors in approximating �k and �ka are 0.5 percent and �ve percent, respectively. These

become 1.6 percent and 2.3 percent, respectively, when �" is 0.1. Finally, the precision of all six

methods in approximating �y is not sensitive to changes in the value of �":

3.4 Relaxing the Assumption of Full Depreciation

This section evaluates the performance of the six discretization methods in solving the stochastic

growth model when the full depreciation assumption is relaxed. The rate of depreciation is now

taken to be 2.5 percent, which is the same as in King and Rebelo (1999). All other parameters

remain the same as in the baseline case. The same evaluation process is performed as in Section

3.2. For each of the six discretization methods, we compute the business cycle moments using the

baseline approach and the Monte Carlo simulation method. Without full depreciation, however, a

closed-form solution for the policy function is not available and the actual values of the business

cycle moments are unknown. Thus we �rst derive a highly accurate approximation for the actual

moments which is then used as our yardstick for comparison. To achieve this, we �rst construct

an extremely �ne state space with 2000 grid points for capital and 400 states in the Markov chain

constructed by the Rouwenhorst method. The business cycle moments are then computed using

the baseline approach described earlier. The rationale for this procedure is as follows. As explained

in the error analysis section, the baseline approach involves two groups of errors: (i) errors that

arise when solving the Bellman equation, and (ii) errors that arise when computing the stationary

distribution. When the number of grid points in the discrete state space is su¢ ciently large, the

value function iteration method is able to yield highly accurate solutions for the Bellman equation.

Thus, by adopting an extremely �ne state space, the above procedure should render the �rst group

of errors very small. As for the second group of errors, our baseline results for the full depreciation

case show that combining the Rouwenhorst method and the baseline approach can yield a highly

accurate approximation for the stationary distribution. As a robustness check on this procedure,

we double the size of the state space and �nd that it has no e¤ect on the computed statistics. The
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business cycle moments obtained under this procedure are referred to below as the true solutions.

Panel (A) of Table 8 shows the results obtained under the baseline approach for three di¤erent

values of N and Panel (B) reports the simulation results. First, note that the superior performance

of the Rouwenhorst discretization method is robust to relaxing the full depreciation assumption.

Second, the overall performance of the other methods deteriorates signi�cantly when � is less than

one. This is particularly true for the estimates of �ka and �i. For example, consider the Tauchen

(1986) method which has the second highest precision in the full depreciation case. With only

�ve states in the Markov chain and full depreciation, this method generates a relative error of 1.3

percent in approximating �ka and an error of about 0.5 percent in approximating �i (see Table 2).

These become 6.4 percent and 4.0 percent, respectively, when � equals 0.025. In contrast, relaxing

the full depreciation assumption has only a negligible e¤ect on the estimates of �y.

Third, similar to the full depreciation case, increasing the number of states in the Markov

chain usually improves the accuracy of the approximations. However, the drastic di¤erences in

the performance of the six methods remain even when N is large. For the Rouwenhorst method,

a �ve-fold increase in the number of states only marginally a¤ects the precision of the results.

However, unlike the full depreciation case, increasing the number of states does not always improve

the precision. In particular, the relatively large error in approximating �i remains even when there

are 25 states. For the original Tauchen-Hussey method, its performance improves signi�cantly when

the �neness of the state space increases. However, even when there are 25 states, this method can

only replicate 67 percent of the true value of �ka and 83 percent of the true value of �y. The overall

performance of the F-1 method is also rather disappointing in this case. A �ve-fold increase in the

number of states does not seem to have a signi�cant impact on its precision. On the other hand,

when N is large the Tauchen (1986) method and the F-2 method are able to yield highly accurate

approximations that are comparable to those generated by the Rouwenhorst method. As for the

Adda-Cooper method, relatively large errors remain even when there are 25 states. For instance,

the relative errors in approximating �ka and �i are about �ve percent.

Unlike the full depreciation case, the six discretization methods do not generate near identical

results under the Monte Carlo simulation approach. This can be seen by comparing the columns in

Panel (B) of Table 8. Thus the choice of discretization method matters even when the business cycle

moments are computed using Monte Carlo simulations. This is due to the following reason. In the

absence of full depreciation, the policy function for next-period capital (in logarithms) is no longer
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a linear function. Consequently, additional approximation errors arise when we compute g(kt; at)

for values of kt and at that are outside the discrete state space. The size of these errors depends on

the location of the grid points and hence the choice of the discretization method. As the number of

states in the Markov chain increases, the state space becomes �ner and the errors associated with

the interpolation procedure falls. For this reason, a �ve-fold increase in N signi�cantly reduces the

relative errors of the discretization methods. Under the Monte Carlo simulation approach, no single

method dominates all others in all three choices of N . When there are �ve states in the Markov

chain, the Rouwenhorst method has the best overall performance within the group. When there are

25 states, the Tauchen (1986) method, the original Tauchen-Hussey method and the F-2 method

all perform equally well as the Rouwenhorst method.

Finally, it is worth mentioning that even in the absence of full depreciation, moments computed

using the Rouwenhorst method and the baseline approach are as accurate as those obtained from

Monte Carlo simulations with one million draws.

4 Conclusions

This paper re-examines the Rouwenhorst method of constructing a discrete-valued Markov chain

to approximate a given �rst-order autoregressive process. Under this method, the constructed

Markov chain can be calibrated to match the conditional and unconditional mean, the conditional

and unconditional variance and the �rst-order autocorrelation of any stationary AR(1) process.

Because of this distinctive feature, the Rouwenhorst method is more reliable than the Tauchen

(1986) method and the Tauchen-Hussey method to approximate highly persistent processes. In

this paper, a new and simpler procedure for generating the transition matrix in the Rouwenhorst

method is developed and the �rst formal proof for all the important properties of the constructed

Markov chain is provided.

In the quantitative analysis, the Rouwenhorst method is compared to �ve other discretization

methods. These methods are evaluated based on their performance in approximating the busi-

ness cycle moments generated by the standard neoclassical growth model without leisure. Two

approaches to generate these moments are considered. In the baseline approach, an approximation

for the stationary distribution of the state variables is �rst computed. In the second approach, the

moments of interest are generated using Monte Carlo simulations. Our quantitative analysis shows
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that, under both approaches, the choice of approximation method can have a large impact on the

accuracy of the solutions. Under the baseline approach, an accurate approximation of the moments

of the AR(1) process is important in accurately approximating the business cycle moments. The

Rouwenhorst method has the best performance in this regard. Its superior performance is robust

under a wide range of parameter values. Under the second approach, no single method dominates

all others in all cases. When a realistic value of the depreciation rate is used, the Rouwenhorst

method again has the best overall performance when there are only �ve states in the Markov chain.

However, when the �neness of the state space increases, the Tauchen (1986) method, the original

Tauchen-Hussey method and the F-2 method all perform equally well as the Rouwenhorst method.

When comparing between the two approaches, it is found that combining the Rouwenhorst method

and the baseline approach can yield highly accurate approximations that are similar to those ob-

tained from Monte Carlo simulations with one million draws.

In this paper, we use a standard representative-agent model as our test model. We believe that

similar results can be obtained in heterogeneous-agent economies. However, we leave a detailed

exploration of these models for future research.
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Table 2 Baseline Results

(A) Approximating the AR(1) process

Generated Values Relative to True Values

Tauchen T-H F-1 F-2 A-C R

� 1.0097 0.9453 1.0215 1.0096 0.9993 1.0000

�" 0.8167 0.8905 0.0002 0.5019 1.5599 1.0000

�a 1.0000 0.4006 1.0215 0.7742 0.9471 1.0000

(B) Approximating the Variance-Covariance Matrix for State Variables

Generated Values Relative to True Values

Tauchen T-H F-1 F-2 A-C R

�k 1.0053 0.3882 1.0342 0.7734 0.9330 0.9986

�ka 1.0134 0.1401 1.0818 0.6071 0.8464 0.9986

(C) Approximating Business Cycle Moments

Generated Values Relative to True Values

Tauchen T-H F-1 F-2 A-C R

�y 1.0035 0.3880 1.0310 0.7763 0.9338 0.9995

�c 1.0026 0.3879 1.0295 0.7776 0.9343 1.0000

�i 1.0053 0.3882 1.0342 0.7734 0.9330 0.9986

�y 1.0036 0.9538 1.0107 1.0063 0.9807 1.0000

T-H stands for the original Tauchen-Hussey method; F-1 stands for the �rst

variation of T-H; F-2 stands for the second variation; A-C stands for the

Adda-Cooper method; R stands for the Rouwenhorst method.

Parameter values: � = 1; � = 0:33; � = 0:984; �"= 0:0072; � = 0:979; N = 5;

M = 1:6425:
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Table 3 Error Analysis

(A) Using Computed Policy Function (Baseline case)

Generated Values Relative to True Values

Tauchen T-H F-1 F-2 A-C R

� 1.0097 0.9453 1.0215 1.0096 0.9993 1.0000

�" 0.8167 0.8905 0.0002 0.5019 1.5599 1.0000

�a 1.0000 0.4006 1.0215 0.7742 0.9471 1.0000

�k 1.0053 0.3882 1.0342 0.7734 0.9330 0.9986

�ka 1.0134 0.1401 1.0818 0.6071 0.8464 0.9986

�y 1.0035 0.3880 1.0310 0.7763 0.9338 0.9995

�c 1.0026 0.3879 1.0295 0.7776 0.9343 1.0000

�i 1.0053 0.3882 1.0342 0.7734 0.9330 0.9986

�y 1.0036 0.9538 1.0107 1.0063 0.9807 1.0000

(B) Using Actual Policy Function

Generated Values Relative to True Values

Tauchen T-H F-1 F-2 A-C R

� 1.0097 0.9453 1.0215 1.0096 0.9993 1.0000

�" 0.8167 0.8905 0.0002 0.5019 1.5599 1.0000

�a 1.0000 0.4006 1.0212 0.7742 0.9471 1.0000

�k 1.0026 0.3880 1.0292 0.7777 0.9343 1.0000

�ka 1.0107 0.1400 1.0762 0.6104 0.8475 1.0000

�y 1.0026 0.3879 1.0292 0.7777 0.9343 1.0000

�c 1.0026 0.3879 1.0292 0.7777 0.9343 1.0000

�i 1.0026 0.3880 1.0292 0.7777 0.9343 1.0000

�y 1.0036 0.9537 1.0107 1.0063 0.9807 1.0000

T-H stands for the original Tauchen-Hussey method; F-1 stands for the

�rst variation of T-H; F-2 stands for the second variation; A-C stands for

the Adda-Cooper method; R stands for the Rouwenhorst method.

Parameter values: � = 1; � = 0:33; � = 0:984; �"= 0:0072; � = 0:979; N = 5;

M = 1:6425: 27



Table 4 Baseline Approach vs. Monte Carlo Simulations

(A) Baseline case

Generated Values Relative to True Values

Tauchen T-H F-1 F-2 A-C R

� 1.0097 0.9453 1.0215 1.0096 0.9993 1.0000

�" 0.8167 0.8905 0.0002 0.5019 1.5599 1.0000

�a 1.0000 0.4006 1.0215 0.7742 0.9471 1.0000

�k 1.0053 0.3882 1.0342 0.7734 0.9330 0.9986

�ka 1.0134 0.1401 1.0818 0.6071 0.8464 0.9986

�y 1.0035 0.3880 1.0310 0.7763 0.9338 0.9995

�c 1.0026 0.3879 1.0295 0.7776 0.9343 1.0000

�i 1.0053 0.3882 1.0342 0.7734 0.9330 0.9986

�y 1.0036 0.9538 1.0107 1.0063 0.9807 1.0000

(B) Monte Carlo Simulations

Generated Values Relative to True Values

Tauchen T-H F-1 F-2 A-C R

� 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

�" 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

�a 0.9955 0.9955 0.9955 0.9955 0.9955 0.9955

�k 0.9955 0.9955 0.9955 0.9955 0.9957 0.9955

�ka 0.9908 0.9908 0.9908 0.9908 0.9910 0.9908

�y 0.9955 0.9955 0.9955 0.9955 0.9955 0.9955

�c 0.9955 0.9955 0.9955 0.9955 0.9955 0.9955

�i 0.9955 0.9955 0.9955 0.9955 0.9957 0.9955

�y 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

T-H stands for the original Tauchen-Hussey method; F-1 stands for the

�rst variation of T-H; F-2 stands for the second variation; A-C stands for

the Adda-Cooper method; R stands for the Rouwenhorst method.

Parameter values: � = 1; � = 0:33; � = 0:984; �"= 0:0072; � = 0:979; N = 5;

M = 1:6425: 28
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Appendix A

Fix N � 3: The objective of this section is to derive a set of equations that can be used to describe

the elements in �N : The proof of Proposition 1 is built upon these equations.

To begin with, the elements in the �rst and the last rows of �N can be obtained by expanding

the polynomials [p+ (1� p) t]N�1 and (1� q + qt)N�1 ; respectively. Using the binomial formula,

we can obtain

�
(N)
1;j =

�
N � 1
j � 1

�
pN�j (1� p)j�1 ; (16)

and

�
(N)
N;j =

�
N � 1
j � 1

�
(1� q)N�j qj�1; (17)

for j = 1; 2; :::; N:

For all other rows, i.e., i = 2; :::; N � 1; the elements in �N can be de�ned recursively using the

elements in �N�1: Begin with the system for N � 1 � 2: The system of polynomials is given by

� (t;N � 1; i) = [p+ (1� p) t]N�1�i (1� q + qt)i�1 =
N�1X
j=1

�
(N�1)
i;j tj�1;

for i = 1; :::; N � 1: There are two ways to relate this system to the one for N :

� (t;N; i) = [p+ (1� p) t] � (t;N � 1; i) ; (18)

for i = 1; :::; N � 1; and

� (t;N; i) = (1� q + qt) � (t;N � 1; i� 1) ; (19)

for i = 2; :::; N: Substituting (5) into (18) gives

NX
j=1

�
(N)
i;j t

j�1 = [p+ (1� p) t]
N�1X
j=1

�
(N�1)
i;j tj�1

=

N�1X
j=1

p�
(N�1)
i;j tj�1 +

N�1X
j=1

(1� p)�(N�1)i;j tj ;
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for i = 1; :::; N � 1: Similarly, substituting (5) into (19) would give

NX
j=1

�
(N)
i;j t

j�1 = (1� q + qt)
N�1X
j=1

�
(N�1)
(i�1);jt

j�1

=
N�1X
j=1

(1� q)�(N�1)(i�1);jt
j�1 +

N�1X
j=1

q�
(N�1)
(i�1);jt

j ;

for i = 2; :::; N: The following can be obtained by comparing the coe¢ cients for i = 1; 2; :::; N � 1;

�
(N)
i;1 = p�

(N�1)
i;1 = (1� q)�(N�1)(i�1);1 (20)

�
(N)
i;j = p�

(N�1)
i;j + (1� p)�(N�1)i;(j�1)

= (1� q)�(N)(i�1);j + q�
(N)
(i�1);(j�1); for j = 2; :::; N � 1; (21)

and

�
(N)
i;N = (1� p)�(N�1)i;(N�1) = q�

(N�1)
(i�1);N : (22)

Appendix B

Proof of Proposition 1

Fix N � 2: The elements in the Rouwenhorst matrix �N =
h
�
(N)
i;j

i
are governed by the following

sets of equations:

For the elements in the �rst row,

�
(N)
1;j =

8>>>>>>>>>><>>>>>>>>>>:

p�
(N�1)
1;j if j = 1

p�
(N�1)
1;j + (1� p) �(N�1)1;(j�1) if j = 2; :::; N � 1

(1� p) �(N�1)1;(j�1) if j = N:

(23)

For the elements in the �nal row,
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�
(N)
N;j =

8>>>>>>>>>><>>>>>>>>>>:

(1� q) �(N�1)(N�1);j if j = 1

(1� q) �(N�1)(N�1);j + q�
(N�1)
(N�1);(j�1) if j = 2; :::; N � 1

q�
(N�1)
(N�1);(j�1) if j = N:

(24)

For the elements in row i = 2; :::; N � 1;

�
(N)
i;j =

8>>>><>>>>:
1
2

h
p�
(N�1)
i;j + (1� q) �(N�1)(i�1);j

i
if j = 1

1
2

h
(1� p) �(N�1)i;(j�1) + q�

(N�1)
(i�1);(j�1)

i
if j = N;

(25)

and for j = 2; :::; N � 1;

�
(N)
i;j =

1

2

h
p�
(N�1)
i;j + (1� p) �(N�1)i;(j�1) + (1� q) �

(N�1)
(i�1);j

+q�
(N�1)
(i�1);(j�1)

i
; (26)

For any given �N�1; the system of equations (23)-(26) de�nes a unique �N : Similarly, for any

given �N�1; the system of equations (16)-(22) de�nes a unique �N : Since �2 = �2; it su¢ ce to

show that the elements in �N generated by (16)-(22) satis�es the system (23)-(26).

Consider the �rst row (i.e., i = 1) in �N : According to (16),

�
(N)
11 = pN�1 = p�

(N�1)
11 ;

and

�
(N)
1;N = (1� p)

N�1 = (1� p)�(N�1)1;(N�1):

For j = 2; :::; N � 1; since

�
(N�1)
1;j =

�
N � 2
j � 1

�
pN�1�j (1� p)j�1 ,

�
(N�1)
1;(j�1) =

�
N � 2
j � 2

�
pN�j (1� p)j�2 ;
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and �
N � 1
j � 1

�
=

�
N � 2
j � 1

�
+

�
N � 2
j � 2

�
;

we have

�
(N)
1;j = p�

(N�1)
1;j + (1� p)�(N�1)1;(j�1):

This shows that the elements in the �rst row of �N satis�es (23). Using (17) and the same procedure,

one can show that the elements in the last row of �N satis�es (24).

The rest of the proof follows immediately from (20)-(22). For any row i = 2; :::; N � 1 in �N ;

(20) implies

�
(N)
i;1 =

1

2

h
p�

(N�1)
i;1 + (1� q)�(N�1)(i�1);1

i
:

Similarly, (21) and (22) imply

�
(N)
i;N =

1

2

h
(1� p)�(N�1)i;(N�1) + q�

(N�1)
(i�1);N

i
;

and

�
(N)
ij =

1

2

h
p�

(N�1)
ij + (1� p)�(N�1)i;(j�1) + (1� q)�

(N�1)
(i�1);j

+q�
(N�1)
(i�1);(j�1)

i
; (27)

for j = 2; :::; N � 1; respectively. Thus all the elements in row i = 2; :::; N � 1 in �N satis�es (25)

and (26). This completes the proof.

Proof of Lemma 2

It su¢ ce to check that all the elements of �N are strictly positive. From (16) and (17), it is obvious

that the elements in the �rst and the last rows are strictly positive. For the other rows, a simple

induction argument is used. First, �2 is a stochastic matrix with non-zero entries. Suppose the

result is true for N � 1 � 2: It follows from (20)-(22) that �(N)ij > 0 for i = 2; :::; N � 1 and for

j = 1; 2; :::; N: This completes the proof.
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Proof of Proposition 4

As mentioned in the proof of Proposition 1, the �rst column of �N is given by

�
(N)
i;1 = pN�i (1� q)i�1 ;

for i = 1; 2; :::; N: De�ne b�(N)i as in (6). Then

NX
i=1

b�(N)i �
(N)
i;1 =

NX
i=1

�
N � 1
i� 1

�
sN�i (1� s)i�1 pN�i (1� q)i�1

=

NX
i=1

�
N � 1
i� 1

�
(sp)N�i (1� s)i�1 (1� q)i�1

= [sp+ (1� s) (1� q)]N

= sN = b�(N)1 :

For all other columns except the �rst one, an induction argument is used to prove the result.

As mentioned in the text, the guess is correct when N = 2: Suppose the guess is correct for some

N � 2; i.e.,

b�(N)j =
NX
i=1

b�(N)i �
(N)
i;j ; for j = 1; 2; :::; N: (28)

We have already proved that this is true when j = 1; so proceeds to j = 2; :::; N + 1:

Using (6), the following can be derived

b�(N+1)i =

8>>>><>>>>:
sb�(N)i for i = 1

sb�(N)i + (1� s) b�(N)i�1 for i = 2; :::; N;

(1� s) b�(N)i�1 for i = N + 1:

(29)
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Using these one can obtain

N+1X
i=1

b�(N+1)i �
(N+1)
i;j

= b�(N+1)1 �
(N+1)
1;j +

NX
i=2

b�(N+1)i �
(N+1)
i;j + b�(N+1)N+1 �

(N+1)
(N+1);j

= sb�(N)1 �
(N+1)
1;j +

NX
i=2

h
sb�(N)i + (1� s) b�(N)i�1

i
�
(N+1)
i;j + (1� s) b�(N+1)N �

(N+1)
(N+1);j

=
NX
i=1

sb�(N)i �
(N+1)
i;j +

N�1X
i=1

(1� s) b�(N)i �
(N+1)
(i+1);j + (1� s) b�(N+1)N �

(N+1)
(N+1);j

=

NX
i=1

sb�(N)i �
(N+1)
i;j +

NX
i=1

(1� s) b�(N)i �
(N+1)
(i+1);j : (30)

Based on (21), the following can be obtained

�
(N+1)
i;j = p�

(N)
i;j + (1� p)�(N)i;j�1;

and

�
(N+1)
i+1;j = (1� q)�(N)i;j + q�

(N)
i;(j�1);

for j = 2; 3; :::; N: Substituting these into (30) gives

N+1X
i=1

b�(N+1)i �
(N+1)
i;j

= s

NX
i=1

b�(N)i

h
p�

(N)
i;j + (1� p)�(N)i;(j�1)

i
+ (1� s)

NX
i=1

b�(N)i

h
(1� q)�(N)i;j + q�

(N)
i;(j�1)

i
= [sp+ (1� s) (1� q)]

NX
i=1

b�(N)i �
(N)
i;j + [s (1� p) + (1� s) q]

NX
i=1

b�(N)i �
(N)
i;(j�1):

Using the induction hypothesis (28), the following can be obtained

N+1X
i=1

b�(N+1)i �
(N+1)
i;j = [sp+ (1� s) (1� q)] b�(N)j + [s (1� p) + (1� s) q] b�(N)j�1

= sb�(N)j + (1� s) b�(N)j�1

= b�(N+1)j ;
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for j = 2; 3; :::; N: The last line is obtained by using (29). Since
PN+1

i=1
b�(N+1)i = 1 and

PN+1
j=1 �

(N+1)
i;j =

1; the remaining equation

N+1X
i=1

b�(N+1)i �
(N+1)
i;j = b�(N+1)j ; for j = N + 1;

must be satis�ed. This completes the proof.

Appendix C

The objective of this section is to derive the moments listed on Table 1. Since it is understood

that these are moments for an N -state Markov chain, the notations �(N)i;j and �(N)j are simpli�ed to

become �i;j and �j ; respectively.

Preliminaries

The following result is used in deriving the conditional mean for the Markov chain.

Lemma 5 For any N � 2; and for i = 1; :::; N;

NX
j=1

�i;j (j � 1) = (1� p) (N � i) + (i� 1) q; (31)

NX
j=1

�1;j (j � 1)2 =

24 NX
j=1

�i;j (j � 1)

352 + (N � i) (1� p) p+ (i� 1) q (1� q) : (32)

Proof. Recall the following expression

[p+ (1� p) t]N�i (1� q + qt)i�1 =
NX
j=1

�i;jt
j�1; (33)

for i = 1; :::; N: Equation (31) can be obtained in two steps: (i) Di¤erentiate both sides of (33) with

respect to t: (ii) Set t = 1:
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Equation (32) can be obtained as follows: Fix i = 1; :::; N: Di¤erentiate both sides of (33) with

respect to t twice and set t = 1. This gives

NX
j=1

�i;j (j � 1) (j � 2) =

NX
j=1

�i;j (j � 1)2 �
NX
j=1

�i;j (j � 1)

= [(N � i) (1� p) + (i� 1) q]2 � (N � i) (1� p)2 � (i� 1) q2

=

24 NX
j=1

�i;j (j � 1)

352 � (N � i) (1� p)2 � (i� 1) q2:

Equation (32) can be obtained by combining this and equation (31). This completes the proof of

Lemma 5.

The following equations are useful in deriving the other moments. For a binomial distribution

with parameters N � 1 and 1� s; the �rst two moments are given by

NX
i=1

�
N � 1
i� 1

�
sN�i (1� s)i�1 (i� 1) = (N � 1) (1� s) ; (34)

NX
i=1

�
N � 1
i� 1

�
sN�i (1� s)i�1 (i� 1)2

= (N � 1) (1� s) s+ (N � 1)2 (1� s)2 : (35)

Conditional Mean

We are now ready to compute the conditional means. Conditional on yt = yi; the mean value of

yt+1 is given by

E (yt+1jyt = yi) =

NX
j=1

�i;jyj =

NX
j=1

�i;j

�
� + 2 

N � 1 (j � 1)
�

= � + 2 

N � 1

NX
j=1

�i;j (j � 1) :

It follows from (31) that

NX
j=1

�i;j (j � 1) = (1� p) (N � i) + (i� 1) q

= (1� p) (N � 1) + (q + p� 1) (i� 1) :
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Hence

E (yt+1jyt = yi) = � + 2 

N � 1 [(1� p) (N � 1) + (q + p� 1) (i� 1)]

= � + 2 (1� p) + (q + p� 1) 2 

N � 1 (i� 1)

= (q � p) + (q + p� 1) yi: (36)

Conditional Variance

Conditional on yt = yi; the variance of yt+1 is given by

var (yt+1jyi) =
NX
j=1

�i;jy
2
j �

0@ NX
j=1

�i;jyj

1A2 ;
where

NX
j=1

�i;jy
2
j =  2 � 4 2

N � 1

NX
j=1

�i;j (j � 1) +
4 2

(N � 1)2
NX
j=1

�i;j (j � 1)2 ;

and 0@ NX
j=1

�ijyj

1A2 =  2 � 4 2

N � 1

NX
j=1

�i;j (j � 1) +
4 2

(N � 1)2

24 NX
j=1

�i;j (j � 1)

352 :
It follows from (32) that

var (yt+1jyi) =
4 2

(N � 1)2
[(N � i) (1� p) p+ (i� 1) q (1� q)] :

Unconditional Mean

The unconditional mean of the Markov chain is given by

NX
i=1

�iyi =

NX
i=1

�iE (yt+1jyt = yi)

=
NX
i=1

�i [(q � p) + (q + p� 1) yi]

= (q � p) + (q + p� 1)
NX
i=1

�iyi:
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Hence
NX
i=1

�iyi =
(q � p) 
2� (p+ q) � �: (37)

Unconditional Second Moment

NX
i=1

�iy
2
i =

NX
i=1

�i

�
� + 2 

N � 1 (i� 1)
�2

=

NX
i=1

�i

�
 2 � 4 2

N � 1 (i� 1) +
4 2

(N � 1)2
(i� 1)2

�

=  2 � 4 2

N � 1

NX
i=1

�i (i� 1) +
4 2

(N � 1)2
NX
i=1

�i (i� 1)2 :

Using (34) and (35), we have

NX
i=1

�iy
2
i =  2 � 4 2 (1� s) + 4 

2 (1� s) s
N � 1 + 4 2 (1� s)2

=  2
�
1� 4 (1� s) s+ 4 (1� s) s

N � 1

�
:

First-order Autocovariance

First consider the following expression,

E (ytyt+1) =
NX
i=1

�iE (yt+1ytjyt = yi)

=
NX
i=1

�iyiE (yt+1jyt = yi) :

Using (36), we have

E (ytyt+1) =

NX
i=1

�iyi [(q � p) + (q + p� 1) yi]

= (q � p) 
NX
i=1

�iyi + (q + p� 1)
NX
i=1

�iy
2
i : (38)
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Let �2y be the unconditional variance of the Markov chain so that

�2y =
NX
i=1

�iy
2
i � �2;

where � is the unconditional mean de�ned in (37). Substituting this into (38) gives

E (ytyt+1)

= (q � p) �+ (q + p� 1)
�
�2y + �

2
�

= [(q � p) + (q + p� 1)�]�+ (q + p� 1)�2y;

where

(q � p) + (q + p� 1)� = (q � p) 
2� (p+ q) = �:

Hence

E (ytyt+1) = �2 + (q + p� 1)�2y:

Thus the �rst-order autocovariance is given by

E [(yt � �) (yt+1 � �)] = E (ytyt+1)� �2 = (q + p� 1)�2y:

45



References

[1] Adda, J., Cooper, R., 2003. Dynamic Economics: Quantitative Methods and Applications.

MIT Press, Cambridge, MA.

[2] Aruoba, S., Fernández-Villaverde, J., Rubio-Ramírez, J., 2006. Comparing Solution Methods

for Dynamic Equilibrium Economies. Journal of Economic Dynamics and Control 30, 2477-

2508.

[3] Burnside, C., 1999. Discrete State-Space Methods for the Study of Dynamic Economies. In:

Marimon, R., Scott, A. (Ed.), Computational Methods for the Study of Dynamic Economies.

Oxford University Press, Oxford, 95-113.

[4] Flodén, M., 2008. A Note on the Accuracy of Markov-chain Approximations to Highly Persis-

tent AR(1) Processes. Economic Letters 99, 516-520.

[5] King, R.G., Rebelo, S.T., 1999. Resuscitating Real Business Cycles. In: Taylor, B.J., Woodford,

M. (Ed.), Handbook of Macroeconomics, Volume 1. Elsevier, Amsterdam, 927-1007.

[6] Lkhagvasuren, D., Galindev, R., 2008. Discretization of Highly-Persistent Correlated AR(1)

Shocks. Unpublished manuscript, Concordia University.

[7] Lucas, R.E., 1978. Asset Prices in an Exchange Economy. Econometrica 46, 1429-1445.

[8] Rouwenhorst, K.G., 1995. Asset Pricing Implications of Equilibrium Business Cycle Models. In:

Cooley, T.F. (Ed.), Frontiers of Business Cycle Research. Princeton University Press, Princeton,

NJ, 294-330.

[9] Santos, M.S., Peralta-Alva, A., 2005. Accuracy of Simulations for Stochastic Dynamic Models.

Econometrica 73, 1939-1976.

[10] Tauchen, G., 1986. Finite State Markov-chain Approximations to Univariate and Vector Au-

toregressions. Economic Letters 20, 177-181.

[11] Tauchen, G., 1990. Solving the Stochastic Growth Model by using Quadrature Methods and

Value-Function Iterations. Journal of Business and Economic Statistics 8, 49-51.

[12] Tauchen, G., Hussey, R., 1991. Quadrature-Based Methods for Obtaining Approximate Solu-

tions to Nonlinear Asset Pricing Models. Econometrica 59, 371-396.

46



[13] Taylor, J., Uhlig, H., 1990. Solving Nonlinear Stochastic Growth Models: A Comparison of

Alternative Solution Methods. Journal of Business and Economic Statistics 8, 1-18.

47


