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Preference for Skew in Lotteries:
Evidence from the Laboratory

Abstract

Using a laboratory experiment we investigate how skew influences choices under
risk. We find that subjects make significantly riskier choices when the distribution
of payoffs is positively skewed, these choices being driven in part by the shape
of the utility function but also by subjective distortion of probabilities. A utility
model with probability distortion calibrated on laboratory data is able to explain
why most gamblers in public lotteries buy only a small number of tickets.

In settings where risky decisions have to be made many people favor
riskier options which offer a small probability of large gains, that is, where
the distribution of payoffs has positive skew. For example, people tend to
overbet on the long-shot horse with low probability of winning large returns
rather than the favorite with the greatest expected return (Joseph Golec and
Maury Tamarkin, 1998). And when people buy lottery tickets, David Forrest,
Robert Simmons and Neil Chesters (2000) and Thomas Garrett and Russell
Sobel (1999) show that people are more concerned with the size of the top
prize than the expected value of the lottery. Positive skew may affect signif-
icant life choices, not just gambling. Three-quarters of all people that enter
self-employment face higher variance and skew but lower expected return
than in employment (Barton Hamilton, 2000.) Further, 97% of inventors
will not break even on their investments but face a very skew distribution of
returns conditional on succeeding (Thomas Åstebro, 2003.) Financial mar-
kets also provide evidence that is consistent with skew loving choices. For
example, risk aversion implies that people should hold diversified portfolios.
However, Marshall Blume and Irwin Friend (1975) find that most households
hold undiversified portfolios with a high proportion of stocks with high pos-
itive skew. Also, securities that make the market portfolio more negatively
skewed earn positive ‘abnormal’ average returns.1

1The estimates for the annualized premium range from 2.5% to 3.6% (see Alan Kraus
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This paper uses a laboratory experiment to test how positive skew influ-
ences risky choices. Betting in state lotteries, sports or lottery-type stocks
may be explained by overestimation of the probability of attaining favorable
outcomes due to optimism, pleasure from gambling, and/or anticipatory feel-
ings.2 The decision to become an entrepreneur or an inventor may be a result
of preferences for being one’s own boss or of overly confident perceptions of
skill. Empirical research on the impact of positive skew on choice under risk
and uncertainty has not been able to fully control for these various explana-
tions and experimental work focusing on risk aversion has largely neglected
skew.

Common to all of aforementioned risky decisions is that pleasure may be
derived from the activity (be it gambling or not having a boss). Our exper-
iment asks subjects to make choices between pairs of lotteries. By offering
choices between alternatives which are essentially identical with respect to
this characteristic we are able to rule out explanations based on the pleasure
associated with the activity under scrutiny. In addition, the fact that the
probabilities associated with success are objectively determined and known
rules out explanations that rely on overconfidence about skill. The experi-
mental design allows us to focus on preference for skew as an explanation for
risky choices.

We ask subjects to make several sequences of 10 pairwise choices between
a safe and a risky lottery and we count the number of safe lottery choices. The
design is based on Charles Holt and Susan Laury (2002) with three important
modifications. First, we consider lotteries that have more than two outcomes,
so that we can use the third moment around the mean to manipulate skew
and variance separately. Second, we use a graphical display to represent
lottery payoffs. Third, we consider three different skew treatments.

In all skew treatments the safe lotteries have symmetric prize distribu-
tions, while the degree of skewness varies for the risky lotteries. In the first
treatment – the “zero skew” condition – the risky lotteries also have sym-

and Robert Litzenberger 1976 and Campbell Harvey and Akhtar Siddique 2000, respec-
tively). See also Todd Mitton and Keith Vorkink (2007). Alok Kumar (2009) shows that
the propensity to gamble and investment decisions are correlated. Individual investors
prefer stocks with lottery features, and like lottery demand, the demand for lottery-type
stocks increases during economic downturns.

2See John Hey (1984), John Conlisk (1993), and Andrew Caplin and John Leahy (2001).
While some of these hypotheses are empirically supported, most of them are simply qual-
itative in nature and explain gambling in state lotteries without quantifying it.
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metric prize distributions. In the second treatment – the “moderate skew”
condition – all the risky lotteries have skew equal to 1.69 and in the third
treatment – the “maximum skew” condition – skew is equal to 2.67 (the max-
imum possible skew in our framework). We perform the treatments under
two monetary stakes conditions: low and high stakes (20 times higher than
low stakes).

We find that the average number of safe choices decreases monotonically
with an increase in skew indicating skew loving choices. The result holds in
both stakes conditions. Increasing the monetary stakes leads to an increase
in the average number of safe choices for all skew treatments. All these effects
are statistically significant.

To explain these choices we resort to structural estimation of utility func-
tions and focus on Expected Utility Theory (EUT) and Rank-Dependent
Utility (RDU).3 To perform the estimation we model RDU using the proba-
bility weighting function due to Drazen Prelec (1998). This function accom-
modates the case in which individuals distort probabilities by overestimating
small probabilities and underestimating large probabilities and vice-versa,
and the case in which they estimate these probabilities accurately and RDU
reduces to EUT. We perform this estimation under three different speci-
fications for the utility function: power, hyperbolic absolute risk aversion
(HARA), and expo-power. For all utility functions we find that RDU with
probabilities of rare events overestimated and probabilities of frequent events
underestimated explains the lottery choices of the subjects in the sample bet-
ter than EUT.

In the final part of the paper we explore the consequences of our findings
for gambling in state lotteries. Most theories find it difficult to explain why
people buy only a small number of tickets. Using our estimated parameters
we calibrate an agent’s decision on the number of lottery tickets to buy. We
show that buying a few lotto tickets is consistent with our representative
parameter values.

Our findings do not imply that all agents are necessarily distorting prob-
abilities, not even that only RDU agents will make skew loving choices. Skew
loving choices can come from probability distortion or from the shape of the

3Rank dependent utility models are able to accommodate probability-dependent risk
attitude; that is, preferences are consistent with both risk-averse and risk-seeking behavior
depending on the probability distribution of outcomes. If individuals overweight small
probabilities and underweight medium to large probabilities in evaluating risky gambles,
then they will make “risky” choices in gambles involving small probabilities of large gains.
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utility function of EUT maximizers. By examining the specific choices made
by subjects we are able to classify them as either RDU or EUT maximizers.
For EUT subjects we further classify them according to their preferences for
risk and skew, while RDU subjects are divided into those who overestimate
small probabilities and underestimate large probabilities and those who dis-
play the reverse pattern. Overall, 2/3 of our subjects appear to be EUT and
1/4 RDU. The remaining 1/12 make inconsistent choices. Approximately
1/2 of the subjects in the sample make skew loving choices, and these come
in roughly equal proportions from the EUT and RDU group.

The remainder of the paper is organized as follows. Section 1 explains
the experimental design. Section 2 presents the findings. Section 3 presents
the classification of our subjects according to the choices they make and
contains estimates of representative utility functions. Section 4 discusses an
application of the findings to gambling in public lotteries. Section 5 concludes
the paper. Details on the experimental design are provided in an Appendix.

1 Experimental Design

The theory of choice under risk and uncertainty informs us that individuals
make skew loving choices for two reasons: either they are expected utility
maximizers with a preference for positive skew or they are non-expected
utility maximizers who overestimate small probabilities of large gains and
underestimate the probabilities of the remaining payoffs.

We know from Tsiang (1972) that an expected utility maximizer has a
preference for positive skew if the third derivative of his utility of wealth is
positive. As a manifestation of such preferences a risk averse individual will
be prepared to accept a lower expected return (but not a negative one) or a
higher level of overall riskiness if the distribution of payoffs is more skewed
to the right.

To illustrate how EUT individuals can be classified according to their risk
and skew preference consider an EUT individual with a power utility function
u(x) = x1−β, with x > 0. This utility function implies risk preference for
β < 0, risk neutrality for β = 0, and risk aversion for 0 < β < 1 (it also
represents constant relative risk aversion for money). The third derivative is

u′′′(x) = β(1 + β)(1− β)x−β−2. (1)

From (1) we see that an individual with a power utility is risk neutral and
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skew neutral when β = 0. When β < −1 he is highly risk loving and skew
seeker, when β = −1 he is very risk loving and skew neutral, and when
−1 < β < 0 he is mildly risk loving and skew averse. For 0 < β < 1 such
an agent is risk averse and skew seeker. In short, a risk loving agent with a
power utility can be skew averse, neutral, or seeker but a risk averse agent
with a power utility must be a skew seeker.

Can risk a averse individual be averse to skew? The answer is yes. Tsiang
(1972) also shows that decreasing absolute risk aversion implies a preference
for skew but that the converse is not true.4 Hence, a necessary (but not
sufficient) condition for a risk averse individual to be averse to skew is that
he displays increasing absolute risk aversion.

A non-expected utility maximizer can make “skew loving” choices due to
probability distortion. This type of behavior is captured by rank dependent
utility (RDU) theory which assumes that individuals subjectively distort
probabilities via a probability weighting function.5

The most commonly used probability weighting functions are concave
for small probabilities and convex for moderate and high probabilities. This
pattern is called inverted s-shaped probability weighting. The pattern implies
that subjects pay more attention to the best and worst outcomes, and little
attention to intermediate outcomes. An RDU individual with an inverted s-
shaped probability weighting function simultaneously can make “risk loving”
choices in gambles that yield large gains with small probabilities such as in
public lotteries and “risk averse” choices in gambles that yield large losses
with small probabilities, a phenomenon relevant for insurance (see Quiggin
1982).

In this work we seek to find out whether people make “skew loving”
choices or not in a controlled laboratory environment. Additionally, we want
to know whether these “skew loving” choices are driven by EUT’s preference
for skew or RDU’s probability distortion. To do this we use sequences of
random lottery pairs in which the subject chooses one of the lotteries in each
pair. Subjects face multiple pairs in sequence. At the end of the experiment
one of the pairs is randomly selected for payoff and the subject’s preferred

4An individual displays decreasing absolute risk aversion if u′′′(x) > [u′′(x)]2

u′(x) and prefers
skew if u′′′(x) > 0.

5Rank-dependent models were introduced by John Quiggin (1982) for decision under
risk (known probabilities) and by David Schmeidler (1989) for decision under uncertainty
(unknown probabilities).
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lottery is then played out as the reward.
This methodology is based on Holt and Laury’s (2002) [hereon HL] study

of the trade-off between risk and return and avoids the willingness to pay /
willingness to accept biases of certainty equivalent and auction methods. In
HL, subjects are given the choice between the pairs of lotteries displayed in
Table 1.

insert Table 1 here

It is expected that subjects start by choosing the safe lottery (S) in the
top row as it has both higher expected value and lower variance. As one
proceeds down the table, the expected values of both lotteries increases,
but the expected value of the risky (R) lottery increases more. When the
probability of the high-payoff ticket in the R choice increases enough (moving
down the table), a person should cross over to choose R.

Different persons will switch at different points, the switching point be-
ing determined by the degree of risk aversion. For example, a risk-neutral
person would choose S four times before switching to R. Even the most risk-
averse person should switch over by decision 10 in the bottom row, since R
then yields a sure payoff of $3.85. HL find that most people make slightly
risk averse choices under low stakes and that when stakes are increased the
number of safe choices increases significantly.

Our design departs from HL’s in three main aspects. First, we consider
lotteries that can have from two to ten different prizes. Increasing the number
of prizes allows us to control for the mean, variance, and skew of the sequences
of lotteries. Second, lotteries are presented in a graphical display rather
than in a table.6 Third, we consider three different skew treatments. In
the first skew treatment the safe and risky lotteries have symmetric prize
distributions. We call this treatment the “zero skew” condition. In the
second treatment – “moderate skew” – the safe lotteries are symmetric and
the risky lotteries all have skew equal to 1.69. In the third treatment –

6Researchers have found graphical display of data sometimes to be superior to tabular
display in terms of decision accuracy. The advantage seems to depend on data struc-
ture and task complexity, where for either simple or very complex tasks or unclear data
structures there seems to be little advantage of graphical display. See, e.g. Cheri Speier
(2006), Joachim Meyer, Marcia Shamo, and Daniel Gopher (1999), John Schauenbroeck
and Krishnamurty Muralidhar (1991) and Mark Hwang and Bruce Wu (1990).
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“maximum skew” – the safe lotteries are symmetric and the risky lotteries
all have skew equal to 2.67.

Figure 1 shows our graphical representation for the first choice between
S and R in HL’s lotteries. Each of the lines in HL’s table is depicted in two
graphs of the kind in Figure 1. People are presented with the 10 choices in
sequence and are provided with a review section where any decision may be
revisited.

insert Figure 1 here

Figures 2 to 4 show the first choice between S and R for each of three
skew treatments. The different patterns that emerge are due to the skew of
the corresponding lotteries.

insert Figures 2 to 4 here

The first comparison we will make is between the results obtained when
the experiment is conducted offering the same choice options with the tab-
ular display of HL and with our graphical display. We then introduce skew
systematically. We modify the lotteries to have the same mean and variance
as in HL, but while the safe option has no skew, the risky option has skew
equal to 0, 1.69 and 2.67 in the different treatments. We focus on positive
skew, but our exercise could be extended to lotteries with negative skew.

If the expected payoffs were to be maintained the higher levels of skew
would lead to some negative payoffs. We therefore add $1 to HLs payoffs.
We test whether there is any effect of adding $1. We also introduce lotteries
with 20 times the payoffs to study the impact of skew under large stakes. We
randomize subjects’ allocation to treatments and the order of treatments.

Instructions were kept identical to those in HL, with some necessary revi-
sions to account for the difference in presentation formats and the fact that
the task was conducted online rather than with paper and pencil. Subjects
also took a knowledge test on their understanding of the instructions and
had to pass to move forward to the experiment.

Table 2 presents the different treatments. There are three basic treatment
sequences: i) subjects perform 1 set of HL prize distribution choices (T1-T4)
followed by 3 sets of low stakes choices with 3 skews and then draw a prize
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from one of the 4 sets; ii) Subjects perform 3 sets of high stakes choices with
3 different skews and then draw a prize from one of the 3 sets; iii) Subjects
perform 3 sets of low stakes choices with 3 different skews. Subjects are then
given the option between (A) drawing a final prize from the three low stakes
distributions and finishing the experiment or (B) not drawing a prize and
moving on to the high stakes choices. If subjects choose option (B) they will
do the three sets of high stakes choices with 3 skews and draw a prize from
those. All subjects presented with this option chose (B).

Using posters we recruited 148 students at the University of Waterloo
during the Spring 2008. These were randomly allocated across 10 treatments
in six pre-determined treatment sequences as outlined in Table 3. Each of
the sequences in the table was performed by at least 24 subjects. At the end
of the experiment one prize is chosen randomly and subjects were awarded
their prize plus a $5 participation fee.

insert Table 2 here

insert Table 3 here

Subjects in our sample are briefly described in Table 4. Some of the
subjects did not respond to all of the demographics questions, the number
of observations available for each item being presented along with the corre-
sponding summary statistics.

insert Table 4 here

2 Findings

2.1 Skew and Incentive Effects

Table 5 shows the mean number of safe choices under the different conditions.
We see that the number of safe choices decreases with an increase in skew in
both the low stakes and high stakes condition. Thus, on average, subjects
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make skew loving choices. We also find that increasing the stakes increases
the average number of safe choices for all skew conditions.

insert Table 5 here

We performed OLS regressions with the number of safe choices as the
dependent variable and included dummies for moderate and maximum skew,
and for high stakes (see Table 6). We find that the number of safe choices
decreases by 0.34 from zero skew to moderate skew and by 0.67 from zero
skew to maximum skew. When confronted with high stakes lotteries subjects
make significantly less risky choices. The least squares regression provides
easy interpretation of estimated coefficients. The coefficient 3.904 for the
constant in column (i) implies that under low stakes and no skew subjects
make on average 3.9 safe choices - which is risk neutral behavior.7

insert Table 6 here

Our main results are robust to including socio-demographic characteris-
tics described in Table 4. The high stakes coefficient decreases somewhat
from 0.60 to 0.46, but it remains significant. By design, all subjects per-
form all skew conditions and skew conditions are, therefore, orthogonal to
subjects. The minor differences that we observe when including the demo-
graphics are therefore due to the fact that observations in different columns
of Table 6 are not exactly the same, as we do not observe all characteristics
for all subjects. This estimation reveals that males and non-white individ-
uals make riskier decisions than females and whites, respectively. All other
characteristics, except those related to income, are non-significant once con-
trolling for everything else in the model. Socio-demographic characteristics
does not seem to be important.8

7As a robustness check, we also ran an ordered-Probit where the dependent variable is
the number of times the safe choice was made. The results from such a model are more
difficult to interpret, since the marginal impact of the coefficients depend on the level of
the covariates and the specific choice being considered. The qualitative results did not
present changes from those in Table 6.

8A reason for including the individual characteristics explicitly is that the response of
individuals to skew might depend on demographics. To test this we included interactions
between the skew variables and each of the demographic characteristics that are captured
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Since all subjects make repeated decisions under different conditions we
can also estimate individual random and fixed effects models. These estima-
tions deliver the same coefficients for skew conditions, but the precision is
significantly increased because the panel-data models correct for heterogene-
ity in risk preferences, which appears to be large. Increased precision means
that the effect of moderate skew is now significant at the 1% level, rather
than at the 5% level. The high stakes coefficient is approximately 0.5, with
p-values below 1% (see Table 6).

2.2 Robustness

Our subjects perform their choices in different sequences (recall Table 3).
Moreover, some of them went through the initial round which tested framing
effects. We would therefore like to know whether choices are affected by order
and by the initial treatment. The inclusion of such controls in the regression
does not change the results regarding skew. Moreover, the controls are not
jointly significant. The set of four dummies indicating which initial treatment
(if any) the subject had performed has a p-value of 0.113, while the p-value
for the five order dummies is 0.099. Thus, we conclude that there is no
meaningful order effect.

We have noted earlier that previous research has found graphical display
of data to be superior to tabular display, in particular when the tasks are nei-
ther very simple nor very complex. Subjects making fully consistent choices
would never switch back and forth between the safe and risky options. Some
of them, however, did. We find that subjects switch back and forth in fewer
cases in our graphical display as compared to the tabular display. 32% of
the subjects switched back and forth when data was presented in the tabular
display, and only 6% did so in the graphical display, which seems to indicate
that the graphical display is cognitively superior to the tabular display for
this task.9

by a dummy (gender, decision maker in the house, race, graduate student status, major,
full time student status). In all cases we cannot reject the null that the effects are identical.

9We checked the robustness of our regression results by defining two additional vari-
ables. One is defined as the decision before the one in which subjects make their first
risky decision. The other is their last safe decision. The three variables are identical for
subjects that never go back and forth. Results did not show any remarkable changes, ex-
cept that the effect of being in the moderate skew condition is somewhat more imprecisely
estimated, in particular when the variable is their last safe decision.
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There seems to be some indication in our data that the tabular display
leads subjects to make a somewhat larger number of safe choices. This may
be due to a lesser ability to fully understand the data in the tabular (T1
and T3) than in the graphical display (T2 and T4), as indicated by the
higher proportion of switching back and forth for the tabular display. The
observed average number of safe choices is 5.3, 3.2, 4.6 and 3.6 for treatments
T1 to T4, respectively. We reject the hypothesis that the mean number
of safe choices in T1 is equal to that in T2, but not that T3 is equal to
T4. For all samples, except for T1, we cannot reject the hypothesis of risk
neutral behavior. Finally, adding one dollar to the prizes has a small and
not significant effect. However, as we have seen, multiplying the stakes by a
factor of twenty has a significant effect.

3 Explaining the Findings

The results obtained in the zero skew treatment are consistent with findings
in Holt and Laury (2002, 2005), Glenn Harrison, Eric Johnson, Melayne
McInnes, and Elisabet Rutström (2005), and Glenn Harrison, Morten Lau
and Elisabet Rutström (2007). The only difference is that we find slightly
less risk aversion than they do.

The large number of risky choices observed in the maximum skew condi-
tion could be explained by EUT if most individuals were risk seekers. But
that would contradict the safe choices observed in the zero skew condition.
Thus, the choices made in the zero skew and in the maximum skew conditions
are at odds with expected utility. To obtain greater insight into subjects’ be-
havior we need to analyze individual choices rather than treatment average
responses.

3.1 Subject Classification

3.1.1 A procedure for classifying subjects

Our experimental design offers a simple way to distinguish EUT subjects
from RDU subjects by examining individual lottery choices across the skew
treatments. In our design, a risk-neutral person makes 4 safe choices in all
treatments, a risk averse person makes 4 or more safe choices in all treatments
and 5 or more safe choices in at least one treatment, and a risk seeking person
makes 4 or fewer safe choices in all treatment and 3 or fewer safe choices in at
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least one treatment. Hence, if, for example, we observe someone making 5,
4 and 3 safe choices in the zero, moderate, and maximum skew treatments,
respectively, then we know that this person violates EUT’s assumption that
preferences towards risk should be independent of probabilities. However,
the choices 5, 4, and 3 are consistent with RDU.

Let xst denote the number of safe choices of a subject in skew treatment
s ∈ {5, 6, 7} and in stake treatment t ∈ {L,H}, where s represents treatments
T5, T6, and T7, and t represents low and high stakes. We classify a subject
as making consistent choices if his choices satisfy one of the following six
conditions for t = L,H: (C1) x5t ≥ x6t ≥ x7t, (C2) x5t ≥ x6t − 1 ≥ x7t, (C3)
x5t ≥ x6t + 1 ≥ x7t, (C4) x5t ≤ x6t ≤ x7t, (C5) x5t ≤ x6t − 1 ≤ x7t, (C6)
x5t ≤ x6t + 1 ≤ x7t. Condition (C1) says that the number of safe choices
(weakly) decreases along the skew treatments. Conditions (C4) says that
the number of safe choices (weakly) increases across the skew treatments.
Conditions (C2), (C3), (C5) and (C6) allow subjects to make “mistakes” of
-1 or +1 safe choices in the intermediate skew treatment.10 To be classified
as making consistent choices we also require that the number of safe choices
does not decrease across the low stakes treatments and increase across the
high stakes treatments or the reverse for a subject who made choices under
both low and high stakes.

We classify a subject as an RDU individual if his choices satisfy one of
the six consistency conditions (C1)-(C6) and one of the following conditions
for t = L,H: (R1) 5 ≤ x5t and x7t ≤ 3, (R2) x5t ≤ 3 and 5 ≤ x7t, (R3)
6 ≤ x5t and x7t = 4, (R4) x5t = 4 and 6 ≤ x7t, (R5) x5t = 4 and 2 ≤ x7t,
(R6) x5t ≤ 2 and x7t = 4. Condition (R1) says that the subject displays “risk
averse” behavior in the zero skew treatment but “risk seeking” behavior in
the maximum skew treatment and condition (R2) says the reverse. Condition
(R3) says that the subject displays highly “risk averse” behavior in the zero
skew treatment but “risk neutral” behavior in the maximum skew treatment
and condition (R4) says the reverse. Condition (R5) says that the subject
displays highly “risk seeking” behavior in the zero skew treatment but “risk
neutral” behavior in the maximum skew treatment and condition (R6) says

10For example, suppose an individual has chosen (x5L, x6L, x7L) = (4, 2, 3). The choices
of this individual violate condition (C1) but satisfy condition (C3) and so the individ-
ual is classified as making consistently choices. However, an individual who has chosen
(x5L, x6L, x7L) = (4, 1, 3) is classified as making inconsistent choices since his choices can
not be generated by EUT nor by RDU (s-shaped or inverted s-shaped probability weight-
ing) allowing for a mistake of -1 or +1 safe choices in the intermediate skew treatment.
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the reverse.
We classify an RDU subject as having an inverted s-shaped probability

weighting function if his choices satisfy (R1), (R3), or (R5) and an s-shaped
probability weighting function if his choices satisfy (R2), (R4), or (R6). It
follows from conditions (R1), (R3), and (R5) that an RDU subject with an
inverted s-shaped probability weighting function will make fewer safe choices
in the high skew treatments than in the low skew treatments. Hence, all
subjects who are classified as RDU with an inverted s-shaped probability
weighting function are also classified as making skew loving choices. Similarly,
all subjects who are classified as RDU with an s-shaped probability weighting
function are also classified as making skew averse choices.

We classify a subject as making choices consistent with EUT if his choices
satisfy one of the six consistency conditions (C1)-(C6) and do not satisfy any
of the six RDU conditions (R1)-(R6). Such a subject is classified as a risk
seeker if his average number of safe choices across all treatments is smaller
than 4, risk neutral if it is equal to 4, and risk averse if it is greater than 4. A
subject who makes choices consistent with EUT is classified as skew seeker
if x5t − x7t ≤ −1 for t = L or t = H and if

∑
tx5t − x7t ≤ −1 when t = L

and t = H. A subject who makes choices consistent with EUT is classified
as skew neutral if x5t = x7t for t = L or t = H and if −1 <

∑
tx5t − x7t < 1

when t = L and t = H. Finally, we classify a subject who makes choices
consistent with EUT as skew averse if x5t − x7t ≥ 1 for t = L or t = H and
if
∑

tx5t − x7t ≥ 1 when t = L and t = H.

3.1.2 An example

Table 7 applies our classification to the choices of an RDU individual with a
square-root utility with different values of probability distortion (the param-
eter η) and gives the subject classification for each case.

insert Table 7 here

Table 7 shows that an RDU individual with a square-root utility will
make choices inconsistent with EUT if he has an inverted s-shaped prob-
ability weighting function with η < 0.73. We see that within this range
of probability distortion the person displays highly skew loving choices: for
0.4 < η < 0.73 he makes “risk averse” choices in the zero skew treatment
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and “risk seeking” choices in the maximum skew treatment–(5, 4, 3), (5, 3, 3),
(5, 3, 2) and (5, 2, 2)–and for η < 0.4 he makes “risk neutral” choices in the
zero skew treatment and strongly “risk seeking” choices in the maximum
skew treatment–(4, 2, 2), (4, 2, 1), (4, 1, 1) and (4, 1, 0). Note that if such an
individual has 0.73 < η < 3 his choices do not violate the EUT axioms and
we classify him as making choices consistent with EUT. Hence, our design is
likely to overestimate the actual number of EUT subjects and underestimate
the number of RDU subjects.

Table 8 maps different possible safe choices of an EUT individual with a
power utility along the three skew treatments with different values for the
parameter β and gives the subject classification for each case.

insert Table 8 here

Table 8 shows that the theoretical skew preference classification and our
skew choice classification coincide in all choices, except (1, 1, 1), (3, 3, 3) and
(5, 5, 5) for this particular utility function. If an individual is an EUT max-
imizer with a power utility function and he chooses (5, 5, 5), then he must
have β ∈ (0.5, 0.9) and (1) implies skew seeking preferences. However, an
EUT individual with a utility function that does not display a preference
for skew can also choose (5, 5, 5). We also see from Table 7 that an RDU
individual with s-shaped probability distortion (1 < η < 1.42) and a square-
root utility chooses (5, 5, 5) since the effects of probability distortion and the
shape of the utility function work in opposite directions.

3.1.3 Classifying subjects in our sample

Applying the classification to our sample we find a small number of subjects,
14 (9.5%), who make inconsistent choices. Table 9 displays the classification
of subjects who made consistent choices. Most subjects, 98 (66.2%), make
choices consistent with EUT and 36 (24.3%) make choices consistent with
RDU.

insert Table 9 here

Among the subjects whose choices are consistent with EUT, 18 are risk
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neutral, 32 are risk averse and 48 are risk seekers. The risk neutral individuals
are also neutral to skew. Among the risk averse, 22 are skew seekers, 9 are
neutral to skew, and only 1 is skew averse. Finding that the majority of risk
averse individuals are skew seekers is consistent with experimental evidence
that shows that most people tend to exhibit decreasing absolute risk aversion.
Among the risk seekers, 18 are skew seekers, 17 are skew neutral and 13 are
averse to skew.

The vast majority of the RDU individuals (32 out of 36) display an in-
verted s-shaped probability weighting function. This result is consistent with
experimental evidence showing that most individuals who subjectively dis-
tort probabilities tend to overestimate small probabilities and underestimate
large ones.

Overall, we find 72 subjects in our sample making skew loving choices, 44
making skew neutral choices, and 18 making skew averse choices. Among the
72 subjects who make skew loving choices, 32 are RDU individuals, 22 make
choices consistent with EUT and risk averse preferences, and 18 make choices
consistent with EUT and risk seeking preferences. Skew loving choices can,
therefore, come either from probability distortion or the shape of the utility
function. Both cases are present in meaningful numbers in our sample.

3.2 Estimation of Decision Models

We continue with structural estimation of decision models to compare alter-
native explanations for the experimental results. Consider a lottery (p1, x1; ...; pn, xn),
yielding outcome xj with probability pj, j = 1, .., n. The probabilities
p1, ..., pn are nonnegative and sum to one. According to RDU the utility
of this lottery is evaluated as

∑n
j=1πju(xj),where u is the utility function

and the πjs are called decision weights. The decision weights are nonneg-
ative and sum to one. Expected utility is the special case of the general
weighting model where πj = pj for all j. If x1 > x2 > ... > xn, then

RDU(p1, x1; ...; pn, xn) =
∑n

j=1πju(xj),

where, for each j,

πj = w(p1 + ...+ pj)− w(p1 + ...+ pj−1),

with w(0) = 0 and w(1) = 1. The function w(p) is the decision weight
generated by the probability p when associated with its best outcome. Thus,
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the decision weight πj of outcome j depends only on its probability pj and
its rank.

To model probability distortion we use Prelec’s (1998) probability weight-
ing function:

w(p) = exp(−(− ln(p))η), for 0 < p ≤ 1 and 0 < η, (2)

where the parameter η determines the degree of distortion of probabilities.
When η = 1 there is no distortion of probabilities and we are back to EUT. If
η ∈ (0, 1), then the function captures the inverted s-shaped pattern and the
further away η is from 1 the higher the degree of probability weighting. If η >
1, we have an s-shaped pattern where small probabilities are underestimated
and large probabilities are overestimated.

To model the utility function we focus on hyperbolic absolute risk aver-
sion (HARA), power, and expo-power utilities. These three utility functions
represent different types of risk preferences and risk-skew trade-offs. Power
utility is the benchmark approach in most empirical work on risk aversion.11

HARA utility nests power utility and provides a simple and flexible char-
acterization of the trade-off between risk aversion and preference for skew.
Expo-power utility offers a more flexible representation of risk preferences
across different stakes than power or HARA utility.

Consider the utility function:

u(x) = (α + x)1−β, (3)

where x is wealth, β < 1, and α + x > 0. An individual with this utility
function is risk seeking if β < 0, risk neutral if β = 0, and risk averse if
0 < β < 1. This utility function belongs to the family of HARA utility
functions.12 The coefficient of relative risk aversion for HARA is

−u
′′(x)x

u′(x)
=

β

1 + α/x
. (4)

From (4) we see that when α > 0 and β > 0 the coefficient of relative risk
aversion is increasing with wealth and is bounded above by β.

11See Harrison et al. (2005, 2007) and Harrison and Rutström (2008).
12The HARA family of utility functions was introduced by Robert Merton (1971). The

HARA family has an Arrow-Pratt’s coefficient of absolute risk-aversion that is an hyper-
bolic function of wealth since −u′′(x)/u′(x) = β/(α+ x).
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The trade-off between risk aversion and skewness preference is given a
choice-theoretical characterization by Chiu (2005). He shows that if two
lotteries are strongly skewness comparable, then the function −u′′′(x)/u′′(x)
has the interpretation of measuring the strength of an individual’s preference
for skew against his risk aversion. The higher the ratio −u′′′(x)/u′′(x) the
more important is the preference for skew and the less important is risk
aversion.

From (3) we have that

−u
′′′(x)

u′′(x)
=

1 + β

α + x
, for 0 < β < 1. (5)

HARA utility nests power utility since setting α = 0 in (3) gives us a power
utility. Setting α = 0 in (5) gives us

−u
′′′(x)

u′′(x)
=

1 + β

x
, for 0 < β < 1. (6)

Comparing (5) to (6) we see that if α > 0 and β > 0, then 1+β
x

> 1+β
α+x

for any given x. This means that, for any given wealth level, a risk averse
individual with a power utility displays a stronger preference for skew relative
to aversion to risk than a risk averse individual with a HARA utility.

The expo-power utility function was first proposed by Atanu Saha (1993)
and is defined as

u(x) =
1

φ

[
1− exp

(
−φx1−θ)] ,

with φ > 0 and θ < 1. Expo-power utility converges to power utility when
φ converges to 0. The expo-power function exhibits decreasing absolute risk
aversion and increasing relative risk aversion when 0 < θ < 1 and φ > 0.
It exhibits increasing absolute and relative risk aversion when θ < 0 and
φ > 0. Thus, expo-power utility is more flexible than HARA utility to
capture different types of absolute risk aversion. The third derivative of
the expo-power function is not as tractable as that of the HARA and so
the function −u′′′(x)/u′′(x) of the expo-power does not provide a simple
characterization of the risk-skew trade-off.

Maximum likelihood methods are used to estimate the relevant param-
eters (see Harrison and Rutström, 2008 for a discussion of the empirical
strategy). First we calculate the index
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∇RDU = RDUS −RDUR,

where RDUS is the rank dependent utility of the safe lottery and RDUR is the
rank dependent utility of the risky lottery. This latent index, based on latent
preferences, is then linked to observed choices using a logistic cumulative
distribution function Λ(∇RDUi). This “logit” function takes any argument
between ±∞ and transforms it into a number between 0 and 1. Thus, with
this logit link function we have

Pr(Choice = S) = Λ(∇RDU).

3.3 Estimation Results

Table 10 reports maximum likelihood estimation results of the above decision
models. For each utility function we report two specifications, one imposing
the constraint that the RDU parameter η is equal to one and a second without
such a constraint. First, η is significantly less than one when allowed to vary.
Second, other than η, the results do not vary much between the constrained
and unconstrained estimations. These are indications that the results are
robust and do not depend on particular specifications. Third, across the
utility models the HARA function fits the data best. Since HARA utility
nests power utility, the comparison between the two amounts to a test of the
significance of the coefficient α. This parameter is indeed significant and we
conclude that the HARA generalization is useful. The expo-power function
is non-nested with the HARA function but since the number of parameters
is the same we can compare the two models based on their log likelihoods.
The HARA function fits better than the expo-power function, both in the
restricted and non-restricted estimations.

insert Table 10 here

So far estimations have not accounted for heterogeneity in subjects’ pref-
erences. To do so we split our sample according to the prior classification
scheme and estimate separate decision models for individuals classified as
EUT and RDU, respectively. Results are reported in Table 11. For EUT
individuals η is always larger than for the pooled sample and quite close to
unity, which implies low levels of probability distortion. For those classified
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as RDU η is always smaller than for the pooled sample, indicating greater
probability distortion. These structural group-level results are thus consis-
tent with our non-structural classifications of subjects.13

insert Table 11 here

4 Gambling in Public Lotteries

In this section we show that a rank-dependent utility model calibrated with
our laboratory-derived estimates is able to explain several stylized facts of
gambling in public lotteries. Research on gambling in public lotteries shows
that:

1. Despite a return of only $.53 on the dollar, public lotteries are extremely
popular.14

2. Most players only buy from 1 to 5 tickets on each lottery.

3. Ticket sales are an increasing function of the mean (better bets are
more attractive ones), a decreasing function of the variance (riskier
bets are less attractive), and an increasing function of the skew of the
prize distribution (see Ian Walker and Juliet Young 2001).

4. Low-income individuals spend a higher percentage of their income on
lottery tickets than do wealthier individuals (see Emily Haisley, Romel
Mostafa, and George Loewenstein (2008) and the references therein).

To show that our laboratory-derived estimates can explain these stylized
facts we start by formalizing the lottery ticket purchase problem. Let each
lottery ticket win a unique prize of value G with probability p and be sold
at price c > pG > 0.15 Since buying a single lottery has negative expected

13Of course, EUT and RDU subjects are not homogeneous. For example, among the
RDU subjects 32 were classified as having inverted s-shaped probability weighting and 4
were classified as having s-shaped probability weighting.

14In a 2007 Gallup poll, 46 percent of Americans reported participation in state lottery
gambling (see www.gallup.com/poll/104086/One-Six-Americans-Gamble-Sports.aspx).

15This is a simplified lottery. Real world public lotteries usually have multiple prizes
(second prize, third prize, and others).
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value (c > pG) a risk neutral or a risk averse EUT agent will never buy a
lottery ticket. The rank-dependent utility of buying n lottery tickets is

RDU(n) = [1− w(np)]u(z − nc) + w(np)u(z +G− nc),

where z is initial wealth and w(·) is the probability weighting function, given
by (2). The optimal n for a RDU agent is the solution to

max
n

[1− w(np)]u(z − nc) + w(np)u(z +G− nc)

s.t. w(p) = exp(−(− ln(p))η)

nc ≤ z

u(z) ≤ RDU(n)

To calibrate the lottery parameters we set G = $106, p = 10−6, and
c = $2.16 Thus, a person that buys a single state lottery ticket faces a lottery
with mean −$1, median −$2, standard deviation $1, 000, and skew 1000. To
calibrate the power utility we set β = 0.5 (an average of recent estimates, see
HL) and β = 0.75, our estimate for the power-RDU model. We calibrate the
HARA and expo-power utilities with the estimates obtained with the RDU
model: α = 60.7, β = 0.73, φ = 0.016, and θ = 0.573. We solve this problem
for three levels of initial wealth–$10, $100 and $1, 000–and sixteen levels of
the probability weighting parameter η.17

Table 12 summarizes the results. Each cell in the tables gives us the
optimal number of lottery tickets that an RDU individual buys for each
utility function, probability weighting level, and initial wealth level. The
table shows that:

insert Table 12 here

16For example, a “lottery ticket” in the lottery “Euromillions” is the selection and
purchase of a combination of 5 digits (from 1 to 50) and 2 stars (from 1 to 9). Each ticket
costs e2.00. The gross expected value of buying one ticket is approximately e.80. A ticket
in the US lottery “Powerball” is the selection and purchase of a combination of five white
balls out of 59 balls and one red ball out of 39 red balls. Each ticket costs $1.00. The
gross expected value of buying one ticket is approximately $.59.

17The literature has found a variety of estimates for the parameter η in the domain of
gains. (Amos Tversky and Daniel Kahneman (1992) find η = 0.61, Colin Camerer and
Teck Ho (1994) find η = 0.56, George Wu and Richard Gonzales (1996) find η = 0.71,
Mohammed Abdellaoui (2000) find η = 0.60, and Glenn Harrison (2008) finds η = 0.92
and η = 0.95.
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i) Subjects only buy lottery tickets for sufficiently high levels of probabil-
ity distortion (low η). The values of η in the table are within the range that
have been found in the literature. For these values, subjects eventually buy
lottery tickets in all cases. The number of tickets bought increases with the
level of distortion.

ii) Increases in initial wealth lead to less than proportional increases in
lottery ticket purchases for all specifications. This is consistent with the fact
that low-income individuals spend a higher percentage of their income on
lottery tickets than high income individuals.

iii) The number of lottery tickets bought is low and decreases with the
concavity of the utility function.

iv) Functions that exhibit increasing relative risk aversion (like HARA
and expo-power) generate the smallest predicted ticket purchases.

v) The HARA function with η close to our own estimate of .815 predicts
a number of tickets purchased from 0 to 2.

5 Conclusion

This paper use an laboratory experiment to examine the impact of skew in
the distribution of payoffs on choices under risk. We offer individuals three
sets of ten pairwise choices between a safe and a risky lottery. Across the
sets we keep the skew of the safe lotteries fixed at zero and vary the skew of
the risky lotteries. We find that subjects make more risky choices when the
risky lotteries displays greater positive skew.

In the experiment subjects are given the objective probabilities of each
lottery outcome. Yet, our findings reveal that many individuals make skew
loving choices because they overestimate small probabilities and underesti-
mates large probabilities. We estimate utility functions for the representative
subject in our pool and use our estimated parameters to study the decision of
an economic agent to buy state lottery tickets, a decision in which the agent
also faces objective probabilities of winning. We find that such an agent may
decide not only to buy lottery tickets but to restrict their purchase to a small
number of them.

Knowing how individuals respond to risk, skew, and probabilities can be
useful in a number of other settings such as household portfolio choices, the
design of incentives in organizations (e.g. employee stock options and prizes
in rank-order tournaments) and entry into entrepreneurship.
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7 Tables and Figures

Table 1: HL’s Lotteries.

Option S Option R E(S)-E(R)
1/10 of $2.00, 9/10 of $1.60 1/10 of $3.85, 9/10 of $0.10 $1.17
2/10 of $2.00, 8/10 of $1.60 2/10 of $3.85, 8/10 of $0.10 $0.83
3/10 of $2.00, 7/10 of $1.60 3/10 of $3.85, 7/10 of $0.10 $0.50
4/10 of $2.00, 6/10 of $1.60 4/10 of $3.85, 6/10 of $0.10 $0.16
5/10 of $2.00, 5/10 of $1.60 5/10 of $3.85, 5/10 of $0.10 -$0.18
6/10 of $2.00, 4/10 of $1.60 6/10 of $3.85, 4/10 of $0.10 -$0.51
7/10 of $2.00, 3/10 of $1.60 7/10 of $3.85, 3/10 of $0.10 -$0.85
8/10 of $2.00, 2/10 of $1.60 8/10 of $3.85, 2/10 of $0.10 -$1.18
9/10 of $2.00, 1/10 of $1.60 9/10 of $3.85, 1/10 of $0.10 -$1.52

10/10 of $2.00, 0/10 of $1.60 10/10 of $3.85, 0/10 of $0.10 -$1.85

Table 2: Treatments.

Legend Treatment
T1 Tabular display of Holt and Laury’s (HL) low-payoff treatment
T2 Graphical display of HL low-payoff treatment
T3 Tabular display of HL low-payoff treatment plus $1.00
T4 Graphical display of HL low-payoff treatment plus $1.00
T5L Graphical display zero skew
T5H Graphical display zero skew 20x (high payoff)
T6L Graphical display moderate skew
T6H Graphical display moderate skew 20x (high payoff)
T7L Graphical display maximum skew
T7H Graphical display maximum skew 20x (high payoff)
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Table 3: Sequences of Treatments.

a i) T1 first, then T5L, T6L and T7L randomized in 6 different orders
a ii) T2 first, then T5L, T6L and T7L randomized in 6 different orders
a iii) T3 first, then T5L, T6L and T7L randomized in 6 different orders
a iv) T4 first, then T5L, T6L and T7L randomized in 6 different orders
b) T5H, T6H and T7H randomized in 6 different orders
c) T5L, T6L and T7L and then T5H, T6H and T7H randomized in 6

different orders

Table 4: Sample characteristics.

Mean Std. Dev Obs.
Age 22.95 3.96 146
Height 1.73 0.10 140
People in the house 2.58 1.02 141
Male 0.67 147
Raised in Canada 0.62 147
Non white 0.63 148
Non main decison maker in house 0.47 148
Non married 0.92 148
Non full time student 0.07 148
Graduate student 0.23 148
Major in Economics or Business 0.25 139

Table 5: Average Numbers of Safe Choices with Real Stakes: Effect of Skew.

Number of subjects Treatment Low Stakes High Stakes
(20×)

124 subjects Zero skew 3.86
47 subjects Zero skew 4.62
124 subjects Moderate Skew 3.59
47 subjects Moderate Skew 4.11
124 subjects Maximum Skew 3.25
47 subjects Maximum Skew 3.79
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Table 6: Regression results: Effect of Skew and Stakes.

Random Fixed
OLS OLS Effects Effects

(i) (ii) (iii) (iv)
Constant 3.904 3.633 3.765

(0.128) (1.032) (1.452)
Medium Skew -0.339b -0.316b -0.316a -0.339a

(0.171) (0.156) (0.122) (0.111)
High Skew -0.673a -0.677a -0.677a -0.673a

(0.171) (0.156) (0.122) (0.111)
High Stakes 0.603a 0.458a 0.516a 0.536a

(0.156) (0.153) (0.153) (0.175)
Age -0.005 -0.013

(0.033) (0.047)
Male -0.488a -0.405

(0.156) (0.215)
Raised in Canada -0.168 -0.227

(0.167) (0.228)
Major in Economics or Business -0.072 -0.021

(0.176) (0.241)
People in house 0.065 0.055

(0.064) (0.091)
Non main decison maker in the house 0.651 0.570

(0.229) (0.322)
Non white -0.559a -0.588b

(0.177) (0.252)
Non married 0.396 0.478

(0.338) (0.479)
Non full time student -0.530 -0.463

(0.364) (0.498)
Graduate student 0.190 0.152

(0.263) (0.370)
R2/R̄2 0.03/0.03 0.06/0.05 0.27/0.22 0.71/0.59
Subjects/observations 148/513 135/474 135/474 148/513

Note: Standard errors in parenthesis. Superscripts a and b indicate significance at the
1% and 5% level, respectively. Estimation in columns (ii) and (iii) also includes controls

for income level, source of income and responsible for tuition.
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Table 7: Pattern of probability distortion and lottery choices of an RDU
subject with square root utility and Prelec’s probability weighting function
and corresponding EUT/RDU and skew choice classifications

Range of probability Pattern of Safe EUT/RDU Skew
distortion for RDU Probability choices in choice choice
w(p) = e(−(− ln p)η) Distortion T5,T6,T7 classif. classif.
1.90 < η < 3.00 s-shaped 6,6,6 EUT neutral
1.80 < η < 1.90 s-shaped 5,6,6 EUT averse
1.43 < η < 1.80 s-shaped 5,6,5 EUT averse
1.00 < η < 1.43 s-shaped 5,5,5 EUT neutral
0.97 < η < 1.00 inverted s-shaped 5,5,4 EUT seeker
0.73 < η < 0.97 inverted s-shaped 5,4,4 EUT seeker
0.69 < η < 0.73 inverted s-shaped 5,4,3 RDU seeker
0.54 < η < 0.69 inverted s-shaped 5,3,3 RDU seeker
0.47 < η < 0.54 inverted s-shaped 5,3,2 RDU seeker
0.40 < η < 0.47 inverted s-shaped 5,2,2 RDU seeker
0.37 < η < 0.40 inverted s-shaped 4,2,2 RDU seeker
0.32 < η < 0.37 inverted s-shaped 4,2,1 RDU seeker
0.16 < η < 0.32 inverted s-shaped 4,1,1 RDU seeker
0.10 < η < 0.16 inverted s-shaped 4,1,0 RDU seeker
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Table 8: Preferences for risk and skew and lottery choices of an EUT indi-
vidual with a power utility and corresponding skew classification

Range of relative Safe Skew
risk aversion for Risk Skew choices in choice
u(x) = x1−β preference preference T5,T6,T7 classif.

β < −5.10 seeker seeker 1,0,0 seeker
−5.10 < β < −2.70 seeker seeker 1,1,0 seeker
−2.70 < β < −2.00 seeker seeker 1,1,1 neutral
−2.00 < β < −1.52 seeker seeker 2,1,1 seeker
−1.52 < β < −1.49 seeker seeker 2,2,1 seeker
−1.49 < β < −0.88 seeker neutral 2,2,2 neutral
−0.88 < β < −0.86 seeker averse 2,2,3 averse
−0.86 < β < −0.80 seeker averse 2,3,3 averse
−0.80 < β < −0.32 seeker averse 3,3,3 neutral
−0.32 < β < −0.30 seeker averse 3,3,4 averse
−0.30 < β < −0.21 seeker averse 3,4,4 averse
−0.21 < β < 0.25 neutral neutral 4,4,4 neutral

0.25 < β < 0.40 averse seeker 5,4,4 seeker
0.40 < β < 0.50 averse seeker 5,5,4 seeker
0.50 < β < 0.90 averse seeker 5,5,5 neutral
0.90 < β < 1.00 averse seeker 6,5,5 seeker

Table 9: Classification of Subjects in the Sample

EUT RDU Total
Risk Risk Risk Inverted

Seeker Neutral Averse S-shaped S-shaped
Skew Seeker 18 0 22 32 0 72 (54%)

Skew Neutral 17 18 9 0 0 44 (33%)
Skew Averse 13 0 1 0 4 18 (13%)

Total 98 (73%) 36 (27%) 134

Note: the 14 subjects who made inconsistent choices are not included.
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Table 10: Estimation of Decisions Models - Pooled Data
Power HARA Expo-Power

Parameter
α 45.11b 60.70

(18.79) (21.09)
β 0.755 0.755 0.738 0.732

(0.015) (0.015) (0.019) (0.019)
φ 0.023 0.016

(0.000) (0.001)
θ 0.543 0.573

(0.000) (0.009)
η 0.928b 0.815 0.864

(0.036) (0.038) (0.035)

LL -2249.6 -2246.7 -2219.9 -2199.1 -2243.0 -2227.5

Note: Clustered standard errors in parentheses. Superscript b indicate
significance at the 5% level. All others are significant at the 1% level. Number of

observations = 5330. Number of subjects = 148.

Table 11: Estimation of HARA Decision Model - Group Data

Power HARA Expo-Power
Parameter EUT RDU EUT RDU EUT RDU

α 114.17a 72.82b

(35.07) (30.84)
β 0.777a 0.726a 0.726a 0.691a

(0.019) (0.024) (0.026) (0.031)
φ 0.017a 0.005a

(0.000) (0.000)
θ 0.586a 0.574a

(0.000) (0.000)
η 1.181a 0.858c 0.905b 0.742a 1.034 0.777a

(0.059) (0.073) (0.040) (0.066) (0.037) (0.061)

LL -1965.82 -611.63 -1830.95 -581.89 -1898.50 -596.76

Note: Clustered standard errors in parentheses. Superscripts a, b, and c indicate
significance at the 1%, 5%, and 10% levels, respectively. Number of observations

(EUT/RDU) = 3990/1520. Number of subjects (EUT/RDU) = 98/36.
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Table 12: Optimal Number of Lottery Tickets Bought by a RDU Individual
as a function of the Estimated Models, Probability Distortion (η), and Initial
Wealth (z)

Power Power HARA Expo-Power

(z + x).50 (z + x).25 (60 + z + x).27 1−exp(−.016(z+x).427)
.016

η\z 10 100 1000 10 100 1000 10 100 1000 10 100 1000
1.00 0 0 0 0 0 0 0 0 0 0 0 0
.975 0 0 0 0 0 0 0 0 0 0 0 0
.950 0 0 0 0 0 0 0 0 0 0 0 0
.925 0 0 0 0 0 0 0 0 0 0 0 0
.900 0 0 0 0 0 0 0 0 0 0 0 0
.875 0 0 0 0 0 0 0 0 0 0 0 0
.850 0 0 3 0 0 0 0 0 0 0 0 0
.825 0 1 8 0 0 1 0 0 1 0 0 0
.800 0 2 16 0 0 2 0 0 2 0 0 1
.775 1 3 28 0 0 3 0 0 4 0 0 1
.750 1 6 44 0 1 6 1 1 7 0 0 1
.725 1 9 63 0 1 9 1 1 11 0 0 2
.700 2 12 84 0 1 14 1 2 16 0 0 3
.675 2 16 105 0 2 19 1 3 22 0 1 5
.650 3 20 126 1 2 25 2 4 29 0 1 7
.625 3 23 148 1 3 31 3 6 37 0 1 9
.600 4 26 167 1 4 38 3 7 44 1 1 11
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Figure 1 - Graphical representation for the first choice between S and R in HL lotteries

Figure 2 - Graphical representation for the first choice between S and R in the zero skew treatment

Figure 3 - Graphical representation for the first choice between S and R in the moderate skew treatment

Figure 4 - Graphical representation for the first choice between S and R in the maximum skew treatment
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