
427

Wilson da Cruz Vieira & Levi H. Santana de Lelis ISSN 1679-1614

PROGRAMMING LANGUAGES IN
ECONOMICS: A COMPARISON AMONG

FORTRAN77, C++, AND JAVA1

Wilson da Cruz Vieira2

Levi H. Santana de Lelis3

Abstract - The main objective of this paper was to compare the computer programming
languages Fortran77, C++, and Java under four aspects: runtime efficiency, readability,
ease of learning, and reliability. For this comparison, we revised the specialized literature
on programming languages and used pieces of codes of these three programming languages.
The purpose of this comparison was to provide some objective information for
economists interested in learning one or more of these languages.

Key words: programming language, runtime efficiency, readability, and reliability.

1. Introduction

There has been an increasing interest in computer programming languages
by economists in recent years. Perhaps the most evident feature of that
is the increasing number of papers on programming languages published
in economic journals in the last few years [see, for example, Rust (1993),
Belsley (1999), Cribari-Neto (1999), Kendrick and Amman (1999), and
Nerlove (2004)].

Note that, not so long time ago, most of economic research could be
conducted in a satisfactory way with little help of computers. Since then,
what we can see is an increasing use of computers in both theoretical
and applied economic researches. At least three factors have contributed

1 Research supported by CNPq. The authors gratefully acknowledge helpful comments from Francisco Armando
da Costa. Received June 2005 Accepted August 2005.

2 Associate Professor, Department of Agricultural Economics, Federal University of Viçosa. 36570-000 Viçosa
– MG – Brazil. E-mail: wvieira@ufv.br.

3 Computer Science undergraduate student, Federal University of Viçosa. E-mail: levilelis@gmail.com.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6689894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

428

REVISTA DE ECONOMIA E AGRONEGÓCIO, VOL.3, Nº 3

to that: a) the development of the personal computer accompanied by
the rapid evolution of both hardware and software industries; b) the
dramatic reduction in computation costs which has permitted a great
expansion of the market for this type of service; and c) the development
of complex economic models which require some type of computer
assistance.

The computer needs software to carry out a specific task, that is, a
computer program written in a specific programming language. The
software contains some commands (code) that inform the computer what
to do and in what sequence. A compiler and/or an interpreter “translates”
the programming language (similar to human language) in what specific
commands were written into the machine language, that is, the language
that the machine can understand and execute.

There are many programming languages that can be used in economic
research and each of them has particular aspects and/or is ideally suitable
for specific applications. According to Kendrick and Amman (1999), we
can divide the computer programming languages in three groups: a) high-
level languages like GAUSS, GAMS, Maple, MATLAB and
Mathematica; b) low-level languages like Fortran, Basic, C, C++, and
Java; and c) languages for programming graphical user interfaces (GUI)
like Visual Basic, Visual C++, and Java.

To those economists interested in learning a computer programming
language, Kendrick and Amman (1999) have suggested to begin with
one of high-level languages according to his/her area of specialization in
economics and then work downward in the chain and learn a low-level
language. Finally, to those interested on graphical interfaces and Internet
applications they suggest Visual Basic, Visual C++ or Java. Cribari-Neto
(1999), on the other hand, has suggested the C language for
econometricians.

As such a diversity of programming languages and recommendations, an
important question arises naturally: what programming language(s) is/

429

Wilson da Cruz Vieira & Levi H. Santana de Lelis

are best suited for economists? This is a difficult question to answer and,
besides, as emphasized by Prechelt (2000, p.23), the “debate about
different programming languages remain inconclusive.” On the other hand,
the choice of one or more programming languages depends on the user’s
needs that can be well diversified.

Although that question is difficult to answer, it is important because the
learning of a programming language can be very helpful to an economist
nowadays4. Without wanting to give a definite answer to that question,
this work had, as main objective, to compare the low-level programming
languages Fortran77, C++, and Java under four aspects: runtime
efficiency, readability, ease of learning, and reliability. In doing so, we
have attempted to provide valuable information for economists in their
choice of one or more of these programming languages.

The choice criteria of these programming languages were the following:
a) existence of compilers or interpreters free of charge; b) better control
of execution of tasks by the computer when the programmer uses a low-
level programming language; c) great source of resources on programming
languages (tutorials, FAQs etc) available on the Internet; and d) flexibility
of these programming languages to build personalized graphical interface.

2. Basic concepts related to programming languages

The computers recognize internally only situations of the type “yes-no”,
“0-1” or “off-on”. According to Nerlove (2004), the von Neumann’s
great contribution to computation was to have proposed that a machine
could be programmed to execute a sequence of commands (code)
previously stored in its memory as “off-on’s”. This author has cited, as
an example, in an historical perspective, the ENIAC at the University of
Pennsylvania, which, in 1946, the switches were set by hand.

4 Economists as well as other scientists, engineers, etc.

430

REVISTA DE ECONOMIA E AGRONEGÓCIO, VOL.3, Nº 3

Before the advent of programming languages, the programmer had to
use “machine language”, that is, binary bits “0-1”5, in order to get the
computer to execute a specific task. The problem with the machine
language is that it is tedious, complex and easy to make mistakes. The
first progress in terms of programming languages was the called
“assembly” language (semi-symbolic form) that uses instructions
(abbreviated words) in a one-by-one correspondence with instructions in
machine language. An “assembler” translates the assembly language
symbols into machine language.

The great progress that has permitted the more effective use of the
computers was the invention of the low-level programming languages.
According to Nerlove (2004), the firsts low-level programming languages
invented were: Fortran (Formula Translation) in 1957 by IBM; Algol
(Algorithmic Language) in 1958 by a European consortium; and Cobol
(Common Business Oriented Language) in 1960. Since then, new
versions of these languages have appeared6 and other programming
languages were invented. Nowadays, the great majority of software/
applications has been developed using these old or new programming
languages.

A low-level programming language has a strict syntax (words and a set
of rules) and, when standardized, become portable, that is, it can be used
in different computer systems. A computer programs written using this
type of language to curry out a specific task needs a compiler and/or an
interpreter that translates the instructions in machine language. In this
process, there is loss of runtime efficiency (computing time) when we
compared the same program written in machine language.

Low-level programming languages can also be used to write Internet
applications. One of the most common ways to write specific programs
that access the Internet is by mean the Common Gateway Interface

5 It is possible to use numeric code not binary, but these codes must be translated in binary code because these
are the only one that can be directly executed by computers.

6 From these three programming languages, only Fortran continues to be used extensively, specially by scientists
and for engineering applications.

431

Wilson da Cruz Vieira & Levi H. Santana de Lelis

(CGI), a standard protocol (it is not a programming language) to run
program in a server via Web7. It is important to note that there are specific
programming languages whose computer programs can run in a browser
(Internet Explorer, Netscape etc) such as Java and JavaScript.

3. Criteria for comparison of programming languages

There are various criteria that can be used to compare computer-
programming languages8. From the point of view of the economist, that
frequently uses numerical methods and econometrics and who is not a
professional programmer (programming expert), some programming
languages aspects can be more interesting such as runtime efficiency,
readability, ease of learning, and reliability.

The importance of the runtime efficiency (computing time) becomes
evident when the structure of economic problems becomes more complex
and has great dimension to a given hardware. Thus, programming
languages that have numerical libraries more precise and efficient would
be more adequate to the economist work.

Readability is related to ease of reading computer program codes. If a
code is easy to read and to understand, it is readable. The ease of learning
of a language is determined by its simplicity and readability, which is of
great relevance to non-professional programmers like most economists.
In the same way, portability is another relevant aspect to be considered
because it helps the work of the user that need to use different computer
platforms. Finally, reliability depends on various aspects of a language,
such as portability, and dynamic memory allocation.

Taking into account the four aspects previously highlighted, we have
compared, in this paper, the programming languages Fortran77, C++,
and Java. These are languages with many similarities, but they have

7 Web is an acronym for World Wide Web.
8 See, for example, Prechelt (2000).

432

REVISTA DE ECONOMIA E AGRONEGÓCIO, VOL.3, Nº 3

some distinct aspects. They are also very popular in the academic mean
and in engineering applications. We have done this comparison based on
the specialized literature on computer programming languages and pieces
of codes written in these three languages.

4. Results and discussion

In the following the pros and cons of the three languages studied are
analyzed according to previously defined aspects. This analysis is based
on the specialized literature on computer programming languages and
pieces of codes presented to emphasize specific aspect of each language.

Runtime efficiency

The first version of Fortran was released in 1956. At that time, the
hardware was expensive and questions about reliability and maintenance
were not so critical. Hence Fortran was created to be simple and efficient.
Since then, new versions of Fortran were released with new functionalities
since than such as Fortran77 (structured language) and Fortran90 (object-
oriented language)9. The addition of new functions to the language made
it less efficient in computing time. However, this language continues to
be more efficient than C++ and Java if we consider the same task to be
executed using the same hardware10.

C++ emerged as an evolution of the C programming language. We may
recognize it as the object-oriented version of the programming language
C. Although C++ is less efficient than C, it is still very fast. The creators
of C and C++, in some points, prioritize efficiency instead of portability
and reliability.
9 In an object-oriented programming languages we can define functions (types of operations) in addition to data

type of a data structure to get an object. The objects of a program can be related or we can simply create a new
object that inherits many of its features from existing objects. This aspect and others make object-oriented
programs easier to modify than structured programs.

10 Lelis and Vieira (2005) have done this comparison (computing time). These authors have used the Simplex
Algorithm (Linear Programming) coded in these three languages.

433

Wilson da Cruz Vieira & Levi H. Santana de Lelis

The first version of Java was released in 1995, that is, a period when the
hardware has became relatively cheap and abundant. For this and other
reasons, the Java creators’ prioritize others aspects such as portability.
To make this language totally portable, it was necessary to create a Java
Virtual Machine (JVM). After the compilation procedures, the results
are bytecodes that can be interpreted by the JVM. So the bytecodes
(Java programs) can run in any operation system that has a JVM internally.

This type of compilation executed in a Java environment is classified as
hybrid, that is, the code is first compiled and afterward interpreted. Note
that this process makes the code more efficient than if executed in a
language purely interpreted and less efficient than if executed in a language
purely compiled such as Fortran77 or C++. According to Nerlove (2004,
p.191), “compilers transform an entire program from one language to
another (for example, the assembly language) for subsequent execution;
interpreters execute a program sequentially, translating at each step.
Compiled programs almost always run faster than interpreted programs
but are a lot harder to debug”.

Recently compilers called Just-in-Time (JIT) have been embedded into
Java Virtual Machine to improve the runtime efficiency of Java. The
function of theses compilers is to translate bytecodes in machine language
with gains in computing time. With these software improvements and the
hardware evolution the differences in runtime efficiency among
programming languages will become narrower in the coming years.

Readability

The readability is related to ease of reading and to be able to understand
a computer program. Note that it is much easier to find errors and to
alter codes if the program is readable. This aspect is very important and
most programming language creators’ nowadays is concerned about this
in the development of a new language. The reason for such a
preoccupation was the so-called “software crisis” (Pressman, 1997) that
has its roots in difficulties with program maintenances.

434

REVISTA DE ECONOMIA E AGRONEGÓCIO, VOL.3, Nº 3

At the time Fortran was invented there was not great preoccupation
with readability and this language had some restrictions related to this
aspect. This problem was partially eliminated in the version Fortran77
because the language has become structured and the existence of loop
commands has diminished the use of goto command. Note that the goto
command obligates the programmer “go up” and go down” in the codes
and this process makes difficult the program understanding.

Fortran77 has aspects that influence positively the readability of the
programs. It is very difficult a programmer to find unknowns code because
there are little commands in this language, which enhance its simplicity.
The possibility of division of the program into subprograms and procedures
also contribute to its readability.

The readability of the C++ language is a critical question because this
aspect was sacrificed to get more efficiency. A classical example is the
copy of two vectors whose codes can be written in the following manner:

for (;s < vectorSize && *p=*q;p++,q++,s++);

Even experienced programmers can have doubts about the results
generated by this command. On the other hand, only one line of codes is
sufficient to do the copy of two vectors and to solve the problem. Note
that, in this case, the readability was sacrificed in detriment of the saving
of codes.

The use of pointers contributes widely to the low readability of programs
written in C++. The pointers are used to allocate dynamically computer
memory, which become its use more efficient. They are known as the
goto of data structures. As an example, consider the following command:

p = q -> tail;

Note that it is difficult to know, at a glance, what the data structure is
being actualized.

435

Wilson da Cruz Vieira & Levi H. Santana de Lelis

Another determinant factor for inclusion of pointers is related to the
efficiency of program executions. If a programming language does not
give the possibility of use of pointers it must include a system for memory
management of the utilized space. This system is known as garbage
collection and reduces the efficiency.

Although the goto command is a reserved word for Java, the compiler
does not accept it. The Java syntax is widely based on the syntax of
C++, but has some aspects that give it more readability. The decision of
the creators of Java do not permitting the goto and pointers let this
language more reliable and readable.

Ease of learning

If a programming language permits to solve a problem in many ways, it is
more difficult to learn. Fortran77, for example, is a language easy to
learn because has little commands. Most of the time this language does
not have many ways to solve the same problem. Thus, the chance a
programmer has to find an unknown code in a program written in this
language is very low.

C++ has 59 reserved words, which is a very high number when compared
to other languages. The compiler does not permit the use of these words
to declare variables, functions, classes etc. C++ has many commands
and offers many ways to solve the same problem which difficult the
learning of this language. As an example, the following commands have
the same effect on a specific context:

c = c + 1;
c++;
++c;
c+=1;

The programmer has to be careful when using pointers. If they are used
incorrectly, they can cause errors difficult to find. Learning to use pointers
correctly demands much time of studying and much programming
practice. Instead of other languages such as Java, the C++ programmer
has great responsibility in the dynamic memory allocation.

436

REVISTA DE ECONOMIA E AGRONEGÓCIO, VOL.3, Nº 3

Java has 49 reserved words, which is also a very high number. Even
though there are situations where Java offers more than one way to
solve the same problem, there are other aspects that become it easier to
learn than C++. These aspects are: Java does not permit the use of
pointers and has a garbage collection. The garbage collection “cleans”
automatically an area that has not been in use, leaving it available to new
uses. This function of the garbage collection is very important because
the programmer can spend more time in other aspect of programming
than solving problems related to dynamic allocation of memory.

The allocation of memory is very important and requires good practice
of programming to get efficient results. To show how the Java
programming language manages this aspect consider the following pieces
of codes designed to allocate a matrix in the three languages, that is,
Fortran77, C++, and Java:

Fortran77:

…
real matrix (100,100);
…

C++:
…
double** matrix; // pointers declaration
/* matrix allocation according to values of height and width*/
matrix = new(double*[height]);
for(int i=0; i<height; i++)

 matrix[i]=new(double[width]);
…
/*after having used the allocated area, it is necessary to reverse the process*/
for(int i=0; i<height; i++)

 delete[](matrix[i]);
delete[] matrix;

437

Wilson da Cruz Vieira & Levi H. Santana de Lelis

Java:
//variable declaration and height allocation
double matrix[][]=new double[height][];
/*matrix allocation according to height and width*/
for(int i=0; i<matrix.length; i++)

 matrix[i] = new double[width];

Once Fortran77 does not support dynamic memory allocation the
programmer must know a priori how the dimension of the matrix is. If
the programmer does not know a priori the dimension of a matrix, he/she
should allocate more space than necessary and, in this case, there is
waste of memory.

In the C++ language the programmer can allocate memory for a matrix
easily with pointers especially if he/she does not know its dimension. On
the other hand, the use of pointers can make difficult the memory allocation
if they are not used efficiently. Note that, in the case of Java, it is not
necessary to reverse the memory allocation explicitly. When the memory
is not in use, the matrix goes to the garbage collection.

Reliability

Fortran77 is a language with low reliability. Its creators did not concern
with questions such as exception handling and free use of reserved words,
which limited the readability and reliability of the language. If a program is
difficult to read and to understand, it is not reliable because there is more
chances to make mistakes. The readability affects directly the reliability.

C++ has exception handling that contributes to the reliability of the
language. With exception handling if there are errors, they can be
eliminated during the execution of the program. In many situations, the
C++ language sacrifices reliability in detriment of efficiency. For example,
this language does not have garbage collection because it reduces the
time of program execution.

438

REVISTA DE ECONOMIA E AGRONEGÓCIO, VOL.3, Nº 3

Another aspect that reduces reliability in the C++ language is the use of
pointer. The programming with pointers requires constant attention of the
programmer because it is common to commit errors with their manipulation.
Common problems that happen with the manipulation of pointers are:

a) Type system violation errors

Consider the following example:

int main() {
int k = 0, l = 10;
int * m = &l;
m--;
k = *m + 1;
return 0;

{

In the program above, an integer-pointer was declared to integers, which
are called m. In the beginning, it points to the integer variable l, but when
the value of m is reduced, we do not know more to what type m is
pointing. In this case, k receives an unexpected value.

b) Outstanding objects

Consider the following piece of code:

int k = 4, j = 10;
int* m = new int[j];
int* p = new int [k];
p = m;

In this piece of code, two vectors were allocated, one with dimension 10
and the other with dimension 4, both pointed respectively to m and p.
When m is attributed to p, the vector of dimension 4 to which p has

439

Wilson da Cruz Vieira & Levi H. Santana de Lelis

pointed stays lost in the memory, that is, it becomes not accessible. If this
type of problem occurs frequently, it causes the leak of memory, that is,
the available space to allocate is reduced.

c) Outstanding references

Consider the following piece of code:

int g = 10;
int* m = new int [g];
int* p = m;
delete m;

Note that we have allocated dynamically a vector of integers and next
we have done the pointer p to point to the same vector. When we remove
the space allocated to m, p becomes an outstanding reference, that is, it
keeps pointing to garbage.

The reliability was one of the main aspects observed when the Java
language was invented. Java has others aspects that become it one of
the most reliable languages nowadays. Some of these aspects will be
discussed in more details in the following.

a) Hybrid language

When Java was invented, its initial purpose was to be a portable language
that, in principle, could be run in any electronic device such as televisions,
microwaves, liquidizers, cell phones, and vacuum cleaners. To be executed
in these devices, it is necessary an interpreter of Java programs installed
in them. However, if the Java were purely interpreted, this would reduce
considerably the reliability of this language. Consider, for example, the
following pieces of codes:

440

REVISTA DE ECONOMIA E AGRONEGÓCIO, VOL.3, Nº 3

if (a) {
 // code 1
} else {
 // code 2
}

In a language purely interpreted, if the codes above were executed many
times, it could occur the situation in what the statement "a" is true and
only the code 1 is verified. If the software were released to the market,
it could happen the situation in what the statement "a" is false and the
code 2 is interpreted. Note that logical and syntax errors can emerge if
the later were not tested. To avoid this type of problem and to gain
efficiency, the creators of Java have became it hybrid, that is, the Java
program is first compiled and, after that, it is interpreted.

b) Garbage collection

To leave also the codes more reliable, it was implemented in the Java
language the garbage collection. As pointed out earlier, the garbage
collection manages the dynamic memory, that is, "clean" the areas that
are not more in use. This function realized by the garbage collection
reduces considerably the possibility of errors.

c) Dynamic verification of indices

Consider the following pieces of codes:

try {
 do {
 if(matrix[j][positionH
 aux1 = matrix[j][b
 positionVariable =
 }
 j++;
 } while (aux1 < 0);
} catch (IndexOutOfBounds
 // exception handling
}

441

Wilson da Cruz Vieira & Levi H. Santana de Lelis

Java possesses dynamic verification of indices and the problem presented
in the pieces of codes above (simplex algorithm)11 can be solved elegantly
with the exception handling. If we try to access an index out the matrix in

aux1 = matrix[j][b] / matrix[j][positionHighestZ];

automatically would be released an exception, an
IndexOutOfBoundsException, and the flow of the program would go
to the catch block that treat the exception. Without the dynamic
verification of indices, the program would finish with errors and the user
would not know what would have happened.

d) Java does not permit use of pointers

The use of pointers is not permitted in the Java language. This aspect
avoids programming errors such as type system violation, outstanding
objects and outstanding references. The absence of pointers leaves the
codes more readable and easier to be modified.

5. Concluding remarks

In this paper we have compared the programming languages Fortran77,
C++, and Java according to the following aspects: runtime efficiency,
readability, ease of learning, and reliability. In doing this comparison we
have attempted to give valuable information to economists interested in
learning one or more of these languages.

After the presentation of the pros and cons of these three languages, we
have concluded that the Java language is the best option for economists
that are, in most cases, not professional programmers (programming
expert). Besides being a language versatile and relatively easy to learn,
Java helps the work of the user because a series of aspects such as
garbage collection, exception handling, does not permit the use of pointers,
dynamic verification of indices and high reliability.

11 See Lelis and Vieira (2005) for more details.

442

REVISTA DE ECONOMIA E AGRONEGÓCIO, VOL.3, Nº 3

Another aspect of Java language we did not emphasize is that through
the Java Server Pages (Servlets) we can easily do the communication
between a HTML page and a Java program. Once a program has been
written in Java all what we need is to create an interface for the right
case, that is, Web or Desktop. In other words, the same code can be
utilized in Web or Desktop applications.

The drawback of the Java language is the runtime efficiency when
compared to Fortran77 and C++. Note that the difference in runtime
efficiency among these languages is evident only for great problems that
require many hours or days of computing time. For small problems, this
difference is insignificant. The trend is the reduction of the difference in
runtime efficiency among these programming languages with the
hardware evolution.

Finally, in the case of Brazil, the failure to support the Java technology in
a free basis has limited the diffusion of the Java language. As an example,
we mention the case that there are not Java Web Servers free of charge
in Brazil. In recent years, the Brazilian government has encouraged the
use of free software by public institutions. This is a good opportunity to
give more support to this technology in a free basis especially in the
academic mean and public institutions.

References

BELSLEY, D. A. Mathematica as an environment for doing economics
and econometrics, Computational Economics, 14: 69-87, 1999.

CRIBARI-NETO, F. C for econometricians, Computational
Economics, 14: 135-149, 1999.

KENDRICK, D. A.; AMMAN, H. M. Programming languages in
economics, Computational Economics, 14: 151-181, 1999.

443

Wilson da Cruz Vieira & Levi H. Santana de Lelis

LELIS, L. H. S.; VIEIRA, W. C. Linguagens de programação em
economia: análise comparativa e desenvolvimento de aplicativo. Viçosa:
DER/UFV, 2005. 102p. (Relatório de Pesquisa).

NERLOVE, M. Programming languages: a short history for economists.
Journal of Economic and Social Measurement, v.29, n.1-3, 2004.
p.189-203.

PRECHELT, L. An empirical comparison of seven programming
languages. Available at: <htpp://www.cis.udel.edu/~silber/470STUFF/
article.pdf> Accessed in: December/2000.

PRESSMAN, R. S. Engenharia de Software. São Paulo: Editora
Makrom Books, 1995. 1025.

RUST, J. GAUSS and MATLAB: a comparison. Journal of Applied
Econometrics, 8, 307-324, 1993.

Resumo - O principal objetivo deste trabalho foi comparar as linguagens de programa-
ção Fortran77, C++ e Java sob quatro aspectos: eficiência (tempo de computação),
facilidade de leitura, facilidade de aprendizagem e confiabilidade. Para esta comparação,
foi feita revisão da literatura especializada sobre linguagens de programação e utilizadas
seqüências de códigos escritas nestas três linguagens. Esta comparação teve como pro-
pósito fornecer informação para economistas interessados em aprender uma ou mais
destas linguagens de programação.

Palavras-chave: linguagem de programação, eficiência, facilidade de leitura,
confiabilidade.

444

REVISTA DE ECONOMIA E AGRONEGÓCIO, VOL.3, Nº 3

