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§Corresponding author. HEC Montréal, Institute of Applied Economics, and CIRPEE.

Email: marc.santugini@hec.ca.

1



Abstract

We introduce learning in a Brock-Mirman environment and study

the effect of risk generated by the planner’s econometric activity on

optimal consumption and investment. Here, learning introduces two

sources of risk about future payoffs: structural uncertainty and un-

certainty from the anticipation of learning. The latter renders control

and learning nonseparable.

We present two sets of results in a learning environment. First,

conditions under which the introduction of learning increases or de-

creases optimal consumption are provided. The effect depends on the

strengths and directions of the two sources of risk, which may pull in

opposite directions. Second, the effects of changes in the mean and

riskiness of the distribution of the signal and initial beliefs on optimal

consumption are studied.
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1 Introduction

In the early literature on optimal growth, the evolution of output was deter-

ministic, see Cass (1965) and Koopmans (1965). This was a natural place to

begin the study of optimal growth since growth had already been studied in

a deterministic environment by Ramsey (1928). Brock and Mirman (1972)

introduced uncertainty in outcomes in an optimal growth model, which built

on earlier studies of stochastic positive growth, see Mirman (1972, 1973).

Uncertainty in outcomes is modeled by introducing a random shock in the

production function. Hence, the future is riskier than in the determinis-

tic case since future output is random, affecting optimal consumption and

investment.

There is, however, another aspect of uncertainty that has yet to be studied

in optimal growth: uncertainty in the structure of the economy. Unlike uncer-

tainty in outcomes, structural uncertainty evolves through learning. Indeed,

by gathering and analyzing input and output data, the planner becomes an

econometrician in order to reduce structural uncertainty, while making con-

sumption and investment decisions. The introduction of learning increases

the uncertainty of future payoffs, which affects the expected marginal utility

of investment. Here, learning introduces two sources of risk about future pay-

offs: structural uncertainty and uncertainty from the anticipation of learning.

With structural uncertainty, the planner does not know the value of a

specified parameter of the distribution of the production shock, but has be-

liefs about it. Beliefs are expressed as a nondegenerate prior distribution.

Thus, the presence of structural uncertainty characterizes the beliefs compo-

nent of learning.

Moreover, given structural uncertainty, the planner anticipates the up-

dating of prior beliefs to posterior beliefs, i.e., information is gathered from

the observation of realized production shocks and processed using Bayesian

methods. Because future information is random, the anticipation component

of learning generates another source of risk. In other words, the learning pro-

cess is embedded in the dynamic program. Hence, control and learning are

entwined through the anticipation component of learning and cannot be sep-
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arated.

We introduce learning in a Brock-Mirman environment and study the

effect of risk generated by the planner’s econometric activity on optimal

decisions. Previous work has focused on experimentation.1 In our model,

we assume that the signal is the realization of a random variable affecting

production, and it is observed. This allows us to avoid the issue of experi-

mentation and study the effect of risk due to learning.

We focus on the class of optimal stochastic growth models studied by

Mirman and Zilcha (1975), with specific utility and production functions. In

this class of models, the distributions of the production shock and beliefs are

assumed to be general. In particular, prior beliefs need not belong to the

conjugate family of the distribution of the production shock.

Two sets of results are provided for the case of learning. The first is the

overall effect of introducing learning through both its beliefs and anticipation

components. Our results extend the literature on the effect of an increase in

risk in future payoffs on optimal consumption and investment to a learning

environment. Previous literature has focused only on models in which the

planner knows the distributions of stochastic variables. In general, the effect

of an increase in risk on optimal policy functions depends on the second

derivative of some function.2 In the case of learning in a growth model, the

effect of an increase in risk generated by the planner’s econometric activity

depends on some second derivatives as well.

The beliefs component affects the expected marginal utility of investment.

Here, it is the second derivative of the mean of the production shock with

1Experimentation was initially studied in models in which the only link between periods
is beliefs. See Prescott (1972), Grossman et al. (1977), Easley and Kiefer (1988, 1989),
Kiefer and Nyarko (1989), Balvers and Cosimano (1990), Aghion et al. (1991), Fusselman
and Mirman (1993), Mirman et al. (1993), Trefler (1993), Creane (1994), Fishman and
Gandal (1994), Keller and Rady (1999), and Wieland (2000). Experimentation in a model
with capital accumulation has also been studied. See Freixas (1981), Bertocchi and Spagat
(1998), Datta et al. (2002), El-Gamal and Sundaram (1993), Huffman and Kiefer (1994),
Beck and Wieland (2002), and Dechert et al. (2007).

2See Leland (1968), Hahn (1970), Sandmo (1970), Rothschild and Stiglitz (1971), and
Drèze and Modigliani (1972) for a finite-period analysis. For an infinite-horizon setup, see
Mirman (1971) in a model with a single agent, and Antoniadou et al. (2007) for the case
of a game. Finally, see Huggett (2004) for a detailed review of other issues studied in this
literature.
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respect to the unknown parameter that determines the effect of an increase in

risk due to structural uncertainty. If the mean of the production shock with

respect to the unknown parameter is concave, then structural uncertainty in-

creases consumption. In other words, as structural uncertainty is introduced,

the marginal utility of investment decreases, inducing less investment. And,

the marginal utility of investment increases with convexity, inducing more

investment.

The risk generated from the anticipation of learning always increases the

marginal utility of investment, leading to a decrease in consumption or pre-

cautionary investment. Here, it is the convexity of the marginal utility of

investment with respect to the mean of the production shock that leads to

precautionary investment.

The total effect of learning depends on the strengths and directions of the

beliefs and anticipation components. If the mean of the production shock

with respect to the parameter is convex, then both types of risk work in the

same direction and consumption decreases. On the other hand, if the mean

of the production shock is concave, then both types of risk pull in opposite

directions and the effect of learning depends on the strength of each risk.

Second, we perform a comparative analysis of distributions on the learning

planner’s optimal consumption, using the concepts of first and second-order

stochastic dominance. Specifically, the effects of changes in the mean and

riskiness of the distributions of the production shock and beliefs on opti-

mal consumption are studied. The effect of riskier distributions on optimal

consumption has been studied only in stochastic dynamic models in which

the planner knows the distributions of stochastic variables. This analysis is

extended to the learning case here.

We show that, while a higher mean of the production shock decreases

consumption, a riskier distribution of the production shock has no effect on

optimal consumption. The first result is due to the structure of the Mirman-

Zilcha model, a higher mean of the production shock makes investment more

profitable. The second result follows from the fact that the uncertainty in

outcomes due to the random production shock is determined solely through

its mean in a Mirman-Zilcha model, so a higher variability of the production
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shock does not affect behavior. Hence, in this class of models, the learn-

ing agent reacts to the anticipation of learning, independent of the amount

of learning that takes place. Specifically, the informativeness of the signal

has no effect on decisions. In other words, certainty equivalence regarding

the random production shock continues to hold in this model with learn-

ing. Changes in the mean and riskiness of the distribution of the production

shock have, nonetheless, a dynamic effect on optimal consumption in the

subsequent period through posterior beliefs.

We also show that more optimistic beliefs decrease consumption if the

mean of the production shock is positively related to the unknown parame-

ter. Indeed, more optimistic beliefs increase the expected marginal utility of

investment, inducing more investment. Finally, unlike riskier distributions

of the production shock, riskier beliefs affect consumption. A riskier distri-

bution of beliefs leads to an increase in uncertainty through both the beliefs

and anticipation components. The total effect of riskier beliefs depends on

the strengths and directions of these two components.

The paper is organized as follows. In section 2, we introduce learning in a

general Brock-Mirman environment. In section 3, optimal consumption and

investment are characterized in the class of optimal stochastic growth models

studied by Mirman-Zilcha. In section 4, we study the effect of introducing

learning on optimal policies. In section 5, we perform a comparative analysis

of distributions on the learning planner’s optimal consumption. In section 6,

the effect of learning on the transition path is briefly discussed. Section 7

presents some final remarks for future research. All proofs are relegated to

the appendix.

2 Model

Brock-Mirman Environment. Consider an economy in which output is

determined by the production function f(k, η), f1 > 0, f11 < 0, as introduced

in Mirman (1970). Here, k is capital and η is a realization of the random

production shock η̃. The p.d.f of η̃ is φ(η|θ∗) for η ∈ H ⊂ R, which depends

on a parameter θ∗ ∈ Θ ⊂ R
N for N ∈ N. The relationship between the
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distribution of η̃ and the parameter θ∗ is strictly monotonic.

Each period, a planner divides output y between consumption c and in-

vestment k = y − c. Capital k is used for the production of output ŷ in the

subsequent period, i.e.,

ŷ = f(y − c, η). (1)

The objective is to maximize the expected sum of discounted utilities, where

the discount factor is δ ∈ (0, 1) and the utility function is u(c), u′ > 0, u′′ < 0.

Expectations are taken with respect to the sequence of future production

shocks.

We first recall the informed growth model of Brock and Mirman (1972),

where the planner faces no structural uncertainty, i.e., the planner is informed

because θ∗ is known. Given θ∗, the informed planner anticipates the effect

of the production shock on future output. The value function is

VI(y; θ∗) = max
c∈[0,y]

{
u(c) + δ

∫
H

VI(f(y − c, η); θ∗))φ(η|θ∗)dη

}
, (2)

yielding optimal consumption gI(y; θ∗).

Learning Planning. We now relax the assumption of no structural

uncertainty. Here, the planner faces structural uncertainty because θ∗ is not

known. Structural uncertainty is characterized by a priori beliefs about θ∗,

expressed as a prior p.d.f. ξ on Θ. That is, the probability that θ∗ ∈ S is∫
S

ξ(θ)dθ for any S ⊂ Θ.

Structural uncertainty leads to learning and, thus, evolves over time. In-

deed, the planner observes η, which yields information, and uses Bayesian

methods to learn about θ∗. Formally, given ξ and η, the posterior ξ̂(·|η) is

ξ̂(θ|η) =
φ(η|θ)ξ(θ)∫

Θ
φ(η|x)ξ(x)dx

(3)

for θ ∈ Θ, by Bayes’ Theorem. Bayes’ rule (3) characterizes the learning pro-

cess through the updating of beliefs in light of the information gleaned from

observing η. Observing η directly, allows us to focus on an environment with

learning but no experimentation. Indeed, (3) is independent of consumption.
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The learning planner makes consumption and investment decisions, while

learning about θ∗. That is, endowed with initial output and beliefs, consump-

tion and investment are chosen. The production shock η is then realized and

the output, in the subsequent period, is determined from (1). Information is

gleaned from observing η, which, from (3), affects beliefs about θ∗.

A learning planner’s decisions are subject to both (1) and (3). Indeed, the

learning planner anticipates the effect of the production shock on both future

output and posterior beliefs. The value function of the learning planner is

VL(y, ξ) = max
c∈[0,y]

{
u(c) + δ

∫
H

VL

(
f(y − c, η), ξ̂(·|η)

)[∫
Θ

φ(η|θ)ξ(θ)dθ

]
dη

}
(4)

subject to (3), yielding optimal consumption gL(y, ξ).

Learning increases the uncertainty of future payoffs by introducing two

sources of risk: structural uncertainty and uncertainty from the anticipation

of learning. In other words, there are two distinct components of learning.

The first is about beliefs. While the informed planner’s beliefs about

θ∗ are degenerate, the learning planner’s are nondegenerate. There is an

increase in uncertainty of future payoffs when knowledge of the distribution

of the production shock, φ(η|θ∗) in (2), is replaced by the expected p.d.f. of

η̃ with respect to beliefs ξ,
∫

Θ
φ(η|θ)ξ(θ)dθ in (4).

The second component concerns anticipation, i.e., learning is anticipated

using Bayesian updating. In a dynamic context, rational expectations imply

that the information contained in the future production shock is anticipated.

Anticipation of learning is integrated into (4) by anticipating the updated

beliefs from ξ to ξ̂(·|η) using (3).

Nonseparability of Control and Learning. The anticipation of learn-

ing is related to the nonseparability of control and learning since the optimal

policy takes account of the change in beliefs which is contained in the subse-

quent period expected value function. In other words, separation of control

and learning occurs if and only if there is no anticipation component.

The anticipation of updated beliefs affects optimal behavior because the
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dynamics given in (1) and (3) are entwined through the production shock.3

If the only link between periods were beliefs, i.e., no capital accumulation,

then the anticipation of learning would have no effect on optimization.

In order to study the effect of introducing learning, overall and through its

two components, we introduce the intermediate case of an adaptive learner.4

As with the learning planner, the adaptive learning planner does not know

θ∗, and has beliefs about it expressed as a p.d.f ξ on Θ. However, unlike the

learning planner, the adaptive learning planner does not anticipate learning.

Given beliefs, the adaptive learning planner anticipates the effect of the

production shock solely on future output, while beliefs are assumed to re-

main constant in his objective function. Therefore, the value function of the

adaptive learning planner is

VAL(y; ξ) = max
c∈[0,y]

{
u(c) + δ

∫
H

VAL(f(y − c, η); ξ)

[∫
Θ

φ(η|θ)ξ(θ)dθ

]
dη

}
,

(7)

yielding optimal consumption gAL(y; ξ). The adaptive learning planner does,

however, update beliefs in each period. Once information arrives, the adap-

tive learning planner adapts and updates beliefs, subject to (3). Therefore,

the adaptive learning planner reacts to new information, but does not antic-

ipate it.

Note that the informed and adaptive learning planners differ solely in the

distribution of the production shock. Indeed, knowledge of the distribution

of the production shock, φ(η|θ∗) in (2), is replaced by the expected p.d.f. of η̃

with respect to beliefs ξ,
∫
Θ

φ(η|θ)ξ(θ)dθ in (7). Thus, the adaptive learning

3Formally,∫
H

VL

(
f(y − c, η), ξ̂(·|η)

) [∫
Θ

φ(η|θ)ξ(θ)dθ

]
dη �=

∫
H

VL(f(y−c, η), ξ)
[∫

Θ

φ(η|θ)ξ(θ)dθ

]
dη,

(5)
even though the expectation of the posterior p.d.f is equal to its prior, i.e.,∫

H

ξ̂(·|η)
[∫

Θ

φ(η|θ)ξ(θ)dθ

]
dη = ξ(θ) (6)

for θ ∈ Θ.
4See Evans and Honkapohja (2001) for a detailed exposition of adaptive learning. See

also Milani (2007).
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planner faces a more variable distribution of the production shock than the

informed planner.

Comparisons. While comparing informed and learning planners cap-

tures the overall effect of introducing learning in growth, the introduction

of the intermediate case of an adaptive learning planner allows us to study

the beliefs and anticipation components independently. First, comparing (2)

and (7) captures the beliefs component, i.e., the risk generated from not

knowing θ∗. Second, comparing (4) and (7) captures the anticipation com-

ponent, i.e., the risk generated from uncertain posterior beliefs.

Remarks. In general, dynamic programs with learning such as (4) are in-

tractable, i.e., they are not solvable either analytically or numerically, when

there is no separability of control and learning.5 The problem is not only

whether a solution exists, but if a solution can be characterized and its prop-

erties studied. Two aspects of dynamic programming with learning should

be noted.

First, (4) depends on the variable y and the prior p.d.f ξ on Θ. Unless

the space Θ contains a finite number of elements, the state space (y, ξ) is

infinitely-dimensioned, yielding the curse of dimensionality.

Second, the evolution of beliefs, according to Bayes’ law, does not pre-

vent the prior and posterior p.d.f.’s ξ and ξ̂(·|η) from belonging to differ-

ent families. This makes the solution of an infinite-horizon dynamic pro-

gramming problem with Bayesian dynamics generally intractable. Indeed,

the learning planner makes consumption and investment decisions, antici-

pating updating beliefs every period. In other words, the value function,

V
(
f(y − c, η), ξ̂(·|η)

)
in (4), encompasses beliefs that have been updated

infinitely many times. These updated beliefs may belong to many different

families of distributions.

Learning with general functions and distributions has focused on exis-

tence as well as limit beliefs and actions.6 Studies that characterize optimal

policies are always in the context of specific functional forms, the space of

5When there is separability, the dynamic program becomes a standard growth problem,
so that the learning planner is identical to the adaptive learning planner.

6See Easley and Kiefer (1988, 1989), Kiefer and Nyarko (1989), Aghion et al. (1991),
El-Gamal and Sundaram (1993), among others.
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the unknown parameter restricted to two values, finite periods, or the use

of conjugate priors, especially the normal distribution.7 While we special-

ize the model in order to obtain tractable solutions for (2), (4), and (7)

within a well-known class of optimal stochastic growth models, we charac-

terize optimal consumption and investment with results that hold for general

distributions.

3 Optimal Consumption and Investment

In order to deal with the complexities of learning in growth, we focus on

the class of optimal stochastic growth models studied by Mirman and Zilcha

(1975) with the following assumptions.

Assumption 3.1. The utility function is u(c) = ln c.

Assumption 3.2. The production function is Cobb-Douglas, f(k, η) = kη.

Assumption 3.3. The support of η̃ is H = [0, 1] and η is observable.

Assumptions 3.1, 3.2, and 3.3 hold for the remainder of the paper. The

model with log utility, Cobb-Douglas production, and general distributions

of the production shock and beliefs about θ∗ yields closed-form solutions

for optimal consumptions in the cases of informed, adaptive learning, and

learning.

The combination of log utility and Cobb-Douglas production is needed to

obtain a tractable characterization of optimal consumption and investment in

a learning context. For log utility and the Cobb-Douglas production function

f(k, η) = ηkα, α ∈ [0, 1], learning about the distribution of η̃ has no effect

because the multiplicative shock plays no role. Moreover, making the utility

function more general, while keeping a Cobb-Douglas production function

leads to intractability.

The Mirman-Zilcha class of models has three features that makes the

analysis possible. First, Assumptions 3.1 and 3.2 imply that optimal con-

sumption and investment are linear in output in the no learning case. The

7See the rest of the literature on learning in footnote 1.
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linearity property remains under learning, although the fraction of output

consumed now depends on beliefs and evolves with new information.

Second, from Assumptions 3.1 and 3.2, the uncertainty in outcomes, i.e.,

the random production shock, enters the optimization problem through its

mean. In other words, the Mirman and Zilcha (1975) class of models displays

certainty equivalence. This feature is exploited in the learning case since the

uncertainty in outcomes is mapped to its mean, implying that the unknown

parameter affects optimal consumption solely through μ(θ) =
∫ 1

0
ηφ(η|θ)dη,

the mean of η̃ given θ ∈ Θ. The relationship between the mean of the produc-

tion shock and the unknown parameter is the key in determining the effect

of learning on the optimal consumption function and comparative analysis.

Third, Assumptions 3.1 and 3.2 imply that no assumption is needed on

the production shock, as well as on the distribution of prior beliefs. The

Mirman-Zilcha class of models does away with all the difficulties inherent in

Bayesian analysis. In particular, the prior need not belong to the conjugate

family of the distribution of the production shock. In other words, solutions

for optimal consumption and investment are valid for a wide range of priors,

even those that are outside of families of distributions that are closed under

sampling.

We first state the optimal consumptions of both the informed and adap-

tive learning planners. We then present and illustrate the optimal consump-

tion of the learning agent.

Benchmark Models. From Mirman-Zilcha, the optimal consumption

of the informed planner, corresponding to (2), is

gI(y; θ∗) = (1 − δμ(θ∗))y, (8)

while the optimal consumption of the adaptive learning planner, correspond-

ing to (7), is

gAL(y, ξ) =

(
1 − δ

∫
Θ

μ(θ)ξ(θ)dθ

)
y. (9)

The presence of structural uncertainty does not affect the optimal consump-

tion function, since the true expectation of η̃, E[η̃|θ∗] = μ(θ∗) in (8), is
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replaced by the expectation of η̃ given beliefs, E[η̃|ξ] =
∫
Θ

μ(θ)ξ(θ)dθ in (9).

Learning Planner. In the appendix, we show that the value function

of the learning planner is of the form,

VL(y, ξ) = κ1(ξ) ln y + κ2(ξ), (10)

where κ1(ξ) =
∫
Θ
(1 − δμ(θ))−1ξ(θ)dθ and κ2(ξ) depends on ξ.

Proposition 3.4. The optimal consumption of the learning planner is

gL(y, ξ) =

(∫
Θ

ξ(θ)dθ

1 − δμ(θ)

)−1

y. (11)

Despite the fact that this class of growth models displays certainty equiv-

alence, certainty equivalence does not imply the separation of control and

learning. Indeed, the anticipation of learning changes the optimal consump-

tion function for the learning planner.

We present four examples that show the wide applicability of our model,

not only in terms of distributions, but also in terms of general unknown

structures. For instance, normal distributions are not needed to get analytic

results. In Example 3.5, the case of learning about two unknown parame-

ters is presented. Example 3.6 deals with a uniform distribution for η̃ with

unknown support. Example 3.7 illustrates the case in which the learning

planner does not know to which family η̃ belongs, as well as not knowing

the parameters characterizing each family. Finally, Example 3.8 shows that

the model encompasses the case of an informed planner with degenerate be-

liefs. That is, in Example 3.8, the planner knows the distribution of η̃, as in

Mirman-Zilcha.

Example 3.5. Let η̃ have a beta distribution with unknown parameters θ =

(α, β), and beliefs ξ(α, β), α, β > 0. Then, μ(θ) = α/(α + β) and

gL(y, ξ) =

(∫
R

2
++

ξ(α, β)dαdβ

1 − δα/(α + β)

)−1

y. (12)
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Example 3.6. Let η̃ have a uniform distribution with unknown support [0, θ],

and beliefs ξ(θ), θ ∈ [0, 1]. Then, μ(θ) = θ/2 and

gL(y, ξ) =

(∫ 1

0

ξ(θ)dθ

1 − δθ/2

)−1

y. (13)

Example 3.7. Let Θ = {θ1, θ2}, where θ1 represents a beta distribution with

unknown parameters (α, β), and beliefs ξB(α, β), α, β > 0, while θ2 represents

a truncated normal distribution with support [0, 1], unknown parameters

(m, σ2), and beliefs ξN(m, σ2), m > 0, σ2 ∈ R++. If 0 ≤ ρ ≤ 1 is the prior

probability that the production shock is beta distributed, then

gL(y, ρ, ξB, ξN) =

(
ρ

∫
R

2
++

ξB(α, β)dαdβ

1 − δμ1(α, β)
+ (1 − ρ)

∫
R++

∫
R

ξN(m, σ2)dmdσ2

1 − δμ2(m, σ2)

)−1

y,

(14)

where μ1(α, β) is the mean of a beta random variable with parameters (α, β)

and μ2(m, σ2) is the mean of a truncated normal random variable with pa-

rameters (m, σ2).

Example 3.8. Let the beliefs be denoted as ξ∗ be degenerate at θ∗, i.e., ξ∗(θ) =

1 for θ = θ∗ and ξ∗(θ) = 0 for θ ∈ Θ\{θ∗}. Then, gL(y, ξ∗) = (1 − δμ(θ∗))y,

which is identical to (8).

4 The Effect of Learning on Optimal Policies

Learning increases the uncertainty of future payoffs, which affects the ex-

pected marginal utility of investment. As noted previously, learning intro-

duces two sources of risk about future payoffs: structural uncertainty and

uncertainty from the anticipation of learning. Structural uncertainty is the

beliefs component, while uncertainty from the anticipation of learning is the

anticipation component. In this section, we study the overall effect of intro-

ducing learning through both its beliefs and anticipation components.

Our results extend the literature on the effect of an increase in risk on

optimal consumption and investment to a learning environment. Previous

literature has focused on models in which the planner knows the distributions
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of stochastic variables. In this literature, the effect of an increase in risk on

optimal policy functions depends on the second derivative of some functions

of the random variable being studied.8

In the learning case, the effect of an increase in risk also depends on the

second derivatives of some functions of the appropriate random variable. To

see this, consider the first-order conditions of the informed planner,

1

c
=

δR(μ(θ∗))
y − c

, (15)

the adaptive learning planner,

1

c
=

δR
(∫

Θ
μ(θ)ξ(θ)dθ

)
y − c

, (16)

and the learning planner,

1

c
=

δ
∫
Θ

R(μ(θ))ξ(θ)dθ

y − c
. (17)

Here, R(x) = x(1 − δx)−1, R′, R′′ > 0, for x ∈ [0, 1] characterizes the effect

of uncertainty in outcomes due to the random production shock η̃ on the

expected marginal utility of investment.

From (15) and (16), structural uncertainty affects the expected marginal

utility of investment. Here, it is the second derivative of the mean of the

production shock, with respect to the unknown parameter, that determines

the effect of an increase in risk due to structural uncertainty.

Moreover, from (16) and (17), the anticipation of learning affects the

expected marginal utility of investment. Here, it is the convexity of R that

determines the effect of an increase in risk due to the anticipation of learning.

Finally, from (15) and (17), the overall effect of learning on optimal con-

sumption is characterized by the expectation of R with respect to beliefs ξ.

Here, it is the second derivative of R with respect to the unknown parameter

8Consider a two-period model in which the planner maximizes u(c)+ δE[u (f(y − c, η̃)]
over c. If ŷ = f(y − c) + η, then it is the convexity of the marginal utility of consumption
that leads to precautionary investment. If ŷ = ηf(y − c), then it is the convexity of
ηf ′(y − c)u′(ηf(y − c)) with respect to η that leads to precautionary investment.
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that determines the overall effect of introducing learning through both its

beliefs and anticipation components.

Nonseparability of Control and Learning. Since the dynamic ef-

fect of output (y − c)−1 is entwined with the term R and its expectation

with respect to ξ, Thus, control and learning are entwined and cannot be

separated.

The nonseparability of control and learning is revealed by comparing (16)

and (17), which also determines the impact of the anticipation component

of learning. Proposition 4.1 states that the anticipation of learning always

decreases optimal consumption. Formally,

Proposition 4.1. gAL(y; ξ) > gL(y, ξ).

Proposition 4.1 is due to the convexity of R, and, thus, the expected

marginal utility of investment, and the use of Jensen’s inequality on the

right-hand sides of (16) and (17). The risk generated from the anticipation

of learning increases the expected marginal utility of investment, leading to

a decrease in consumption or precautionary investment.

Beliefs and Anticipation Components. Next, the effect of intro-

ducing learning in an optimal growth model, when beliefs are unbiased, is

studied. First, we consider beliefs about the mean of the production shock

that are unbiased, i.e., μ(θ∗) =
∫
Θ

μ(θ)ξ(θ)dθ. Second, we focus on beliefs

about the parameter θ∗ that are unbiased, i.e., θ∗ =
∫
Θ

θξ(θ)dθ. In both

case, conditions are established under which the introduction of learning,

overall and through each of its components, increases or decreases optimal

consumption using (15), (16) and (17). In other words, gI(y; θ∗), gAL(y; ξ),

and gL(y, ξ) are ordered.

In Proposition 4.2, the effect of learning when beliefs are unbiased about

the mean of the production shock is studied. From (15) and (16), risk from

structural uncertainty does not change the expected marginal utility of in-

vestment, since the uncertainty in outcomes is characterized only through

its mean. Since the true mean of the production shock and unbiased beliefs

about the true mean of the production shock have the same effect on behav-

ior, there is certainty equivalence. Therefore, the total effect of learning is
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due to the anticipation of learning. As established in Proposition 4.1, the risk

generated from the anticipation component increases the expected marginal

utility of investment, leading to precautionary investment. Formally,

Proposition 4.2. Suppose beliefs are unbiased about the mean of the pro-

duction shock, μ(θ∗) =
∫
Θ

μ(θ)ξ(θ)dθ. Then, learning decreases optimal con-

sumption, and gI(y; θ∗) = gAL(y; ξ) > gL(y, ξ).

In Proposition 4.3, the effect of learning when beliefs are unbiased about

the unknown parameter, θ∗ =
∫
Θ

θξ(θ)dθ, is studied. The effect of learning

in this case is not as simple as in Proposition 4.2. The reasons is that

both sources of risk due to learning are at work here. Indeed, the effect of

structural uncertainty depends on the second derivative of the mean of the

production shock with respect to θ. If the mean of the production shock

with respect to θ is concave, then structural uncertainty increases optimal

consumption. In other words, as structural uncertainty is introduced, with

θ∗ replaced by unbiased beliefs about θ∗, the marginal utility of investment

decreases, inducing less investment. And, the marginal utility of investment

increases with convexity, inducing more investment.

This point is illustrated in Example 3.5 in which η̃ has a beta distribution

with parameters α, β > 0. If α ≡ θ is unknown and β is known, then

μ′′(θ) = −2β/(θ+β)3 < 0, and structural uncertainty increases consumption.

However, if α is known and β ≡ θ is unknown, then μ′′(θ) = 2α/(α+θ)3 > 0,

and structural uncertainty decreases consumption.

The total effect depends on the strengths and directions of the beliefs and

anticipation components. If the mean of the production shock with respect

to the parameter is convex, then both types of risk work in the same direction

and optimal consumption decreases. However, if the mean of the production

shock is concave, then both types of risk pull in opposite directions and the

effect of learning depends on the strength of each risk. Mathematically, it is

the second derivative of R with respect to θ that determines the strength of

the overall effect, i.e.,

d2R

dθ2
=

μ′′(θ)(1 − δμ(θ)) + 2δμ′(θ)2

(1 − δμ(θ))3
, (18)
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for θ ∈ Θ. The sign of (18) is determined by the sign of μ′′ and the relation-

ship μ′′ � −2δμ′2/(1 − δμ). Formally,

Proposition 4.3. Suppose that beliefs are unbiased about the parameter,

θ∗ =
∫
Θ

θξ(θ)dθ.

1. If μ′′ > 0, then gI(y; θ∗) > gAL(y; ξ) > gL(y, ξ).

2. If μ′′ = 0, then gI(y; θ∗) = gAL(y; ξ) > gL(y, ξ).

3. If −2δmu′2/(1 − δμ) < μ′′ < 0, then gL(y, ξ) < gI(y; θ∗) < gAL(y; ξ).

4. If μ′′ = −2δmu′2/(1 − δμ), then gL(y, ξ) = gI(y; θ∗) < gAL(y; ξ).

5. If μ′′ < −2δmu′2/(1 − δμ), then gI(y; θ∗) < gL(y, ξ) < gAL(y; ξ).

In case 1, the convexity of the mean of the production shock implies

that structural uncertainty decreases consumption, as does the anticipation

component. In other words, the two types of risk work in the same direction.

In case 2, the mean of the production shock is linear in θ, so that structural

uncertainty has no effect on the expected marginal utility of investment.

Here, consumption decreases solely due to the anticipation component. In

case 3, the mean of the production shock is concave. Here, the beliefs and

anticipation components pull in opposite directions. The beliefs component

increases, while the anticipation component, as is always the case, decreases

consumption. But the mean of the production shock is not concave enough

for the beliefs component to be dominant, and the overall effect of learning

is to decrease consumption. Case 4 is a knife-edge case in which beliefs and

anticipation components pull in opposite directions in equal strength. In

case 5, the beliefs and anticipation components pull in opposite directions,

but the mean of the production shock is concave enough to overwhelm the

anticipation component. Thus, consumption increases.

5 Comparative Analysis

In this section, the effect of different properties of the signal and initial beliefs

on the learning planner’s optimal consumption is studied. Specifically, we
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study the effect of changes in the mean and riskiness of the distribution φ

of the production shock η̃ as well as beliefs ξ about θ∗ using the concepts

of first-order and second-order stochastic dominance. Note that the concept

of second-order stochastic dominance has been used implicitly in Section 4

where the effect of an increase in risk due to the introduction of learning is

studied. The effect of riskier distributions on optimal consumption has been

studied only in stochastic dynamic models in which the planner knows the

distributions of stochastic variables. This analysis is extended to the learning

case.

To facilitate the discussion, let gj
L(y, ξ) denote optimal consumption and

μj(θ) =
∫ 1

0
ηφj(η|θ)dη, for the distribution φj. Moreover, let gL(y, ξj) denote

optimal consumption with respect to ξj, j = 1, 2.

First, the definitions of first-order stochastic dominance and second-order

stochastic dominance are stated.

Definition 5.1. The p.d.f. ϕ1 first-order stochastically dominates the p.d.f.

ϕ2, ϕ1 �1 ϕ2, if, for every nondecreasing function λ : R → R,
∫

R
λ(x)ϕ1(x)dx ≥∫

R
λ(x)ϕ2(x)dx.

Definition 5.2. For any two p.d.f.’s ϕ1 and ϕ2, ϕ1 second-order stochasti-

cally dominates the p.d.f. ϕ2, ϕ1 �2 ϕ2, i.e., ϕ1 is less risky than ϕ2, if, for

every concave function λ : R → R,
∫

R
λ(x)ϕ1(x)dx ≥ ∫

R
λ(x)ϕ2(x)dx.

5.1 Properties of the Signal

Proposition 5.3 shows that a higher mean of the production shock η̃ decreases

consumption.

Proposition 5.3. If φ1 �1 φ2, then g1
L(y, ξ) ≤ g2

L(y, ξ).

From (17), the expected marginal utility of investment is greater under φ1

than under φ2 for φ1 �1 φ2, inducing more investment and less consumption.9

9This result is in contrast to the literature that analyzes the effect of signals on future
productivity on the business cycle, where it is established that the anticipation of a higher
expected production shock in the long-run reduces current investment and increases cur-
rent consumption. The reason for the different result is that, in that literature, investment
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Proposition 5.4 shows that an increase in the riskiness of the distribution

of the production shock η̃ has no effect on consumption.

Proposition 5.4. If φ1 �2 φ2, then g1
L(y, ξ) = g2

L(y, ξ).

From (17), only μ(θ) affects the expected marginal utility of investment.

Hence, in this class of models, the learning agent reacts to the anticipation of

learning, independent of the amount of learning that takes place. Specifically,

the informativeness of the signal has no effect on decisions. In other words,

certainty equivalence regarding the random production shock continues to

hold in this model with the introduction of learning.

Finally, changes in the mean and riskiness of the distribution of the pro-

duction shock have a dynamic effect on consumption in the subsequent period

through updating beliefs. Indeed, if φ1 �1 φ2 or φ1 �2 φ2, then ξ̂1 �= ξ̂2, for

the same η. Hence, g1
L(ŷ, ξ̂1) �= g2

L(ŷ, ξ̂2).

5.2 Properties of Prior Beliefs

Proposition 5.5 shows the effect of more optimistic beliefs about θ∗ on con-

sumption. The effect of more optimistic beliefs depends on the first derivative

of μ(θ).

Proposition 5.5. Suppose that ξ1 �1 ξ2.

1. If μ′ > 0, then gL(y, ξ1) ≤ gL(y, ξ2).

2. If μ′ < 0, then gL(y, ξ1) ≥ gL(y, ξ2).

3. If μ′ = 0, then gL(y, ξ1) = gL(y, ξ2).

is delayed until the increase in the expected production shock occurs. Then, it is more
profitable to invest. See Beaudry and Portier (2004), Beaudry and Portier (2006), Beaudry
and Portier (2007), Christiano et al. (2006), and Jaimovich and Rebelo (2006). The op-
posite result is established here because the planner faces a higher expected production
shock for the next period, hence current investment is more profitable and, thus, increases
immediately.
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From (17), if μ′ > 0, then ξ1 �1 ξ2 implies that the expected marginal

utility of investment is greater under ξ1 than under ξ2. Here, more opti-

mistic beliefs about the production shock induces more investment and less

consumption.

While, as stated in Proposition 5.4, a riskier distribution of η̃ does not

affect consumption, Proposition 5.6 shows that riskier beliefs about θ∗ does

affect consumption. Proposition 5.6 generalizes Proposition 4.3. Recall that

in Proposition 4.3, informed and learning planners are compared by increas-

ing risk around θ∗. Here, two learning planners, one with riskier beliefs about

θ∗ than the other are compared.

As in Proposition 4.3, the effect of a riskier prior on consumption is

determined by the sign of (18). Formally,

Proposition 5.6. Suppose that ξ1 �2 ξ2.

1. If μ′′ < −2δmu′2/(1 − δμ), then gL(y, ξ1) ≤ gL(y, ξ2).

2. If μ′′ > −2δmu′2/(1 − δμ), then gL(y, ξ1) ≥ gL(y, ξ2).

3. If μ′′ = −2δmu′2/(1 − δμ), then gL(y, ξ1) = gL(y, ξ2).

The discussion is similar to the one for Proposition 4.3. In case 1, the be-

liefs and anticipation components pull in opposite directions, but the mean of

the production shock is concave enough to overwhelm the anticipation com-

ponent. Thus, as beliefs become riskier, consumption decreases. In case 2,

the anticipation component is dominant, implying that the expected marginal

utility of investment is convex in θ, leading to precautionary investment as

beliefs become riskier. In case 3, both beliefs and anticipation components

pull in opposite directions in equal strength, implying that the expected

marginal utility of investment is linear in θ. There is no reaction to riskier

beliefs.10

Finally, changes in the mean and riskiness of beliefs have a dynamic

effect on consumption in the subsequent period through updating beliefs.

10It is possible to extend Proposition 4.2 by comparing two learning planners, one with
riskier beliefs about μ(θ∗) than the other one. As in Proposition 4.2, consumption always
decreases as beliefs about μ(θ∗) become riskier.
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Indeed, if ξ1 �1 ξ2 or ξ1 �2 ξ2, then ξ̂1 �= ξ̂2, for the same η. Hence,

gL(ŷ, ξ̂1) �= gL(ŷ, ξ̂2).

6 Transition Path

While the anticipation of learning increases the uncertainty of future pay-

offs, learning itself decreases structural uncertainty along the transition path.

Therefore, the learning planner generally converges to the informed planner.

In this section, we briefly discuss the effect of learning along the transition

path. The rate of convergence of the learning planner depends upon how

quickly and accurately information can be gleaned from observations. In

other words, it is the flow and processing of information that determines the

difference between the informed and learning planners’ transition paths.

Flow of Information. The flow of information depends on the prop-

erties of the distribution of the signal. For example, a more diffuse signal

decreases the flow of information, which slows down learning. Indeed, Fig-

ure 1 shows that the fraction of output consumed by a learning planner with

a diffuse signal converges more slowly than a learning planner with a tight

signal. Figure 1 reports simulations from a simplified version of Example 3.5

with δ = 0.99. The learning planner with a diffuse signal knows that α = 0.4,

but not that β = 0.4 and has flat initial beliefs about β on {0.2, 0.4, 0.6}.
The learning planner with a tight signal knows that α = 1.4, but not that

β = 1.4, and has flat initial beliefs about β on {1.2, 1.4, 1.6}.
Processing of Information. The processing of information through

Bayesian updating depends in part on initial beliefs. The more biased prior

beliefs are, the slower is the convergence of the learning planner. Consider

again a simplified version of example 3.5 with δ = 0.99. The learning planner

knows that α = 0.4, but not that β = 0.4. Beliefs have support {0.2, 0.4, 0.6}.
Figure 2 shows that the fraction of output consumed by a learning planner

with biased beliefs, i.e., ρ0.2 = 0.9, ρ0.4 = 0.05, ρ0.6 = 0.05, converges slower

than the one with initial unbiased beliefs, i.e., ρ0.2 = ρ0.4 = ρ0.6 = 1/3.
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Figure 1: Tight vs. Diffuse Signal
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7 Final Remarks

In our model, the planner observes the production shock directly. There are

situations in which it is reasonable to assume that η is not observable. In

this case, output ŷ is the signal used to update beliefs about θ∗.11 This for-

mulation leads to experimentation if the relationship between ŷ and η is not

strictly monotonic, i.e., η cannot be inferred from observing ŷ. Therefore, the

value function with capital accumulation and experimentation is, in general,

no longer concave. Future research should focus on characterizing optimal

policies under experimentation to understand how the planner affects the

flow of information in reaction to the anticipation of learning.12

11Note that observing output and not the production shock might lead to incomplete
learning. See Appendix B.

12Previous work in growth has only characterized optimal policies in a setup with three
periods and a two-value support of the unknown parameter. See Bertocchi and Spagat
(1998) and Datta et al. (2002).
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A Proofs

Proof of Proposition 3.4. We conjecture that the value function of the

learning planner is of the form VL(y, ξ) = κ1(ξ) ln y + κ2(ξ), where κ1 and κ2

depend on ξ. From (4),

VL(y, ξ) = max
c∈(0,y)

{
ln c + δ ln(y − c)

∫ 1

0

κ1

(
ξ̂(·|η)

)
η

[∫
Θ

φ(η|θ)ξ(θ)dθ

]
dη

+ δ

∫ 1

0

κ2

(
ξ̂(·|η)

)[∫
Θ

φ(η|θ)ξ(θ)dθ

]
dη

}
. (19)

The first-order condition is

1

c
=

δ
∫ 1

0
κ1

(
ξ̂(·|η)

)
η
[∫

Θ
φ(η|θ)ξ(θ)dθ

]
dη

y − c
, (20)

evaluated at c = gL(y, ξ), so that

gL(y, ξ) =
y

1 + δ
∫ 1

0
κ1

(
ξ̂(·|η)

)
η
[∫

Θ
φ(η|θ)ξ(θ)dθ

]
dη

. (21)

Plugging (21) into (19) yields

VL(y, ξ) =

(
1 + δ

∫ 1

0

κ1

(
ξ̂(·|η)

)
η

[∫
Θ

φ(η|θ)ξ(θ)dθ

]
dη

)
ln y + κ3(ξ),

(22)

≡ κ1(ξ) ln y + κ2(ξ), (23)
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where

κ3(ξ) = δ

(∫ 1

0

κ1

(
ξ̂(·|η)

)
η

[∫
Θ

φ(η|θ)ξ(θ)dθ

]
dη

)
ln

(
δ

∫ 1

0

κ1

(
ξ̂(·|η)

)
η

[∫
Θ

φ(η|θ)ξ(θ)dθ

]
dη

)

−
(

1 + δ

∫ 1

0

κ1

(
ξ̂(·|η)

)
η

[∫
Θ

φ(η|θ)ξ(θ)dθ

]
dη

)

· ln
(

1 + δ

∫ 1

0

κ1

(
ξ̂(·|η)

)
η

[∫
Θ

φ(η|θ)ξ(θ)dθ

]
dη

)

+ δ

∫ 1

0

κ2

(
ξ̂(·|η)

)[∫
Θ

φ(η|θ)ξ(θ)dθ

]
dη. (24)

Therefore,

κ1(ξ) ≡ 1 + δ

∫ 1

0

κ1

(
ξ̂(·|η)

)
η

[∫
Θ

φ(η|θ)ξ(θ)dθ

]
dη. (25)

The solution to (25) is

κ1(ξ) =

∫
Θ

ξ(θ)dθ

1 − δμ(θ)
, (26)

where μ(θ) =
∫ 1

0
ηφ(η|θ)dη. To verify that (26) is the solution to (25),

updating (26) to the next period yields

κ1

(
ξ̂(·|η)

)
=

∫
Θ

ξ̂(θ|η)dθ

1 − δμ(θ)
, (27)

=

∫
Θ

1

1 − δμ(θ)

φ(η|θ)ξ(θ)∫
Θ

φ(η|x)ξ(x)dx
dθ. (28)
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Then, plugging (28) into (25) yields

κ1(ξ) = 1 + δ

∫ 1

0

(∫
Θ

1

1 − δμ(θ)

φ(η|θ)ξ(θ)∫
Θ

φ(η|x)ξ(x)dx
dθ

)
η

·
[∫

Θ

φ(η|θ)ξ(θ)dθ

]
dη, (29)

= 1 + δ

∫ 1

0

(∫
Θ

φ(η|θ)ξ(θ)dθ

1 − δμ(θ)

)
ηdη, (30)

= 1 + δ

∫
Θ

1

1 − δμ(θ)

[∫ 1

0

ηφ(η|θ)dη

]
ξ(θ)dθ, (31)

= 1 +

∫
Θ

δμ(θ)

1 − δμ(θ)
ξ(θ)dθ, (32)

=

∫
Θ

ξ(θ)dθ

1 − δμ(θ)
, (33)

verifying (26) and the conjecture of the value function. Combining (25)

and (26) yields

gL(y, ξ) =

(
1 + δ

∫ 1

0

κ1

(
ξ̂(·|η)

)
η

[∫
Θ

φ(η|θ)ξ(θ)dθ

]
dη

)−1

y, (34)

= y/κ1(ξ), (35)

=

(∫
Θ

ξ(θ)dθ

1 − δμ(θ)

)−1

y. (36)

Since both the utility and production functions are strictly concave in c, (36)

is the unique maximizer corresponding to (19).

Proof of Proposition 4.1. Since R′′(x) = 2δ/(1 − δx)3 > 0, the right-

hand side of (16) is less than the right-hand side of (17) for any c, by Jensen’s

inequality. Therefore, gAL(y; ξ) > gL(y, ξ).

Proof of Proposition 4.2. Suppose μ(θ∗) =
∫
Θ

μ(θ)ξ(θ)dθ. First,

gI(y; θ∗) = gAL(y; ξ) from (15) and (16). Second, gAL(y; ξ) > gL(y, ξ) from

Proposition 4.1. Therefore, gI(y; θ∗) = gAL(y; ξ) > gL(y, ξ).

Proof of Proposition 4.3. Suppose θ∗ =
∫
Θ

θξ(θ)dθ. First, if μ′′ <

−2δmu′2/(1−δμ), then, for any c, the right-hand side of (15) is greater than

the right-hand side of (17) by Jensen’s inequality. Therefore, gI(y; θ∗) <
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gL(y, ξ). The proofs for μ′′ > −2δμ′2/(1 − δμ) and μ′′ = −2δμ′2/(1 − δμ)

are identical. Second, if μ′′ < 0, then, for any c, the right-hand side of (15)

is greater than the right-hand side of (16), since μ(θ∗) >
∫
Θ

μ(θ)ξ(θ)dθ by

Jensen’s inequality. Therefore, gI(y; θ∗) < gAL(y; ξ). The proofs for μ′′ > 0

and μ′′ = 0 are identical. Third, gAL(y; ξ) > gL(y, ξ) from Proposition 4.1.

Combining these three points yields Proposition 4.2.

Proof of Proposition 5.3. From (11), if φ1 �1 φ2, then μ1(θ) =∫ 1

0
ηφ1(η|θ)dη ≥ ∫ 1

0
ηφ2(η|θ)dη = μ2(θ) implying that g1

L(y, ξ) ≤ g2
L(y, ξ).

Proof of Proposition 5.4. From (11), if φ1 �2 φ2, then μ1(θ) =∫ 1

0
ηφ1(η|θ)dη =

∫ 1

0
ηφ2(η|θ)dη = μ2(θ) implying that g1

L(y, ξ) = g2
L(y, ξ).

Proof of Proposition 5.5. Suppose that ξ1 �1 ξ2. If μ′ > 0, then, for

every c, the expected marginal return on investment in (17) is greater under

ξ1 than under ξ2. Therefore, gL(y, ξ1) ≤ gL(y, ξ2). The proofs for μ′ < 0 and

μ′ = 0 are identical.

Proof of Proposition 5.6. Suppose that ξ1 �2 ξ2. If μ′′ < −2δmu′2/(1−
δμ), then, for every c, the expected marginal return on investment in (17) is

greater under ξ1 than under ξ2, by Jensen’s inequality. Therefore, gL(y, ξ1) ≤
gL(y, ξ2). The proofs for μ′′ > −2δmu′2/(1−δμ) and μ′′ = −2δmu′2/(1−δμ)

are identical.

B Complete and Incomplete Learning

Let ŷ = f(y − g(y, ξ), η), where g(y, ξ) is optimal consumption and η is an

unobserved realization of η̃. Suppose that the support of η̃ is H = [α, β] with

0 < α < β < 1 and

min{f(k, α), f(k, β)} ≤ f(k, η) ≤ max{f(k, α), f(k, β)}

for k = y − g(y, ξ) and η ∈ [α, β].

Figure 3 illustrates the case in which complete learning occurs under posi-

tive consumption. In the case of no consumption, the stochastic steady state

is degenerate at y3, i.e., ŷ = y3 for any θ∗ and η ∈ [α, β]. If the agent is

endowed with y3, complete learning does not occur with zero consumption.
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Figure 3: Complete Learning

However, under positive consumption, the stochastic steady state is nonde-

generate with support [y1, y2], so that the agent eventually learns, from any

initial output.

There is a case in which complete learning cannot occur under positive

consumption. This is illustrated in Figure 4. In the case of no consumption,

the stochastic steady state is nondegenerate with support [y2, y3]. Here, the

agent with zero consumption eventually learns. However, under positive

consumption, the stochastic steady state is degenerate at y1. Here, ŷ = y1

for any θ∗ and η ∈ [α, β]. If the agent is endowed with y1, complete learning

does not occur.
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Figure 4: Incomplete Learning

References

P. Aghion, P. Bolton, C. Harris, and B. Jullien. Optimal Learning by Ex-

perimentation. Review of Economic Studies, 58(4):621–654, 1991.

E. Antoniadou, C. Koulovatianos, and L.J. Mirman. Strategic Exploitation

of a Common Property Resource under Uncertainty. Vienna Economic

Papers 0703, University of Vienna, Department of Economics, 2007.

R.J. Balvers and T.F. Cosimano. Actively Learning About Demand and

the Dynamics of Price Adjustment. Economic Journal, 100(402):882–898,

1990.

P. Beaudry and F. Portier. An Exploration into Pigou’s Theory of Cycles.

Journal of Monetary Economics, 51(6):1183–1216, 2004.

P. Beaudry and F. Portier. Stock Prices, News and Economic Fluctuations.

American Economic Review, 96(4):1293–1307, 2006.

30



P. Beaudry and F. Portier. When can Changes in Expectations cause Busi-

ness Cycle Fluctuations. Journal of Economic Theory, 135(1):458–477,

2007.

G.W. Beck and V. Wieland. Learning and Control in a Changing Economic

Environment. Journal of Economic Dynamics and Control, 26(9):1359–

1377, 2002.

G. Bertocchi and M. Spagat. Growth under Uncertainty with Experimenta-

tion. Journal of Economic Dynamics and Control, 23(2):209–231, 1998.

W.A. Brock and L.J. Mirman. Optimal Economic Growth and Uncertainty:

The Discounted Case. Journal of Economic Theory, 4(3):479–513, 1972.

D. Cass. Optimum Growth in an Aggregative Model of Capital Accumula-

tion. Review of Economic Studies, 32(3):233–240, 1965.

L. Christiano, R. Motto, and M. Rostagno. Monetary Pol-

icy and a Stock Market Boom-Bust Cycle. Available at

http://www.ecb.int/events/pdf/conferences/cbc4/ChristianoRostagnoMotto.pdf,

2006.

A. Creane. Experimentation with Heteroskedastic Noise. Economic Theory,

4(2):275–286, 1994.

M. Datta, L.J. Mirman, and E.E. Schlee. Optimal Experimentation in Signal-

Dependent Decision Problems. International Economic Review, 43(2):577–

607, 2002.

W.D. Dechert, S.I. O’Donnell, and W.A. Brock. Bayes’ Learning of Unknown

Parameters. Journal of Difference Equations and Applications, 13(2–3):

121–133, 2007.
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