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Abstract

This paper focuses on a procedure to test for structural changes in the �rst two

moments of a time series, when no information about the process driving the

breaks is available. We model the series as a �nite-order auto-regressive process

plus an orthogonal Bernstein polynomial to capture heterogeneity. Testing for

the null of time-invariance is then achieved by testing the order of the polyno-

mial, using either an information criterion, or a restriction test. The procedure

is an omnibus test in the sense that it covers both the pure discrete structural

changes and some continuous changes models. To some extent, our paper can

be seen as an extension of Heracleous, Koutris and Spanos (2008).

Keywords: Structural Changes - Time-homogeneity - Bernstein polynomial
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1 Introduction

This paper deals with models of the form:

A(L)yt = ct (1)

where: A(L) = 1��1L��2L2�:::��pLp and the roots 1��1z��2z2�:::��pzp =

0 lie all outside the unit circle,

ct is either de�ned as ct = f(t) + "t or ct =
p
f(t)"t, where in both cases f(t)

is an unknown, possibly time-varying signal, thus inducing heterogeneity in one

of the two moments of the conditional distribution,

"t is an iid term.

For instance, assume the simple case where f(t) is de�ned as a step-function for

the mean:

f(t) =

8<: c1 if t � t0
c2; otherwise

(2)

with c1 6= c2 and t0 2 [t1; t2]:

Perron (2005) reviews the huge literature dedicated to structural changes test-

ing procedures. Clearly, testing for structural changes is a prior to modelling

and testing. On the one hand, structural changes are a source of global non-

stationarity (Granger and Starica 2005 and Guégan 2010), and on the other

hand, they are likely to bias tests for stationarity (Perron 1989), and for long

memory (Baek and Pipiras 2011, Char¤edine and Guégan 2011, Berkes et al.

2006). Hence, in addition to causing parameter instability and spurious results,

time-heterogeneity, or structural changes, may lead to erroneous statistical in-

ference and thus to incorrect modelling. Main tests of structural changes include

Nyblom (1989) , Andrews (1993), Andrews and Ploberger (1994), Bai (1999),

Bai and Perron (1998, 2003) or Altissimo and Corradi (2003) among others.

In a recent contribution, Heracleous, Koutris and Spanos (2008) have pointed

out that such procedures may not have power against continuous changes. They

introduce a new test designed to track both discrete and continuous changes in

moments. Their test consists in tracking heterogeneity in rolling moments of de-

1
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memorized series using an orthogonal Bernstein polynomial. With k the degree

of the polynomial, the test amount to testing k = 0 against k > 0.

In this paper, we propose an extension of the Heracleous-Koutris-Spanos test.

Like their procedure, we test for the null of time-homogeneity against a broad

alternative including discrete and some continuous changes as deterministic and

stochastic trends. Main di¤erences are that i)We don�t use de-memorized series,

but rather the observed ones, ii) Tests are performed on the series itself, and not

on rolling moments, thus avoiding the di¢ cult choice of choosing a window, iii)

To test for the null we consider two strategies, either based on an information

criterion (AICu), or on a restriction test.

This paper is organized as follows. Section 2 presents the test, Section 3

implements the tests on two series, Section 4 runs Monte-Carlo simulations,

and Section 5 concludes.

2 A test of no structural change

For the stationary series fytgTt=1 where yt is real-valued, de�ne the following

Data Generating Process (DGP):

yt =

pX
i=1

�iyt�i + ct (3)

In (3), ct is either de�ned as i) ct = f(t) + "t or ii) ct =
p
f(t)"t, and "t is a

white noise.

In this paper, we are interested in testing two kinds of assumptions: First-

order time homogeneity, H1
0 : f(t) = c1 in i); and conditional on H1

0 true,

for second-order time-homogeneity, H2
0 : f(t) = c2 in ii). In such models if

the process driving the changes is known, then it can be directly estimated. For

instance, if one suspects discrete shifts in f(t) in i), then one can use the Bai and

Perron (1998) approach. Nevertheless, in most cases, f(t) is generally unknown.

To approximate it, i.e. to capture heterogeneity in the considered moment, we

use an orthogonal Bernstein polynomial1 of degree k: The Bernstein polynomial
1On the use of polynomials in structural changes models, see also MacNeil (1978) and

2
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is given by:

Bi;k(t) =
kX
i=0

�
k

i

��
t

T

�i�
1� t

T

�k�i
; i = 0; 1; :::; k (4)

Figure 1 plots few realizations of Bi;k(t) for k = 0; 1; 2: Clearly, k = 0 corre-

sponds to a constant signal, k = 1 to a linear trend in the moment, and k > 1

to a more complex signal2 .

Pease insert here Figure 1

The unconstrained model for the mean in then given by:

yt =

pX
i=1

�iyt�i +
kX
i=0

�i

�
k

i

��
t

T

�i�
1� t

T

�k�i
+ "t (5)

and for the variance under H1
0 true by:

"2t =

kX
i=0

�i

�
k

i

��
t

T

�i�
1� t

T

�k�i
+ �t (6)

where: "2t are the squared residuals of model (5),

�t is an iid noise

the �i; and �i i = 0; 1; ::; k are estimated coe¢ cients.

It is straightforward to see that in models (5) and (6), no structural change

in the conditional distribution of yt implies k = 0, corresponding to a constant

signal. Thus, testing for the null amounts to testing: Hi
0 : k = 0 against k > 0,

i = 1; 2.

In this paper, two testing strategies are used. The �rst one consists in

minimizing a Bayesian information criterion to jointly select the order p and

the degree k in (5), and the degree k in (6). Since, we want to extract a signal,

using a classical criterion as the AIC (Akaike 1974) will be inadequate, resulting

Perron (1991).
2To avoid any confusion, note that we test for second-order time-homogeneity conditional

on H1
0 true. The reason is that the Bernstein polynomial is used only as an approximation.

Hence, especially in the discrete shift model, it is likely to produce non-spherical disturbances,

thus possibly biaising tests for second-order time-homogeneity.

3

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2010.98 (Version révisée)

ha
ls

hs
-0

05
60

22
1,

 v
er

si
on

 2
 - 

22
 D

ec
 2

01
1



in overweighting the �t as showed by McQuarrie and Tsai (1988). This leads

to use a more penalized AIC, i.e. the AICu criterion. The AICu is here given

by:

AICu = log("0"(T � p� k)�1) + 2(p+ k + 1)(p� k � 2)�1 (7)

for the mean, and:

AICu = log(�0�(T � k)�1) + 2(k + 1)(k � 2)�1 (8)

for the variance under H1
0 true.

One is then to accept the null if minimizing the AICu lead to choose k = 0.

Alternatively, if the AICu leads to select k > 0, one can use a classical re-

striction test in a non-nested environment (see Davidson and MacKinnon 2004),

i.e. estimate (9)

yt =

pX
i=1

�iyt�i + �0 +
kX
i=0

�i

�
k

i

��
t

T

�i�
1� t

T

�k�i
+ "t (9)

and test H1
0 : �1 = �2::: = �k using a standard Ftest

3 .

For the variance, under H1
0 true, we estimate (10):

"2t = �0 +

kX
i=0

�i

�
k

i

��
t

T

�i�
1� t

T

�k�i
+ �t (10)

and test H2
0 : �1 = �2::: = �k:

We next turn to an application.

3 An empirical application

In this section, we implement the test on two series. To simplify, only the

decision rule based on the AICu is considered. The series, for the United

States, are the in�ation rate (1960Q1-2011Q2) and the growth rate of the real

GDP (1970Q1-2011-Q2). Concerning the former (Figure 2), it clearly exhibits a

stochastic trend in mean. Jointly selecting the order p and the degree k returns

3For the tests and estimations Heteroscedastic and Autocorrelation Consistent (HAC) ma-

trices are used.

4
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p = 5 and k = 3, supporting the rejection of the null, which is deeply coherent

with the series. Concerning the latter, Figure 3 suggests a constant mean.

Using the AICu criterion leads to select p = 2 and k = 0 suggesting indeed

a constant signal. Extracting the residuals of the regression, and estimating

(10) for di¤erent orders k leads to select k = 4, thus indicating a change in the

variance (Figure 4). Thus, clearly for the growth rate of the GDP, the second

order time-homogeneity is rejected.

Please insert about here Figures 2,3 & 4

4 A small simulation study

We next turn to a small Monte-Carlo simulation study to estimate the size and

power of the procedure. For the changes in mean, we also analyze its relative

performance with regard to two competing tests: The CUSUM one (Brown,

Durbin and Evans 1975) and the more recent Andrews and Ploberger (1994)

approach, based on the supFn statistic. This latter consists in comparing the

residuals sum of squares of two models using an Ftest: The model with no

structural change, and the model with a structural change occurring at the

period t 2 [t1; t2]. Computing the Fstat for each t and taking the supremum

returns the supFn. Following Hansen (2000), The pvalues for the supFn are

computed using the �xed regressor bootstrap (using 1000 iterations). For breaks

in variance, we also compare our procedure with the CUSUM one.

Our general DGP for the mean is given by:

yt = 0:5yt�1 + f(t) + "t; "t � N(0; 1) (11)

and the �ve considered cases for f(t) are as follows (see Hansen 2000):

i) iid case: f(t) = 0;

ii) Mean break: f(t) = 0 for t � t0 and f(t) = 1 otherwise and t0 is randomly

drawn in [T=4; 3T=4] at each iteration,

5
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iii) Deterministic trend in mean: f(t) = (1 + 2t=T ),

iv) Stochastic trend in mean: f(t) = f(t� 1) + �t; �t � N(0; 1);

v) Stop-break model (Engle and Smith 1999): yt = f(t) + "t; f(t) = f(t �

1) +
"2t

+"2t
:

For each case, we run 10000 iterations. Table 1 returns the results of the

simulations when the lag p and the order k are jointly choosen according to

the AICu criterion. The iid case returns the empirical size of the procedure,

computed as 1 � P (k = 0) = P (k > 0), and the four other cases the power

given by P (k > 0). The size of the procedure does not exceed 0:187 for a

small sample size (T = 50) and is of 0:118 for T = 500. Concerning the power,

results are twofold. For the single discrete break in mean, the stop-break and

the linear trend in mean models, the power is high ranging from 0:941 to 1:000

for T ranging from 100 to 500. For very small sample size (T = 50), the power

remains high, indicating that the test performs well. For the stochastic trend

in mean, the power is lower ranging from 0:748 to 0:772. It nevertheless stays

within an acceptable range.

Please insert about here tables 1, 2, 3 & 4

We now turn to restriction tests, given by Table 2. Recall that we run the

restrictions tests whenever the AICu leads to select k > 0. Compared to the

AICu decision rule, at the 5% nominal size, the empirical size is lower: Slightly

for the stop-break, the linear trend and the single discrete break models, and

signi�cantly for the stochastic trend in mean model.

Comparing the size and power of the test to the CUSUM (Table 3) and

to the Andrews-Ploberger ones (Table 4), it appears that: i) Our procedure

over-performs, in power, the CUSUM test, even in the simple discrete break in

mean model. In fact, in our simulations, the CUSUM was able to recognize a

single rupture only if it occured around the middle of the sample. A rupture

located near the boundaries is unlikely to be detected by the CUSUM.. For the

6
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linear trend and the stochastic trend in mean the power is very low, and for

the stop-break model the power is correct only for a large sample size. ii) The

Andrews-Ploberger test is also over-performed by our test when the changes in

means are continuous, especially for small sample sizes. It is equivalent to our

test for discrete changes. This seems coherent, since the Andrews-Ploberger test

is designed to track discrete changes. These results match those of Heracleous,

Koutris and Spanos (2008).

Please insert here tables 5,6 & 7

We now analyze the size and power of the procedure to detect ruptures in

variance. Our DGP is given by:

yt = 0:5yt�1 +
p
f(t)"t; "t � N(0; 1) (12)

and the four cases considered are:

i) iid case:
p
f(t) = 1,

ii) Variance break:
p
f(t) = 1 for t � t0 and

p
f(t) = 2 otherwise, and t0 is

randomly drawn in [T=4; 3T=4] at each iteration,

iii) Deterministic trend in variance:
p
f(t) = (1 + 2t=T ),

iv) Stochastic trend in variance
p
f(t) = exp(ht=2), ht = ht�1 + �t, �t �

N(0; 1); "t � N(0; 1).

Table 5 presents the size and power of the procedure based on the AICu

decision rule. Clearly, the size is low and does not exceed 0.112. Unexpectedly

the size doesn�t decrease with the sample size. Considering the power, it is quite

low for T = 50; especially when the variance moves according to a linear trend

and generally for all considered models. It is nevertheless acceptable for sample

sizes ranging from T = 100 to T = 500. Turning now to restriction tests, Table

6, it can be seen that the empirical size is less than the 5% nominal one. It also

appears that the test has power against the three models exhibiting ruptures in

7
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variance only for large sample sizes, i.e. for T � 150. Table 7 returns results of

the CUSUM test. Clearly the test has low size, but also low power when the

variance moves according to a linear or stochastic trend. For discrete shifts, as

in our procedure, the power is low for small sample sizes.

5 Conclusion

In this paper, we have introduced a procedure that tests for the null of time-

homogeneity of the �rst two moments of a time series. The procedure uses an

orthogonal Bernstein polynomial to extract the signal driving the time path of

the moments. With k the order of the polynomial, the procedure amounts to

testing k = 0 against k > 0 using either a Bayesian model selection criterion,

here the AICu, or a restriction test. Running Monte-Carlo simulations, it

appeared that: i) Concerning the structural changes in mean, it has power

against both discrete and continuous changes, ii) It over-performs the CUSUM

test and is equivalent to the Andrews-Ploberger one for discrete changes but

over-performs it for continuous changes, iii) The test has good small sample

properties, iv) The test is well suited to detect structural changes in the variance

only for sample sizes more than 150 observations. In conclusion, the test could

be used in empirical using either the AICu decision rule, or a restriction test.

There is an avenue for further researches using orthogonal polynomials in

this �eld. One possible extension would be altering the procedure to detect the

breaking dates and/or the di¤erent regimes.
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Appendix A: Figures to be included in the paper

Figure 1: Bi;k(t), k = 0; 1; 2:

11

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2010.98 (Version révisée)

ha
ls

hs
-0

05
60

22
1,

 v
er

si
on

 2
 - 

22
 D

ec
 2

01
1



Figure 2: In�ation rate, USA, 1960:01-2011:02
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Figure 3: Real GDP, growth rate, USA, 1970:01-2011:02
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Figure 4: Squared residuals, together with a Bernstein polynomial (k = 4).
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Appendix B: Tables to be included in the paper

Table 1: AICu based criterion for �ve models, the last four ones exhibiting
ruptures in mean

iid case: H0 true
T = 50 T = 100 T = 150 T = 200 T = 500

P (k = 0) 0.813 0.831 0.860 0.872 0.882
P (k > 0) 0.187 0.164 0.140 0.128 0.118

Single discrete break in mean: H0 false
T = 50 T = 100 T = 150 T = 200 T = 500

P (k = 0) 0.125 0.018 0.006 0.001 0.000
P (k > 0) 0.875 0.982 0.994 0.999 1.000

Linear trend in mean: H0 false
T = 50 T = 100 T = 150 T = 200 T = 500

P (k = 0) 0.047 0.000 0.000 0.000 0.000
P (k > 0) 0.953 1.000 1.000 1.000 1.000

Stochastic trend in mean: H0 false
T = 50 T = 100 T = 150 T = 200 T = 500

P (k = 0) 0.229 0.244 0.252 0.233 0.228
P (k > 0) 0.771 0.756 0.748 0.767 0.772

Stop-break model: H0 false
T = 50 T = 100 T = 150 T = 200 T = 500

P (k = 0) 0.156 0.059 0.049 0.064 0.000
P (k > 0) 0.844 0.941 0.951 0.936 1.000

Note 1: The iid case returns the size of the procedure, given by

1� P (k = 0). Ideally it should be close to 0
Note 2: The other four cases return the power of the procedure,

given by P (k > 0). Ideally it should be close to 1

15
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Table 2: Size and power of restriction tests at 4 nominal sizes for �ve models,
the last four ones exhibiting ruptures in mean.

iid case: H0 true
size T = 50 T = 100 T = 150 T = 200 T = 500
0.01 0.045 0.039 0.024 0.020 0.011
0.05 0.105 0.086 0.063 0.051 0.045
0.10 0.139 0.120 0.093 0.088 0.070
0.15 0.166 0.148 0.111 0.105 0.092

Single discrete break in mean: H0 false
size T = 50 T = 100 T = 150 T = 200 T = 500
0.01 0.343 0.716 0.910 0.944 1.000
0.05 0.671 0.925 0.970 0.982 1.000
0.10 0.810 0.967 0.989 0.996 1.000
0.15 0.848 0.978 0.992 0.998 1.000

Linear trend in mean: H0 false
size T = 50 T = 100 T = 150 T = 200 T = 500
0.01 0.489 0.918 0.995 1.000 1.000
0.05 0.788 0.986 1.000 1.000 1.000
0.10 0.897 0.994 1.000 1.000 1.000
0.15 0.938 0.998 1.000 1.000 1.000

Stochastic trend in mean: H0 false
size T = 50 T = 100 T = 150 T = 200 T = 500
0.01 0.512 0.467 0.442 0.442 0.432
0.05 0.689 0.652 0.639 0.638 0.654
0.10 0.739 0.718 0.695 0.717 0.729
0.15 0.763 0.741 0.736 0.751 0.749

Stop-break model: H0 false
size T = 50 T = 100 T = 150 T = 200 T = 500
0.01 0.670 0.871 0.880 0.860 0.999
0.05 0.792 0.913 0.936 0.914 1.000
0.10 0.817 0.933 0.946 0.925 1.000
0.15 0.831 0.936 0.947 0.932 1.000

Note 1: The iid case returns the size of the procedure. Ideally it

should be close to the nominal one

Note 2: The three other cases return the power of the procedure.

Ideally it should be close to 1
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Table 3: Size and power of the CUSUM test at the 5% nominal size, for �ve
models, the last four ones exhibiting ruptures in mean

iid case: H0 true
Size T = 50 T = 100 T = 150 T = 200 T = 500
0.05 0.079 0.041 0.053 0.045 0.044

Single discrete break in mean: H0 false
Size T = 50 T = 100 T = 150 T = 200 T = 500
0.05 0.04 0.402 0.426 0.400 0.405

Linear trend in mean: H0 false
Size T = 50 T = 100 T = 150 T = 200 T = 500
0.05 0.102 0.194 0.199 0.227 0.238

Stochastic trend in mean: H0 false
Size T = 50 T = 100 T = 150 T = 200 T = 500
0.05 0.087 0.204 0.228 0.263 0.252

Stop-break model: H0 false
Size T = 50 T = 100 T = 150 T = 200 T = 500
0.05 0.107 0.294 0.520 0.663 0.987

Note 1: The iid case returns the size of the procedure. Ideally it

should be close to the nominal one

Note 2: The three other cases return the power of the procedure.

Ideally it should be close to 1
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Table 4: Size and power of the Andrews-Ploberger test at the 5% nominal size,
for �ve models, the last four ones exhibiting ruptures in mean

iid case: H0 true
Size T = 50 T = 100 T = 150 T = 200 T = 500
0.05 0.160 0.052 0.020 0.017 0.000

Single discrete break in mean: H0 false
Size T = 50 T = 100 T = 150 T = 200 T = 500
0.05 0.849 0.951 0.979 0.988 1.000

Linear trend in mean: H0 false
Size T = 50 T = 100 T = 150 T = 200 T = 500
0.05 0.234 0.450 0.619 0.720 0.955

Stochastic trend in mean: H0 false
Size T = 50 T = 100 T = 150 T = 200 T = 500
0.05 0.087 0.204 0.228 0.263 0.252

Stop-break model: H0 false
Size T = 50 T = 100 T = 150 T = 200 T = 500
0.05 0.727 0.752 0.712 0.705 0.749

Note 1: The iid case returns the size of the procedure. Ideally it

should be close to the nominal one

Note 2: The three other cases return the power of the procedure.

Ideally it should be close to 1
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Table 5: AICu based criterion for four models, the last three ones exhibiting
ruptures in variance

iid case: H0 true
T = 50 T = 100 T = 150 T = 200 T = 500

P (k = 0) 0.932 0.898 0.900 0.897 0.888
P (k > 0) 0.066 0.052 0.100 0.060 0.112

Single discrete break in variance: H0 false
T = 50 T = 100 T = 150 T = 200 T = 500

P (k = 0) 0.391 0.085 0.001 0.001 0.000
P (k > 0) 0.609 0.915 0.999 0.999 1.000

Linear trend in variance: H0 false
T = 50 T = 100 T = 150 T = 200 T = 500

P (k = 0) 0.652 0.186 0.111 0.048 0.000
P (k > 0) 0.348 0.720 0.829 0.952 1.000

Stochastic trend in variance: H0 false
T = 50 T = 100 T = 150 T = 200 T = 500

P (k = 0) 0.380 0.186 0.160 0.110 0.107
P (k > 0) 0.620 0.814 0.840 0.890 0.893

Note 1: The iid case returns the size of the procedure, given by

1� P (k = 0). Ideally it should be close to 0
Note 2: The other four cases return the power of the procedure,

given by P (k > 0). Ideally it should be close to 1
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Table 6: Size and power of restriction tests at 4 nominal sizes for four models,
the last three ones exhibiting ruptures in variance

iid case: H0 true
size T = 50 T = 100 T = 150 T = 200 T = 500
0.01 0.007 0.007 0.013 0.009 0.012
0.05 0.024 0.026 0.030 0.031 0.038
0.10 0.043 0.052 0.055 0.060 0.061
0.15 0.054 0.070 0.076 0.080 0.082

Single discrete break in variance: H0 false
size T = 50 T = 100 T = 150 T = 200 T = 500
0.01 0.109 0.459 0.768 0.913 1.000
0.05 0.305 0.729 0.947 0.985 1.000
0.10 0.447 0.839 0.980 0.995 1.000
0.15 0.538 0.880 0.988 0.998 1.000

Linear trend in variance: H0 false
size T = 50 T = 100 T = 150 T = 200 T = 500
0.01 0.048 0.194 0.399 0.534 0.994
0.05 0.148 0.415 0.659 0.807 1.000
0.10 0.212 0.536 0.786 0.887 1.000
0.15 0.281 0.608 0.835 0.917 1.000

Stochastic trend in variance: H0 false
size T = 50 T = 100 T = 150 T = 200 T = 500
0.01 0.226 0.577 0.666 0.761 0.849
0.05 0.407 0.707 0.765 0.825 0.864
0.10 0.502 0.776 0.795 0.853 0.873
0.15 0.577 0.792 0.818 0.871 0.882

Note 1: The iid case returns the size of the procedure. Ideally it

should be close to the nominal one

Note 2: The three other cases return the power of the procedure.

Ideally it should be close to 1
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Table 7: Size and power of the CUSUM test at the 5% nominal size for four
models, the last three ones exhibiting ruptures in variance

iid case: H0 true
size T = 50 T = 100 T = 150 T = 200 T = 500
0.05 0.092 0.050 0.043 0.041 0.040

Single discrete break in variance: H0 false
size T = 50 T = 100 T = 150 T = 200 T = 500
0.05 0.332 0.736 0.885 0.957 1.000

Linear trend in variance: H0 false
size T = 50 T = 100 T = 150 T = 200 T = 500
0.05 0.222 0.224 0.326 0.474 0.957

Stochastic trend in variance: H0 false
size T = 50 T = 100 T = 150 T = 200 T = 500
0.05 0.171 0.404 0.463 0.481 0.504

Note 1: The iid case returns the size of the procedure. Ideally it

should be close to the nominal one

Note 2: The three other cases return the power of the procedure.

Ideally it should be close to 1
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