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A GRAVITY MODEL OF MORTALITY RATES FOR

TWO RELATED POPULATIONS

Kevin Dowd,* Andrew J. G. Cairns†, David Blake,‡ Guy D. Coughlan§ and Marwa Khalaf-Allah\

ABSTRACT

The mortality rate dynamics between two related but different-sized populations are modeled

consistently using a new stochastic mortality model that we call the gravity model. The larger

population is modeled independently, and the smaller population is modeled in terms of spreads

(or deviations) relative to the evolution of the former, but the spreads in the period and cohort

effects between the larger and smaller populations depend on gravity or spread reversion param-

eters for the two effects. The larger the two gravity parameters, the more strongly the smaller

population’s mortality rates move in line with those of the larger population in the long run. This

is important where it is believed that the mortality rates between related populations should not

diverge over time on grounds of biological reasonableness. The model is illustrated using an

extension of the Age-Period-Cohort model and mortality rate data for English and Welsh males

representing a large population and the Continuous Mortality Investigation assured male lives

representing a smaller related population.

1. INTRODUCTION

In most stochastic mortality models, it is implicitly assumed that the mortality rates of any one pop-
ulation are independent of those of other populations. Such an assumption is, however, hard to justify
in the presence of common factors that would affect mortality rates across multiple populations in
similar ways. Some examples might be economic progress or a cure for cancer leading to greater well-
being and lower mortality across different populations, or a very bad winter or the occurrence of a
pandemic leading to higher mortality. This suggests that a ‘‘biologically reasonable’’ mortality model
should allow for the interdependence of the mortality rates of populations that are subject to common
influences.

We would suggest that such a model is useful, not only because it recognizes the interdependence
between related populations, but also because doing so leads to more effective risk management of
mortality-related financial positions—most notably because of better estimates of basis risk and mor-
tality correlations.

The present paper proposes such a model. The underlying assumption on which the model is based
is that the state variables driving the dynamics of two related populations are attracted to each other
by a ‘‘gravitational’’ force. In principle, we can distinguish between two different cases:
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• Two populations of similar size (e.g., males and females for a given country): In this case the two
populations would have (more or less) equal gravitational pull on each other. The planetary analogy
here is a binary star system with two stars of more or less equal mass exerting similar gravitational
pulls on each other.

• One population much larger than the other: In this case, the larger population exerts a pull on the
smaller one, but the pull of the smaller population on the larger one is negligible. A planetary analogy
here is one large object such as a star and one small object such as a planet orbiting the star. The
star exerts a gravitational pull on the planet, but the planet exerts a negligible pull on the star, which
for modeling purposes we can assume for convenience to be zero.1

This second case is arguably the most relevant to potential hedgers of mortality-dependent risks,
such as pension funds or annuity providers. ‘‘Their’’ population—the one to which they are exposed—
will generally be small and subject to considerable noise or other idiosyncratic factors. Typically, how-
ever, they will have the choice of hedging this exposure using an index hedge instrument predicated
on some larger population, such as the national population. Thus, the large population versus small
population case is key to assessing the effectiveness of (or, conversely, to quantifying the basis risk
involved in) potential hedging strategies. For this reason we focus on this second case and apply it to
the illustrative case of England and Wales (E&W) males versus Continuous Mortality Investigation
(CMI) assured male lives estimated over a sample spanning years 1961–2005 and ages 60–84.2

The gravity approach suggested here has various attractions. Among these are the following:

• It gives an intuitively plausible way of thinking about the interdependence between two populations

• Given that the smaller population is much smaller than the large one, the gravity effects help to
smooth out some of the imprecision in forecasts of the smaller population and

• The parameters of the model can all be estimated using maximum likelihood estimation (MLE).

The mortality model chosen is a two-population version of the Age-Period-Cohort (APC) model, al-
ternatively known as M3B (see, e.g., Osmond 1985; Jacobsen et al. 2002; Cairns et al. 2009, Table 1).
The APC model is a useful one for our purposes because it is relatively tractable and because it has a
cohort effect, which evidence suggests is an important feature of the behavior exhibited in E&W mor-
tality data and various important countries’ datasets. However, the general method proposed here can
be applied to most other stochastic mortality models.

The successful implementation of any two-population gravity model also requires a solution to the
difficult problem of obtaining consistent estimates both of the (unobservable) state variables of the
model and of the parameters governing the dynamics of those state variables. (In the case of the M3B
or APC model used in this paper, the state variables are the period effects—denoted k below—and the
cohort effects—denoted g below.) In the standard one-population context, it is relatively straightfor-
ward to obtain estimates of both the state variables and their parameters. However, in the two-
population case, we also have to allow for the fact that the state variables themselves cannot be esti-
mated without taking account of the two-population interdynamics; in other words, estimation of the
state variables requires estimates of the parameters that govern them, and yet we can obtain estimates
of those parameters only if we have estimates of the state variables to start with. We propose a solution
to this ‘‘chicken and egg’’ problem using an iterative approach in which we start with preliminary
estimates of the state variables, then estimate the parameters, then revise the estimates of the state

1 If we believed that there was a possibility that, say, a pandemic could begin in the small population and spread to the larger population,

then we would need to allow both gravity parameters to be nonzero. We might also consider a third case, namely, the pull of different country

populations toward a global norm, as evidenced by the convergence of different country life expectancies over time (see, e.g., Oeppen and

Vaupel 2002). We are grateful to Richard MacMinn for highlighting this case.
2 The first population has some 186 million life-years, whereas the second has only 21 million. However, the size of the CMI ‘‘population’’ has

fallen substantially over the last 15 years as demand for traditional insurance products in the United Kingdom has declined. We also emphasize

that the data used were deaths and exposures data, not graduated q rates. The smoothing involved in the latter can lead to unreliable results,

especially for the cohort effect. The E&W data are taken from the LifeMetrics website (www.lifemetrics.com) and are originally from the UK

Office for National Statistics (ONS); the CMI data are available at www.actuaries.org.uk/knowledge/cmi.

http://www.lifemetrics.com
http://www.actuaries.org.uk/knowledge/cmi
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variables and reestimate the parameters, and repeat this process until all parameter estimates have
converged.

Although numerous studies of mortality rate modeling in single populations have been done (see,
e.g., Booth and Tickle 2008; Cairns et al. 2009, 2011a; Dowd et al. 2010a, b for recent reviews of key
single-population models and their properties), only a few examples are available of studies examining
two-population modeling of mortality rates, for example, Li and Lee (2005), Jarner and Kryger (2009),
Cairns et al. (2011b), and Li and Hardy (2011). The first study extends the Lee-Carter model by
introducing the concept of a global improvement process together with mean-reverting idiosyncratic
variations for each country. In the long run, the global improvement process dominates, resulting in
consistent long-term projections in different countries. The second study concentrates on modeling a
small population’s mortality (Denmark) alongside a much larger supranational (Europe-wide) popula-
tion. The large population is assumed to follow a deterministic trend over time. The relationship be-
tween the large and small population log mortality rates is modeled using a multifactor, mean-reverting
spread. The mean reversion level is set at zero, reflecting the assumed similar trends in the two pop-
ulations’ long-run trajectories. The third study also employs a mean-reverting spread that permits dif-
ferent short-run trends in mortality rates, but parallel long-run improvements in line with the principles
of biological reasonableness.3 The model in that study is fitted using a Bayesian framework that allows
the estimation of the unobservable state variables and the parameters of the stochastic processes
driving them to be combined in a single procedure. This procedure employs Markov chain Monte Carlo
techniques that both enable the uncertainty in the estimates of the historical age, period, and cohort
effects to be quantified and help to smooth out the noise in parameter estimates attributable to small
populations. The final study considers four types of interdependence: (1) both populations are jointly
driven by the same single time-varying index, (2) the two populations are cointegrated, (3) the popu-
lations depend on a common age factor, and (4) an augmented common factor model in which a
population-specific time-varying index is added to the common factor model with the property that it
will tend toward a certain constant level over time.

The organization of this paper is as follows. Section 2 begins by outlining the two-population model
used. Section 3 carries out preliminary empirical analysis on our E&W and CMI datasets. Section 4
examines the estimates of the latent state variables under the gravity model and compares them to
the estimates obtained when both populations’ mortality rates are modeled independently. Section 5
deals with the estimation of the parameters of the gravity model. Section 6 examines the gravity model’s
projections of the state variables and mortality (q) rates. The remaining sections consider two impor-
tant applications of the gravity model: Section 7 investigates how it might be extended to examine the
prices of financial instruments, and Section 8 investigates how it might be used to project forward
mortality-improvement correlations, which are critical to the design of hedging strategies. Section 9
concludes.

The paper is followed by Appendices A–D, dealing with the estimation of the state variables and the
parameters of the state variable processes.

2. THE GRAVITY TWO-POPULATION MODEL

In this section we develop the gravity two-population version of the APC model. Before doing so, how-
ever, we analyze the single-population version of this model.

2.1. A Single-Population Model

For the single-population case, the APC model postulates that the true underlying death rate mt,x

satisfies
21 21log m 5 b 1 n k 1 n g , (1)t,x x a t a c

3 A method of reasoning used to establish a causal association (or relationship) between two factors that is consistent with existing medical

knowledge.
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where bx are age-dependent parameters, kt is a time-dependent state variable that represents the period
effect, gc is a year-of-birth-dependent state variable that represents the cohort effect, na is the number
of ages in the sample data used to estimate the parameters, and the variables x, t, and c 5 t 2 x
represent the age, current year, and year of birth, respectively. We assume kt follows a one-dimensional
random walk with drift

k 5 k 1 m 1 CZ (2)t t21 t

in which m is a constant drift term, C a constant volatility, and Zt a one-dimensional iid N(0,1) error.
We follow Cairns et al. (2009) and model gc as an ARIMA(1,1,0) process:

(g) (g) (g) (g) (g)Dg 5 (1 2 a )m 1 a Dg 1 C Z , (3)c c21 c

where m(g), a(g), and C(g) are given parameters and is iid N(0,1). The parameters of this model can(g)Zc

be estimated using MLE.
This model requires the imposition of identifiability constraints. The first two are

k 5 0 and g 5 0. (4)O Ot c
t c

We also need a third identifiability constraint based on a tilting parameter d.4 We propose that the
tilting parameter d be chosen within an iterative scheme to minimize

2¯S(d) 5 (b 1 d(x 2 x̄) 2 b ) ,O x x
x

where 5 log m(t, x). This implies that21b̄ n ox y t

¯(x 2 x̄)(b 2 b )O x x
xd 5 2 . (5)

2(x 2 x̄)O
x

Given that the kt and gc already satisfy the first two constraints, we now revise our parameter estimates
according to the following formulas:

¯k 5 k 2 n d(t 2 t),˜t t a

¯g 5 g 1 n d((t 2 t) 2 (x 2 x̄)),˜c c a

b̃ 5 b 1 d(x 2 x̄). (6)x x

2.2 A Gravity Two-Population Model

We now wish to model death rates for two related populations, focusing on the case where one popu-
lation is much larger than the other. Let us denote the large population as population 1 (‘‘pop-1’’)
and the small population as population 2 (‘‘pop-2’’).

Using obvious notation, consider the pop-1 and pop-2 equivalents of equations (1)–(2):

(1) (1) 21 (1) 21 (1)log m 5 b 1 n k 1 n g , (7)t,x x a t a c

(1) (1) (1) (1) (1)k 5 k 1 m 1 C Z , (8)t t21 t

and

(2) (2) 21 (2) 21 (2)log m 5 b 1 n k 1 n g , (9)t,x x a t a c

(2) (2) (2) (2) (2)k 5 k 1 m 1 C Z . (10)t t21 t

4 We need this constraint because we can otherwise add nad((t 2 2 (x 2 to gc , subtract nad(t 2 from kt , and add d(x 2 to bx
¯ ¯t ) x̄ )) t ) x̄ )

with no impact on fitted death rates.
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The problem with applying these two models separately is that it makes no allowance for the relation-
ship between the mortality rates of the two populations; in particular, there is nothing to stop the pop-
1 and pop-2 kt terms drifting away from each other. Such a drift would violate the notion of biological
reasonableness by which we would expect the two populations’ mortality rates to be affected by common
factors not explicitly modeled here (see Li and Lee 2005; Cairns et al. 2011b; Li and Hardy 2011).

We can avoid this problem by first replacing equations (8) and (10) with the following:

(1) (1) (1) (11) (1)k 5 k 1 m 1 C Z , (11)t t21 t

(2) (2) (k) (1) (2) (2) (21) (1) (22) (22)k 5 k 1 f (k 2 k ) 1 m 1 C Z 1 C Z . (12)t t21 t21 t21 t t

Note the two new terms in equation (12). The first introduces a dependency on the spread, or differ-
ence, between the kappas for the two populations, and the second introduces a stochastic factor com-
mon to The first of these new terms, f(k) $ 0, is a ‘‘gravity’’ or mean reversion parameter: If(1)k .t

f(k)
. 0, this parameter works to reduce any emerging spread between the 2-pop kt state variables

back toward 0 by pulling the pop-2 kt state variables back toward the pop-1 kt state variables, which
are themselves unaffected by the pop-2 kt state variables.

Some noteworthy features can be pointed out about this 2-pop kt specification:

1. The greater the gap between the kt state variables, the greater the ‘‘gravitational pull’’ on the pop-
2 kt to force them toward the pop-1 kt.

2. The special case f(k)
5 0 results in a simple bivariate random walk model with drift and correlated

innovations.
3. In the alternative special case f(k)

5 1, the deterministic part of the pop-2 kt process (12) reduces
to 5 1 m(2), implying that the evolution of is driven off and is entirely unaffected(2) (1) (2) (1)k k k kt t21 t t21

by This would seem to be unreasonably extreme. We should therefore regard f(k)
5 1 as an(2)k .t21

extreme upper bound. The noise processes in equations (11)–(12) have been generalized to allow
for correlation between the two populations.

The parameters of the kt process are estimated by MLE, and details of the algorithms are provided in
Appendix B.

In addition to the period effects, we also have the cohort effects, and, were these allowed to drift
apart, we would again have a model that violated biological reasonableness. We therefore assume that
the two populations’ gamma state variables are dependent as well.

Let m(g1) be the mean reversion level for m(g2) the mean reversion level for a(g1) the AR(1)(1) (2)Dg , Dg ,c c

parameter for and a(g2) the AR(1) parameter for Now let f(g) $ 0 be the gravity parameter(1) (2)Dg , Dg .c c

for the 2-pop gc process. The 2-pop AR(1) gc processes can then be expressed as

(1) (g1) (1) (g1) (1) (g1) (g1) (g11) (g1)g 5 (1 1 a )g 2 a g 1 m (1 2 a ) 1 C Z , (13a)c c21 c22 c

(2) (g2) (g) (2) (g2) (2) (g) (1) (g2) (g2)g 5 (1 1 a 2 f )g 2 a g 1 f g 1 m (1 2 a )c c21 c22 c21

(g21) (g1) (g22) (g2)
1 C Z 1 C Z . (13b)c c

The first new term in equation (13b) introduces a dependency on the spread between the gammas for
the two populations, and the second introduces a stochastic factor common to The first of these(1)g .c

new terms f(g) $ 0 is a ‘‘gravity’’ or mean reversion parameter: If f(g)
. 0, this parameter works to

reduce any emerging spread between the 2-pop gc state variables back toward 0 by pulling the pop-2
gc state variables back toward the pop-1 gc state variables, which are themselves unaffected by the pop-
2 gc state variables.

Again, the parameters (in this case, the gc parameters) of pop-1 are independent of, but exert a
gravitational pull on, the pop-2 gc parameters.
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Figure 1

Historical Mortality (qt) Rates: E&W versus CMI
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Note: Based on LifeMetrics E&W males data and CMI assured male lives data for 1961–2005.

A couple of other features should also be noted about this 2-pop gc process:

1. For exactly the same reasons as with the kt process, we would regard f(g)
5 1 as an extreme upper

bound and would usually expect f(g) to be toward the lower end of the range [0,1).
2. As with the 2-pop kt, we have generalized the noise process to allow for noise correlation between

the two populations.

The parameters of the gc process are estimated by MLE, and details of the algorithms are provided in
Appendix C.

3. PRELIMINARY EMPIRICAL ANALYSIS

This section provides a preliminary empirical analysis of the E&W and CMI q rates and state variables.
Figure 1 shows plots of the historical E&W and CMI male q rates over the period 1961–2005.5 (The q
rates are given by q 5 1 2 exp(2m), where m is the death rate.) We see that the CMI rates are always
below the E&W rates, although the difference seems to be declining over time. We also see that age-
84 rates are notably higher and more volatile than age-65 rates,6 and the CMI rates are more volatile
than the E&W rates for both ages.

Figure 2 shows the historical evolution of kt for single-population APC models of each population for
the period 1961–2005, each estimated independently. We can see that the historical E&W and CMI
follow each other fairly closely, but the CMI kt tends to fall a little more rapidly.

Figure 3 shows corresponding historical single-population gc for E&W and CMI populations against
birth years. CMI historical gc are noticeably more volatile than E&W historical gc, but (except for the
very early birth years and the very latest birth year) they follow each other fairly closely.

5 It is well known that exposures for the E&W 1886 birth cohort are unreliable for reasons that are not understood (see, for example, Cairns

et al. 2009). For this analysis, we wished to include this cohort, but in a way that did not produce an outlier in the fitted cohort effect.

Therefore we chose to adjust the E&W exposures, E(t, x), for the 1886 cohort effect in the calendar years 1961–1970 (after 1970 the unadjusted

exposures seem to be correct). This was achieved by assuming that the logarithms of the crude death rates m(t, x) for the 1886 cohort were

equal to the average of the log death rates for the 1885 and 1887 cohorts in the same calendar year. See Coughlan et al. (2011) for a detailed

model-independent empirical analysis of the relationship between these two populations.
6 Note, however, that the exposure sizes for the CMI at higher ages are very low and have been declining significantly.
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Figure 2

Historical kt State Variables Estimated Independently: E&W versus CMI
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Note: Based on LifeMetrics E&W males data and CMI assured male lives data for 1961–2005 and estimated over ages 60–84.

Figure 3

Historical gc State Variables Estimated Independently: E&W versus CMI
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Note: Based on LifeMetrics E&W males data and CMI assured male lives data for 1961–2005 and estimated over ages 60–84.

4. ESTIMATES OF THE STATE VARIABLES UNDER THE GRAVITY TWO-POPULATION

MODEL

This section discusses the estimates of the state variables under the gravity two-population model,
obtained using the iterative algorithm explained in Appendices A and D.

Figure 4 compares the single-population and two-population gravity model estimates of the kappa
state variables. We see that there is a small difference between estimates of these state variables.

Figure 5 compares the corresponding estimates of the gamma state variables. In this case the dif-
ferences are more obvious: The gravity estimates of the gammas are smoother than the independently
estimated gammas, and the big drop at the end of the series (referring to year of birth 1941) is replaced
with a large increase.
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Figure 4

One-Population and Gravity Two-Population Estimates of the CMI kt State Variables
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Note: Based on LifeMetrics E&W males data and CMI assured male lives data for 1961–2005 and estimated over ages 60–84.

Figure 5

One-Population and Gravity Two-Population Estimates of the CMI gc State Variables
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Note: Based on LifeMetrics E&W males data and CMI assured male lives data for 1961–2005 and estimated over ages 60–84.

5. ESTIMATES OF THE PARAMETERS OF THE GRAVITY TWO-POPULATION MODEL

This section deals with the estimation of the parameters of the gravity two-population model. These
parameters are estimated using a Bayesian MLE approach that is explained further in Appendices A,
B, and C.

Table 1 gives estimates of the parameters of the bivariate kt process fitted to the E&W and CMI
populations. The table shows results for both the gravity model and the single-population model, in
which the mortality rates of the two populations are modeled independently of each other, and our
focus of interest is on how the parameters might differ between the two cases. Note that(2) (11)ˆk V ,t

and are the elements of the estimated variance-covariance matrix for the two-(12) (21) (22)ˆ ˆ ˆV , V , V
population kt process. In the two-population case, we get 5 20.4900, 5 0.2559,(2) (12)ˆm Vˆ
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Table 1

Estimated kt Parameters

Parameter Parameter Estimate

Gravity Model (E&W and CMI)

(1) (2)[m , m ]ˆ ˆ [20.4205, 20.4900]

(11) (12)ˆ ˆV , VF G(21) (22)ˆ ˆV , V

0.4745, 0.2559F G0.2559, 0.2999

kf̂ 0.0928

E&W Modeled Independently

(1)m̂ 20.4205

(11)V̂ 0.4745

CMI Modeled Independently

(2)m̂ 20.4670

(22)V̂ 0.5298

Note: Based on LifeMetrics E&W males data and CMI assured male
lives data for 1961–2005 and estimated over ages 60–84.

Table 2

Estimated gc Parameters

Parameter Parameter Estimate

Two-Population Gravity Model (E&W and CMI)

(g1) (g2)[a , a ]ˆ ˆ [0.3024, 0.0626]

(g1) (g2)[m , m ]ˆ ˆ [20.0318, 0.0066]

(g11) (g12)ˆ ˆV , VF G(g21) (g22)ˆ ˆV , V

0.0872, 0.0081F G0.0081, 0.0858

(g)f̂ 0.3133

E&W Modeled Independently

(g1)â 0.2743
(g1)m̂ 20.0378

V (g11) 0.0901

CMI Modeled Independently

(g2)â 20.3440
(g2)m̂ 20.0168

(g22)V̂ 0.5174

Note: Based on LifeMetrics E&W males data and CMI assured male
lives data for 1961–2005 and estimated over ages 60–84.

5 0.2999, and 5 0.0928, whereas, in the one-population case, we get 5 20.4670 and(22) (k) (2)ˆ ˆV f m̂

5 0.5298 (and, implicitly, 5 0 and 5 0).(22) (12) (k)ˆ ˆ ˆV V f

Table 2 gives estimates of the parameters of the gc process. As in Table 1, this table shows results
for both the two-population and one-population models, where and are the(g11) (g12) (g21) (g22)ˆ ˆ ˆ ˆV , V , V , V
elements of the estimated variance-covariance matrix for the two-population gc process. In the two-
population case, we get 5 0.0626, 5 0.0066, 5 0.0081, 5 0.0858, and(g2) (g2) (g12) (g22)ˆ ˆa m V Vˆ ˆ

5 0.3133, whereas, in the single-population case, we get 5 20.3440, 5 20.0168,(g) (g2) (g2)f̂ a mˆ ˆ



A GRAVITY MODEL OF MORTALITY RATES FOR TWO RELATED POPULATIONS 343

Figure 6

Historical and Expected Future kt
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Note: Based on LifeMetrics E&W males data and CMI assured male lives data for 1961–2005 and estimated over ages 60–84
and 10,000 simulation trials.

5 0.5174, and (again implicitly) 5 0 and 5 0. The negative value of reflects the(g22) (g12) (g) (g2)ˆ ˆ ˆV V f â

greater noise in the estimates of the CMI cohort effects (see Figure 3).7

6. PROJECTIONS OF THE GRAVITY TWO-POPULATION MODEL

Based on the estimates for the kt parameters in Table 1, Figure 6 shows the projections of expected
kt over horizons of up to 50 years ahead for the E&W population (the continuous line) modeled as an
independent single population and for the CMI population using both the two-population gravity model
(dotted) and an independent one-population model (dash-dotted) cases, respectively. All three curves
move down over time, but for the single-population case, the expected CMI kt curve moves farther away
from the E&W curve over time, whereas, for the gravity case, the expected CMI kt curve moves close
to it. The kappa gravity effect is thus operating along the lines anticipated.

To provide further insight, Figure 7 shows the fan chart projections for the same two cases: We see
that the gravity two-population projections are a little higher than the single- or one-population pro-
jections, but also a little less dispersed.

Figure 8 shows the expected gc for the E&W population (the continuous line) and for the CMI
population under both the gravity two-population model (dotted) and the one-population model (dash-
dot). We see how, under the latter, the CMI expected gc starts off lower than the E&W gc but declines
at a slower rate (and would, in fact, eventually cross the E&W curve), whereas under the gravity model,
the CMI curve moves closer toward the E&W curve and then shadows it in parallel. Thus, once again,
the gravity effect is operating as anticipated.

7 The alert reader will note three anomalies in Table 2: is 0.3024 under the gravity model but 0.2743 when modeled inde-(g1)â

pendently; is 20.0318 under the gravity model but 20.0378 when modeled independently, and V (g11) is 0.0872 under the gravity model(g1)m̂

but 0.0901 when modeled independently. These are anomalies because these particular parameters should in theory be the same under the

gravity model or when modeled independently. However, they differ here for two quite subtle reasons, both of which can lead to unimportant

differences between the two model estimates of these parameters. First, when modeled independently, these parameters are estimated using

a univariate AR(1) process, but when estimated under the gravity model, they are estimated using the (somewhat different) algorithm described

in Appendix C. Second, this algorithm takes as its inputs estimates of a(g1), a(g2), and f(g), and these will typically differ between the single-

population and gravity model cases.
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Figure 7

Fan Chart Projections of One-Population and Gravity Two-Population Model CMI kt
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Note: Based on LifeMetrics E&W males data and CMI assured male lives data for 1961–2005 and estimated over ages 60–84
and 10,000 simulation trials.

Figure 8

Historical and Expected Future gc
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Note: Based on LifeMetrics E&W males data and CMI assured male lives data for 1961–2005 and estimated over ages 60–84
and 10,000 simulation trials.

Figure 9 shows the corresponding gc fan chart projections. The gravity projections are somewhat
higher than the projections under the one-population case (as we would expect from the above) but
are also noticeably narrower.

Having established the impact of the gravity effects on the expected values of the state variables,
Figure 10 shows the fan charts for the two populations considered independently, Figure 11 shows the
fan charts for the two populations under the gravity model, and Figure 12 shows the CMI fan charts
for both models, all for age 65.

We can see that, relative to considering the two populations independently, the gravity model narrows
the CMI projections a little (e.g., the 90% prediction bounds for T 5 50 change from [0.0021 0.0050]
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Figure 9

Fan Chart Projections of One-Population and Gravity Two-Population Model CMI gc
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Note: Based on LifeMetrics E&W males data and CMI assured male lives data for 1961–2005 and estimated over ages 60–84
and 10,000 simulation trials.

Figure 10

Fan Chart Projections of E&W and CMI q Modeled Independently: Males Age 65
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Expected 2055 value = 0.0034
90% CI for 2055 = [0.0021 0.005]

Note: Based on LifeMetrics E&W males data and CMI assured male lives data for 1961–2005 and estimated over ages 60–84
and 10,000 simulation trials.

to [0.0023 0.0047]).8 To put this another way, if the gravity model is correct and if one ignores this
when modeling CMI male q, then one will obtain fan charts that underestimate somewhat the uncer-
tainty in the projections.

8 The explanation for the gravity effect narrowing the CMI projections is that the one-population CMI gammas are rather more volatile than

the E&W gammas, and so the impact of the gravity model is to smooth the CMI gammas, and it this smoothing that leads to narrower CMI

projections. These results are also broadly consistent with those of Cairns et al. (2011b).
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Figure 11

Fan Chart Projections of E&W and CMI q under the Gravity Model: Males Age 65

1980 2000 2020 2040

-6

-5.5

-5

-4.5

-4

-3.5

log(q)

Year

E&W (higher)
Expected 2055 value = 0.0062
90% CI for 2055 = [0.0042 0.0088]
CMI (lower)
Expected 2055 value = 0.0034
90% CI for 2055 = [0.0023 0.0047]

Note: Based on LifeMetrics E&W males data and CMI assured male lives data for 1961–2005 and estimated over ages 60–84
and 10,000 simulation trials.

Figure 12

Fan Chart Projections of One-Population and Gravity Two-Population CMI q: Males Age 65
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Note: Based on LifeMetrics E&W males data and CMI assured male lives data for 1961–2005 and estimated over ages 60–84
and 10,000 simulation trials.

7. VALUING ANNUITIES

The next two sections discuss applications of the model. One application is to the estimation of
mortality-related variables (such as expected future lifetimes [EFLs] or annuity prices). Unfortunately,
the APC model does not permit us to directly simulate q probabilities for very high ages (in the case
of our sample, beyond age 84) because the model requires age (beta) parameters for each age in our
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Table 3

Illustrative Term Annuity Prices

Population Age 5 65

E&W 10.8996
CMI (gravity model) 11.7627
CMI (independent) 11.8373

Note: Estimated over ages 60–85 and 1961–2005. Refers to the price
of a term annuity that pays 1 unit for each year survived to age 85.
Based on an interest rate of 4% and 10,000 simulation trials.

Figure 13

Correlations between E&W and CMI Improvements: Males Age 65

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

C
o

rr
el

a
ti

o
n

Horizon

historical

gravity model

Note: Based on LifeMetrics E&W males data and CMI assured male lives data for 1961–2005 and estimated over ages 60–84
and 10,000 simulation trials.

sample range.9 This means that we cannot directly estimate EFLs or the prices of lifetime annuities,
but we can still estimate the prices of term annuities whose payments end by the 85th birthday.

Table 3 shows some illustrative prices for age 65 for term annuities that end at age 85. The cases
considered are E&W and CMI both with and without gravity effects. We assume a constant interest
rate of 4%. We find that the estimated price for a CMI term annuity is 11.8373 in the case where CMI
mortality is modeled independently with the one-population model and 11.7627 where the two-
population gravity model is used. Thus, ignoring the gravity effect in this case leads to an overestimation
of the price of the annuity of 0.63%.10

8. CORRELATIONS BETWEEN q MORTALITY IMPROVEMENTS

A second application of the model is the analysis of mortality improvement correlations. Figure 13
shows plots of correlations between mortality or q improvements, for age 65 for horizons running from
1 to 25 years ahead, from starting year 2005. For any given population and age x, the q reduction

9 This said, we can still simulate q probabilities for higher ages if we have a method to extrapolate estimates of higher age death rates. An

example is provided by Coughlan et al. (2011).
10 As a comparator, this difference is smaller than that between the annuity prices offered by different annuity providers (see, e.g., Gunawardena

et al. 2008).
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factor for a horizon H years ahead is defined to be q(t 1 H, x)/q(t, x) for year t 5 2005. We see that
the correlations between the mortality improvements for the E&W and CMI populations under the
gravity model start from a little under 0.6 for H 5 1 and rise sharply as H increases and eventually
approach 1 in the limit.11 By contrast, the corresponding correlations in the zero-gravity case are, in
fact, all equal to 0, reflecting the fact that, in this case, the populations are independent. Thus, taking
account of the gravity effect is essential if we are to produce sensible correlations in mortality im-
provements between related populations.

In addition, as a reality check, the figure also includes a plot of the corresponding historical
reduction-factor correlations over our sample period.12 We can see that the model-based correlations
are quite close to the historical correlations present in the data.

9. CONCLUSIONS

This paper has introduced a new type of model, which we have called a gravity model, to handle the
interdependence between the mortality rates of two related populations. This model has a number of
attractions:

• The gravity concept is intuitively plausible: In the large-population versus small-population context,
gravity effects serve to bring the state variables of the secondary population toward those of the
dominant primary population in a manner consistent with biological reasonableness.

• Given that the secondary population (in our illustration, the CMI population) is much smaller, an
additional benefit of the gravity model is to smooth out some of imprecision in the forecasts of the
secondary population.

• The approach is fast and easy to implement using MATLAB: A single fan chart with 10,000 simulation
trials takes about 15 seconds to produce.

• The approach can be used to price mortality-related financial contracts (e.g., annuity prices) or model
other mortality-related variables (e.g., mortality-improvement correlations, which are useful for hedg-
ing purposes).

This study applied the model to the case of E&W males versus CMI assured male lives mortality rates.
Applied to this dataset, our results suggest that, relative to the case where CMI mortality is modeled
independently, the gravity model tends to slightly raise the expected mortality projection (and, relat-
edly, slightly increase annuity prices), smooth somewhat the dispersion (or volatility) of projections of
CMI q rates, and, perhaps most importantly, can produce forward mortality-improvement correlations
that closely match those found in the historical data. These findings would suggest that the use of a
gravity model has the potential, at least, to produce considerable improvements in the effectiveness of
the risk management of mortality-linked exposures.

APPENDIX A

ESTIMATING THE STATE VARIABLES AND THEIR PARAMETERS

This appendix explains the estimation of the latent state variables and their parameters. The estimation
process involves the following stages:

Stage 1: Preliminary estimation of the state variables ignoring any interdependence. We estimate
equations (8) and (10) separately to obtain estimates of the beta, kappa, and gamma parameters,
ignoring any interdependence between the two populations’ state variables.

11 The correlations in Figure 13 are also very close to those reported in Figure 13 in Cairns et al. (2011b) and Coughlan et al. (2011).
12 For our sample of size 45 years and horizon H, these are the correlations between the reduction factors q(t 1 H, 65)/q(t, 65) for years t 5

1961 2 2005 ; H, thus giving us the correlation between two samples of 44 observations for H 5 1, the correlation between two samples of

43 observations for H 5 2, and so on. We do not calculate the historical correlations beyond H 5 25 because of the small samples involved.
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Stage 2: Estimation of the parameters of the state-variable processes. We then estimate the parameters
of the two-population kt processes, taking account of possible interdependence, but taking the esti-
mates of the state variables as given. The algorithms used to do this are set out in Appendices B and
C. Stages 1 to 2 constitute the first complete estimation cycle.

Stage 3: Reestimation of the state variables taking account of possible interdependence. We then take
the parameters of the state variables as given and reestimate the state variables using the algorithms
set out in Appendix D.

Stage 4: Repeat stages 2 and 3 until parameter estimates converge. The second and subsequent es-
timation cycles repeat stages 2 and 3. We input our state variable estimates from stage 3 and repeat
stage 2 to obtain a new set of parameter estimates, and we use these to repeat stage 3 to obtain a
new set of state variable estimates. We then repeat the estimation cycle as many times as required
until parameter estimates converge.

This gives us estimates of both latent state variables and the parameters of the processes governing
the state variables that are consistent with each other and take appropriate account of the interde-
pendence between the two populations.

APPENDIX B

ESTIMATING THE PARAMETERS OF THE kt PROCESS

This appendix explains the algorithms used to estimate the parameters of the two populations’ kt

processes to take account of their interdependence, while taking the estimates of the state variables
as given.

We start with equations (11)–(12) reproduced below:

(1) (1) (1) (12) (2)k 5 k 1 m 1 C Z , (11)t t21 t

(2) (2) (k) (1) (2) (2) (21) (1) (22) (22)k 5 k 1 f (k 2 k ) 1 m 1 C Z 1 C Z . (12)t t21 t21 t21 t t

Imagine to begin that we know the value of f(k). Note that (with the exception of m(1) and C(1)) the m

and C parameters are dependent on f(k), so we make this dependence explicit and then, in turn, replace
these parameters with their estimates. This gives us

(1) (1) (1) (k) (12) (k) (2)ˆk 5 k 1 m uf 1 (C uf )Z , (B1)ˆt t21 t

(2) (2) (k) (1) (2) (2) (k) (21) (k) (1) (22) (k) (22)ˆ ˆk 5 k 1 f (k 2 k ) 1 m uf 1 (C uf )Z 1 (C uf )Z . (B2)ˆt t21 t21 t21 t t

Our estimates of the m parameters conditional on f(k) are now

ny
1

(1) (k) (1) (1)m uf 5 (k 2 k ), (B3)Oˆ t t21n 2 1 t52y

ny
1

(2) (k) (2) (k) (2) (k) (1)m uf 5 (k 2 (1 2 f )k 2 f k ). (B4)Oˆ t t21 t21n 2 1 t52y

Now let

(1) (k) (1) (1) (1) (k)D̂ uf 5 k 2 k 2 m uf , (B5)ˆt t t21

(2) (k) (2) (k) (2) (k) (1) (2) (k)D̂ uf 5 k 2 (1 2 f )k 2 f k 2 m uf , (B6)ˆt t t21 t21

for t 5 2, . . . , ny. For i, j 5 1, 2:

ny
1

(i j) (k) (i) (k) ( j) (k)ˆ ˆ ˆV uf 5 (D uf )(D uf ) 1 jv , (B7)OH Jt t i jn 2 1 1 j t52y
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where j is a weight (set to 1) attached to a Bayesian prior estimate for given by v 5 and
v v11 12V̂ ,S Dv v21 22

we take this estimate to be v 5 using the original one-population estimate of in Table
(11)V̂ 0

ˆ ˆV VS D(22)ˆ0 V

1.13 This gives us our estimate of V conditional on f(k):

(11) (k) (12) (k)ˆ ˆV uf , V uf(k)V̂ uf 5 . (B8)F G(21) (k) (22) (k)ˆ ˆV uf , V uf

is then the Choleski decomposition ofˆ ˆC V.

Finally, we need an MLE method to estimate f(k). If we let 5 5

(11) (k) (12) (k)ˆ ˆW uf , W uf(k)Ŵ uf F G(21) (k) (22) (k)ˆ ˆW uf , W uf

the log-likelihood function is now(k) 21ˆ(V uf ) ,

nyn 2 1 1y(k) (k) (1) (k) (1) (k) (11) (k)ˆ ˆ ˆ ˆl (f ) 5 2 ln[det(V uf )] 2 (D uf )(D uf )W uf )Ok t t2 2 t52
n ny y

1 1
(1) (k) (2) (k) (12) (k) (2) (k) (1) (k) (21) (k)ˆ ˆ ˆ ˆ ˆ ˆ2 (D uf )(D uf )W uf 2 (D uf )(D uf )W ufO Ot t t t2 2t52 t52

ny
1

(2) (k) (2) (k) (22) (k)ˆ ˆ ˆ2 (D uf )(D uf )W uf . (B9)O t t2 t52

We then add to this the log of the prior distribution, which consists of the sum of: the log of the
prior density for alluded to in the discussion below equation (B7), taken to be the Inverse-WishartV̂(u)

distribution with inverse scaling matrix c 5 (ci j) 5 jv 5 j(vi j) and m 5 j 2 3 degrees of freedom,
and the log of the prior density for f(k), taken to be a beta (j(v 2 1) 1 1, j(w 2 1) 1 1) distribution
with v 5 2, w 5 2 evaluated at The log of the prior distribution is therefore(k)f̂ .

j 1
(prior) (k) (k) (k) 21ˆ ˆl (f ) 5 2 ln[det(V uf )] 2 trace(jv(V uf ) )k 2 2

(k)ˆ1 ln[b(f , j(v 2 1) 1 1, j(w 2 1) 1 1)]. (B10)

We can then obtain an MLE estimate of f(k) by searching across the permissible f(k) range [0,1] and
selecting the f(k) value that maximizes the sum of equations (B9) and (B10). Once we have this value,
we use equations (B1), (B2), and (B6) to estimate m and V.

The results reported in this paper were based on an illustrative value of j 5 5.

APPENDIX C

ESTIMATING THE PARAMETERS OF THE gc PROCESS

This appendix explains the algorithms used to estimate the parameters of the two-population gc process,
taking estimates of the gamma state variables as given.

Recall the two-population gc process (13):

(g1) (g1)m (1 2 a ) (g) (g)g 5 F g 1 F g 1 1 C Z , (13)S D(g2) (g2)c 1 c21 2 c22 cm (1 2 a )

13 The inclusion of the j and vij terms in equation (B7) serves to penalize the oversmoothing of the secondary population kt process that might

otherwise occur over the course of repeated estimation cycles.
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where F1 5 and F2 5

(g1) (g1)1 1 a , 0 2a , 0
.F G F G(g) (g2) (g) (g2)f , 1 1 a 2 f 0, 2a

We now expand equation (13) to obtain

(1) (g1) (1) (g1) (1) (g1) (g1) (g11) (g1) (g12) (g2)g 5 (1 1 a )g 2 a g 1 m (1 2 a ) 1 C Z 1 C Z , (C1)c c21 c22 c c

(2) (g) (1) (g1) (g) (2) (g2) (2) (g2) (g2) (g21) (g1) (g22) (g2)g 5 f g 1 (1 1 a 2 f )g 2 a g 1 m (1 2 a ) 1 C Z 1 C Z . (C2)c c21 c21 c22 c c

Given (a(g1), a(g2), f(g)) 5 u, we can then obtain estimates of the m(g) parameters conditional on u:

nc1
(g1) (1) (g1) (1) (g1) (1)m uu 5 (g 2 (1 1 a )g 1 a g ), (C3)Oˆ c c21 c22(g1)(n 2 2)(1 2 a ) c53c

nc1
(g2) (2) (g) (1) (g2) (g) (2) (g2) (2)m uu 5 (g 2 f g 2 (1 1 a 2 f )g 1 a g ), (C4)Oˆ c c21 c21 c22(g2)(n 2 2)(1 2 a ) c53c

for c 5 3, . . . , nc. Now let

(g1) (1) (g1) (1) (g1) (1) (g1) (g1)D̂ uu 5 g 2 (1 1 a )g 1 a g 2 (m uu)(1 2 a ), (C5)ˆc c c21 c22

(g2) (2) (g) (1) (g2) (g) (2) (g2) (2) (g2) (g2)D̂ uu 5 g 2 f g 2 (1 1 a 2 f )g 1 a g 2 (m uu)(1 2 a ). (C6)ˆc c c21 c21 c22

For i, j 5 1, 2:

nc1
(g i j) (g i) (g j) (g) (g)ˆ ˆ ˆV uu 5 (D uu)(D uu) 1 j v , (C7)OH Jc c i j(g)n 2 2 1 j c53c

where j(g) is a weight (set to 1) attached to a Bayesian prior estimate for given by v(g)
5

(g)V̂

and we take this estimate to be v(g)
5 using the original one-

(g) (g) (g11)ˆv v V 0(g)11 12 ˆ, VS D S D(g) (g) (g11)ˆv v 0 V21 22

population estimate of in Table 2.14(g11)V̂

Equation (C7) gives us estimates of the V (g) parameters conditional on u:

(g11) (g12)ˆ ˆV uu, V uu(g)V̂ uu 5 . (C8)F G(g21) (g22)ˆ ˆV uu, V uu

is then the Choleski decomposition of(g) (g)ˆ ˆC V uu.

Now let

(g11) (g12)ˆ ˆW uu, W uu(g) (g) 21ˆ ˆW uu 5 5 (V uu) .F G(g21) (g22)ˆ ˆW uu, W uu

The log-likelihood function is then

ncn 2 2 1c (g) (g1) (g1) (g11)ˆ ˆ ˆ ˆl (u) 5 2 ln[det(V uu)] 2 (D uu)(D uu)W uuOg c c2 2 c53

n nc c1 1
(g1) (g2) (g12) (g2) (g1) (g21)ˆ ˆ ˆ ˆ ˆ ˆ2 (D uu)(D uu)W uu 2 (D uu)(D uu)W uuO Oc c c c2 2c53 c53

nc1
(g2) (g2) (g22)ˆ ˆ ˆ2 (D uu)(D uu)W uu. (C9)O c c2 c53

14 The inclusion of the j(g) and terms in equation (C7) serves to penalize the oversmoothing of the secondary population cohort process(g)vij

that might otherwise occur over the course of repeated estimation cycles.



352 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 15, NUMBER 2

We then add to this the log of the prior distribution, which consists of the sum of: the log of the
prior density for taken to be the Inverse-Wishart distribution with inverse scaling matrix(g)V̂ (u),

c(g)
5 5 j(g)v(g)

5 and m 5 j 2 3 degrees of freedom, and the log of the prior density(g) (g)(c ) j(v )i j i j

for f(g), taken to be a beta (j(v 2 1) 1 1, j(w 2 1) 1 1) distribution with v 5 2, w 5 2 evaluated at
The log of the prior distribution is therefore(g)f̂ .

(g)j 1
(prior) (g) (g) (g) (g) (g) (g) (g) 21ˆ ˆl (f ) 5 2 ln[det(V uf )] 2 trace(j v (V uf ) )g 2 2

(g)ˆ1 ln[b(f , j(v 2 1) 1 1, j(w 2 1) 1 1)]. (C10)

We can then obtain MLE estimates of a(g1), a(g2), and f(g) by searching across the permissible ranges
of these parameters, and selecting those that maximize the sum of equations (C9) and (C10).

The results reported in this paper were based on an illustrative value of j(g)
5 5.

APPENDIX D

REESTIMATING THE SMALLER POPULATION STATE VARIABLES TAKING ACCOUNT OF

THEIR INTERDEPENDENCE WITH THE LARGER POPULATION

This appendix explains the procedure used to reestimate the CMI state variables, taking account of
their interdependence with the E&W state variables, but taking the parameters governing the state
variables as given. Note, of course, that there is no need to reestimate the E&W state variables because
they are independent of the CMI state variables.

Before doing this, we define the standard deviations and correlations of the noise processes governing

each state variable using obvious notation: s(1)
5 C(11), s(2)

5 r 5 C(21)/(21)2 (22)2ÏC 1 C ,

s(g1)
5 C(g11), s(g2)

5 and r(g)
5 C(g21)/ At this(21)2 (22)2 (g21)2 (g22)2 (g21)2 (g22)2ÏC 1 C ), ÏC 1 C , ÏC 1 C .

point we also drop the ‘‘hat’’ notation to avoid cluttering up the equations.
We now go through the following four stages:
Stage 1: Updating the CMI kappas. We begin by backing out historical standardized errors for

population-1 using

(1) (1) (1) (1)Z 5 (k 2 k 2 m )/s (D1)t11 t11 t

for t 5 1, . . . , ny 2 1 and setting Z1 5 0.
Let D, E, and m, respectively, be the deaths, exposures, and latest available APC death-rate matrices

for CMI, each of which has dimension ny 3 na. Now let lP be the log-likelihood of the CMI Poisson
deaths process given by

l 5 (D log m 2 E m ) 1 const. (D2)OP tx tx tx tx
t,x

The first and second derivatives of lP with respect to are(2)kt

lP
5 (D 2 E m )/n , (D3)O tx tx tx a(2)k xt

2 lP 2
5 2 E m /n . (D4)O tx tx a(2)2k xt

Now let lk be the log-likelihood of the CMI kappa process, which is given as

ny (2) (k) (2) (k) (1) (k2) (2) (k1) 21 (k 2 (1 2 f )k 1 f k 2 m 2 s r Z )t t21 t21 k t(2)2 2l 5 2 log(s (1 2 r )) 2 . (D5)O H Jk k (2)2 22 2s (1 2 r )t52 k
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Its first derivatives with respect to are(2)kt

(k)l (1 2 f )k (2) (k) (2) (k) (2) (2) (k) (1)
5 {k 2 (1 2 f )k 2 f k 2 m 2 s r Z }, (D6a)2 1 1 2(2) (2)2 (k)2k s (1 2 r )1

l 1k (k) (2) (k) 2 (2) (k) (2)
5 {(1 2 f )k 2 (1 1 (1 2 f ) )k 1 (1 2 f )k (D6b)t11 t t21(2) (2)2 (k)2k s (1 2 r )t

(k) (1) (k) (k) (1) (k) (2) (2) (k) (1) (k) (1)
1 f k 2 f (1 2 f )k 1 f m 1 s r (Z 2 (1 2 f )Z )},t21 t t t11

l 21k (2) (k) (2) (k) (1) (2) (2) (k) (1)
5 {k 2 (1 2 f )k 2 f k 2 m 2 s r Z }, (D6c)n n 21 n 21 ny y y y(2) (2)2 (k)2k s (1 2 r )ny

for the cases t 5 1, 1 , t , ny, and t 5 ny respectively.
Its corresponding second derivatives are

2 (k) 2 l 2(1 2 f )k
5 , (D7a)

(2)2 (2)2 (k)2k s (1 2 r )1

2 (k) 2 l 2(1 1 (1 2 f ) )k
5 , (D7b)

(2)2 (2)2 (k)2k s (1 2 r )t

2 l 21k
5 . (D7c)

(2)2 (2)2 (k)2k s (1 2 r )ny

The updating routine for kt is then

(2) (2)l /k 1 l /kP t k t(2)new (2)oldk 5 k 2 , (D8)t t 2 (2)2 2 (2)2 l /k 1  l /kP t k t

where the partial derivatives are evaluated at the old value of kt.
Stage 2: Updating the CMI gammas. The corresponding gamma process is a little more involved. We

begin by backing out historical gamma standardized errors for population-1 using a rearranged version
of equation (13a):

(g1)Z 5 0, (D9a)1

(g1) (1) (g1) (1) (g1) (g1) (g1)Z 5 (g 2 (1 1 a )g 2 m (1 2 a ))/s , (D9b)2 2 1

(g1) (1) (g1) (1) (g1) (1) (g1) (g1) (g1)Z 5 (g 2 (1 1 a )g 1 a g 2 m (1 2 a ))/s , (D9c)c c c21 c22

for c 5 3, . . . , nc.
The first and second derivatives of lP with respect to are(2)gc

lP
5 (D 2 E m )I (c)/n , (D10)O tx tx tx tx a(2)g t,xc

2 lP 2
5 2 E m I (c)/n , (D11)O tx tx tx a(2)2g t,xc

where the identity function It j(c) takes the value 1 if c 5 t 2 x and otherwise takes the value 0.
Now let lg be the log-likelihood of the CMI gamma process, given by

n 2 2c (g2)2 (g)2l 5 2 ln(s (1 2 r )g 2

nc1
(2) (g2) (g) (2) (g2) (2)

2 (g 2 (1 1 a 2 f )g 1 a g 2 ε 2 c), (D12)O c c21 c22 c(g2)2 (g)2s (1 2 r ) c53
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where ε1 5 0, εc 5 f(g)
1 s(g2)r(g) for c 5 2, . . . , nc, c 5 m(g2)(1 2 a(g2)), and SR2 5

(1) (g1)g Zc21 c

s(g2)2(1 2 r(g)2).
Its first derivatives are

l 21g (g2) (2) (g2) (g) (2) (g2) (2)
5 {a [g 2 (1 1 a 2 f )g 1 a g 2 ε 2 c]}, (D13a)3 2 1 3(2)g SR21

l 21g (g2) (2) (g2) (g) (2) (g2) (2)
5 {a [g 2 (1 1 a 2 f )g 1 a g 2 ε 2 c]4 3 2 4(2)g SR22

(g2) (g) (2) (g2) (g) (2) (g2) (2)
2 (1 1 a 2 f )[g 2 (1 1 a 2 u )g 1 a g 2 ε 2 c]}, (D13b)3 2 1 3

l 21g (g2) (2) (g2) (g) (2) (g2) (2)
5 {a [g 2 (1 1 a 2 f )g 1 a g 2 ε 2 c]c12 c11 c c12(2)g SR2n 21c

(g2) (g) (2) (g2) (g) (2) (g2) (2)
2 (1 1 a 2 f )[g 2 (1 1 a 2 f )g 1 a g 2 ε 2 c]c11 c c21 c11

(2) (g2) (g) (2) (g2) (2)
1 [g 2 (1 1 a 2 f )g 1 a g 2 ε 2 c]}, (D13c)c c21 c22 c

l 21g (g2) (g) (2) (g2) (g) (2) (g2) (2)
5 {2(1 1 a 2 f )[g 2 (1 1 a 2 f )g 1 a g 2 ε 2 c]n n 21 n 22 nc c c c(2)g SR2n 21c

(2) (g2) (g) (2) (g2) (2)
1 [g 2 (1 1 a 2 f )g 1 a g 2 ε 2 c]}, (D13d)n 21 n 22 n 23 n 21c c c c

l 21g (2) (g2) (g) (2) (g2) (2)
5 {[g 2 (1 1 a 2 f )g 1 a g 2 ε 2 c]}, (D13e)n n 21 n 22 nc c c c(2)g SR2nc

for the cases c 5 1, c 5 2, 2 , c , nc 2 2, c 5 nc 2 1, and c 5 nc respectively.
Its corresponding second derivatives are

2 (g2)2 l ag
5 2 , (D14a)

(2)2g SR21

2 (g2)2 (g2) (g) 2 l a 1 (1 1 a 2 f )g
5 2 , (D14b)

(2)2g SR22

2 (g2)2 (g2) (g) 2 l a 1 (1 1 a 2 f ) 1 1g
5 2 , (D14c)

(2)2g SR2c

2 (g2) (g) 2 l (1 1 a 2 f ) 1 1g
5 2 , (D14d)

(2)2g SR2n 21c

2 l 1g
5 2 . (D14e)

(2)2g SR2nc

The updating routine for is then(2)gc

(2) (2)l /g 1 l /gP c g c(2)new (2)oldg 5 g 2 , (D15)c c 2 (2)2 2 (2)2 l /g 1  l /gP c g c

where the partial derivatives are evaluated at the old value of gt.
Stage 3: Updating the CMI betas. We now update the CMI betas. The first derivative of the Poisson

log-likelihood is
ny (2) (2)l k gP t t2x (2)

5 D 2 E exp 1 exp[b ] . (D16)O S F G Dtx tx x(2)b n nt51x a a
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Setting the left-hand side of (D16) to zero then yields the following solution for the revised beta
parameter:

ny

DO tx
t51(2)newb 5 ln . (D17)nyx (2) (2)k gt t2xE exp 1O5 6F Gtx n nt51 a a

Stage 4: Applying identifiability constraints. We now need to impose the identifiability constraints,
and in the case of the this requires that we take our series from equation (D7), relabel it(2) (2)newk , kt t

as and then obtain a new series using(2)oldk ,t

ny
1

(2)new (2)old (2)oldk 5 k 2 k (D18)OS Dt t sn s51y

with corresponding adjustment

ny
1 1

(2)new (2)old (2)oldb 5 b 1 k . (D19)OS Dx x sn n s51a y

In the case of the applying the identifiability constraint requires that we take our series(2) (2)newg , gc c

from (D15), relabel it as and then obtain a new series using(2)oldg ,c

1
(2)new (2)old (2)oldg 5 g 2 g (D20)OS Dc c t2xn n t,xa y

with corresponding adjustment

1 1
(2)new (2)old (2)oldb 5 b 1 g . (D21)OS Dx x t2xn n n t,xa a y

Stage 5: Tilting. Finally, we now estimate d using equation (5) and tilt our parameter estimates using
equation (6).
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