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Abstract

We develop a novel approach to build checks of parametric regression mod-

els when many regressors are present, based on a class of sufficiently rich semi-

parametric alternatives, namely single-index models. We propose an omnibus

test based on the kernel method that performs against a sequence of direc-

tional nonparametric alternatives as if there was one regressor only, whatever

the number of regressors. This test can be viewed as a smooth version of the

integrated conditional moment (ICM) test of Bierens. Qualitative information

can be easily incorporated into the procedure to enhance power. In an exten-

sive comparative simulation study, we find that our test is little sensitive to

the smoothing parameter and performs well in multidimensional settings. We

then apply it to a cross-country growth regression model.
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1 Introduction

Parametric forms are frequently used in regression models to estimate the association

between a response variable and predictors. Checking the adequacy of a parametric re-

gression function is then useful in many applications, whether in econometrics or in other

applied fields. Popular graphical displays of residuals against fitted values or covari-

ates can fail to detect an inadequate model when many covariates are present. Hence,

since the end of the eighties, many regression checks have been developed. With few

exceptions, notably Bierens (1982, 1990) and Stute, Gonzalez Manteiga, and Presedo

Quindimil (1998), most rely on some smoothing method, such as kernels, splines, local

polynomials, or orthogonal series, from the earlier work of Cox et al. (1988), Azzalini,

Bowman and Härdle (1989), Eubank and Spiegleman (1990), Hart and Wehrly (1992),

Eubank and Hart (1993), to the more recent papers by Dette (1999), Aerts, Claeskens

and Hart (1999), Spokoiny (2001), Baraud, Huet and Laurent (2003). The monograph

by Hart (1997) nicely reviews this statistical literature, but almost exclusively deals with

the one predictor case. Among the authors who explicitly studied the many regressors

case, Härdle and Mammen (1993) used an L2 distance between the parametric regression

and the nonparametric one; Zheng (1996), Aerts, Claeskens and Hart (1999), and Guerre

and Lavergne (2005) used a score approach; Fan, Zhang and Zhang (2001) adopted a

likelihood-ratio approach. The ability of these omnibus tests to detect deviations from

the parametric model quickly wanes when there is more than a couple of regressors. In-

deed, as nonparametric estimators suffer from the “curse of dimensionality” as shown by

Stone (1980), so too do the related tests, see e.g. Guerre and Lavergne (2002). Hence,

their usefulness is questionable for many applications, in particular in econometrics where

the number of covariates can be large with respect to the sample size.

To circumvent this issue, one can aim at testing the parametric regression against

some non-saturated semiparametric alternatives. Fan, Zhang and Zhang (2001) studied

varying coefficients linear models. Aerts, Claeskens and Hart (2000) and Guerre and

Lavergne (2005) proposed tests tailored for additive alternatives. Hart (1997, Section

9.3) considered alternatives of the form m(t(X)), where m(·) is nonparametric and t(X)

is the vector of the first principal components of the covariance matrix X; he noted

that there is however no guarantee that lack-of-fit will manifest itself along principal
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components. Fan and Huang (2001) similarly relied on scores from principal components

analysis. The alternative dimension-reduction test of Zhu (2003) assumes independence

of the parametric residuals with the regressors. All these proposals thus rely on some

auxiliary restrictions on the alternative model, but do not yield omnibus tests.

Our goal is thus to devise a powerful regression check that researchers could confidently

apply in the presence of many regressors without imposing restrictions on the form of the

alternative. It can be viewed as an elaboration of the Integrated Conditional Moment

(ICM) test of Bierens (1982), and for this reason we label our test the smooth ICM test.

Moreover, compared to existing tests, an appealing feature of our approach is that it allows

to incorporate a priori qualitative information in the procedure to improve its power. Our

theoretical results show that the smooth ICM test is consistent against any alternative,

yet it is not affected by the dimension of the regressors, since it behaves against directional

alternatives as if there was one regressor only.

Acknowledging that testing directly against saturated alternatives yield low power, we

replace the nonparametric alternative by a class of a semiparametric single-index alter-

natives that is sufficiently rich to allow detection of any nonparametric alternative, thus

reducing the dimension of the problem while preserving consistency. Single-index alterna-

tives have been used in previous work on regression checks. Ramsey (1969) first proposed

a regression specification error test (RESET) that implicitly consider alternatives depend-

ing on a single-index, where the index of interest is taken as the best linear projection of

Y on X. Bierens (1982) based the ICM test on correlations between residuals and the

set of functions ψ(X ′β) = exp(iX ′β) for any direction β. Further work along these lines

include Bierens (1990), Stinchcombe and White (1998), Zhu and Li (1998), Bierens and

Ploberger (1997), Escanciano (2006), and Lavergne and Patilea (2008). We detail some

of these approaches later on. In this work, we also elaborate on this approach. Formally,

let (Y1, X
′
1)
′, . . . (Yn, X

′
n)′ be independent observations from a population (Y,X ′)′ ∈ R1+q,

where X is a continuous random vector. We want to check whether the regression function

E(Y |X) belongs to a parametric family {µ(·, θ) : θ ∈ Θ}, for instance of linear or logistic

functions. The null hypothesis then writes

H0 : E [Y − µ(X, θ0)|X] = 0 a.s. for some θ0 . (1.1)

As we face the “curse of dimensionality” in estimating the above conditional expectation,
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the resulting estimate is imprecise in small and moderate samples, and the related test

lacks power. Our approach consists in estimating conditional expectations given a linear

indexX ′β for any β and thus to replace one conditional expectation given all the regressors

by all conditional expectations given one single linear index only. The advantage is that

each expectation can be estimated accurately for a reasonable sample size since it depends

on a single linear index only. The apparent drawback is that we have to estimate many

conditional expectations. However, this cumbersome task can be avoided by combining

expectations into a single integral and estimating this integral at once. We show indeed

below that H0 is equivalent to∫
Sq
E
[
E2 (Y − µ(X, θ0)|X ′β) fβ(X ′β)

]
dβ = 0 for some θ0 , (1.2)

where Sq is the hypersphere {β ∈ Rq : ‖β‖ = 1} and fβ(·) is the density of the linear index

X ′β. Our approach thus reduces the dimension of the problem without any knowledge

about the form of the alternatives. The resulting test is truly omnibus, the rate of

convergence of the test statistic under H0 equals the rate one would obtain in the one-

dimensional case, so that the test behaves against local directional alternatives as if there

was one regressor only. We also show that when the regressors are bounded, which is

a weak requirement, it is sufficient to consider the above integral on a subset of the

hypersphere with nonempty interior. This readily allows to incorporate some qualitative

information in the procedure. For instance, if it is known that the marginal effects of two

regressors are always of the same sign, one can choose restrict to the integral over the

domain where the corresponding components of β have the same sign.

The paper is organized as follows. Section 2 explains the principle on which our

approach relies and compare it to previous approaches. In Section 3, we propose a test

statistic based on the kernel method, detail its practical computation, and study its

asymptotic behavior under the null hypothesis. We also justify the validity of a bootstrap

method to obtain critical values for samples of small or moderate size. In Section 4,

we study the test under a sequence of directional alternatives and report the results of

an extensive simulation study that compares our approach to different tests previously

proposed in the literature. Section 5 applies our test to a cross-country growth regression

as studied by Liu and Stengos (1999). Section 6 suggests directions for future research.

The technical proofs are gathered in the Appendix.
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2 Principle

The following lemma is the crux of our approach. It provides a direct justification for

considering all conditional expectations given one single linear index for testing H0. When

X is bounded, it is even sufficient to consider infinitely many of these conditional expec-

tations. Note that this can be assumed without loss of generality, since we can always find

a one-to-one transformation that maps X in a bounded set and retains all conditioning

information, see e.g. Bierens (1982).

Lemma 2.1 Let Sq = {β ∈ Rq : ‖β‖ = 1} be the hypersphere with radius one. Consider

random vectors Z ∈ R with E(Z2) <∞ and X ∈ Rq. Let fβ(·) be the density of X ′β and

assume that E(Z|x′β)fβ(x′β) ∈ L1(R) ∩ L2(R) for all β ∈ Sq.
(i) E(Z | X) = 0 is equivalent to∫

Sq
E
[
E2 (Z|X ′β) fβ(X ′β)

]
dβ = 0 . (2.1)

(ii) If X is bounded, then E(Z | X) = 0 is equivalent to∫
B

E
[
E2 (Z|X ′β) fβ(X ′β)

]
dβ = 0 (2.2)

for any B ⊂ Sq with nonempty interior in Sq.

Lemma 2.1 can be deduced from Bierens (1982, Theorem 1), see also Escanciano (2006,

Lemma 1), but since it is the key of our approach, we provide here a simple proof and we

comment it thereafter.

Proof. (i) The implication is straightforward. By elementary properties of the conditional

expectation, for any β ∈ Sq and any t ∈ R,

ψβ(t) := E [exp{itX ′β}E(Z | X ′β)] = E [exp{itX ′β}E(Z | X)] , (2.3)

where i =
√
−1. Since for any β ∈ Sq, E (Z|x′β) fβ(x′β) ∈ L1(R) ∩ L2(R), Plancherel’s

theorem, see e.g. Rudin (1987), yields∫
R
|ψβ(t)|2 dt = 2π E

[
E2 (Z|X ′β) fβ(X ′β)

]
and

∫
Sq

∫
R
|ψβ(t)|2 dt dβ = 2π

∫
Sq
E
[
E2 (Z|X ′β) fβ(X ′β)

]
dβ .
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If the last integral is zero, this implies ψβ(t) = 0 for all β and all t. By the unicity of the

Fourier transform, E(Z | X) = 0.

(ii) Clearly, E(Z | X) = 0 implies (2.2). Since

2π

∫
B

E
[
E2 (Z|X ′β) fβ(X ′β)

]
dβ =

∫
B

∫
R
|ψβ(t)|2 dt dβ ,

(2.2) implies ψβ(t) = 0 for all β ∈ B and t. Since X is bounded, this yields E(Z|X) = 0

by Theorem 1 of Bierens (1982).

The proof clearly shows how (2.1) naturally appears from Fourier analysis. It is also useful

to see that, because of the symmetry of the Fourier transform, our lemma holds not only

for the hypersphere Sq, but for any half-hypersphere. By half-hypersphere, we mean any

connected subset H of Sq such that (i) H∪H− = Sq, where H− = {β− : β− = −β, β ∈ H}
and (ii) H ∩H− has Lebesgue measure zero. Hence, the assumption of a bounded X is

necessary for Part (ii) only if B does not contain a half-hypersphere. We also note that

our result would adapt when some of the components of X are discrete with a finite

support. However we do not pursue this issue further since the dimensionality issue arises

in theory only for continuous regressors, namely the rate of convergence of the test statistic

is affected by the dimension of X only when X is continuous.

Our approach consists in estimating the quantity in (2.1) and testing whether it is

zero. It is related to the ICM test of Bierens (1982) and Bierens and Ploberger (1997),

which is based on the fact that for X bounded, E(Z|X) = 0 iff∫
Rq

|E [Zψ (X ′β)]|2 dµ(β) = 0 ,

for some probability measure µ(·) and a well-chosen function ψ(·). Bierens (1982) based

his test on estimation of the above quantity with ψ(·) = exp(i·), Bierens and Ploberger

(1997) did the same with ψ(·) = exp(·). Escanciano (2006) considered a test statistic that

estimates ∫
Sq

∫
Rq

|E [ZI (X ′β ≤ t′β)]|2 dFX(t) dβ ,

which is also zero iff H0 holds, where I(·) is the indicator function. From Lemma 2.1, our

approach can be similarly viewed as based on the integral of density-weighted expecta-

tions, that is ∫
|E [Zψβ (X ′β) fβ(X ′β)]|2 dβ .
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Instead of choosing particular ψβ (·) at the outset, we choose for each β the L2-function

that maximizes the above integrand. We clearly have to normalize the functions ψβ(·) to

obtain a unique set of finite solutions. Under our assumptions, a convenient normalization

is

E
[
ψ2
β (X ′β) fβ(X ′β)

]
= E

[
E2(Z | X ′β)fβ(X ′β)

]
. (2.4)

Hence the problem is to find the function that minimizes E
[
(Z − ψ (X ′β))2 fβ(X ′β)

]
, so

that ψβ(X ′β) = E(Z | X ′β). When X is bounded, we can incorporate some qualitative

information by restricting attention to a subset B of Sq and estimate (2.2) instead of (2.1).

We illustrate this possibility later on.

3 The smooth ICM test

3.1 The test statistic

Let (Yi, X
′
i)
′, i = 1, . . . n, be a random sample from (Y,X ′)′ ∈ R1+q. The model to be

checked writes

Y = µ(X, θ0) + ε, E (ε|X) = 0 .

An estimated candidate θ̂n for the parameter θ0 can be obtained by least-squares. The

parametric residuals are then Ûi = Yi − µ(Xi, θ̂n), i = 1, . . . n. We use the kernel method

to estimate (2.2), as it yields a very tractable statistic. We could certainly accommodate

for other nonparametric methods, such as splines, local polynomials, or orthogonal series,

but we do not pursue this issue here. We first define

Qn(β) =
1

n(n− 1)

∑
j 6=i

ÛiÛj
1

h
Kh ((Xi −Xj)

′β) , (3.1)

as an estimator of E [E2 (Y − µ(X, θ0)|X ′β) fβ(X ′β)]. Here Kh (·) = K (·/h), where K(·)
is an univariate symmetric density and h a bandwidth. This statistic is the one studied

by Zheng (1996) and Li and Wang (1998) applied to the index X ′β and has an asymptotic

centered normal distribution with rate nh1/2 under H0. As noted by Dette (1999), Zheng’s

statistic is comparable to Härdle and Mammen’s one (1993) with weight function equal

to the squared density, which is exactly what we need here. The quantity in (2.2) is thus
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estimated by

In = In(B) =
1

n(n− 1)

∑
j 6=i

ÛiÛj
1

h

∫
B

Kh ((Xi −Xj)
′β) dβ .

Let v2n be the variance of nh1/2In under H0, which is strictly positive and finite as shown

later. With at hand a consistent estimator v̂2n, an asymptotic α-level test is given by

Reject H0 if nh1/2In ≥ z1−αv̂n ,

where z1−α is the (1− α)-th quantile of the standard normal distribution. Now

v2n =
2

n(n− 1)

∑
j 6=i

σ2(Xi)σ
2(Xj)h

−1E2
B [Kh ((Xi −Xj)

′β)] ,

where EB [g(β)] :=
∫
B
g(β) dβ for a function g(·) of β and σ2(·) is the conditional variance

of Y given X. In general, the latter is unknown, but with at hand a nonparametric

estimator such that

sup
1≤i≤n

∣∣∣∣ σ̂2(Xi)

σ2(Xi)
− 1

∣∣∣∣ = oP(1) , (3.2)

v2n can be consistently estimated by

v̂2n =
2

n(n− 1)

∑
j 6=i

σ̂2(Xi)σ̂
2(Xj)h

−1E2
B [Kh ((Xi −Xj)

′β)] .

Many nonparametric estimators could be used. For instance, one can consider

σ̂2(x) =

∑n
i=1 Y

2
i I {‖x−Xi‖ ≤ l}∑n

i=1 I {‖x−Xi‖ ≤ l}
−
(∑n

i=1 YiI {‖x−Xi‖ ≤ l}∑n
i=1 I {‖x−Xi‖ ≤ l}

)2

,

where l is a bandwidth parameter converging to zero as the sample size increases, which

can be selected independently of h. Guerre and Lavergne (2005) provide some primitive

conditions for (3.2), including in particular the continuity of σ2(·). It is then straightfor-

ward to show that v̂2n/v
2
n = 1+oP(1) under H0. Given our focus, we will proceed assuming

(3.2) holds.

The use of a nonparametric estimator of the error’s variance does not affect our test

at a first order. A simpler alternative is to plug estimated parametric residuals in the

expression of v2n in place of the unknown variance components, which yields

v̂2n =
2

n(n− 1)

∑
j 6=i

Û2
i Û

2
j h
−1E2

B [Kh ((Xi −Xj)
′β)] .
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This alternative estimator is consistent for v2n under H0, but overestimates it when the

parametric model is incorrect, and thus likely yields some loss in power for the test. For

this reason, we do not recommend its use in practice. Nevertheless, our asymptotic results

allow for its use.

Zhu and Li (1998) first proposed to use an unweighed integral of expectations con-

ditional upon single linear indices, yielding a statistic close to, but different than In for

checking a linear regression model. However, they do not study the related test. Instead,

their test is based on their integral statistic plus a term of the form (1/n)
∑n

i=1 Ûiφ (‖Xi‖),
where φ(·) is the standard normal univariate density (or any other known function).

Hence, they combine a test statistic based on nonparametric methods with a directional

test statistic. The asymptotic behavior of their test statistic under H0 is completely

driven by the second one. By contrast, we directly base our test on the integral statistic

In. Lavergne and Patilea (2008) consider a test based on Qn(β̂n), with

β̂n = arg max
Sq

nh1/2Qn(β)− αnI (β 6= β∗) ,

where β∗ represents a favored direction and αn is a slowly diverging penalty sequence.

Their procedure allows to incorporate some information on the preferred single-index

alternative, as defined through β∗, but introduces a supplementary user-chosen parameter

αn.

3.2 Practical considerations

A first practical issue relates to the fact that the same bandwidth is used for all directions

X ′β. Hence it is desirable to transform the regressors to make different linear combinations

comparable. An easy way is to center and rescale the matrix of observations on X so that

it has mean zero and variance identity. Alternatively, as suggested by Bierens (1982) for

the ICM test, one can map each regressor onto the interval (0, 1) through a monotonic

transformation.

Implementation of our test requires integration on the (half) hypersphere or a subset

of it. To approximate the integral in practice (up to a constant), it is sufficient to draw

a large number of points randomly distributed on the (half) hypersphere, to evaluate the

function under the integral for each draw and to compute the average. A draw can be
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easily performed by sampling independent zi, i = 1, . . . q, distributed as N(0, 1) and to

define β as the vector z/‖z‖. By the radial symmetry of the normal distribution, this

gives points uniformly distributed on the hypersphere. In some cases, it may be possible

to derive the analytic form of the integral. From the previous arguments, we have that∫
Sq
K(u′β) dβ =

∫
Rq

K(
u′z

‖z‖
)φ(z)dz

where φ(·) is the q-variate standard normal density. By a suitable change of variables,

this equals ∫
Rq

K(‖u‖ z1
‖z‖

)φ(z)dz ,

and thus depends only depends on ‖u‖. However, deriving the analytic formula of this

function can be quite tedious, even with symbolic computation engines, while numerical

approximation is quite fast and easy. Matlab codes to implement the test are available

from the authors upon request.

3.3 Behavior under the null hypothesis

To avoid technicalities, the parametric regression is taken to be linear in parameters for

the technical analysis that follows, i.e. the model is

Y = (1, X ′)θ + ε E [ε|X] = 0 .

However, we do not restrict the data to exhibit normality or homoscedasticity. Our results

extend to a general parametric regression, see for instance Lavergne and Patilea (2008)

for necessary assumptions. We first state our general assumptions on the data-generating

process, the kernel and smoothing parameter.

Assumption D (a) The random vectors (ε1, X
′
1)
′, . . . , (εn, X

′
n)′ are independent copies

of the random vector (ε,X ′)′ ∈ R1+q, where E(ε | X) = 0 and E(ε4) <∞.

(b) Let σ2(x) = E(ε2 | X = x). There exist constants σ2 and σ2 such that for any x

0 < σ2 ≤ σ2(x) ≤ σ2 <∞.

(c) X is continuous with bounded density f(·), and the density fβ(·) of X ′β is such that

for some C, |fβ(·)| ≤ C for any β ∈ B. If B does not contain a half-hypersphere, X is

assumed to be bounded.
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(d) Let Z = [Zi, i = 1, . . . n] = [(1, X ′i), i = 1, . . . n] be the design matrix. There exists a

positive definite matrix A such that n−1Z′Z
p−→A. θ ∈ Θ, a compact of R1+q.

Assumption K (a) The kernel K(·) is a bounded symmetric density with K(0) > 0 and

an integrable Fourier transform. (b) h→ 0 and (nh2)
α
/ lnn→∞ for some α ∈ (0, 1).

Assumptions D(c) rules out multicollinearity among the regressors and is sufficient for

our Lemma 2.1 to hold, so that we adopt it for the sake of simplicity. Note that for X

bounded, a bounded density for X implies that fβ(·) is bounded uniformly in β ∈ Sq.
The assumptions on the kernel K(·) are satisfied by most kernels used in practice. The

restrictions on the bandwidth are compatible with optimal choices for regression checks,

see Guerre and Lavergne (2002). The following theorem states the asymptotic validity of

the smooth ICM test.

Theorem 3.1 Under Assumptions D and K and if v̂2n/v
2
n = 1 + oP(1) under H0, the test

based on In has asymptotic level α conditionally on the X ′is.

While the test can be implemented using asymptotic critical values for large samples,

the asymptotic approximation is likely not accurate for small or moderate samples, as is

the case for most regression checks. The wild bootstrap, initially proposed by Wu (1986),

is thus often used to compute small sample critical values, see e.g. Härdle and Mammen

(1993) and Stute, Gonzalez Manteiga, and Presedo Quindimil (1998). Here we use a

generalization of this method, the smooth conditional moments bootstrap introduced by

Gozalo (1997), which often delivers better small sample results. It consists in drawing

n i.i.d. random variables ωi independent from the original sample with Eωi = 0, Eω2
i =

1, and Eω4
i < ∞, and to generate bootstrap observations of Yi as Y ∗i = µ(Xi, θ̂n) +

σ̂(Xi)ωi, i = 1, . . . n. A bootstrap test statistic is built from the bootstrap sample as

the original test statistic was. When this scheme is repeated many times, the bootstrap

critical value z∗1−α,n at level α is the empirical (1−α)-th quantile of the bootstrapped test

statistic. This critical value is then compared to the initial test statistic. The following

theorem can be shown following the lines of Theorem 3.1’s proof.

Theorem 3.2 Under the assumptions of Theorem 3.1 and Condition (3.2), the bootstrap

critical value yields a test based on In with asymptotic level α conditionally on the original

sample.
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4 Power analysis

4.1 Power under local alternatives

Let us investigate the ability of our test to detect directional departures from the null

hypothesis. Consider a real-valued function δ(X) such that

E[(1, X ′)δ(X)] = 0 and 0 < E[δ4(X)] <∞ . (4.1)

The first condition ensures that δ(·) is orthogonal to any linear combination of the regres-

sors. By contrast to what is done in previous literature, we do not impose smoothness

restrictions on the function δ(·). We consider the sequence of local directional alternatives

H1n : E [Y |X] = (1, X ′) θ0 + rnδ(X), n ≥ 1 . (4.2)

Such directional alternatives can be detected by our test if r2nnh
1/2 →∞, where h applies

to the univariate variable defined by a single linear index in X. By comparison, when one

uses a regression check based on a standard “multidimensional” nonparametric estimator,

r2nnh
q/2 →∞ is needed for consistency. Hence, from a theoretical viewpoint, the asymp-

totic power of our test against directional alternatives is not affected by the dimension of

the regressors.

Theorem 4.1 Under Assumptions D and K, if v̂2n/v
2
n = OP(1) and r2nnh

1/2 → ∞, the

test based on In is consistent conditionally on the Xi’s against the sequence of alternatives

H1n with δ(X) satisfying (4.1).

This result allows for a theoretical comparison between different procedures. The ICM test

as well as the test proposed by Escanciano (2006) do not involve any smoothing parameter,

and thus are consistent against directional alternatives as long as r2nn→∞. On the other

hand, the test proposed by Lavergne and Patilea (2008) is consistent against directional

alternatives with r2nnh
1/2/αn →∞. Hence asymptotic analysis implies a ranking between

the different tests. However, nothing ensures that such a ranking will be valid in small or

moderate samples. For instance, Lavergne and Patilea (2008) found in their simulation

that their test outperforms the ICM and Escanciano’s test. Hence we now turn to compare

the small sample power of our test with some of its competitors.
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4.2 Small sample power

Our simulation study had as a main objective to evaluate the comparative performances

of the smooth ICM test (hereafter, SICM) with respect to competing tests based on single

indexes. Let us present briefly the different tests we considered. The ICM test (hereafter

ICM) is based on the statistic

n

∫
Rq

∣∣∣∣∣ 1n
n∑
i=1

Ui(θ) exp(iX ′iβ)

∣∣∣∣∣
2

φ(β)dβ =
1

n

∑
i,j

Ui(θ)Uj(θ) exp

(
−‖Xi −Xj‖2

2

)
,

where φ(β) is the standard normal density on Rq, see Bierens (1982). Escanciano (2006)

also used this form of ICM for comparison. The asymptotic theory developed by Bierens

and Ploberger (1997) applies only if the measure used in integration has compact support,

so that the normal distribution should be truncated at some possibly very large values. For

all practical matters however, this should not make any substantial difference. Moreover,

as noted by a referee, a Hilbert space approach in asympotic theory could allow for a non-

compact support, see e.g. Escanciano (2006). The ICM statistic thus resembles ours, with

a kernel depending only on the norm ‖Xi−Xj‖ but with a fixed bandwidth. Dominguez

(2004) shows that the wild bootstrap is valid and preserves asymptotic admissibility of

ICM, consequently we used this method to obtain critical values. Escanciano’s test is

based on the statistic

1

n2

∑
i,j

Ui(θ)Uj(θ)

(∑
k

∫
Sq
I(X ′iβ ≤ X ′kβ)I(X ′jβ ≤ X ′kβ) dβ

)
,

and the wild bootstrap was used to obtain critical values. Computation of the statistic

was performed using Escanciano’s (2006) analytic results, see his Appendix B. We based

RESET on estimating a third order polynomial regression in the index Xβ̂, where β̂ is

the OLS estimator of the linear model, and testing for the significance of the non-linear

terms. As recommended by Godfrey and Orme (2004), we use restricted residuals and

the wild bootstrap in implementing RESET. In practice, we have found that computation

of this test is often plagued by imperfect multicollinearity, so the reported results should

be viewed with caution. We also considered the test proposed by Lavergne and Patilea

(2008), that depends not only on a bandwidth, but also on a penalty sequence αn as well as

a favored direction β∗. Finally, we considered Zheng’s test (1996) based on the knowledge

13



of the true index. Since this test uses information that are not used by the other tests, it

constitutes a benchmark against which to judge the performances of each test. We did not

directly consider the smoothing test of Zheng (1996) and Li and Wang (1996) because it

would involve a comparison between one-dimensional and multi-dimensional smoothing,

and it is unclear how this should be done.

A referee suggested to consider the same setup than Zhu (2003) and Escanciano (2006)

with multiple regressors and a quadratic alternative. However, the population R2, that

is the part of the variation of the dependent variable explained by the linear projection

on the regressors’ space, is always greater than 99% in the considered models and this

hardly corresponds to any realistic situation. Our setup considers X with dimension four

and the null hypothesis

H0 : E(Y |X) = (1, X)′θ0 for some θ0 .

We generated samples of observations from independent uniformly distributed variables

for each component of X. The support was chosen as U
[
−
√

3,
√

3
]

to get unit variance.

We sampled errors from a standard normal distribution and we constructed the response

variable as

Yi = (1, Xi)
′θ0 + d δ(X ′iβ0) + εi i = 1, . . . n ,

with θ0 = (0, 0.5, 0.5, 0.5,−1.5), and different d and δ(·). Under the null hypothesis, the

population R2 is 75%. For each experiment, the number of replications is 5000 under the

null hypothesis and 1000 under each alternative. The number of bootstrap samples is 199

for each replication and the level is 5%. We considered SICM where numerical integration

is performed on a grid of 5000 points on an half-hypersphere, and SICM where integration

is performed on a grid of 5000 points on the subset B of the hypersphere for which the first

three components of β are positive. This corresponds to the knowledge that the marginal

effects of the first three components of X on Y are of the same sign. To compute the

test statistics, we used a normal kernel and we selected the bandwidth as h = b n−2/9.

This rate is the optimal bandwidth rate derived by Guerre and Lavergne (2002) when

the regression function is twice differentiable. As a basis, we chose b = 1, but we checked

that varying this constant does not affect our qualitative results, see below. The errors’

conditional variance was estimated by applying a kernel estimator with normal kernel and

bandwidth cn−1/6 to the parametric residuals. As a basis, we chose c = 2, since it yielded
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a better behavior for Zheng’s test, but our conclusions are not dependent of this choice,

see below.

In our first set of simulations, δ(X) = 0.1×(X ′β0/
√

3)2, where β0 = (1, 2, 3,−2)/
√

18.

Figure 1 illustrates that residual plots may not be informative on whether the model

is misspecified when many regressors are present. Partial residuals are defined as Y −∑
j 6=k θ̂jZj, see Cook (1993) and the references therein, and the data were generated

with n = 50 and d = 12. Figure 2 compares the power curves of the different tests for

n = 50, b = 1, and c = 2. Empirical levels are well approximated by the bootstrap

for the smooth tests. Bierens’ and Escanciano’s tests are under rejecting, with respective

levels 2.9 and 1.16. We checked that this phenomenon was not due to too low a number of

bootstrap replications and that it was not dependent on the signal-to-noise ratio. However

underrejection may be case-dependent, e.g. one referee found accurate levels for a linear

model with four regressors but without a constant. In terms of power, SICM outperforms

all its competitors but the infeasible Zheng’s test in dimension 1. Such a finding is in line

with the one of Miles and Mora (2003), who found in simulations that when the regressors’

dimension increases non smooth tests such as ICM can be largely outperformed even by

multidimensional smooth tests. ICM and Escanciano’s test perform almost similarly, and

are both more powerful than the RESET test. When incorporating some qualitative

information on the first three components, the power of SICM becomes close to the one

of the infeasible test Zheng’s test.

We then compared ICM and SICM to the test of Lavergne and Patilea (2008, hereafter

LP). We chose αn = a log(n), where the benchmark a = 0.2 is found as suggested in the

original paper. We considered two cases. Figure 3 reports the results in which the favored

direction corresponds to the true index. For varying a, the power of LP’s test is always

higher than the one of SICM. We then chose as a favored direction (2, 0, 0, 1)/
√

3, which

is orthogonal to the true direction β0. Figure 4 shows that this changes the ranking. Not

only SICM is now more powerful, but LP’s test becomes as or less powerful than ICM

depending on the choice of αn.

Figure 5 illustrates that the power of the smooth ICM test varies little when the

bandwidth h varies. Figure 6 considers a variation in the bandwidth used for variance

estimation, and reaches a similar conclusion. In Figures 7 and 8, we let the sample size

varies. For a sample size of 25, the power of all tests is much lower, but the overall
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comparative behavior of the tests does not change with the exception that Escanciano’s

test has now almost the same power as RESET. For a sample size of 100, the power curves

of all tests come closer, so that it is difficult to rank them. Only SICM on B is clearly

more powerful than its competitors, and behaves almost as the infeasible Zheng’s test.

In our second set of simulations, we considered the hyperbolic sine alternative δ(X) =

sinh(X ′β0/
√

3). This alternative is particularly difficult to detect, because it resembles

very much a linear function. Other features of the experiments are unchanged. Figure 9 is

the analog of Figure 2 for hyperbolic sine alternatives. The RESET is now very powerful,

followed closely by SICM on B. Recall however that RESET suffers from imperfect

multicollinearity among the terms of the polynomial regression. SICM is more powerful

than ICM, followed by Escanciano’s test. Figure 10 shows that varying the bandwidth h

does not affect much the SICM power. For n = 100, the ranking of the different tests is

unaffected, as seen in Figure 11.

In a third step, we considered the sine alternative δ(X) = 0.1 × sin(πX ′β0/
√

3).

This alternative is favorable to Bierens’ test, which is based on the correlation between

residuals and trigonometric functions. Figure 12 shows that for n = 50 ICM performs

better than Escanciano’s test, but SICM outperforms them both. Restricting integration

on B further improves its power. Surprisingly, RESET does even better than SICM.

Figure 13 shows that for a large bandwidth SICM and ICM have similar performances,

as could be expected.

To show that our conclusions are not tied to single-index alternatives, we consid-

ered the two-indexes alternative δ(X) = sinh(X ′β1/
√

3) + sinh(X ′β2/
√

3), where β1 =

(0, 2, 1,−1)/
√

6 and β2 = (1, 0, 2,−1)/
√

6. As a benchmark, we took Zheng’s test based

on the two linear indices entering the regression function, labeled as “Zheng’s test Dim

2.” Figure 14 for n = 50 shows the previous qualitative findings still hold. Figure 15

illustrates that they still hold when the bandwidth varies.

Two main features emerge from our simulations. First, when many regressors are

present, the smooth ICM test is powerful in most cases, likely because it is based on

nonparametric estimation and thus “maximizes” the difference in behavior under the null

and alternative hypothesis. Second, even for alternatives against which the ICM test

is directed, as our sine alternatives, the smooth ICM test can do a better job in small

samples. Clearly, such findings are not accounted for by asymptotic results.
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5 Empirical application

A vast literature has used cross-country regressions to search for linkages between long-run

average growth rates and a variety of economic policy, political and institutional factors.

Such work uses the classical Solow model as a basic framework, see the contributions of

Barro (1991) and Mankiw et al. (1992). In this application, we used data from King and

Levine (1993), and specifically pooled cross-country data averaged over the 1960s, 1970s

and 1980s for 86 countries as investigated by Liu and Stengos (1999). We consider the

linear regression of GDP , the growth rate of the gross domestic product, on ln(POP ), the

natural logarithm of population growth (adjusted for depreciation rate and technological

change), ln(INV ), the natural logarithm of the share of output allocated to investment,

ln(GDP60), the natural logarithm of the initial level of GDP in 1960, and ln(SEC),

the natural logarithm of human capital as measured by the enrolment rate in secondary

schools. Fixed-effects time dummies are also included. Theory and empirics suggest that

the GDP growth is decreasing in population growth, and increasing in both human capital

and investment. There is more uncertainty about the relationship with the initial level of

GDP. The estimated regression is

ĜDP = 0.0299 −0.0324 ln(POP ) +0.0286 ln(INV ) −0.0037 ln(GDP60)

(0.0281) (0.0111) (0.0055) (0.0026)

+0.0037 ln(SEC) +Time fixed effects

(0.0021)

with clustered standard errors into parentheses. This corresponds to our expectations,

though the coefficient of ln(GDP60) has a large standard error. To check nonlinearities

in ln(GDP60) and ln(SEC), one can introduce quadratic then cubic terms, as in Liu and

Stengos (1999), but the coefficients of these polynomial terms are insignificant (jointly

for each variable), with p-values greater than 0.4 in any case (likely due to imperfect

multicollinearity). Hence simple parametric methods do not point in the direction of a

more sophisticated model. However, Liu and Stengos (1999) showed using semiparametric

methods that there exist nonlinearities in the (logarithms of) initial level of GDP and

human capital. Specifically, growth is as expected increasing in the logarithm of human

capital, but at a decreasing rate, while growth is first increasing then decreasing in initial

GDP.
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We applied different tests considered in the simulations with X the vector of the four

continuous variables ln(POP ), ln(INV ), ln(GDP60), and ln(SEC). For the smooth

ICM test, we also considered a version that incorporates our expectations about the

relationships between growth and population, human capital and investment. That is,

we integrate over the domain of the hypersphere for which the respective signs of the

components of β match our expectations. Before implementing the tests, we center and

rescale the matrix X. Other details of the computation are the same as in the simulations.

The p-value for the ICM and Escanciano’s test were 0.0854 and 0.1106 respectively.

So in this application, neither would reject the linear model at a 5% significance level.

Table 1 reports the results of the different nonparametric tests. By contrast, the p-value

for the smooth ICM test varies between 1 and 2%. The smooth ICM restricted on B has

p-value zero irrespective of chosen bandwidth. These results indicates that the smooth

ICM test and its variant unambiguously detect some unaccounted nonlinearities in the

growth regression.

6 Concluding remarks

Our smooth ICM test allows to check the functional form a regression model with many

regressors. The principle of our test is to replace one conditional expectation given all

the explanatory variables by all conditional expectations given one single linear index.

The same idea can be used to test general conditional moment restrictions, as studied for

instance by Lewbel (1995), Donald, Imbens and Newey (2003), and Delgado, Dominguez,

and Lavergne (2006). This line of research is currently under investigation.
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Appendix

For any function g(·) ∈ L1(Rq)∩L2(Rq), its Fourier and inverse Fourier transforms are re-

spectively defined as ĝ(t) = (2π)−q/2
∫
Rq exp(it′x)g(x) dx and (2π)−q/2

∫
Rq exp(−it′x)ĝ(t) dt.

In what follows, C denotes a positive constant that may vary from line to line. We first

show two lemmas that are useful for proving our main results.

Lemma 6.1 Let δ(·) be any non-zero function of X on the support of X and h → 0.

Under Assumptions D(c) and K(a),

(i) If Eδ2(X) <∞, E {δ(X1)δ(X2)h
−1EB [Kh ((X1 −X2)

′β)]} has a strictly positive finite

limit. (ii) Let Un = 1
n(n−1)

∑
j 6=i

δ(Xi)δ(Xj)h
−1EB [Kh ((Xi −Xj)

′β)]. If Eδ4(X) < ∞ and

nh→∞, then Un − E(Un) = oP(1).

Proof. (i) Denoting by K̂(·) the Fourier transform of K(·),

E
{
δ(X1)δ(X2)h

−1EB [Kh ((X1 −X2)
′β)]
}

= (2π)−1/2 EB
{
E
[
δ(X1)δ(X2)h

−1
∫

exp (−it(X1 −X2)
′β/h) K̂(t) dt

]}
= (2π)q−1/2 EB

{∫ ∣∣∣δ̂f(tβ)
∣∣∣2 K̂(ht) dt

}
.

As
∣∣∣K̂(·)

∣∣∣ ≤ K̂(0) = (2π)−1/2, Lebesgue’s dominated convergence yields the limit

(2π)q−1/2
∫
R

∫
B

∣∣∣δ̂f(tβ)
∣∣∣2 dβ dt ,

provided it is finite. But the above integral is strictly positive and bounded by∫
R

∫
Sq

∣∣∣δ̂f(tβ)
∣∣∣2 dβ dt = 2π

∫
Sq
E
[
E2(δ(X)|X ′β)fβ(X ′β)

]
dβ <∞ .

(ii) Var(Un) ≤ C
n

Var [δ(X1)δ(X2)h
−1EBKh ((X1 −X2)

′β)]

≤ C
nh
E [δ2(X1)δ

2(X2)h
−1EBKh ((X1 −X2)

′β)] ,

and the above expectation converges to a finite limit from Part (i).

Let W be the matrix with generic element EB [Kh ((Xi −Xj)
′β)] I (i 6= j) / (hn(n− 1))

and define its spectral radius as Sp(W) = supu6=0 ‖Wu‖/‖u‖.
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Lemma 6.2 Under Assumptions D(c) and K, (i) Sp(W) = OP(n−1) and (ii) n2h‖W‖2

has a strictly positive limit, where ‖W‖ denotes the Euclidean matrix norm.

Proof. (i) For any u ∈ Rn,

‖Wu‖2 =
n∑
i=1

(
n∑

j=1,j 6=i

wij uj

)2

≤
n∑
i=1

(
n∑

j=1,j 6=i

wij

)
n∑

j=1,j 6=i

wij u
2
j

≤ ‖u‖2
[

max
1≤i≤n

(
n∑

j=1,j 6=i

wij

)]2
.

Hence nSp(W) ≤ max1≤i≤n
∑

j 6=i
1

h(n−1)EBKh ((Xi −Xj)
′β). For all j, |EBKh ((x−Xj)

′β)| ≤
C and Var [EBKh ((x−Xj)

′β)] ≤ C. The Bernstein inequality yields for any t > 0 and

α ∈ (0, 1)

P

[(
(nh2)α

lnn

)1/2

max
1≤i≤n

1

(n− 1)h

∣∣∣∣∣∑
j 6=i

{EBKh ((Xi −Xj)
′β)− E [EBKh ((Xi −Xj)

′β) |Xi]}

∣∣∣∣∣ ≥ t

]

≤
∑

1≤i≤n

E

[
P

[∣∣∣∣∣ 1

(n− 1)

∑
j 6=i

{EBKh ((Xi −Xj)
′β)

− E [EBKh ((Xi −Xj)
′β) |Xi]}

∣∣∣∣∣≥ th

(
lnn

(nh2)α

)1/2

| Xi

]]

≤ 2n exp

(
−t

2

2

(nh2)(lnn)

C((nh2)α + th(nh2)α/2(lnn)1/2)

)
≤ 2 exp

[
lnn− t2

C ′
(lnn)(nh2)1−α

]
→ 0 ,

since nh2 →∞ by Assumption K(b). Now

E
[
h−1EBKh ((Xi −Xj)

′β) |Xi

]
=

∫
B

∫
R
K(u)fβ(X ′iβ − hu) du dβ

is bounded uniformly in i by Assumptions D(c) and K(a).

(ii) Write n2h‖W‖2 = 1
(n−1)2

∑
i 6=j h

−1E2
BKh ((Xi −Xj)

′β) . Hoeffding’s (1963) inequality

for U -statistics yields for any t > 0

P

[
1

n(n− 1)h

∣∣∣∣∣∑
j 6=i

{
E2
BKh ((Xi −Xj)

′β)− E
[
E2
BKh ((Xi −Xj)

′β)
]}∣∣∣∣∣ ≥ t

]

= P

[∣∣∣∣∣ 1

n(n− 1)

∑
j 6=i

{
E2
BKh ((Xi −Xj)

′β)− E
[
E2
BKh ((Xi −Xj)

′β)
]}∣∣∣∣∣ ≥ th

]

≤ 2 exp

(
−t

2 (nh2)

C

)
→ 0 ,
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by Assumption K(b). First note that

0 < E
[
h−1E2

BKh ((Xi −Xj)
′β)
]
< CE

[
h−1EBKh ((Xi −Xj)

′β)
]
<∞.

Moreover

E
[
h−1E2

BKh ((Xi −Xj)
′β)
]

= E
[
h−1

∫
B

Kh ((Xi −Xj)
′β) dβ

∫
B

Kh ((Xi −Xj)
′α) dα

]
= (2π)q−1

∫
R

∫
R

∫
B

∫
B

K̂(ht)K̂(u)
∣∣∣f̂ (tβ + h−1uα

)∣∣∣2 dt du dβ dα .
For B = Sq, we have by Assumption K(a)∫

R

∫
R

∫
Sq

∫
Sq
|K̂(u)|

∣∣∣f̂ (tβ + h−1uα
)∣∣∣2 dt du dβ dα

=

∫
R×Sq

∣∣∣f̂ (tβ)
∣∣∣2 dt dβ ∫

Sq
dα

∫
R
|K̂(u)| du <∞ . (6.1)

Now ∣∣∣∣∫
R

∫
R

∫
B

∫
B

(
K̂(ht)− K̂(0)

)
K̂(u)

∣∣∣f̂ (tβ + h−1uα
)∣∣∣2 dt du dβ dα∣∣∣∣

≤ C sup
|ht|≤M

∣∣∣K̂(ht)− K̂(0)
∣∣∣

+ 2(2π)−1/2
∫
|t|≥M/h

∫
R

∫
Sq

∫
Sq
|K̂(u)|

∣∣∣f̂ (tβ + h−1uα
)∣∣∣2 dt du dβ dα .

From the uniform continuity of K̂(·) and Equation (6.1), the right-hand side can be ren-

dered arbitrarily small by choosing M small enough then letting h tend to zero. Therefore

the limit of E [h−1E2
BKh ((Xi −Xj)

′β)] is, by Lebesgue dominated convergence theorem

and Assumption K(a),

(2π)q−1K̂(0)

∫
R×B

∣∣∣f̂ (tβ)
∣∣∣2 dt dβ ∫

B

dα

∫
R
K̂(u) du

= (2π)q−1K(0)

∫
B

dα

∫
R×B

∣∣∣f̂ (tβ)
∣∣∣2 dt dβ ,

which is positive by Assumption K(a).
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Proof of Theorem 3.1. Let ε = (ε1, . . . , εn)′. We have

In = I0n − 2I1n + I2n = ε′Wε− 2(θ̂n − θ0)′Z′Wε+ (θ̂n − θ0)′Z′WZ(θ̂n − θ0) ,

Under Assumption D, θ̂n− θ0 = OP(n−1/2). Hence I2n ≤ Sp(W)‖Z(θ̂n− θ0)‖2 = OP(n−1)

by Lemma 6.2(i). Let En denote the conditional expectation given the Xi, Zk be any

column of Z, k = 1, . . . d + 1, and Zk = Z ′kW. Then Marcinkiewicz-Zygmund’s and

Minkowski’s inequalities imply that there is some C independent of n such that

En |Z ′kWε| ≤ C

E2
n

∣∣∣∣∣
n∑
i=1

Z
2

kiε
2
i

∣∣∣∣∣
1/2


1/2

≤ C

{
n∑
i=1

Z
2

kiE2
n|εi|

}1/2

≤ C‖Z ′kW‖ ≤ CSp(W)‖Zk‖ = OP(n−1/2) .

Hence I1n = OP(n−1). Now from Lemma 2(i) by Guerre and Lavergne (2005), nh1/2I0n/vn

converges to a standard normal conditionally on the Xi if ‖W‖−1Sp(W) = oP(1). Lemma

6.2 allows to conclude.

Proof of Theorem 4.1. Under H1n, Ui(θ̂n) = εi − Zi(θ̂n − θ0) + rnδ(Xi). Letting δ =

[δ(X1), . . . δ(Xn)]′, In can be decomposed as I0n − 2I1n + I2n − 2I3n − 2I4n + I5n, where

I3n = rnδ
′WZ(θ̂n − θ0), I4n = rnδ

′Wε, and I5n = r2nδ
′Wδ. By Assumption D(c) and

Lemma 6.2(ii), v2n ≤ σ4n2h‖W‖2 = OP(1). Hence nh1/2I0n = OP(1). Because under our

assumptions, θ̂n − θ0 = OP(n−1/2), I1n and I2n are both OP(n−1) as in Theorem 3.1’s

proof. Since |u′Wv| ≤ ‖u‖‖v‖Sp(W), r−1n I3n ≤ ‖δ‖‖Z(θ̂n − θ0)‖Sp(W) = OP(n−1/2).

Also I4n = OP(rnn
−1/2) by the same arguments used for dealing with I1n. Lemma 6.1(ii)

yields I5n = r2nC + oP(r2n) with C > 0. Collecting results, it follows that nh1/2In =

nh1/2r2nC + oP(r2nnh
1/2). Deduce from v̂2n/v

2
n = OP(1) and r2nnh

1/2 → ∞ that nh1/2In/v̂n

diverges in probability.
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